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ABSTRACT

Macro actions have been demonstrated to be beneficial for the learning processes of
an agent. A variety of techniques have been developed to construct more effective
macro actions. However, they usually fail to provide an approach for combining
macro actions to form a synergistic macro action ensemble. A synergistic macro
action ensemble performs better than individual macro actions within it. Motivated
by the recent advances of neural architecture search, we formulate the construction
of a synergistic macro action ensemble as a sequential decision problem and
evaluate the ensemble in a task as a whole. The formulation of a sequential
decision problem enables coherency in the macro actions to be considered. Also,
such an evaluation procedure takes synergism into account since the synergism
among the macro action ensemble exhibits when jointly used by an agent. Our
experimental results show that our framework is able to discover synergistic macro
action ensembles. We further perform a series of experiments to validate the
synergism property among the macro action ensemble.

1 INTRODUCTION

Through the history of artificial intelligence, “macro action” (or simply “macro”) has long been a
prevalent tool (McGovern et al., 1997; McGovern & Sutton, 1998; Xu et al., 2018; Onda & Ozawa,
2009; Braylan et al., 2015) to reduce the efforts on searching the optimal policy in sequential decision
problems. A macro action is executed by an agent atomically, where it is typically defined as a
sequence of primitive actions. Once a macro is decided, the agent then sequentially takes the primitive
actions within it without remaking decisions. Macro actions can be used to reduce the number of
decisions required to be made. Recent works have shown that macro actions are beneficial for the
learning processes in a range of environments. Unfortunately, discovering efficacious macro actions
from an intractable number of possible combinations of primitive actions is far from straightforward.
A number of previous works have been devoted to developing macro actions construction proce-
dures (Yoshikawa & Kurihara, 2006; Newton et al., 2007; Durugkar et al., 2016). In the hope of
alleviating the combinatorial complexity of constructing macro actions, these works attempted to
reduce the scope down to searching macros individually, instead of developing multiple macros
jointly. However, searching macros individually overlooks the synergism amongst macros, which
is one of the keys to solving complex tasks. Incompatible macros may fail to synthesize required
behaviors for solving such tasks. In addition, simply adding many macro actions degrades search
performance, because not all macros are always useful for every situations. Some are too specialized
and might confuse the agent in other occasions. Hence, synergism among the macro actions emerges
to be crucial for solving complex tasks. An ensemble of synergistic macro actions can facilitate the
synthesis of complex behaviors. Synergistic macros can be executed either interleavely or jointly
with primitive actions. Therefore, an ideal macro action ensemble (or simply “macro ensemble”)
should exhibit the synergism property among the macros. Unfortunately, an appropriate approach for
constructing such synergistic macro ensemble still remains a challenge and unexplored.
To address this challenge, we borrow the idea from the recent advances of Neural Architecture Search
(NAS). Recent works (Baker et al., 2017; Zoph & Le, 2017; Liu et al., 2018) in NAS cast architecture
design of a neural network (NN) as a Markov Decision Process (MDP) and solve this MDP by
reinforcement learning (RL) (Baker et al., 2017). In this MDP, the type of layer is decided by an
RL-based controller at each step and the layers determined at all steps are then chained as a complete
NN. This process is analogous to macro ensemble construction since NAS and macro ensemble
construction both focus on searching for the optimal sequence of decisions.
In the light of this analogy, we formulate macro ensemble construction as an MDP and optimize the
construction process via RL. An RL-based controller decides a primitive action at each construction
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Figure 1: (a) Overview of the proposed ensemble searching framework. (b) An illustration of the transfor-
mation procedure from a decided action sequence en,T to a macro ensemble e. The entire transformation
procedure consists of two steps. The first step segments en,T based on a maximum length k of each macro and
forms e. The second step eliminates actions whose values are null in e.

step based on the previously decided action sequence. At the end of an episode of this MDP, all
primitive actions selected in this episode are then segmented into multiple macros that together form
a macro ensemble. The whole generated macro ensemble is evaluated by an agent in a target task,
and then the feedback is returned to the controller. The resultant evaluation performances of the
generated macro ensembles, which reflect effectiveness as well as synergism, can then be utlized to
guide the controller to refine its macro action ensemble construction policy toward synergism.

Our principal contributions are (1) introducing the synergism property, which is crucial to a macro
ensemble, and (2) formulating a macro ensemble construction process as an MDP. In this paper, we
propose an effective construction methodology grounded on RL and a parallel asynchronous frame-
work to accelerate the construction procedure. We then validate the effectiveness of our methodology
by conducting experiments on a range of Atari 2600 (Bellemare et al., 2013) environments. The
qualitative and quantitative experimental results show that our method is able to discover effective
and synergistic macro ensembles that improve RL agents’ performance. Moreover, we perform a
series of analyses to verify the existence and influence of the synergism property among macros.

The remainder of this paper is organized as the following. Section 2 briefly reviews the related works.
Section 3 describes the proposed methodology. Section 4 presents our experimental results. Section 5
concludes this paper. The provided appendix is organized as follows. Section A1 introduces the
background material. Section A2 provides additional experimental results.

2 RELATED WORK

In this section, we briefly review the previous methods for generating macros, which can be broadly
categorized as the following: repeated actions, heuristic macros, and frequently used action sequences.

The first category embraces a similar concept as macro actions. Early works of this category (McGov-
ern et al., 1997; Randlov, 1999; Braylan et al., 2015) repeat the same primitive actions for multiple
timesteps, where the length of repetition is required to be pre-defined. The more recent works relax
human priors (Vezhnevets et al., 2016; Lakshminarayanan et al., 2017; Sharma et al., 2017) by further
substituting the fixed-length action repetition with adaptive ones. However, policies that rely only on
macros consisting of repeated actions are inherently not appropriate for generating delicate behaviors.

For the second category, previous works attempt to combine different primitive actions to form a
macro action, whereas these works rely on either domain knowledge (Heecheol et al., 2019) or
structural assumptions about planners (Botea et al., 2005a; Coles & Smith, 2007). Evolutionary
strategies (Newton et al., 2005; 2007) have also been used to search for useful macro actions.
Unfortunately, these strategies still require utility functions entailing domain knowledge, while the
primary focus and the scope of discussion considered in this paper are not relying on such knowledge.

