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ABSTRACT

Diffusion models (DMs) have recently shown remarkable performance on inverse
problems (IPs). Optimization-based methods can fast solve IPs using DMs as
powerful regularizers, but it is susceptible to local minima and noise overfitting.
Although DMs can provide strong priors for Bayesian approaches, enforcing mea-
surement consistency during the denoising process leads to manifold infeasibility
issues. We propose Noise-space Hamiltonian Monte Carlo (N-HMC), a posterior
sampling method that treats reverse diffusion as a deterministic mapping from ini-
tial noise to clean images. N-HMC enables comprehensive exploration of the so-
lution space, avoiding local optima. By moving inference entirely into the initial-
noise space, N-HMC keeps proposals on the learned data manifold. We provide a
comprehensive theoretical analysis of our approach and extend the framework to
a noise-adaptive variant (NA-NHMC) that effectively handles IPs with unknown
noise type and level. Extensive experiments across four linear and three nonlinear
inverse problems demonstrate that NA-NHMC achieves superior reconstruction
quality with robust performance across different hyperparameters and initializa-
tions, significantly outperforming recent state-of-the-art methods. Code will be
made available on GitHub upon publication.

1 INTRODUCTION

Inverse problems (IPs) have wide applications in many domains, including computer vision (Janai
et al., 2021; Quan et al., 2024), protein science (Yi et al., 2023; Ouyang-Zhang et al., 2023; Yang
et al., 2019), medical imaging (Song et al., 2022b; Chu et al., 2025; Dao et al., 2024), scientific
computing (Zheng et al., 2025; Xia & Zabaras, 2022; Xu et al., 2024). The goal is to reconstruct an
unknown x ∈ Rn from noisy measurements y ∈ Rm:

y = A(x) + η, (1)

where A is a known forward operator, and η ∈ Rm is additive noise. Diffusion models (DMs) have
recently shown powerful capabilities in modeling complex data distributions, which can provide
a powerful class of priors for high-dimensional data x in solving IPs. Existing diffusion-based
methods have demonstrated remarkable success across diverse inverse problems (Chung et al., 2023;
Daras et al., 2024; Zheng et al., 2025; Song et al., 2022b).

Although remarkable progress has been made, as illustrated in Figure 1, current diffusion-based
methods suffer from three complementary limitations and issues: (1) Iterative guidance methods
such as DPS (Chung et al., 2023), DDRM (Kawar et al., 2022), DDNM(Wang et al., 2023), ΠGDM
(Song et al., 2023), and TMPD (Boys et al., 2024) use the likelihood term to shift intermediate im-
ages directly, systematically pushing intermediate states off the learned data manifold and violating
the training-time noise-conditioning of the denoiser, resulting in various failure reconstructions like
like accumulated artifacts as shown in Figure 1 (a). (2) Stochastic MAP methods that optimize in
image space, including ReSample (Song et al., 2024), DiffPIR (Zhu et al., 2023), DAPS (Zhang
et al., 2024), SITCOM (Alkhouri et al., 2025a), and DIP (Chihaoui & Favaro, 2025a) can match y
well with very sharp details but require carefully tuned hyperparameters to not overfit to noise. This
limits their effectiveness in high or unknown noise settings (3) Deterministic MAP methods that
optimize in the DM noise space (DMPlug, (Wang et al., 2024)) remove randomness but often get
stuck in a single mode, especially in severely ill-posed problems like phase retrieval, due to a lack

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

of exploration. In short, enforcing data consistency mid-diffusion can break prior adherence, while
optimizing only for fidelity leads to overfitting or mode collapse. Building a solution that maintains
both measurement fidelity and manifold adherence remains open.
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Figure 1: Comparison of existing methods and their limitations with the N-HMC method. (a) It-
erative Guidance Methods (DPS) lead to manifold infeasibility. (b) Stochastic MAP methods (Re-
Sample) (Song et al., 2024) are susceptible to overfitting to noise. (c) Deterministic MAP methods
(DMPlug) (Wang et al., 2024) become trapped in a local mode. (d) Our method performs sampling
in the noise space xT and maps samples to images via a deterministic mapping x0 = D(xT ).

Sampling from the full posterior ensures that the learned prior acts automatically as a regularizer,
while an annealing schedule for noise standard deviation σy promotes efficient exploration and pre-
vents the sampler from being trapped in early local modes. Importantly, the method relies only on a
fixed set of hyperparameters that remain constant across tasks, datasets, and levels of measurement
noise, avoiding the repeated tuning required by many existing approaches.

To address the practical challenges that the measurement noise level is often unknown, we further
introduce a Noise-Adaptive N-HMC (NA-NHMC). Instead of requiring a fixed noise level, we take
a principled Bayesian approach, placing a non-informative prior on the noise variance and marginal-
izing it out. This yields a parameter-free likelihood term that automatically adapts to the true un-
derlying noise in the measurements. As shown in experiments, this allows NA-NHMC to achieve
robust, high-quality reconstructions across varying and even unknown noise types and levels without
any task-specific hyperparameter tuning. In contrast, the performance of other methods depends on
the hyperparameters listed in Section A.5, which were specifically tuned for Gaussian noise. Our
key contributions include: (1) In Section 3.1, we propose N-HMC, a posterior sampling method
that addresses the three key limitations of existing state-of-the-art (SOTA) approaches. We further
analyze its sampling behavior and provide a theoretical guarantee of its robustness to measurement
noise in Section 3.2 and Appendix A.2. (2) In Section 3.3, we extend our method to settings with
unknown noise types and levels. We show that it outperforms SOTA methods on most metrics
(Section 4.3), especially for non-linear and high noise problems. (3) In extensive experiments, NA-
NHMC method solves diverse inverse problem tasks under unknown noise types and levels without
any task- or noise-specific hyperparameter tuning, in contrast to many existing methods. (4) We
demonstrate in Section 4.1 that the annealing schedule for σy helps promote early exploration and
prevent local-mode collapse, especially in severely ill-posed tasks like phase retrieval.

2 PRELIMINARIES

2.1 DIFFUSION MODELS FOR INVERSE PROBLEMS

Daras et al. (2024) broadly classifies methods for solving inverse problems (IPs) into two categories.
The first is maximum a posteriori (MAP) inference, which aims to find the single most probable x.
An alternative is the Bayesian framework, where the goal becomes generating plausible reconstruc-
tions by sampling from the posterior distribution p(x|y), where p(x|y) can be decomposed into the
prior p(x) and the likelihood p(y|x). MAP delivers fast optimization, but struggles with high noise
and multimodal posteriors, easily converging to local minima. In contrast, the Bayesian approach
samples from p(x|y) to generate plausible reconstructions, quantify uncertainty, and handle mul-
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timodality. Both approaches critically depend on powerful prior models like DMs that encode the
complex statistical structure of complex data and prior knowledge.

Most diffusion-based approaches to IPs are based on the denoising diffusion probabilistic models
(DDPM) framework (Ho et al., 2020; Song & Ermon, 2020). The framework consists of forward and
reverse diffusion processes. The forward process gradually corrupts the clean images x0 towards
standard Gaussian noise xT . This process can be described by a stochastic differential equation
(SDE), dx = −βt

2 xdt+
√
βtdw, where w is the standard Wiener process. In practice, the process

is discretized via a variance schedule {βt}Tt=1, forming a Markov chain:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (2)

In order to generate clean images, the reverse process begins with a noisy sample xT ∼ N (xT ; 0, I),
and recursively refines it according to the reverse SDE, dx = −βt

2 xdt−βt∇x log pt(x)dt+
√
βtdw,

where w is the time-reversed standard wiener process, and pt(x) is the marginal probability of the
noisy manifold at time t. ∇x log pt(x) is called the score function and is usually approximated by a
neural network θ trained through score-matching methods.

Using the same discretization, clean images can be generated from the prior using an iterative de-
noising process.

