Object-Level Planning and Abstraction

David Paulius
Department of Computer Science
Brown University, Providence, RI, United States
{dpaulius}@cs.brown.edu

Abstract: Task and motion planning (TAMP) aims to integrate higher-level sym-
bolic task planning with lower-level motion planning. However, task-level rep-
resentations must include detailed information expressing the robot’s own con-
straints, mixing logical object-level requirements (e.g., a bottle must be open to
be poured) with robot constraints (e.g., a robot’s gripper must be empty before it
can pick up an object). We propose an additional level of planning that will rest
above the current TAMP pipeline known as object-level planning (OLP). OLP
is concerned with objects, but not with the robot and its constraints. It allows
the robot to generate plan sketches that describe how objects in the environment
must be changed to realize a plan, leaving the details of how these are achieved to
task-level planning. Object-level plans have the benefit of being interpretable and
portable while supporting generalization across objects and the details of any spe-
cific task. Using functional object-oriented networks (FOONs), a representation
we introduced in prior work, we will briefly outline how object-level plans can be
used to model object-level manipulation planning, resulting in plan sketches that
can be extracted from natural language, inform a task-level PDDL planner, and
generalize across object types.

Keywords: Object-level planning, Task and motion planning, Abstraction

1 Introduction

The objective of task and motion planning (TAMP) is to interweave the processes of task planning
(which pertains to finding a sequence of actions for a robot that realizes higher-level state transitions
to advance to a goal state) and motion planning (which pertains to finding collision-free motions
that realize the effects of its task plan) [1, 2, 3]. This has the advantage of reducing the complexity
of mobile manipulation, as robots can take advantage of structure of its actions and world to achieve
its intended goals. This complexity becomes most apparent in unstructured and dynamic environ-
ments, where motion planning alone is unlikely to succeed. For this reason, combining task-level
knowledge with low-level spatial reasoning allows the robot to reason about its actions and objects
in its world and identify key sub-goals required to achieve its target goal.

However, although TAMP simplifies motion planning and execution through task-level planning,
the domain knowledge used in TAMP is specific to both to a single robot and its environment, as a
task planning domain definition (conventionally using the Planning Domain Definition Language [4]
(PDDL)) must be written to completely specify the robot’s plan, including logical constraints related
to the robot’s own state, to provide a plan that can be realized by motion planning. As a result,
permissible actions and features of the robot do not allow plans to be portable. Furthermore, domain
specifications written in languages such as PDDL are not easily interpretable, as their domain and
problem definitions are not naturally written or communicated in human language because they
include too much detail. Moreover, objects described in PDDL are not truly object-centric. Actions
are parameterized using arguments without semantic meaning. Similarly, task planning does not
take full advantage of abstraction and generalization, as task plans are designed for specific settings
and do not generalize to new situations or environments.

We therefore propose an additional level of planning and domain knowledge that rests above the
current TAMP pipeline, which we call object-level planning (OLP). The objective of OLP is to gen-
erate plan sketches that are portable across robots and environments, at the level at which language
is normally expressed, using domain knowledge for robotic manipulation and to bootstrap task and
motion planning processes. An object-level representation is one which is agnostic to the robot or
agent, meaning that constraints related to the robot do not appear in object-level plans, which de-
scribe only the objects relative to a plan — using semantically meaningful labels — and the changes
they must undergo. In other words, an object-level plan should serve as a schema that describes the
objectives of a given task in a way that is closer to human language. Recipes or other instructional
materials present information in an object-level manner, where nouns refer to object types rather
than instances and actions describe high-level skills or policies, whose implementations may vary
across robots (and indeed across kitchens, homes or other human-centered environments).