For the third category, researchers have investigated approaches that construct macro actions grounded
on frequently used sequences of primitive actions from the experience of an agent (Durugkar et al.,
2016; Dulac et al., 2013; Yoshikawa & Kurihara, 2006; Onda & Ozawa, 2009). Nonetheless, such
approaches are sensitive to the quality of experience. Please note that there are two approaches
introduced in (Durugkar et al., 2016): the frequency-based and the repeated-action based, where
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the former is more general and includes the search space of the latter. Therefore, we select the
frequency-based approach (Durugkar et al., 2016) as our primary baseline.
Please note that our work focus on macro construction in the RL domain, which is different from the
planning domain (Korf, 1985; Botea et al., 2005a; Asai & Fukunaga, 2015; Chrpa & Vallati, 2019).
The environment dynamics of the latter is accessible to a planner and allow the planner to extract,
filter, and analyze the macros (Botea et al., 2005a;b; 2007). The achiever/requirer relationship (i.e.,
inner/outer entanglement) (Chrpa et al., 2014; 2019) among macros could also be clearly defined
in the planning domain. In contrast, an RL agent solves a problem without accessing environment
dynamics, where methods of constructing and analyzing macros based on planning are not directly
applicable. In this paper, we investigate an effective method for constructing a synergistic macro
ensemble in the absence of accessible environment dynamics.

3 METHODOLOGY

Our proposed methodology constructs macro ensembles using an asynchronous parallel framework,
which is composed of two phases: a construction phase and an evaluation phase. The framework
contains two main components: a controller C, which is an RL agent updating its policy in an
off-policy manner, and a worker poolW , which is a set of asynchronous parallel workers. In the
construction phase, C constructs macro ensembles and sends them toW . During the evaluation phase,
each worker inW is implemented as an agent for evaluating the performance of the assigned macro
ensemble in its own copy of the target environment. The evaluated performances of the constructed
macro ensembles are stored in a replay memory. The controller C then updates its policy using the data
sampled from the replay memory. The construction and evaluation phases are concurrently executed
until a fixed number N of macro ensembles are constructed. Fig. 1 (a) illustrates the complete
framework of the proposed method. The pseudo-code of our method is provided in Algorithm 1.
To elaborate on our methodology, in the following subsections, we first formulate the proposed macro
ensemble construction process as an MDP in Section 3.1. We then walk through the construction and
evaluation phases of the proposed methodology in detail in Section 3.2 and Section 3.3, respectively.
3.1 FORMULATION OF THE MACRO ACTION ENSEMBLE CONSTRUCTION PROCESS

In this section, we formulate the macro ensemble construction process as an MDP with a fixed
episode length equal to T . In this MDP, C decides a primitive action an,t ∈ A ∪ {null} at timestep
t, where n is the episode number, A is the primitive action space of the target environment E , and
null is a padding action to be ignored by the worker. The decision of an,t is based on the previously
decided action sequence en,t−1, which can be expressed as en,t−1 = [an,1, an,2, · · · , an,t−1]. The
determined an,t is then appended to en,t−1 to form en,t = en,t−1 ‖ an,t, serving as the information
required for the next decision. After taking an,t, C receives the corresponding reward rn,t defined as:

rn,t ←
{
0 t < T

EVALUATE ENSEMBLE(E , en,t) t = T ,
(1)

where EVALUATE ENSEMBLE is a function presented in Algorithm A1 of the supplymentary material.
Once episode n is completed, en,T is then transformed to a macro ensemble e. The transformation
first segments en,T into macros. For example, if the maximum length of each macro m in e is set
to three (i.e., |m| ≤ 3,∀ m ∈ e), [an,1, an,2, an,3] is assigned to m1, [an,4, an,5, an,6] is assigned
to m2, and so on. The transformation is then done by removing the null actions from each m in e,
allowing macros to have various lengths. The complete transformation procedure is illustrated in
Fig. 1 (b). Please note that each macro in e must contain at least two primitive actions, otherwise it is
either an empty macro or a duplicate of primitive action. Therefore, such macros are removed from e.
3.2 CONSTRUCTION PHASE

Based on the formulation in Section 3.1, we implement C as a Deep Q-Network (DQN) (Mnih et al.,
2015), with an objective to maximize the return in the formulated MDP. The selection of DQN as C
is due to the large state space considered in our work (e.g., 14T for Kung-Fu Master, where 14 is the
number of the available primitive actions). The algorithm of our method is offered in Algorithm 1.
For each episode n, en,0 is first initialized as an empty sequence. For each construction step t ≤ T
during the construction phase, C predicts an,t based on en,t−1 and generate the new decided action
sequence en,t as formulated in Section 3.1. The partial transition record (en,t−1, an,t, en,t, t) is
then buffered in the evaluation queue D, waiting for the workers to evaluate rn,t before storing the
complete transition record (en,t−1, an,t, en,t, t, rn,t) to a replay memory Z . The controller C updates
its policy using the data sampled from Z . Please note that C explores the formulated MDP based on
the ε-greedy algorithm (Sutton & Barto, 1998), where the value of ε linearly decays from 1.0 to 0.0.
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Algorithm 1 Macro action ensemble construction algorithm
1: input: The total number of ensemble searching episodes N
2: input: The fix length of an episodes T
3: input: The target Environment E
4: input: A Worker PoolW
5: output: Best constructed macro ensemble e
6: Initialize a Controller C with random weights
7: Initialize an empty Replay Memory Z
8: Initialize an empty Evaluation Queue D
9: Launch PARALLEL EVALUATION(E ,W , Z , D)

10: for n = 1, 2, ..., N do // the nth ensemble
11: Initialize empty sequence en,0

12: for t = 1, 2, ...,T do

13: an,t ←

{
Select a random action a, with probability ε
Action predicted by C using en,t−1, with probability 1− ε

14: en,t ← en,t−1 ‖ an,t

15: // rn,t is evaluated in PARALLEL EVALUATION
16: Push partial transition record (en,t−1, an,t, en,t, t) into D
17: end for
18: // Z filled by PARALLEL EVALUATION
19: Optimize C by sampling mini-batches from Z using DQN method
20: end for
21: i = argmaxn{rn,T ∈ (en,T−1, an,T , en,T , T, rn,T ) | ∀ (en,T−1, an,T , en,T , rn,T ) ∈ Z}
22: Transform ei,T into macro ensemble e

Figure 2: A motivational example for demonstrating the synergism property in Seaquest. The top bar
shows a clip of the trajectory captured in Seaquest. The green color represents three consecutive UP macro, the
red color represents (UP, LEFT, RIGHT) macro, and the blue one represents three consecutive FIRE macro.
The white segments correspond to the uses of primitive actions. The macro actions and the primitive actions can
be jointly and interlevely used by an RL agent, demonstrating the synergism property described in Section 4.2.