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (3)

Building on the DDPM framework, to accelerate the denoising process, Song et al. (2022a) proposes
Denoising Diffusion Implicit Models (DDIM), which define a non-Markovian and fully determin-
istic forward/reverse process (βt = 0). Unlike DDPM, which injects stochasticity at each step to
improve robustness, DDIM iteratively maps the initial noise xT to a clean sample x0 via a determin-
istic trajectory. For our method, this property is particularly beneficial, as it allows us to consider
the entire reverse process as a deterministic mapping from xT to x0.

Among successful DM-based methods for inverse problems, DPS and its variants (Chung et al.,
2023; Kawar et al., 2022; Wang et al., 2023; Song et al., 2023; Chung et al., 2022) are best-known
reconstruction algorithms. But they suffer from approximation errors from Tweedie’s formula cor-
rections. To mitigate noise sensitivity, TMPD incorporates second-order information to correct the
guidance trajectory; however, like other iterative methods, it relies on modifying intermediate states,
which risks drifting off the learned manifold. SITCOM (Alkhouri et al., 2025b) operates on the
noisy image at each diffusion step and enforces a triple-consistency constraint: data fidelity, back-
ward consistency with the diffusion posterior mean, and forward consistency along the diffusion
trajectory. DIP (Chihaoui & Favaro, 2025b) updates the initial noise xT with data fidelity gradients
after the standard diffusion sampling process. DMPlug (Wang et al., 2024) proposes a noise-space
formulation but treats inverse problems as optimization tasks, making it sensitive to noise. While
early stopping can mitigate this, its criterion is task- and noise-dependent. At the high noise levels
considered here, the optimizer often becomes trapped in a local mode, rendering early stopping
ineffective. Similar behavior is observed in other Maximum a Posteriori (MAP) methods such as
ReSample (Song et al., 2024), which optimizes directly in clean-image space (leading to noisy or
blurry images under early stopping). DAPS (Zhang et al., 2024), despite being formulated as a pos-
terior sampling method, uses a heuristic σ̂y that is much smaller than its true value to strengthen the
consistency of the measurement. This deviation from true posterior sampling makes DAPS effec-
tively MAP-like, inheriting the same sensitivity to noise.

2.2 HAMILTONIAN MONTE CARLO (HMC)

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987) is an MCMC (Metropolis et al., 1953) sam-
pling method that utilizes a fictitious momentum variable and simulates Hamiltonian dynamics to
efficiently explore distant regions. Due to its superior scaling properties in high dimensions com-
pared to other simpler Metropolis methods Brooks et al. (2011), HMC is particularly well suited for
sampling in high-dimensional space, such as the 3× 256× 256 pixel space of images.

3
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The Hamiltonian is defined as H = U + V , where U = − log p(x) and V = 1
2v

⊤M−1v. Then,
we discretize the trajectory using the leapfrog integrator. For a single leapfrog step with step size δ,
we have

v(t+ δ/2) = v(t)− δ

2

∂U

∂x

∣∣∣∣
x(t)

, (4)

x(t+ δ) = x(t) + δM−1v(t+ δ/2), (5)

v(t+ δ) = v(t+ δ/2)− δ

2

∂U

∂x

∣∣∣∣
x(t+δ)

, (6)

where v(0) ∼ N (v; 0,M). This process is repeated L times to form a full trajectory. Due to a
discretization error, the Hamiltonian is no longer preserved, which introduces bias and violates the
detailed balance. To correct for this, a Metropolis-Hastings (MH) correction step is applied at the
end of each trajectory with acceptance probability of α = min(1, exp(−H1 +H0)), where H0, H1

denotes the initial and proposed Hamiltonian, respectively.

3 METHODOLOGY

In this section, we propose a posterior sampling method, Noise-space Hamiltonian Monte Carlo
(N-HMC), to solve IPs with pretrained DMs. We show its derivation in Section 3.1 and discuss its
robustness to measurement noise in Section 3.2. In Section 3.3, our method is modified to allow for
unknown types and levels of measurement noise.

3.1 NOISE-SPACE HAMILTONIAN MONTE CARLO (N-HMC)

The goal in solving inverse problems is to sample from the posterior distribution p(x0|y) ∝
p(x0)p(y|x0). Since direct sampling from p(x0) is intractable, pretrained diffusion models are
employed to provide a powerful prior. Standard diffusion-based approaches draw xT ∼ p(xT )
from a Gaussian noise prior and iteratively denoise through intermediate timesteps, aiming to sam-
ple from p(xT | y), p(xT−1 | y), . . . , p(x0 | y) in sequence. The key challenge is evaluating the
intractable likelihood p(y|xt) at each intermediate timestep t. To address this, iterative guidance
methods (Kawar et al., 2022; Wang et al., 2023; Chung et al., 2023; Song et al., 2023; Rozet et al.,
2024; Song et al., 2024; Zhang et al., 2024) introduce approximations and apply likelihood correc-
tions of xt ← xt + η∇xt

log p(y|xt). However, these gradient-based corrections systematically
push intermediate states xt away from the distribution on which the denoiser is trained, leading to
what we refer to as the manifold feasibility problem. Following SITCOM (Alkhouri et al., 2025b),
we formalize this issue as:

Definition 3.1 (Manifold Feasibility). For a pretrained diffusion model, let pt(xt) denote the
marginal distribution at noise level t, and letMt be its high-probability generative manifold. An
inverse-problem solver maintains manifold feasibility if the intermediate states {xt} fed into the
denoiser remain close toMt for all t, ensuring the final reconstruction x0 lies on the learned data
manifold.

Geometrically, standard guidance methods update xt using the likelihood gradient∇xt
log p(y|xt).

In high-dimensional spaces, this gradient vector often contains components orthogonal to the local
tangent space of the data manifoldMt. Consequently, adding this gradient systematically pushes
the state xt into low-probability regions (off-manifold), feeding out-of-distribution inputs to the
denoiser and causing accumulated artifacts as shown in Figure 1 (a). To avoid such approximations,
we propose posterior sampling by drawing from the initial noise space. The sampled noise is then
unconditionally denoised to a clean image. We adopt unconditional DDIM for the denoising process,
which treats the entire denoising trajectory as a deterministic mapping x̂0 = D(xT ), so the problem
becomes evaluating the posterior distribution of noise (Xia et al., 2023), i.e., p(xT |y). We refer
to our approach as noise-space sampling because HMC updates are performed exclusively on the
initial noise xT ∼ N (0, I). This differs from image-space and iterative guidance methods that
directly modify intermediate states xt using measurement-consistency gradients. Sampling from
the noise space offers two advantages: (i) the prior p(xT ) is a simple Gaussian distribution, and (ii)
the likelihood p(y|xT ) = p(y|D(xT )) is directly accessible without intermediate approximations.

4
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We use HMC for efficient posterior sampling in the noise space. To strictly justify our sam-
pling objective, we formulate the inference process as a latent variable model where the initial
noise xT is the sole latent variable. We treat the unconditional DDIM process with N steps as
a deterministic parameterized generator function, denoted as D : Rn → Rn, which maps xT

to a clean image x̂0 = D(xT ). Under this formulation, the measurement generation process is

defined by xT
D−→ x̂0

A,η−−→ y. Consequently, the conditional distribution of y given xT de-
pends entirely on the generated image x̂0. The likelihood term is thus mathematically exact:
p(y|xT ) = p(y|x̂0 = D(xT )) = N (y;A(D(xT )), σ

2
yI). This allows us to perform posterior

sampling directly in the noise space using the exact gradient of the likelihood with respect to xT .
Then we can compute the conditional score using Bayes’ rule:

∇xT
log p(xT |y) = ∇xT

log p(xT ) +∇xT
log p(y|xT ). (7)

Since xT is Gaussian noise in the DDIM framework, the first term is simply

∇xT
log p(xT ) = −∇xT

∥xT ∥2

2
= −xT . (8)

For the case of Gaussian measurement noise, if the noise level σ2
y is known, the likelihood term

becomes

∇xT
log p(y|xT ) = ∇xT

log p(y|D(xT )) = −∇xT

∥y −A(D(xT ))∥2

2σ2
y

. (9)

We define p(y|xT ) = p(y|D(xT )) by viewing the denoising trajectory as a deterministic mapping
x̂0 = D(xT ). This term can be computed directly using automatic differentiation. Because D(xT )
results from a multi-step denoising process, backpropagating through multiple score networks can
be computationally expensive. Following Wang et al. (2024), we illustrate in Appendix A.9 that
accurate samples can still be obtained with as few as two denoising steps.