2 Motivation for Object-Level Planning
We propose several key motivations for the use of OLP for robotic planning:

OLP promotes portability across robots and domains: Recipes in cookbooks or other forms
of instructional manuals convey domain knowledge and plans in an abstract yet useful way, and
through them, a robot is presented with an object-level representation of knowledge that is agnostic
to the robot’s environment or functionality. In other words, any robot can pick up an object-level
plan, understand and reason with it, and carry out its steps as long as the robot is equipped to ground
words and phrases to its surroundings. These plans are designed to work across environments, as
they provide the bare minimum details needed to work in new settings or environments. Robots
using object-level plans do not have to commit to a specific way of solving a problem, as task-level
solutions can vary depending on the robots’ capabilities, thus requiring task-level planning.

OLP supports plan generalization: Object-level plans present information with language using
verbs and nouns to describe actions and objects respectively. As a result, adapting these plans
is made possible through natural language processing techniques, which is markedly easier than
modifying plans at a lower level of TAMP hierarchy. For instance, in previous work, I showed that
semantic similarity can be used as a method to infer relationships or commonality between objects to
extend domain knowledge to new object labels in a FOON knowledge graph [5, 6]. As a follow-up
to this work, Sakib et al. [7] showed how semantic similarity can be used to generate object-level
plans for novel recipes in the Recipel M+ dataset, where, given a set of ingredients and a dish type,
a reference task tree can be found that closely resembles the requested dish. This reference task
tree can then be modified to match the ingredient set by adding or removing references to these
ingredients. Such object-level plans can then be used to formulate task-level planning definitions.

OLP promotes interpretability and explainability: A significant limitation to task specifications
written using representations like PDDL [4] is that they are not easily interpretable. PDDL notation
conveys knowledge using logical predicates, which can be true or false depending on the current
state of the world. This type of notation is simple yet effective, but it does not provide a truly object-
centric description, as several predicates may be written to represent a single object in the world.
When dealing with significantly complex and realistic worlds such as human-centered environments,
there may be many object types and instances, which would make a domain description overly
complicated and difficult to verify. Using an object-level representation would convey details about
the task at a level that is closer to human language and understanding, through which a robot can
communicate its intentions or behaviours to a human.

OLP can bootstrap planning and execution: One of the greatest strengths of object-level plans is
their use for bootstrapping TAMP processes, which are conventionally performed by task planning,
though a combination of PDDL and off-the-shelf planners (e.g., Fast-Downward [8]), and motion
planning algorithms. Formulating these problems in PDDL can be an arduous task, especially when

Macro-Level Planning Micro-Level Planning
T B T
Planning operators map to FOON Planning operators correspond to
funcuoTa\ units. motion primiiwes or skills.

Domain

Detecting state of environment
after micro-actions are
execluted.

Functional units describe
domain-independent sequences
of actions.

Get state of
environment

Demonstration

i - Generated

@ P f Demonstration is done by Acti Each micro-level action is
- Predefined human expert, and new ction executed sequentially
action context is stored. Contexts H

S— Ifaction context does not exist -

Figure 1: Overview of approach [9] for: 1) translating a FOON into a macro-level domain and prob-
lem representation in PDDL, 2) decomposing each macro-level action (i.e., planning operator) into
a micro-level PDDL problem, 3) planning at the micro-level using pre-defined motor skills (written
with object-centered predicates [10]), and 4) executing the acquired micro-level manipulation plan
using action contexts (learned from demonstration) and their associated movement primitives [11].

Object-level Rep ion (FOON)
in cuting board
state:
empty> eomtains: tomato>
Before Plan Execution .F"* -and-place After Plan Execution
tomato tomato Z
state: states
whole: <whole>
<on [cutting board]>
Translate FOON to PDDL
Find manipulation plan
”‘ ‘ HN—
Manipulation Plan
.uu-u ok s pepper shaker_salt)
g . ¢ oy

(pick tomato table_04)
(place tomato cutting_board)

Figure 2: Illustration showing how a FOON functional unit can be used to define a PDDL problem
instantiation for finding a manipulation plan executed in simulation.