3.3 EVALUATION PHASE

During the evaluation phase, rn,t is evaluated by a worker based on Eq. equation 1 in order to
generate the complete transition record from the partial one stored in D. In the case of t < T , zero
is assigned to rn,t. On the other hand, when t = T , the worker first transforms the received en,T
to e, as described in Fig. 1 (b). It then trains an agent using augmented action spaceM = A ∪ e
to interact with E . After the worker trains the agent for a fixed number of timestepsH, the trained
agent is evaluated as described in Algorithm A1 of the appendix. Once the evaluation procedure is
finished, the complete transition record (en,t−1, an,t, en,t, t, rn,t) is stored into Z . The controller C
is then updated by minimizing the loss function stated in Section A1.3 of the appendix using the data
samples from Z . Since the controller C updates its policy by maximizing the overall performance
of e rather than the performance of each individual macro action within e, the complete transition
records in Z , which reflect effectiveness of e as well as synergism among the macro actions in e, can
guide the controller C to refine its macro action ensemble construction policy toward synergism.

4 EXPERIMENTAL RESULTS

In this section, we present the experimental results and discuss their implications. We start by a
brief introduction to our experimental setup in Section 4.1, and provide a motivational example in
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Algorithm 2 Parallel Evaluation
1: input: Environment E ;
2: input: Worker PoolW;
3: input: Replay Memory Z;
4: input: Evaluation Queue D;
5: function PARALLEL EVALUATION(E ,W , Z , D)
6: while True do
7: Wait for an available worker w ∈ W
8: Pop (en,t−1, an,t, en,t, t) from D
9: Run WORKER ROUTINE(E , en,t−1, an,t, en,t, t, Z) asynchronously by w

10: end while
11: end function
12:
13: function WORKER ROUTINE(E , en,t−1, an,t, en,t, t, Z)
14: Duplicate E as E ′
15: if t == T then
16: rn,t = ENSEMBLE EVALUATION(E ′, en,t) // Algorithm A1 of the supplementary material
17: else
18: rn,t = 0
19: end if
20: Store transition record (en,t−1, an,t, en,t, t, rn,t) into Z
21: end function
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Figure 3: Comparison of the macro action ensembles constructed by our method and IEB. The red and the
blue learning curves correspond to the agents trained with the macro ensembles constructed by our methodology
and IEB, respectively. The results of the remaining environments are summarized in the appendix.

Section 4.2. We next compare the performance of the macro ensembles constructed by our method
against those constructed with an iterative experience based method (Durugkar et al., 2016) in
Section 4.3. Finally, we further validate the synergism property by examining if it exists among
the macros in the constructed macro ensembles in Section 4.4. Additional experimental results for
comparing the performances of our method against the other baselines can be referred in Section A2.

4.1 EXPERIMENTAL SETUP

We first present the environments used in our experiments in Section 4.1.1. Next, we describe our
controller architecture as well as the hyperparameters in Section 4.1.2. We then explain the setup
of the RL agents for the evaluation phase in Section 4.1.3. Lastly, we provide a brief description of
the baseline for comparison purpose in Section 4.1.4. The curves presented in the experiments are
generated based on five random seeds and drawn with 68% confidence interval as the shaded areas.

4.1.1 ENVIRONMENTS

We verify our methodolody in nineteen Atari 2600 environments: Alien, Assault, Asteroids, Beamrider,
Breakout, Chopper Command, Crazy Climber, Enduro, Frostbite, Gravitar, Krull, Kung-Fu Master,
Q*bert, Seaquest, Space Invaders, Solaris, Up’n Down, Venture, and Zaxxon, which are distributed
among the four categories with different difficulty levels (Bellemare et al., 2016) (i.e., human optimal,
score exploit, dense reward, and sparse reward). We plot the learning curves of the following
environments in Figs. 3, 4, and 5: Asteroids, Seaquest, Frostbite, and Gravitar. The results of the rest
environments are offered in Table 1 and detailed in Table A2 of the appendix.

4.1.2 CONTROLLER SETUP

Our controller C is a DQN agent whose objective is to generate a synergistic e. We modify the
architecture of Nature-DQN (Mnih et al., 2015) by removing the convolutional layer and keeping the
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Figure 4: Comparison of the macro ensembles constructed by our methodology and the decoupled macro
actions. For each environment, the red curve represents the performance of the agent trained with the macro
ensemble constructed by our methodology, while the curves in other colors represent the performance corre-
sponding to the individual macros decoupled from this macro ensemble. For each case, the red curve grows
faster and ends up with a higher performance than the other curves. These results validate the existence of the
synergism property of our macro ensembles. Additional results can be referred in the appendix.
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Figure 5: Comparison of the macro ensembles constructed by IEB and the decoupled macro actions. For
each environment, the red curve represents the performance of the agent trained with the macro ensemble
constructed by IEB, while the curves in other colors represent the performance corresponding to the individual
macro actions decoupled from this macro ensemble. For each case, the red curve ends up with a lower
performance than the best curve. The results reveal that the macro ensembles constructed by IEB may not
possess the synergism property. Additional experimental results can be referred in the appendix.

fully connected (FC) layer as well as the output layer. The maximal length and the maximal number
of the macro actions in e are configured to |m| = 3 and |e| = 3, respectively. The configuration is
based on the optimal setting of the macro action length in (Durugkar et al., 2016) as well as for the
purpose of presenting the synergism property in a clear manner.

4.1.3 SETUP OF THE RL AGENTS FOR EVALUATION

We select a state of the art algorithm, proximal policy optimization (PPO) (Schulman et al., 2017),
and follow its default hyperparameters for training our default RL agents. The RL agents used by
our methodology are trained by the parallel workers illustrated in Fig. 1 (a). Each worker receives a
macro ensemble e from C, and trains an RL agent with the augmented action spaceM = A ∪ e for
5M timesteps. The macro ensemble is then evaluated for 100 episodes according to Algorithm A1. To
evaluate the constructed e, we train the agents on the provided augmented action spaceM = A ∪ e
for additional 10M timesteps, and compare our method with the baseline described in Section 4.1.4.