Algorithm 1: N-HMC
Require: # HMC iterations K, # leapfrog steps L, initial integration step size δ, measurement noise schedule
{σy,k}, xT , y, A, γ

1: for k = 0 to K − 1 do
2: repeat
3: p ∼ N (0, I) // Initial momentum
4: x̂0 = DDIM(xT )
5: H0 = 1

2
∥xT ∥2 + 1

2σ2
y,k
∥y −A(x̂0)∥2 + 1

2
p⊤p // Current Hamiltonian

6: x∗
T ← xT // Initialize proposal xT

7: for l = 0 to L− 1 do

8: p← p− δ
2

(
x∗

T + 1
2σ2

y,k
∇x∗

T
∥y −A(x̂∗

0)∥2
)

// Update momentum

9: x∗
T ← x∗

T + δp // Update x∗
T

10: x̂∗
0 = DDIM(x∗

T )

11: p← p− δ
2

(
x∗

T + 1
2σ2

y,k
∇x∗

T
∥y −A(x̂∗

0)∥2
)

// Update momentum

12: end for
13: H1 = 1

2
∥x∗

T ∥2 + 1
2σ2

y,k
∥y −A(x̂∗

0)∥2 + 1
2
p⊤p // Proposal Hamiltonian

14: u ∼ Unif(0, 1)
15: if u < exp(H0 −H1) then
16: Accept proposal
17: else
18: δ ← γδ // Anneal step size δ
19: end if
20: until Proposal accepted
21: xT ← x∗

T // Accept the proposal
22: end for
23: return xT

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Once the conditional score ∇xT
log p(xT |y) is computed, our method proceeds with standard

Hamiltonian Monte Carlo (HMC) sampling. We use the identity matrix as the mass matrix for
momentum sampling. During implementation, we observed that the initial noise may lie in regions
of very low posterior probability, which forces HMC to adopt a tiny step size in order to maintain a
proper acceptance rate. To address this issue, we use an annealing schedule for σy , allowing xT to
explore the noise space more freely with a larger step size in the start-up stage. Once σy gradually
declines to the target level, posterior samples are collected. The complete procedure is summarized
in Algorithm 1, along with the unconditional DDIM denoising process in Algorithm 2.

3.2 ROBUSTNESS TO MEASUREMENT NOISE

An additional benefit of N-HMC over MAP methods is that the Gaussian prior acts as a regulariza-
tion term in the noise space, keeping the noise vector xT close to the hypersphere of radius

√
n.

Therefore, N-HMC produces samples that are robust to measurement noise, as justified by Proposi-
tion 1. For simplicity, we assume Gaussian measurement noise and that the forward operator A is
approximately linear along the clean image manifold.

Proposition 1. Assume that the distribution of the decoded sample x0 around the ground truth
x∗
0 is well-approximated by a Gaussian distribution pθ(x̂0) ≈ N (x̂0;x

∗
0, σ

2
0In). Then, the residual

y −Ax̂0 satisfies

E(x̂0,y)∼pθ(x̂0,y|x∗
0)
∥y −Ax̂0∥2 = σ2

ytr(BB⊤) + tr(AΣpostA
⊤),

where

Σpost =

(
A⊤A

σ2
y

+
In
σ2
0

)−1

, B =

(
Im −

AΣpostA
⊤

σ2
y

)
,

and Im is the m×m identity matrix. m denotes the dimension of y.

The expected residual decomposes into two contributions: a noise-dependent term that appears only
when measurement noise is present, and a second term that persists in all settings due to instrinsic
uncertainty of prior diffusion models. In Corollary 1.1 below, we show that both terms behave in a
way that yields a residual whose magnitude matches the true measurement noise.

Corollary 1.1 Under the assumptions of Proposition 1, if σ0/σy ≪ 1, the residual y − A(x̂0)
satisfies

E(x̂0,y)∼pθ(x̂0,y|x∗
0)
∥y −A(x0)∥2 → mσ2

y.

In other words, the magnitude of residual aligns with the true known level of measurement noise,
indicating that N-HMC remains robust and does not overfit to noise.

3.3 NOISE-ADAPTIVE NHMC

In practice, the type and level of measurement noise are often unknown, making the likelihood term
p(y | xT ) intractable. To address this, other methods usually have tunable hyperparameters that
control the strength of the likelihood term or use task-specific early stopping criteria. Instead of
this heuristic approach, we introduce a noise-adaptive sampling method, NA-NHMC, which extends
N-HMC to the unknown noise setting without any additional hyperparameter tuning.

We treat the noise variance as a latent variable and adopt the Jeffreys prior, a principled noninfor-
mative choice due to its parameterization invariance. It is scale-invariant and represents maximal
uncertainty about the noise level, making it appropriate when no prior information about σy is avail-
able. It can also be viewed as the limiting case of an Inverse-Gamma prior σ2

y ∼ Inv-Γ(α, β) as
α, β → 0. The Inverse-Gamma distribution is the conjugate prior for the variance of a Gaussian
likelihood. Proposition 2 characterizes the resulting behavior under additional assumptions.

p(σ2
y) ∼

1

σ2
y

.

6
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Proposition 2 Under the assumptions of Proposition 1 and that the pretrained diffusion model
unconditionally generates images that lie on the high-quality manifold (σ0/σy ≪ 1), then the update
rule of NA-NHMC follows:

∇xT
log p(y|xT )NA-NHMC = − 1

2σ2
y

∇xT
∥y −A(D(xT ))∥2.

By marginalizing σ2
y , the likelihood term becomes

p(y | xT ) =

∫ ∞

0

p(y | xT , σ
2
y) p(σ

2
y) dσ

2
y (10)

∝

(
1
2

∥∥y −A(D(xT ))
∥∥2)−m/2

. (11)
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Figure 2: Gaussian deblur task on
FFHQ (256 × 256) with varying mea-
surement noise levels σy . The esti-
mated standard deviation of measure-
ment noise ∥y − A(x̂0)∥/

√
m demon-

strates that our noise-adaptive method
accurately recovers the true σy (indi-
cated by dashed line) without overfitting
across different noise levels.

where m denotes the dimensionality of the measurement
space. The derivation of this expression is provided in
Appendix A.1. Substituting this marginalized likelihood
into the N-HMC framework yields our proposed noise-
adaptive Algorithm 3. Proposition 2 below shows that,
with an appropriate measurement noise prior, the likeli-
hood term ∇xT

log p(y|xT ) of NA-NHMC is identical
to that of N-HMC (with known noise level).

Figure 2 demonstrates Proposition 2 in practice. All ex-
periments use an identical setup across different noise
levels, highlighting that our method does not require any
hyperparameter tuning for a specific noise level. Despite
the absence of such tunable parameters, the estimated
standard deviation of the measurement noise, computed
as ∥y−A(x̂0)∥/

√
m, closely matches the true, unknown

noise level σy . This confirms that NA-NHMC effectively
adapts to varying noise without specific tuning. The com-
plete NA-NHMC is summarized in Algorithm 3.

The flexibility of NA-NHMC goes beyond noise-level ro-
bustness. Although NA-NHMC is formulated assuming
Gaussian measurement noise, experiments with alterna-
tive noise types (Section 4.3) show that the method re-
mains effective across other common noise distributions,
demonstrating its broader robustness.

4 EXPERIMENTS

Following previous approaches (Wang et al., 2024) (Zhang et al., 2024), we evaluate our method
on two datasets: FFHQ 256 × 256 (Karras et al., 2019) and ImageNet 256 × 256 (Deng et al.,
2009), using 100 images from the validation set of each dataset. We utilize the same pretrained DM
trained by Chung et al. (2023) for FFHQ and by Dhariwal & Nichol (2021) for ImageNet except for
ReSample. For ReSample, we use a pretrained LDM by Rombach et al. (2022). All measurements
are corrupted by additive Gaussian noise with standard deviation σy .