dealing with domain knowledge of a large scale. Therefore, we can leverage object-level represen-
tations for seamless translation to PDDL domain and problem definitions, which can then be used
for domain- and robot-specific manipulation or motion planning. In our recent work [9], we have
created a pipeline around FOON for downstream PDDL translation, planning, and execution of ma-
nipulation plans. Although this approach is not fully TAMP (due to a lack of motion planning), it
takes advantage of OLP to formulate task-level domain and problem definitions that can handle novel
configurations of the world state by flexibly relying upon action contexts learned from demonstra-
tion and object-centered predicates [10]. Figure 1 gives an overview of how we decompose FOONs
(either a universal FOON or a task tree derived from FOON using task tree retrieval [5]) into two
planning levels: macro-level planning — which is concerned with higher level objectives closer to
human understanding of tasks — and micro-level planning — which is concerned with task-specific
actions and motion primitives that would reflect the intended effects of higher-level macro-actions.
An example of a manipulation plan, given an object-level description (i.e., FOON functional unit)
for picking-and-placing a tomato on a cutting board, is shown in Figure 2.

3 Conclusion

To conclude, in this paper, an additional layer of planning and representation on top of the conven-
tional task and motion planning (TAMP) pipeline, known as object-level planning (OLP), promises
benefits to OLP and object-level representations, some of which have been validated through pre-
vious work [5, 6] and ongoing investigations [9] with functional object-oriented networks (FOON).
As future work, object-level representations will become formalized, where key properties of such
representations will be identified and grounded more formally in a TAMP framework.

Acknowledgments

The author would like to thank George Konidaris for discussions that manifested the ideas presented
in this work and for guidance in writing this paper. Additionally, the author would like to acknowl-
edge the support of the Office of Naval Research (ONR) through grant number N00014-21-1-2584.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

L. P. Kaelbling and T. Lozano-Pérez. Hierarchical Planning in the Now. In Workshops at the
Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

C. Dornhege, M. Gissler, M. Teschner, and B. Nebel. Integrating symbolic and geometric
planning for mobile manipulation. In 2009 IEEE International Workshop on Safety, Security
& Rescue Robotics (SSRR 2009), pages 1-6. IEEE, 2009.

C.R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.
Integrated Task and Motion Planning. Annual Review of Control, Robotics, and Autonomous
Systems, 4:265-293, 2021.

D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, and
D. Wilkins. PDDL — The Planning Domain Definition Language. Technical report, CVC
TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control, 1998.

D. Paulius, Y. Huang, R. Milton, W. D. Buchanan, J. Sam, and Y. Sun. Functional Object-
Oriented Network for Manipulation Learning. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2655-2662. IEEE, 2016.

D. Paulius, A. B. Jelodar, and Y. Sun. Functional Object-Oriented Network: Construction
and Expansion. In 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 5935-5941. IEEE, 2018. doi:10.1109/ICRA.2018.8460200.

M. S. Sakib, D. Paulius, and Y. Sun. Approximate Task Tree Retrieval in a Knowledge Network
for Robotic Cooking. IEEE Robotics and Automation Letters, 7(4):11492-11499, 2022. doi:
10.1109/LRA.2022.3191068.

M. Helmert. The Fast Downward Planning System. Journal of Artificial Intelligence Research,
26:191-246, 2006.

D. Paulius*, A. Agostini*, and D. Lee. Long-Horizon Manipulation Planning with Functional
Object-Oriented Networks. arXiv preprint arXiv:2207.05800, 2022.

A. Agostini, M. Saveriano, D. Lee, and J. Piater. Manipulation Planning using Object-centered
Predicates and Hierarchical Decomposition of Contextual Actions. [EEE Robotics and Au-
tomation Letters, 5(4):5629-5636, 2020.

A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynamical Movement
Primitives: Learning Attractor Models for Motor Behaviors. Neural Computation, 25-2:328—
373, 2013.

http://dx.doi.org/10.1109/ICRA.2018.8460200
http://dx.doi.org/10.1109/LRA.2022.3191068
http://dx.doi.org/10.1109/LRA.2022.3191068

	Introduction
	Motivation for Object-Level Planning
	Conclusion