4.1.4 ITERATIVE EXPERIENCE BASED BASELINE

Our baseline is an iterative experience based method (IEB) (Durugkar et al., 2016), which adopts a
framework that iteratively constructs macro ensembles from the past trajectories of an agent. IEB
selects the most frequently used fixed-length action sequences from these trajectories to form e to be
used by the RL agent in next evaluation phase. The RL agent is set to default, as described above.

4.2 MOTIVATIONAL EXAMPLE OF THE SYNERGISM PROPERTY

To provide a motivational example of the synergism property, we first illustrate a clip of the trajectory
captured from Seaquest for the initial 200 timesteps in Fig. 2. The objective of this environment is
to control a submarine to rescue the victims under the sea and eliminate the enemies. The agent in
the first two screenshots a.1 and a.2 executes the first macro (highlighted by the green rectangle)
composed of three consecutive UP, which brings the submarine toward the same level as the victim
in the sea. The next screenshot a.3 corresponds to the second macro (highlighted by the red
rectangle) composed of UP, LEFT, and RIGHT moves, illustrating the agent’s intention to rescue
the victim. Then, the agent executes the third macro (highlighted by the blue rectangle) composed
of three consecutive FIRE actions to deal with the new enemy appeared in the screenshot a.4 of
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Table 1: The table summarizes the evaluation results of the agents trained with the macro ensembles as well
as the best decoupled macro actions constructed by the proposed methodology and the IEB baseline. The
columns ‘Best Decoupled Macro Perf.’, ‘Ensemble Perf.’, and ‘Improvement’ correspond to the scores achieved
by the agents trained with the best-performing decoupled macros, the scores achieved by the agents trained
with the constructed macro ensembles, and the percentage of improvements in scores provided by the macro
ensembles. The standard deviations calculated based on different random seeds are reported in the parentheses.
The synergism property exists among the macro actions if the percentage reported in the ‘Improvement’ column
is positive. Please note that the detailed version of this table is offered in Table A2 of the appendix.

Atari 2600 Method Best Decoupled Macro Perf. Ensemble Perf. Improvement

Alien Ours 1498.38 (512.12) 1951.32 (396.42) 30.23%
IEB 1790.48 (151.17) 1522.42 (93.17) -14.97%

Assault Ours 5030.98 (973.60) 5263.31 (169.15) 4.62%
IEB 3612.56 (246.94) 2593.04 (241.15) -28.22%

Asteroids Ours 10180.60 (7857.42) 19685.48 (7421.24) 93.36%
IEB 7620.44 (3946.70) 2349.21 (189.27) -69.17%

Beamrider Ours 3996.31 (476.38) 4165.74 (372.66) 4.24%
IEB 3739.30 (306.27) 1722.42 (584.84) -53.94%

Breakout Ours N/A (N/A)† 319.74 (42.36) N/A†

IEB 200.82 (44.37) 50.62 (3.92) -74.79%

Chopper Command Ours 8502.19 (932.13) 11568.96 (1248.61) 36.07%
IEB 9653.16 (1637.70) 4396.36 (868.64) -54.46%

Crazy Climber Ours 113472.61 (4190.81) 111466.74 (3371.71) -1.77%
IEB 112424.02 (2533.33) 105851.57 (7493.50) -5.85%

Enduro Ours N/A (N/A)† 830.93 (113.92) N/A†

IEB 493.11 (50.01) 322.76 (54.82) -34.55%

Frostbite Ours 4010.67 (739.10) 4298.52 (1151.88) 7.18%
IEB 998.33 (1011.80) 812.71 (747.94) -18.59%

Gravitar Ours 1011.37 (155.23) 1496.22 (254.70) 47.94%
IEB 925.10 (68.26) 842.57 (138.18) -8.92%

Krull Ours 8166.66 (355.97) 8663.77 (1164.13) 6.09%
IEB 6751.43 (174.00) 7427.26 (763.25) 10.01%

Kung-Fu Master Ours 42485.00 (3921.55) 44453.20 (4955.30) 4.63%
IEB 46255.84 (5966.10) 38236.28 (1803.30) -17.34%

Q*bert Ours N/A (N/A)† 14540.53 (463.21) N/A†

IEB 11838.20 (1023.93) 5421.76 (1115.34) -54.20%

Seaquest Ours 1262.94 (399.28) 1362.75 (152.32) 7.90%
IEB 1037.70 (461.58) 811.42 (11.01) -21.81%

Solaris Ours 2880.61 (493.98) 3236.40 (238.09) 12.35%
IEB 2131.12 (366.63) 1856.87 (213.70) -12.87%

Space Invaders Ours 1076.55 (131.65) 1368.52 (159.05) 27.12%
IEB 1086.10 (127.80) 1006.45 (90.95) -7.33%

Up N Down Ours 349670.21 (17272.84) 941419.24 (56575.20) 169.23%
IEB 390699.63 (171652.74) 283856.43 (107352.04) -27.35%

Venture Ours 0.00 (0.00) 167.25 (334.51) N/A‡

IEB 12.57 (28.11) 0.00 (0.00) -100.00%

Zaxxon Ours 8746.27 (748.50) 8856.88 (817.74) 1.26%
IEB 7975.56 (1629.89) 6657.54 (1686.32) -16.53%

†: The macro ensembles constructed by our methodology in Breakout, Enduro and Q*bert are empty sets, implying that the action space
of each environment is too simple to be benefited from macro actions. Thus, there exists no decoupled macro action (i.e., N/A in the
Best Decoupled Macro Perf. column). The values listed in the Ensemble Perf column for Breakout, Enduro and Q*bert represent the
performances of the agent trained with primitive actions. Since there exists no decoupled macro action in Breakout, Enduro and Q*bert,
the corresponding Improvement are unable to calculate.
‡: In Venture, N/A in the Improvement column is due to the division by zero. Note that the agent is still benefited from the macro ensemble.