We compare our method against several representative baselines, including DiffPIR (Zhu et al.,
2023), RED-diff (Mardani et al., 2023), DPS (Chung et al., 2023), DAPS (Zhang et al., 2024),
ReSample (Song et al., 2024), SITCOM (Alkhouri et al., 2025b), and DMPlug (Wang et al., 2024).
The implementation details for all the baseline methods are provided in Appendix A.5. We evaluate
reconstruction quality using three standard metrics: peak signal-to-noise ratio (PSNR), structural
similarity index measure (SSIM) (Wang et al., 2004), and Learned Perceptual Image Patch Similarity
(LPIPS) (Zhang et al., 2018).
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4.1 EXPERIMENT RESULTS

Linear IPs. We evaluate our approach on four linear inverse problems. For super-resolution tasks,
we consider both 4× and 16× downsampling using 4 × 4 and 16 × 16 average pooling opera-
tions, respectively. We also examine random inpainting with 92% of pixels randomly masked, and
anisotropic Gaussian deblurring using blur kernels with standard deviations of 20 and 1 in orthogo-
nal directions. The results for linear IPs are presented in Tables 10-13.

Nonlinear IPs. We further assess performance on three challenging nonlinear inverse problems.
The first is nonlinear deblurring using encoded blur kernels from Tran et al. (2021). The second is
phase retrieval, where only the Fourier magnitude is observed as measurements. Finally, we consider
HDR reconstruction, which aims to recover images with a higher dynamic range by a factor of 2
from tone-mapped observations. The results for nonlinear IPs are presented in Tables 1, 2, 14, 15.

≥ 0.5

0.0

0.0
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DPS DAPS NA-NHMC (Ours)
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Figure 3: Comparative results are aver-
aged over 100 independent runs. (Top)
Mean absolute error (MAE) heapmaps.
(Bottom) Standard deviation heatmaps
across runs. Our method achieves the
lowest standard deviation compared to
DPS and DAPS, indicating reduced sen-
sitivity to initialization.

Main Results. Our method achieves comparable or
superior performance across most tasks, as measured
by PSNR and SSIM on both the FFHQ and ImageNet
datasets. Notably, the improvement over SOTA meth-
ods is more pronounced for nonlinear tasks, which are
substantially more challenging than linear IPs. Many ex-
isting SOTA approaches are MAP-based by design (e.g.,
ReSample, SITCOM, and DMPlug) or become MAP-like
heuristically (e.g., DAPS). While these methods perform
well in low-noise regimes, they often overfit when the
noise level is higher. Since the noise levels used in our ex-
periments (σy = 0.05, 0.20) exceed those commonly re-
ported in prior work, our results further demonstrate that
the proposed noise-adaptive method is more robust and
consistently outperforms alternatives across most tasks
and metrics without any hyperparameter tuning. Fig-
ure 4 contains visual examples for the nonlinear deblur-
ring problem. See Appendix A.12 for more examples.
A fundamental distinction lies in the generalization ca-
pability across diverse degradation conditions. Standard
guidance-based methods (e.g., DPS) inherently rely on manual hyperparameter calibration to bal-
ance measurement fidelity against the diffusion prior. As evidenced in Table 4, the optimal step
size is highly task-dependent (ranging from ζ = 0.4 to ζ = 10.0), meaning a static configuration
fails to generalize. In contrast, NA-NHMC derives its dynamics from the marginalized posterior,
which effectively acts as an automatic gradient normalization mechanism. This structural advantage
allows a single configuration to robustly generalize across varying tasks and noise levels without
task-specific recalibration.

Ground Truth DiffPIR RED-diff DAPSDPS ReSample DMPlug OursMeasurement

Figure 4: Nonlinear deblurring results on FFHQ (256×256) dataset with σy = 0.2. Visual compar-
ison across state-of-the-art methods shows our approach produces high-quality reconstructions with
sharp details and minimal artifacts.

4.2 HIGHLY ILL-POSED IPS: PHASE RETRIEVAL

Another challenge commonly faced by both MAP and sampling-based methods is becoming trapped
in a local mode, particularly in highly multimodal IPs such as phase retrieval. Figure 5 illustrates this

8
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issue. While DPS and DMPlug occasionally recover the correct solution, most initializations con-
verge to spurious local modes and are thus counted as failures. In contrast, our method incorporates
early exploration through σy scheduling, making it more robust to initialization and substantially
more likely to recover the global solution.

0% 25% 50% 75% 100%

8
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24

32
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NR
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Figure 5: Phase retrieval task on FFHQ (256× 256) with σy = 0.01. Each curve shows the median
performance, with shaded areas denoting the 5th–95th percentile interval. Our method successfully
solves the IP at a much higher rate than DPS and DMPlug. This is due to the annealing schedule
of σy that allows for initial exploration of the noise space, resulting in a lower probability of being
stuck on a local mode.

We quantify robustness to initialization using the standard deviation map in Figure 3. Our method
achieves a mean absolute error (MAE) comparable to that of DPS, but with substantially lower
pixel-wise standard deviation. While DPS can, on average, produce accurate reconstructions, its
performance is sensitive to initialization and may introduce artifacts in both the face and background
(red circle). In contrast, such artifacts never appear in any of the 100 runs with our method. Notably,
despite exhibiting lower overall uncertainty, our method still assigns uncertainty in complex regions,
which aligns with areas of high MAE (orange).

Table 1: Non-linear IPs Results on FFHQ (256× 256) with Gaussian Noise σy = 0.05. (Bold: best,
underline: second best)

Nonlinear Deblurring Phase Retrieval HDR Reconstruction

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
DiffPIR 26.12 0.743 0.289 16.77 0.482 0.543 25.20 0.814 0.223
RED-diff 18.12 0.217 0.680 11.83 0.213 0.769 21.44 0.525 0.458
DPS 23.26 0.672 0.300 10.87 0.296 0.714 27.46 0.849 0.168
DAPS 27.00 0.736 0.283 18.52 0.414 0.528 26.03 0.758 0.259
ReSample 24.57 0.637 0.432 13.95 0.377 0.677 23.65 0.722 0.386
SITCOM 24.97 0.569 0.328 11.89 0.216 0.723 26.97 0.753 0.256
DMPlug 27.15 0.784 0.266 - - - 25.17 0.783 0.260
NA-NHMC (ours) 27.66 0.792 0.249 19.30 0.554 0.482 28.45 0.849 0.217

Table 2: Non-linear IPs on ImageNet (256 × 256) with Gaussian Noise σy = 0.05. (Bold: best,
underline: second best)

Nonlinear Deblurring HDR Reconstruction

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
DiffPIR 24.24 0.638 0.381 23.29 0.730 0.273
RED-diff 17.94 0.244 0.623 20.98 0.524 0.415
DPS 17.60 0.427 0.482 25.31 0.763 0.248
DAPS 24.28 0.632 0.404 23.57 0.709 0.283
SITCOM 24.00 0.556 0.355 24.76 0.708 0.276
DMPlug 22.30 0.576 0.421 20.61 0.562 0.431
NA-NHMC (ours) 24.98 0.694 0.308 25.86 0.779 0.253

4.3 ROBUSTNESS TO UNKNOWN MEASUREMENT NOISE

In practice, the measurement noise may be unknown and its type may not be Gaussian. This can
pose a problem as many methods require multiple hyperparameters that are tuned for a specific level

9
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and type of measurement noise. In this section, we evaluate our method’s robustness to unknown
measurement noise on two tasks and two noise types: impulse and speckle. For impulse noise,
each pixel in each channel is randomly replaced by 0 or 1 with a probability p/2 each, where p ∼
Unif(0, 0.2). For speckle noise, the noise takes the form y(1 + ϵ), where y is the measurement
tensor and ϵ ∼ Unif(0, 0.4). Table 3 shows that our method achieves superior performance on most
metrics while using the exact same hyperparameters as the Gaussian noise experiment. As illustrated
in Figure 6, methods such as DiffPIR, which do not suffer from noise overfitting in the Gaussian
setting, now struggle with impulse noise. In contrast, even under high noise levels, NA-NHMC
remains robust, producing high-quality reconstructions.

Ground Truth DiffPIR RED-diff DAPSDPS ReSample DMPlug OursMeasurement

Figure 6: Nonlinear deblurring results on FFHQ (256×256) dataset under different noise conditions.
(Top) Impulse noise. (Bottom) Speckle noise.

Table 3: The Performance Comparison with Different Types and Levels of Measurement Noise on
FFHQ (256 × 256). (Bold: best, underline: second best)

Super Resolution (×4) Nonlinear Deblurring

Impulse Speckle Impulse Speckle

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
DiffPIR 19.54 0.492 0.549 25.91 0.733 0.324 21.00 0.402 0.526 25.96 0.731 0.299
RED-diff 15.15 0.341 0.692 21.81 0.481 0.516 13.82 0.109 0.781 18.59 0.269 0.650
DPS 21.99 0.581 0.395 27.00 0.761 0.246 21.64 0.595 0.322 23.42 0.678 0.302
DAPS 15.00 0.361 0.702 24.48 0.597 0.442 17.94 0.259 0.657 26.46 0.698 0.308
ReSample 22.98 0.639 0.483 26.17 0.733 0.387 22.74 0.616 0.471 24.64 0.692 0.409
SITCOM 16.56 0.392 0.628 23.16 0.600 0.425 17.92 0.259 0.612 26.49 0.667 0.295
DMPlug 19.52 0.358 0.562 26.79 0.689 0.336 23.79 0.662 0.335 25.82 0.740 0.308
NA-NHMC (ours) 23.42 0.631 0.382 27.36 0.768 0.290 24.16 0.677 0.319 27.97 0.796 0.253

5 CONCLUSION

In this work, we introduce N-HMC, a posterior sampler that operates in the noise space using reverse
diffusion as a deterministic mapping from initial noise to a clean image, enabling posterior explo-
ration while keeping proposals on the learned data manifold. The developed noise-adaptive variant,
NA-NHMC, eliminates task-specific hyperparameter tuning by automatically adapting to unknown
noise types and levels, which is a significant practical advantage over existing approaches. Theory
establishes the correctness and efficiency of noise-space sampling, and experiments across diverse
linear and nonlinear inverse problems on FFHQ and ImageNet show state-of-the-art reconstruc-
tions, robustness to initialization and noise, competitive runtimes with a few denoising steps, and
uncertainty-aware estimates. The provided analysis and experiments also show that our method can
mitigate measurement-consistency drift, noise overfitting, and local-mode collapse without relying
on any task-specific hyperparameter tuning.

While NA-NHMC shows promising results, it incurs higher computational cost compared to other
methods such as DPS due to HMC sampling. Additionally, its reliance on a small number of diffu-
sion steps may limit its immediate applicability to more complex applications. Moreover, the high
dimensionality of the posterior leads to long warmup phases before reaching stationarity. Future
work could address these challenges by developing more efficient gradient estimation techniques
and incorporating faster warmup strategies that relax the requirement of exact detailed balance.
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A APPENDIX

A.1 ROBUST-N-HMC DERIVATION

Assumptions

1. Measurement noise η ∈ Rm follows gaussian distribution with unknown σ2
y:

p(y|xT , σ
2
y) =

1

(2πσ2
y)

m/2
exp

[
−∥y −A(D(xT ))∥2

2σ2
y

]
. (12)

2. σy follows a Jeffreys prior distribution:

p(σ2
y) ∝

1

σ2
y

. (13)

Marginalizing σ2
y yields

p(y|xT ) =

∫ ∞

0

p(y|xT , σ
2
y) p(σ

2
y) dσ

2
y (14)

∝
∫ ∞

0

1

(2πσ2
y)

m/2
exp

[
−∥y −A(D(xT ))∥2

2σ2
y

]
1

σ2
y

dσ2
y (15)

∝
∫ ∞

0

(σ2
y)

−m
2 −1 exp

[
− (1/2)∥y −A(D(xT ))∥2

σ2
y

]
dσ2

y (16)

∝
(
1

2
∥y −A(D(xT ))∥2

)−m/2

. (17)

And then, we have

log p(y|xT ) =
(
−m

2

)
log

(
1

2
∥y −A(D(xT ))∥2

)
. (18)

A.2 PROOFS

Measurement model. Let x∗
0 ∈ Rm denote the ground truth signal. The measurement is given by

y = A(x∗
0) + η, η ∼ N (0, σ2

yIm), (19)

where A : Rn → Rm is the measurement operator and η represents Gaussian measurement noise.
In the following proofs, A is assumed to be approximately linear around x∗

0. Thus, A(x0) = Ax0.

Generative model. Consider the DDIM sampler defined by

x̂0 = D(xT ), xT ∼ N (0, In), (20)

where D denotes the deterministic decoder via the diffusion model.

Lemma 1. Product of two Gaussian probability density functions (PDFs).

q1(x) = N (x;µ1,Σ1), q2(x) = N (x;µ2,Σ2).

Then, the product of q1(x) and q2(x) is proportional to a Gaussian PDF N (x, µ,Σ), where

µ = Σ
(
Σ−1

1 µ1 +Σ−1
1 µ1

)
, Σ = (Σ−1

1 +Σ−1
2 )−1.

Lemma 2. Bias-variance decomposition of a random variable x with mean µ and covariance ma-
trix Σ, i.e.,

E
[
∥x− a∥2

]
= ∥µ− a∥2 + tr(Σ).
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Proposition 1. Assume that the distribution of the decoded sample x0 around the ground truth
x∗
0 is well-approximated by a Gaussian distribution pθ(x̂0) ≈ N (x̂0;x

∗
0, σ

2
0In). Then, the residual

y −Ax̂0 satisfies

E(x̂0,y)∼pθ(x̂0,y|x∗
0)
∥y −Ax̂0∥2 = σ2

ytr(BB⊤) + tr(AΣpostA
⊤),

where

Σpost =

(
A⊤A

σ2
y

+
In
σ2
0

)−1

, B =

(
Im −

AΣpostA
⊤

σ2
y

)
.

Proof First, consider the distribution of x̂0 given fixed x∗
0 and y

pθ(x̂0|y)
(a)
∝ pθ(y|x̂0)pθ(x̂0) (21)

= N (y;A(x̂0), σ
2
yIm) N (x̂0;x

∗
0, σ

2
0In) (22)

(b)
= N

(
x̂0; (A

⊤A)−1A⊤y, σ2
y(A

⊤A)−1
)
N (x̂0;x

∗
0, σ

2
0In) (23)

(c)
= N (x̂0;µpost(y),Σpost) (24)

pθ(Ax̂0|y) = N
(
x̂0;Aµpost(y),AΣpostA

⊤) , (25)

where (a) follows from Bayes’ theorem. (b) is from local linearity of A. (c) is the result of Lemma
1 with

µpost(y) = Σpost

(
A⊤y

σ2
y

+
x∗
0

σ2
0

)
, Σpost =

(
A⊤A

σ2
y

+
In
σ2
0

)−1

.

The expected squared residual conditioned on y is

Ex̂0∼pθ(x̂0|y)∥y −Ax̂0∥2 = ∥y −Aµpost(y)∥2 + tr(AΣpostA
⊤), (26)

which is the result of Lemma 2. Then, integrate over y conditioned on x∗
0

Ex̂0,y∼pθ(x̂0,y|x∗
0)
∥y −Ax̂0∥2 (27)

= Ey∼q(y|x∗
0)

[
Ex̂0∼pθ(x̂0|y)∥y −Ax̂0∥2

]
(28)

= Ey∼q(y|x∗
0)

[
∥y −Aµpost(y)∥2 + tr(AΣpostA

⊤)
]

(29)

= Ey∼q(y|x∗
0)

[∥∥∥∥(Im − AΣpostA
⊤

σ2
y

)
y −

AΣpostx
∗
0

σ2
0

∥∥∥∥2
]
+ tr(AΣpostA

⊤) (30)

(a)
=

∥∥∥∥(Im − AΣpostA
⊤

σ2
y

)
Ax∗

0 −
AΣpostx

∗
0

σ2
0

∥∥∥∥2 + tr(B(σ2
yIm)B⊤) + tr(AΣpostA

⊤) (31)

= σ2
ytr(BB⊤) + tr(AΣpostA

⊤), (32)

where (a) is the result of Lemma 2, and B = Im − AΣpostA
⊤

σ2
y

.