Fig. 2. The screenshot a.5 shows that the agent has successfully rescued the victim and eliminated
the enemy. The above pattern of macro actions (highlighted by the orange rectangle) frequently
appears in the trajectory shown in Fig. 2. This observation implies that the agent is able to utilize
the constructed macro actions in a synergistic manner. The three screenshots b.1, b.2, and b.3
in Fig. 2 further show that the agent is able to bring the victim to the top of the water by the first
macro and accomplish the objective. The above interpretations explain the synergism property of
the constructed macro ensemble. Since the primitive actions (depicted as white segments) and the
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macro actions are interleavedly used in the trajectory, Fig. 2 further justifies that the macro actions
are compatible to the primitive action space.

4.3 COMPARISON OF OUR METHOD AND THE ITERATIVE EXPERIENCE BASED BASELINE

To demonstrate the effectiveness of our methodology basing on the MDP formulation described
in Section 3 over IEB leveraging on an agent’s past experience, we compare the agents trained
with the macro ensembles constructed by these two methods. For a fair comparison, both methods
construct their macro ensembles for an identical amount of wall time. The resultant macro ensembles
constructed by them are then separately re-evaluated by the default RL agents from scratch in the
target environments E for 10M timesteps. We plot the evaluation curves of four environments in
Fig. 3, and summarize the remainder of the results in Table A2 of the appendix. It is observed that
the macro ensembles constructed by our methodology are able to provide more beneficial impacts on
the learning processes of the default RL agents than those constructed by IEB.

4.4 ANALYSIS OF THE SYNERGISM PROPERTY

An ensemble of macro actions is said to possess the synergism property if the performance achievable
by the macro ensemble is higher than the maximum performance of the individual macros within that
macro ensemble. In order to inspect the synergism property of the constructed macro ensemble e, we
decouple e into multiple {m},∀ m ∈ e, and compare the performance of the agents trained based
on e against the performance of the agents trained based on each decoupled macro action {m}. The
synergism property exists when the performance corresponding to e is better than that of each {m}.
4.4.1 OUR MACRO ENSEMBLES VERSUS OUR DECOUPLED MACRO ACTIONS

It is observed from Fig. 4 that the learning curves corresponding to our macro ensembles e (i.e.,
‘Ours’) grow faster and higher than those corresponding to the decoupled macro actions {m},∀m ∈ e.
The results show that macro ensembles e constructed by our controller exhibit the synergism property.
In addition to improving performance, our controller is able to adjust the number of macros in an
ensemble. For example, the macro ensemble constructed by our controller for Gravitar consists of
only two macros. This is due to the fact that the third macro contains only the padding null actions,
and is thus removed in the evaluation phase. This implies that adding another macro into this macro
ensemble may not be beneficial to the construction procedure of a synergistic macro action ensemble.

4.4.2 MACRO ENSEMBLES CONSTRUCTED BY IEB VERSUS THEIR DECOUPLED MACROS

We similarly examine the synergism property of the macro ensembles constructed by IEB. As shown
in Fig. 5, the learning curves corresponding to the macro ensembles e constructed by IEB end up
with lower performances than those corresponding to the decoupled macro actions {m},∀ m ∈ e.
The results reveal that macro ensembles constructed by IEB do not benefit from synergism property.

4.4.3 THE IMPACTS OF THE SYNERGISM PROPERTY ON PERFORMANCES

In this section, we examine and compare the impacts of the the synergism property on the per-
formances corresponding to our methodology and IEB. In Table 1, ‘Ensemble Perf.’ denotes the
performances of the RL agents trained with the constructed macro ensembles, while ‘Best Decoupled
Macro Perf.’ represents the scores corresponding to the best-performing decoupled macro action
in the macro ensembles. In Space Invaders, even though the ‘Best Decoupled Macro Perf.’ of our
method (i.e., 1076.55) is lower than that of IEB (i.e., 1086.10), the ‘Ensemble Perf.’ of our method
(i.e., 1368.52) is higher than the ‘Ensemble Perf.’ of IEB (i.e., 1006.45). The results reveal that the
performance of e generated by our method is influenced by the synergism property among the macros.
A detailed version of Table 1 and its analysis are offered in Table A2 of the appendix.

5 CONCLUSIONS

In this paper, we presented a methodology for constructing macro action ensembles based on the MDP
formulation. We proposed a parallel framework with an RL-based controller to generate candidate
macro ensembles and evaluate them asynchronously. We evaluated the proposed methodology in
a number of Atari 2600 environments against IEB. We demonstrated that our method which relies
on the MDP formulation is superior to IEB which leverages on the most frequently used action
sequences. We further provided analysis and verified the existence of the synergism property among
the macro actions contained in the constructed macro ensemble. Moreover, our experimental results
validated that the macro ensembles discovered by our method are compatible to the primitive action
space, and outperformed the baselines in terms of episode rewards presented in supplementary. The
results show that the synergism property is crucial to the research field of macro action ensemble.
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Appendices
A1 BACKGROUND MATERIAL

In this section, we start by briefly reviewing the formulations of the Markov Decision Process
(MDP) Sutton & Barto (1998) and Reinforcement Learning (RL) (Sutton et al., 1999). Then, we
explain the Deep Q-Network (DQN) (Mnih et al., 2015) which is used by our controller C during
the macro ensemble construction process. Next, we describe the Proximal Policy Optimization
(PPO) algorithm (Schulman et al., 2017), which is used by the worker pool of our methodology for
evaluating the performance of a macro action ensemble. Finally, we provide formal definitions and
formulations of a macro action as well as a macro action ensemble.
A1.1 MARKOV DECISION PROCESS

An MDP consists of a state space S that contains all possible states of an environment E , a primitive
action space A, and a reward function R : S × A → R. In an MDP, a controller perceives a state
st ∈ S, takes an action at ∈ A according to its policy π : S → A, receives a reward rt = R(st, at)
as the feedback, and then transitions to a next state st+1 determined by E at each discrete timestep t.
A1.2 REINFORCEMENT LEARNING

The goal of RL is to search for an optimal policy π∗ in E characterized by an MDP. An RL-based
controller performs episodes of a task and iteratively updates its π to search for π∗ via collections of
transition record (st, at, rt, st+1), where π∗ maximizes the expected return Gt = E

[∑T
τ=t γ

τ−trτ
]

within an episode. The discount factor γ can be used to represent the controller’s extent of preference
for short-term rewards or long-term ones. The horizon T stands for the length of one episode in E .
A1.3 DEEP Q-NETWORK