Corollary 1.1 Under the assumptions of Proposition 1, if σ0/σy ≪ 1, the residual y − A(x̂0)
satisfies

E(x̂0,y)∼pθ(x̂0,y|x∗
0)
∥y −A(x0)∥2 → mσ2

y.

Proof If σ0/σy ≪ 1,

Σpost =

(
A⊤A

σ2
y

+
In
σ2
0

)−1

= σ2
0

(
σ2
0A

⊤A

σ2
y

+ In

)−1

→ σ2
0In (33)

B = Im −
AΣpostA

⊤

σ2
y

→ Im −
σ2
0AA⊤

σ2
y

→ Im (34)

E∥y −A(x0)∥2 = σ2
ytr(BB⊤) + tr(AΣpostA

⊤)→ mσ2
y (35)
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Proposition 2 Under the assumptions of Proposition 1 and that the pre-trained diffusion model
unconditionally generates images that lie on the high quality manifold (σ0/σy ≪ 1), then the
update rule of NA-NHMC follows:

∇xT
log p(y|xT )NA-NHMC = − 1

2σ2
y

∇xT
∥y −A(D(xT ))∥2

Proof We can consider the likelihood term of NA-NHMC

log p(y|xT ) =
(
−m

2

)
log

(
1

2
∥y −A(D(xT ))∥2

)
(36)

∇xT
log p(y|xT ) =

(
− m

2∥y −A(D(xT ))∥2

)
∇xT
∥y −A(D(xT ))∥2 (37)

=

(
− 1

2σ2
y

)
∇xT
∥y −A(D(xT ))∥2, (38)

which follows from Corollary 1.1. This likelihood term is exactly the same as that of N-HMC, where
the true noise level σy is known.

16
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A.3 PSEUDOCODE OF UNCONDITIONAL DDIM

The DDIM method (Song et al., 2022a) we used in our experiment follows the Algorithm 2 below:

Algorithm 2: DDIM
Require: # diffusion steps T , diffusion model sθ , initial seed xT

1: for t = T − 1 to 0 do
2: ϵ̂t+1 = sθ(xt+1, t+ 1) // Compute the score
3: x̂0(xt+1) =

1√
αt+1

(
xt+1 −

√
1− αt+1ϵ̂t+1

)
// Predict ẑ0 with Tweedie’s formula

4: x̂t =
√
αtx̂0(xt+1) +

√
1− αtϵ̂t+1 // Unconditional DDIM step

5: end for
6: return x

A.4 PSEUDOCODE OF THE NOISE-ADAPTIVE NHMC

Following the reasoning in Proposition 2, we assume an uninformative prior on σy . Under this
assumption, the likelihood term can be written as

log p(y|xT ) =
(
−m

2

)
log

(
1

2
∥y −A(D(xT ))∥2

)
.

where m = dim(y). The factor 1/2 inside the logarithm can be omitted for the Hamiltonian and
gradient computations. The corresponding gradient is

∇xT
log p(y|xT ) =

(
− m

2∥y −A(D(xT ))∥2

)
∇xT
∥y −A(D(xT ))∥2

Algorithm 3: NA-NHMC
Require: # HMC iterations K, # leapfrog steps L, initial integration step size δ, xT , y, A, γ
1: for k = 0 to K − 1 do
2: repeat
3: p ∼ N (0, I) // Initial momentum
4: x̂0 = DDIM(xT )
5: H0 = 1

2
∥xT ∥2 + m

2
log

(
∥y −A(x̂0)∥2

)
+ 1

2
p⊤p // Current Hamiltonian

6: x∗
T ← xT // Initialize proposal xT

7: for l = 0 to L− 1 do
8: p← p− δ

2

(
x∗

T + m
2∥y−A(x̂∗

0)∥2
∇x∗

T
∥y −A(x̂∗

0)∥2
)

// Update momentum

9: x∗
T ← x∗

T + δp // Update x∗
T

10: x̂∗
0 = DDIM(x∗

T )

11: p← p− δ
2

(
x∗

T + m
2∥y−A(x̂∗

0)∥2
∇x∗

T
∥y −A(x̂∗

0)∥2
)

// Update momentum

12: end for
13: H1 = 1

2
∥x∗

T ∥2 + m
2
log

(
∥y −A(x̂∗

0)∥2
)
+ 1

2
p⊤p // Proposal Hamiltonian

14: u ∼ Unif(0, 1)
15: if u < exp(H0 −H1) then
16: Accept proposal
17: else
18: δ ← γδ // Anneal step size δ
19: end if
20: until Proposal accepted
21: xT ← x∗

T // Accept the proposal
22: end for
23: return xT

17
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A.5 IMPLEMENTATION DETAILS FOR BASELINE METHODS

DiffPIR

Number of diffusion steps: 100
Number of optimization steps: 50

We follow the recommended hyperparameter η = 1.0 and λ = 7.0 from Zhang et al. (2025). The
learning rate of the schedule-free AdamW optimizer is set to 0.1.

RED-diff

Number of optimization steps: 1000

We follow the recommended the hyperparameter λ = 0.25 and an Adam optimizer with lr = 0.5 as
in Zhang et al. (2025)

DPS

Number of diffusion steps: 1000

We follow the learning rate form in Chung et al. (2023) with ζi adjusted for different tasks, as shown
in Table 4.

Table 4: Tuned learning rate ζi for DPS

SR (×4) SR (×16) Inpainting (92%) Gaussian Deblurring Nonlinear Deblurring Phase Retrieval HDR

FFHQ 1.0 0.6 1.0 1.0 1.0 0.4 1.0
ImageNet 1.0 0.6 1.0 0.4 0.5 - 1.0

DAPS

Number of diffusion steps: 250

Number of ODE solver steps: 4

We follow the hyperparameter settings of Zhang et al. (2024), as listed in Table 5, and adopt their
heuristic σy = 0.01 in place of the actual value. δ = 0.01 for all tasks. The number of MCMC
sampling steps N = 100 for FFHQ (256×256) and N = 40 for ImageNet (256×256). Otherwise,
the hyperparameter for each task is the same for both datasets.

Table 5: η0 for DAPS

SR (×4) SR (×16) Inpainting (92%) Gaussian Deblurring Nonlinear Deblurring Phase Retrieval HDR

1e-4 1e-4 1e-4 1e-4 5e-5 5e-5 2e-5

ReSample

Number of diffusion steps: 500

For both noise levels (σy = 0.05, 0.20) tested in this paper, the recommended optimization steps
lead to overfitting to noise and poor performance. Instead, we used 50 steps for pixel optimization
and 25 steps for latent optimization.

SITCOM

Number of diffusion steps: 20

We follow the hyperparameter settings of Alkhouri et al. (2025a), as listed in Table 6. The stopping
criterion δ for σy ∈ {0.05, 0.2} is chosen as 0.051

√
m and 0.201

√
m respectively, with m denoting

the dimension of y.

DMPlug

Number of diffusion steps: 3

18
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Table 6: Optimization Steps K for SITCOM

SR (×4) SR (×16) Inpainting (92%) Gaussian Deblurring Nonlinear Deblurring Phase Retrieval HDR

20 20 30 30 30 30 40

t = [250, 500, 750]

We set the Adam optimizer learning rate to 0.01. We follow the recommended stopping criteria in
Wang et al. (2024). For linear tasks, we use a window size = 10, patience = 100, and a maximum
iterations = 5000. For nonlinear tasks, we use the window size = 50 and patience = 300 with
maximum iterations = 10000.

A.6 IMPLEMENTATION DETAILS FOR OUR METHOD

Number of diffusion steps: 2

t = [375, 750]

We implement NA-NHMC with the same hyperparameter configuration L = 20, δ0 = 0.05, γ =
0.95 for both datasets. For all tasks except phase retrieval, an initial step size δ0 = 0.05 and an
annealing schedule σy,k = 0.5 + 2(1 − k/10) is applied during the first 10 HMC iterations, after
which, the noise-adaptive scheme (Algorithm 3) is used.

For phase retrieval, we use initial step size δ0 = 0.2 and keep other hyperparameters unchanged. An
annealing schedule σy,k = 1.0 + 20

√
1− k/50 is applied during the first 50 HMC iterations, after

which, the noise-adaptive scheme (Algorithm 3) is used.

These annealing schedules are chosen to encourage sufficient exploration of the posterior in the early
stage. Our results are not sensitive to the exact schedule: using a slower schedule does not degrade
performance.

A.7 HYPERPARAMETER SENSITIVITY ANALYSIS

We evaluate several hyperparameter choices for the Hamiltonian Monte Carlo sampler on the super-
resolution (×4) inverse problem using the FFHQ 256 × 256 dataset. When varying a particular
hyperparameter, all remaining hyperparameters are kept at their default values used in all other
experiments. For different choices of the number of leapfrog steps L, we also adjust the number of
HMC iterations to ensure that each setting uses the same amount of computational resources. The
resulting performance is summarized in the tables below. The results indicate that the performance
of NA-NHMC exhibits little sensitivity to the choice of hyperparameters.

Table 7: Different step sizes ϵ for Super Resolution (×4) on FFHQ (256 × 256) with Gaussian
Noise σy = 0.05. (Bold: best)

0.02 0.05 0.10 0.15 0.20

PSNR ↑ 27.12 27.29 27.31 27.31 27.31
SSIM ↑ 0.745 0.770 0.771 0.771 0.772
LPIPS ↓ 0.299 0.291 0.288 0.288 0.286

Table 8: Different number of leapfrog steps L for Super Resolution (×4) on FFHQ (256 × 256)
with Gaussian Noise σy = 0.05. (Bold: best)

10 15 20 25 30

PSNR ↑ 26.86 27.18 27.29 27.36 27.34
SSIM ↑ 0.749 0.765 0.770 0.771 0.777
LPIPS ↓ 0.318 0.299 0.291 0.286 0.281
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Table 9: Step size decay factor γ for Super Resolution (×4) on FFHQ (256 × 256) with Gaussian
Noise σy = 0.05. (Bold: best)

0.91 0.93 0.95 0.97 0.99

PSNR ↑ 27.29 27.31 27.29 27.31 27.30
SSIM ↑ 0.770 0.769 0.770 0.771 0.770
LPIPS ↓ 0.291 0.289 0.291 0.288 0.289

A.8 ADDITIONAL EXPERIMENT RESULTS

Linear IPs results

Table 10: Linear IPs on FFHQ (256× 256) with Gaussian Noise σy = 0.05. (Bold: best, underline:
second best)

Super Resolution (×4) Super Resolution (×16) Random Inpainting (92%) Gaussian Deblurring

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
DiffPIR 25.96 0.735 0.322 19.84 0.541 0.444 20.93 0.595 0.405 27.48 0.778 0.287
RED-diff 21.58 0.390 0.602 17.60 0.391 0.567 23.70 0.651 0.344 17.07 0.213 0.692
DPS 26.84 0.762 0.239 20.06 0.522 0.380 25.74 0.745 0.245 26.88 0.761 0.234
DAPS 24.58 0.559 0.514 17.28 0.420 0.541 25.68 0.685 0.331 23.34 0.478 0.474
ReSample 26.18 0.737 0.382 20.01 0.532 0.576 24.12 0.599 0.442 25.98 0.728 0.385
SITCOM 27.35 0.787 0.268 20.82 0.574 0.400 26.56 0.785 0.266 27.94 0.796 0.266
DMPlug 26.73 0.697 0.321 17.42 0.280 0.607 26.15 0.769 0.270 27.81 0.769 0.289
NA-NHMC (ours) 27.29 0.770 0.291 20.85 0.531 0.452 26.72 0.785 0.268 28.36 0.798 0.259

Table 11: Linear IPs ImageNet (256× 256) with Gaussian Noise σy = 0.05. (Bold: best, underline:
second best)

Super Resolution (×4) Super Resolution (×16) Random Inpainting (92%) Gaussian Deblurring

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
DiffPIR 23.99 0.626 0.426 18.48 0.387 0.626 19.30 0.443 0.583 25.24 0.678 0.378
RED-diff 17.67 0.266 0.613 12.45 0.151 0.726 17.25 0.360 0.541 13.99 0.170 0.688
DPS 23.36 0.623 0.345 17.15 0.339 0.524 22.31 0.593 0.347 22.55 0.555 0.401
DAPS 23.86 0.568 0.461 14.29 0.139 0.753 23.23 0.585 0.432 24.52 0.558 0.423
SITCOM 24.93 0.684 0.318 18.58 0.404 0.525 23.89 0.684 0.320 25.63 0.712 0.311
DMPlug 24.52 0.667 0.378 16.74 0.311 0.590 23.49 0.668 0.358 23.55 0.605 0.433
NA-NHMC (ours) 24.99 0.665 0.355 19.09 0.396 0.580 24.10 0.676 0.324 25.76 0.699 0.327

All experiments in Section 3.3 are repeated with a higher level of Gaussian measurement noise
(σy = 0.20). The results are shown below.

Table 12: Linear IPs on FFHQ (256× 256) with Gaussian Noise σy = 0.20. (Bold: best, underline:
second best)

Super Resolution (×4) Super Resolution (×16) Random Inpainting (92%) Gaussian Deblurring

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
DiffPIR 21.22 0.591 0.417 16.09 0.420 0.551 17.83 0.470 0.509 24.29 0.683 0.355
RED-diff 12.64 0.101 0.824 11.49 0.152 0.799 15.33 0.168 0.731 8.47 0.037 0.868
DPS 21.80 0.556 0.385 16.13 0.377 0.507 21.60 0.531 0.404 24.45 0.678 0.290
DAPS 13.48 0.121 0.792 17.08 0.420 0.549 20.64 0.353 0.587 8.12 0.031 0.862
ReSample 22.95 0.632 0.501 17.93 0.468 0.661 22.62 0.615 0.535 24.60 0.682 0.438
SITCOM 23.04 0.647 0.362 17.49 0.469 0.495 23.23 0.653 0.359 24.97 0.709 0.323
DMPlug 15.95 0.140 0.706 11.69 0.093 0.773 19.65 0.347 0.564 17.33 0.181 0.660
NA-NHMC (ours) 23.29 0.636 0.391 17.36 0.393 0.552 23.69 0.670 0.365 25.57 0.710 0.327

A.9 ABLATION STUDIES

Number of HMC iterations

Sampling with HMC requires a warmup phase, since the initial noise xT may be far from the solu-
tion. As shown in Figure 7, the quality of sampled images improves monotonically with the number
of iterations, as expected. Performance begins to plateau after roughly 120 iterations. Unlike MAP-
based methods such as ReSample (Song et al., 2024) and DMPlug (Wang et al., 2024), it does not
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Table 13: Linear IPs on ImageNet (256 × 256) with Gaussian Noise σy = 0.20. (Bold: best,
underline: second best)

Super Resolution (×4) Super Resolution (×16) Random Inpainting (92%) Gaussian Deblurring

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
DiffPIR 19.90 0.448 0.577 18.48 0.387 0.626 16.91 0.295 0.684 22.38 0.550 0.493
RED-diff 11.35 0.097 0.776 9.29 0.098 0.811 11.37 0.079 0.782 8.08 0.043 0.817
DPS 19.29 0.406 0.481 11.25 0.145 0.728 18.64 0.361 0.505 20.33 0.455 0.468
DAPS 13.71 0.151 0.760 14.27 0.139 0.755 18.89 0.248 0.598 9.06 0.060 0.789
SITCOM 20.87 0.490 0.458 16.16 0.325 0.628 20.90 0.494 0.457 22.73 0.584 0.402
DMPlug 18.58 0.412 0.500 9.53 0.125 0.782 19.15 0.447 0.474 23.05 0.591 0.423
NA-NHMC (ours) 21.53 0.510 0.492 16.43 0.276 0.675 21.80 0.536 0.456 23.45 0.597 0.405