DQN (Mnih et al., 2015) approximates Gt by a parameterized function Qθ to update π,
where θ denotes the weights of a neural network. The optimal Qθ∗(st, at) estimates E

[
rt +

γmaxa′ Qθ∗(st+1, a
′)|st, at

]
, where the optimal weights θ∗ is derived by minimizing the loss

function L(θ) with respect to the current θ:

L(θ) = E(st,at,rt,st+1)∼U(Z)

[(
rt + γmax

a′
Qθ−(st+1, a

′)−Qθ(st, at)
)2]

, (A1)

where U(Z) stands for an uniform distribution over a replay buffer Z that stores the controller’s
transition records, and θ− denotes the parameters of a target network. The target network is the same
as the online network, except that its parameters θ− are updated by the online network at predefined
intervals. According to the learned Qθ, the controller takes π(st) = argmaxaQθ(st, a) as its policy.
A1.4 PROXIMAL POLICY OPTIMIZATION

Algorithm A1 of our work employs PPO (Schulman et al., 2017) as an RL agent responsible for
evaluating the constructed macro ensemble because of its accessibility and good performance. PPO
computes an update at every timestep that minimizes the cost function while ensuring the deviation
from the previous policy is relatively small. One of the two main variants of PPO is a clipped
surrogate objective expressed as:

LCLIP (θ) = E
[
πθ(a|s)
πθold(a|s)

Â, clip
(

πθ(a|s)
πθold(a|s)

, 1− ε, 1 + ε

)
Â

]
, (A2)

where Â represents the advantage estimate, and ε is a hyperparameter. In Eq. (A2), the clipped
probability ratio is utilized to prevent large changes to the policy between two updates. The other
variant of PPO employs an adaptive penalty based on KL divergence, which is expressed as follows:

LKLPEN (θ) = E
[
πθ(a|s)
πθold(a|s)

Â− βKL[πθold(·|s), πθ(·|s)]
]
, (A3)

where β is an adaptive coefficient adjusted according to the observed change in the KL divergence.
In this work, we follow the implementation of the Stable Baseline (Hill et al., 2018), in which the
loss function is implemented as the former objective (i.e., Eq. (A2)) because of its superior empirical
performances.
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Algorithm A1 Ensemble Evaluation
1: input: Environment E
2: input: Decided Action Sequence e;
3: output: Reward r̂
4: function ENSEMBLE EVALUATION(E , e)
5: Reset Environment E
6: Transform e into macro ensemble e
7: M←A∪ e
8: Learn a policy ν overM in E forH timesteps
9: Evaluate 100 episodes with the policy ν

10: Eliminate the highest 10 episodes rewards and lowest 10 episodes
11: return Average reward r̂ of the rest 80 episodes
12: end function

A1.5 MACRO ACTION AND MACRO ACTION ENSEMBLE

A macro action m is an open-loop policy and is defined as a finite sequence of primitive actions,
where m = [a1, · · · , ak], and k is the length of m. Similar to taking a primitive action, an agent can
atomically execute a macro action, where the only difference is the resultant transitions. Once a macro
action m is selected for execution in st, each primitive action a ∈ m is then executed sequentially
from timesteps t to t+ k, rather than re-deciding primitive actions based on the subsequent states. At
the end of m, the agent transitions to st+k and receives a lump sum of rewards equal to

∑k
i=1 rt+i−1.

A macro ensemble e is defined as a set of macros, expressed as e = {m1,m2, . . . ,mω}, where ω is
an arbitrarily non-negative integer. To equip an agent with e in an MDP, the primitive action space A
is augmented by e for that MDP, where the augmented action spaceM is expressed asM = A ∪ e.

A2 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we first described the detailed experimental setup for our DQN controller and the RL
agent used by the worker in Section A2.1. Next, we provide an analysis related to each decoupled
macro action in an macro ensemble based on the complete version of Table 1 in Section A2.2. Finally,
an additional comparison of our method against option-critic is provided in Table A3 of Section A2.3.

A2.1 ADDITIONAL DETAILS OF THE EXPERIMENTAL SETUP

In this subsection, we illustrate the detail experimental setup of our DQN controller C and PPO agents
used by the workers. The network structure of our DQN controller is modified from (Mnih et al.,
2015) by removing the convolutional layers and adjusting the dimension of the output layer to fit
the required output. The detailed hyper-parameters of our DQN controller C could be referred in
Table A1. The PPO implementation of our work is based on the default network structure as well as
the hyper-parameters described in (Dhariwal et al., 2017; Hill et al., 2018). The hyper-parameters
adopted in this work are specified in Table A1 as well. All the results presented are based on five
different random seeds, as described in the main manuscript.

A2.2 A COMPLETE TABLE OF THE EVALUATION RESULTS

In this section, we further analyze the synergism property with regard to the detailed performances of
the agents trained with each decoupled macro action within a macro action ensemble. The results are
reported in Table A2.
In most of the environments, the macro ensemble generated by our methodology is able to deliver
superior performances to the those corresponding to each individual macro actions, indicating that the
synergism property does exist. For example, the performances of the decoupled macros corresponding
to IEB are as good as Ours in Beamrider. However, when the agent is trained with the macro ensemble
consisting of the the macro actions generated by IEB, its performance drops considerably. The results
therefore indicate that the macro ensemble constructed by IEB is not synergistic in Beamrider, while
the macro ensemble constructed by our method possess the synergism property. For Breakout and
Venture, the macro ensemble generated by Ours is able to lead to positive scores, while the individual
macros and the macro ensemble generated by IEB are unable to. On the other hand, even though
the ensemble performance of Ours is slightly less than max {m1,m2,m3} in Crazy Climber, Ours
is still comparable to them and superior to the performance corresponding to the macro ensemble
generated by IEB. The above observations and the results presented in Table A2 validate that our
controller is able to construct macro ensembles possessing the synergism property.
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Table A1: The detailed settings of the hyper-parameters usd in our experiments.

Hyperparameter Value

Deep Q-Network (DQN) for our controller C

Learning rate 5e−6
Discount factor (γ) 0.99
Batch size 128
Epsilon End 0.1
Replay buffer size 10000
Initialization of the replay buffer 200 transactions
Target update frequency per episode

Proximal Policy Optimization (PPO) for our worker

Learning rate 2.5e−4
Learning rate annealing constant
Discount factor (γ) 0.99
Batch Size 2560
Rollout length 128
Number of the parallel environments 20
Entropy coefficient 0.01
Value function coefficient 0.5
Weight for the advantage function (λ) 0.95
Epoches per update 4
Number of mini-batch 4
Maximum gradient clip 0.5
Clipping parameter 0.2
Number of frame skip 4

A2.3 ADDITIONAL COMPARISON OF OUR METHODOLOGY VERSUS THE OPTION-CRITIC
ARCHITECTURE

Options (Hauskrecht et al., 1998; Kulkarni et al., 2016; Bacon et al., 2016; Heess et al., 2016;
Vezhnevets et al., 2016) are closed-loop temporal abstraction based approaches, which are irrelevant
to the open-loop macro actions described in our work. Options are usually defined as subroutines
required for accomplishing a specific task, which is executed until the termination condition is
met. Despite the difference between the two methods, we provide an additional comparison of our
methodology and option-critic (Bacon et al., 2017) based on the reviewers’ interest from the previous
peer-review. Please note that our work focuses on the synergism property among macro actions in a
macro action ensemble, as the title suggests. The comparison results are reported in Table A3, in
which the results corresponding to the option-critic method are generated completely based on the
officially released implementation1.

A3 COMPUTATIONAL INFRASTRUCTURE

In this section, we provide the configuration of our computing infrastructure in Table A4 for reference.

A4 REPRODUCIBILITY

We implemented the proposed framework using Tensorflow. The source codes are well verified and
fully reproducible. All of the presented experiments in our paper are re-producible with easy-following
instructions. For more details about the provided source codes, please refer to the anonymous GitHub
repository at the following address: https://github.com/MacroEnsemble/ICLR_2021_
Code.

1The Option-Critic Architecture: https://github.com/jeanharb/option_critic
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Table A2: This table is the detail version of Table 1. The ‘max {m1,m2,m3}.’ column represents the maximum score of all the performances corresponding to the decoupled
macros. The ‘Ensemble Perf.’ column represents the performance of the constructed macro ensemble. The ‘Improvement’ represents the improvements of ‘Ensemble Perf.’ over
‘max {m1,m2,m3}.’. The synergism property exists among the macro actions if the percentage reported in the ‘Improvement’ column is positive.

Atari 2600 Method Macro 1m1 Macro 2m2 Macro 3m3 max{m1,m2,m3} Ensemble Perf. Improvement

Alien Ours 1469.33 (136.56) 1496.32 (319.39) 1498.38 (512.12) 1498.38 (512.12) 1951.32 (396.42) 30.23%
IEB 1621.28 (381.42) 1790.48 (151.17) 1723.32 (121.45) 1790.48 (151.17) 1522.42 (93.17) -14.97%

Assault Ours 4698.87 (416.29) 5030.98 (973.60) 4546.01 (467.07) 5030.98 (973.60) 5263.31 (169.15) 4.62%
IEB 3305.75 (392.32) 3612.56 (246.94) 2917.08 (97.38) 3612.56 (246.94) 2593.04 (241.15) -28.22%

Asteroids Ours 7105.89 (2431.10) 10180.60 (7857.42) 5589.20 (1049.35) 10180.60 (7857.42) 19685.48 (7421.24) 93.36%
IEB 2187.89 (215.14) 2274.65 (133.90) 7620.44 (3946.70) 7620.44 (3946.70) 2349.21 (189.27) -69.17%

Beamrider Ours 3758.06 (405.62) 3996.31 (476.38) N/A (N/A)* 3996.31 (476.38) 4165.74 (372.66) 4.24%
IEB 3739.30 (306.27) 3653.49 (405.27) 2699.69 (173.01) 3739.30 (306.27) 1722.42 (584.84) -53.94%

Breakout Ours N/A (N/A)† N/A (N/A)† N/A (N/A)† N/A (N/A)† 319.74 (42.36) N/A†

IEB 193.47 (36.36) 60.40 (15.38) 200.82 (44.37) 200.82 (44.37) 50.62 (3.92) -74.79%

Chopper Command Ours 8259.09 (1161.92) 6012.87 (777.56) 8502.19 (932.13) 8502.19 (932.13) 11568.96 (1248.61) 36.07%
IEB 4426.52 (1037.94) 5882.15 (1141.21) 9653.16 (1637.70) 9653.16 (1637.70) 4396.36 (868.64) -54.46%

Crazy Climber Ours 113472.61 (4190.81) 100104.19 (5012.19) N/A (N/A)* 113472.61 (4190.81) 111466.74 (3371.71) -1.77%
IEB 105351.48 (4350.37) 109049.90 (3399.09) 112424.02 (2533.33) 112424.02 (2533.33) 105851.57 (7493.50) -5.85%

Enduro Ours N/A (N/A)† N/A (N/A)† N/A (N/A)† N/A (N/A)† 830.93 (113.92) N/A†

IEB 481.67 (40.68) 455.60 (24.68) 493.11 (50.01) 493.11 (50.01) 322.76 (54.82) -34.55%

Frostbite Ours 282.88 (11.95) 1594.20 (1488.34) 4010.67 (739.10) 4010.67 (739.10) 4298.52 (1151.88) 7.18%
IEB 998.33 (1011.80) 308.29 (20.56) 283.63 (14.15) 998.33 (1011.80) 812.71 (747.94) -18.59%

Gravitar Ours 937.76 (103.74) 1011.37 (155.23) N/A (N/A)* 1011.37 (155.23) 1496.22 (254.70) 47.94%
IEB 783.26 (50.80) 730.39 (119.08) 925.10 (68.26) 925.10 (68.26) 842.57 (138.18) -8.92%

Krull Ours 8166.66 (355.97) 7105.39 (195.66) 6572.87 (149.59) 8166.66 (355.97) 8663.77 (1164.13) 6.09%
IEB 6460.62 (220.01) 6751.43 (174.00) 6586.52 (116.01) 6751.43 (174.00) 7427.26 (763.25) 10.01%

Kung-Fu Master Ours 42485.00 (3921.55) 34240.31 (6655.82) 33829.44 (5635.99) 42485.00 (3921.55) 44453.20 (4955.30) 4.63%
IEB 46255.84 (5966.10) 38848.04 (1184.16) 38914.63 (2347.86) 46255.84 (5966.10) 38236.28 (1803.30) -17.34%

Q*bert Ours N/A (N/A)† N/A (N/A)† N/A (N/A)† N/A (N/A)† 14540.53 (463.21) N/A†

IEB 11838.20 (1023.93) 10389.99 (1742.65) 5254.93 (761.42) 11838.20 (1023.93) 5421.76 (1115.34) -54.20%

Seaquest Ours 1105.22 (204.40) 1262.94 (399.28) 1072.03 (263.65) 1262.94 (399.28) 1362.75 (152.32) 7.90%
IEB 865.28 (59.28) 891.97 (179.63) 1037.70 (461.58) 1037.70 (461.58) 811.42 (11.01) -21.81%

Solaris Ours 2880.61 (493.98) 2116.17 (274.59) 2366.28 (285.26) 2880.61 (493.98) 3236.40 (238.09) 12.35%
IEB 2131.12 (366.63) 1873.44 (201.11) 2110.11 (251.30) 2131.12 (366.63) 1856.87 (213.70) -12.87%

Space Invaders Ours 713.95 (627.45) 1076.55 (131.65) 642.19 (521.62) 1076.55 (131.65) 1368.52 (159.05) 27.12%
IEB 1086.10 (127.80) 952.24 (78.32) 974.43 (87.87) 1086.10 (127.80) 1006.45 (90.95) -7.33%

Up N Down Ours 187376.52 (89212.41) 119687.68 (42275.32) 349670.21 (17272.84) 349670.21 (17272.84) 941419.24 (56575.20) 169.23%
IEB 189588.47 (101523.43) 390699.63 (171652.74) 182381.58 (113845.08) 390699.63 (171652.74) 283856.43 (107352.04) -27.35%

Venture Ours 0.00 (0.00) 0.00 (0.00) N/A (N/A)* 0.00 (0.00) 167.25 (334.51) N/A‡

IEB 0.00 (0.00) 0.00 (0.00) 12.57 (28.11) 12.57 (28.11) 0.00 (0.00) -100.00%

Zaxxon Ours 6688.42 (1173.89) 8746.27 (748.50) 8317.77 (551.52) 8746.27 (748.50) 8856.88 (817.74) 1.26%
IEB 7249.23 (1037.50) 7975.56 (1629.89) 6840.86 (1574.92) 7975.56 (1629.89) 6657.54 (1686.32) -16.53%

*: The macro ensemble constructed by our method composed of only two macros in Beamrider, Crazy Climber, Gravitar and Venture, which implies that for each of these environments, adding another macro into the macro
ensemble may not be beneficial to the construction procedure of a synergistic macro action ensemble.
†: The macro ensembles constructed by our methodology in Breakout, Enduro and Q*bert are an empty sets, implying that the action space of each environment is too simple to be benefited from macro actions. Thus, there exists
no decoupled macro action (i.e., N/A in the Best Decoupled Macro Perf column). The values listed in the Ensemble Perf column for Breakout, Enduro and Q*bert represent the performances of the agent trained with primitive
actions. Since there exists no decoupled macro action in Breakout, Enduro and Q*bert, the corresponding Improvement are unable to calculate.
‡: In Venture, N/A in the Improvement column is due to the division by zero. Note that the agent is still benefited from the macro ensemble.
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Table A3: A summary of the final performances evaluated on the Atari 2600 environments corresponding to our
proposed methodology as well as the other two temporal abstraction baselines, including IEB and option-critic.
The methods listed in this table are trained with the same amount of wall time using five different random seeds.

Atari 2600 IEB Option-Critic Ours Primitive

Alien 1522.42 (93.17) 1257.15 (64.06) 1951.32 (396.42) 1723.46 (308.04)
Assault 2593.04 (241.15) 2593.81 (163.95) 5263.31 (169.15) 4671.59 (362.47)

Asteroids 2349.21 (189.27) 1007.05 (82.19) 19685.48 (7421.24) 4274.31 (3260.21)
Beamrider 1722.42 (584.84) 2274.16 (132.55) 4165.74 (372.66) 3018.64 (841.96)
Breakout 50.62 (3.92) 138.77 (81.59) 319.74 (42.36) 319.74 (42.36)

Chopper Command 4396.36 (868.64) 460.00 (531.41) 11568.96 (1248.61) 5832.08 (1165.42)
Crazy Climber 105851.57 (7493.50) 66696.55 (3569.36) 111466.74 (3371.71) 102529.56 (6485.23)

Enduro 322.76 (54.82) 0.00 (0.00) 830.93 (113.92) 830.93 (113.92)
Frostbite 812.71 (747.94) 257.80 (4.31) 4298.52 (1151.88) 291.96 (4.97)
Gravitar 842.57 (138.18) 219.82 (26.32) 1496.22 (254.70) 913.66 (193.43)

Krull 7427.26 (763.25) 2676.32 (1972.71) 8663.77 (1164.13) 8466.92 (217.69)
Kung-Fu Master 38236.28 (1803.30) 19328.57 (3488.84) 44453.20 (4955.30) 18466.67 (5517.75)

Q*bert 5421.76 (1115.34) 3850.67 (1548.42) 14540.53 (463.21) 14540.53 (463.21)
Seaquest 811.42 (11.01) 4914.21 (559.87) 1362.75 (152.32) 907.20 (17.89)
Solaris 1856.87 (213.70) 2055.29 (282.90) 3236.40 (238.09) 2258.39 (333.50)

Space Invaders 1006.45 (90.95) 580.62 (23.83) 1368.52 (159.05) 1313.08 (232.02)
Up N Down 283856.43 (107352.04) 2105.67 (301.02) 941419.24 (56575.20) 192992.66 (77930.57)

Venture 0.00 (0.00) 0.00 (0.00) 167.25 (334.51) 0.00 (0.00)
Zaxxon 6657.54 (1686.32) 4033.42 (2556.35) 8856.88 (817.74) 8306.71 (772.05)

Table A4: Specification of our computing infrastructure.

Component Customized Machine

Processor 32 cores / 64 threads (3.0GHz, up to 4.2GHz)
Hard Disk Drive 6TB SATA3 7200rpm
Solid-State Disk 1TB PCIe Gen 3 NVMe
Graphics Card NVIDIA GeForcer RTX 2080Ti (two per instance)
Memory 16GB DDR4 2400MHz (128GB in total)
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