Table 14: Non-linear IPs on FFHQ (256 × 256) with Gaussian Noise σy = 0.20. (Bold: best,
underline: second best)

Nonlinear Deblurring Phase Retrieval HDR Reconstruction

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
DiffPIR 23.34 0.641 0.374 16.76 0.482 0.543 21.85 0.694 0.344
RED-diff 12.85 0.063 0.816 10.07 0.061 0.855 16.73 0.222 0.649
DPS 22.83 0.643 0.307 10.60 0.267 0.701 24.92 0.703 0.321
DAPS 17.38 0.154 0.728 12.93 0.103 0.797 18.04 0.299 0.607
ReSample 23.30 0.635 0.477 12.51 0.335 0.712 22.51 0.677 0.428
SITCOM 16.26 0.173 0.656 10.19 0.082 0.810 20.11 0.346 0.534
DMPlug 22.08 0.544 0.437 - - - 16.17 0.473 0.481
NA-NHMC (ours) 24.89 0.705 0.317 16.17 0.434 0.570 26.61 0.793 0.271

Table 15: Non-linear IPs on ImageNet (256 × 256) with Gaussian Noise σy = 0.20. (Bold: best,
underline: second best)

Nonlinear Deblurring HDR Reconstruction

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
DiffPIR 21.52 0.492 0.526 19.94 0.556 0.418
RED-diff 12.47 0.071 0.759 16.46 0.267 0.593
DPS 16.11 0.340 0.551 21.92 0.519 0.448
DAPS 17.84 0.201 0.617 18.08 0.351 0.536
SITCOM 14.49 0.156 0.668 19.82 0.441 0.500
DMPlug 21.80 0.561 0.420 20.54 0.562 0.430
NA-NHMC (ours) 22.61 0.585 0.382 24.12 0.701 0.320
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Figure 7: Performance of NA-NHMC across four tasks for FFHQ (256 × 256) as a function of the
number of HMC iterations K. For all tasks, performance increases monotonically with more steps,
but with diminishing improvements.

deteriorate beyond this point. This stability provides evidence that the prior term acts as an effective
regularizer, preventing overfitting.

Number of diffusion steps and memory usage

In this section, we evaluate NA-NHMC with varying numbers of diffusion steps, using fixed pa-
rameters K = 80 and L = 20. Both runtime (in seconds) and memory usage (in GB) increase
linearly with the number of steps. We ran all experiments on NVIDIA H200 GPU. The baseline
cost is 90 seconds and 3.63 GB for two steps, with each additional step adding roughly 45 sec-
onds and 1.84 GB. The quantitative evaluations are shown in Figure 8. While three diffusion steps
achieve the highest PSNR and lowest LPIPS, the improvement over two steps is marginal. To avoid
incurring roughly 50% additional runtime and memory overhead, we use two diffusion steps in all
experiments.

Note that performance appears to decline when using more than three diffusion steps. This effect
arises because the sampler converges more slowly to its stationary distribution as the number of
diffusion steps increases. While increasing the number of HMC iterations could offset this effect, it
would further amplify runtime costs to an impractical level.
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Figure 8: Performance of NA-NHMC on SR (×4) task for FFHQ (256 × 256) as a function of
the number of diffusion steps. The initial step is fixed at T = 750 for all cases to avoid numerical
instability, and the remaining steps are evenly spaced in [0, 750].

Diffusion schedule

The pre-trained DMs used in this paper have 1000 diffusion steps. While other methods usually use
evenly-spaced schedule with the first step bing pure Gaussian noise (at = 0), we found this choice
to be numerically unstable for our few-step setting. Since we are using two steps for unconditional
DDIM, the natural choice is to use timesteps in the middle. Thus, we choose t = [375, 750], which
is spread evenly and avoids numerical stability. Table 16 confirms that this schedule yields superior
performance in PSNR and SSIM while being close to optimal for LPIPS. We adopt this diffusion
schedule for all main experiments.
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Table 16: Performance of NA-NHMC on SR (×4) for FFHQ (256× 256). Each schedule is defined
by two parameters: (i) the first timestep (rows: 600, 750, 900) and (ii) the final timestep (columns:
250, 375, 500).

Metrics PSNR SSIM LPIPS
Schedule 600 750 900 600 750 900 600 750 900

250 27.12 27.24 26.82 0.744 0.767 0.718 0.290 0.287 0.335
375 27.03 27.29 27.07 0.736 0.770 0.738 0.304 0.291 0.319
500 26.87 27.17 27.01 0.723 0.763 0.741 0.330 0.305 0.317

A.10 ALTERNATIVE SAMPLING SCHEMES

Ground Truth

Measurement

step size = 0.05

step size = 0.005

step size = 0.0005

1000 steps

1500 steps

8000 steps

Discretization Error

0 % 100 %

Figure 9: Unadjusted Langevin Algorithm (ULA) with different step sizes. Larger step sizes accel-
erate convergence but introduce greater discretization error, substantially degrading sample quality.

Sampling in a space as high-dimensional as (3 × 256 × 256) is a challenging task. Many standard
sampling algorithms are not suitable in this setting. A key requirement for efficiency is the use
of gradient information to accelerate convergence. The simplest such method is the Unadjusted
Langevin Algorithm (ULA).

However, because ULA lacks a Metropolis–Hastings (MH) correction, its step size must be tuned
carefully. Figure 9 illustrates this trade-off: large step sizes enable rapid exploration but cause sig-
nificant discretization error as σy approaches the target value, resulting in poor samples; conversely,
small step sizes reduce error but lead to very slow exploration and long runtime.

Since different stages of the sampling chain require different effective step sizes, algorithms with a
Metropolis–Hastings (MH) correction are more attractive, as the acceptance test provides a natural
criterion for adapting step size. We therefore consider the Metropolis-Adjusted Langevin Algorithm
(MALA), the No-U-Turn Sampler (NUTS), and Hamiltonian Monte Carlo (HMC). In practice, how-
ever, both MALA and NUTS tend to settle on excessively small step sizes in this high-dimensional
setting, resulting in impractically long runtimes. By contrast, HMC accommodates larger step sizes
and achieves a more favorable trade-off between accuracy and efficiency, making it the most suitable
choice for our framework.

A.11 ALTERNATIVE PRIOR MODEL: GAN-BASED INFERENCE

In place of the diffusion models, we experimented with StyleGAN2 (Karras et al., 2020) as the prior
model for FFHQ 256× 256 dataset. The quantitative results are presented in Table 17. The quality
of image samples are significantly inferior to diffusion models across all tasks.

A.12 ADDITIONAL QUALITATIVE RESULTS

In this section, we present additional qualitative results. Since we don’t have access to an LDM for
ImageNet (256× 256), ReSample cannot be applied to this dataset.
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Table 17: GAN-Based Inference for Linear IPs on FFHQ (256 × 256) with Gaussian Noise σy =
0.05.

Super Resolution (×4) Random Inpainting (92%)

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NA-NHMC (GAN) 18.27 0.454 0.513 17.80 0.440 0.528
NA-NHMC (DDIM) 27.29 0.770 0.291 26.72 0.785 0.268

Ground Truth NA-NHMC (GAN)Measurement NA-NHMC (DDIM)

Figure 10: Comparison between GAN and Diffusion Model (DDIM) for SR(×4). FFHQ (256 ×
256). σy = 0.05.

Ground Truth DiffPIR RED-diff DAPSDPS ReSample DMPlug OursMeasurement

Figure 11: SR(×4). (Top) FFHQ (256× 256). (Bottom) ImageNet (256× 256). σy = 0.05
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Ground Truth DiffPIR RED-diff DAPSDPS ReSample DMPlug OursMeasurement

Figure 12: SR(×16). (Top) FFHQ (256× 256). (Bottom) ImageNet (256× 256). σy = 0.05

Ground Truth DiffPIR RED-diff DAPSDPS ReSample DMPlug OursMeasurement

Figure 13: Random inpainting. (Top) FFHQ (256 × 256). (Bottom) ImageNet (256 × 256). σy =
0.05
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Ground Truth DiffPIR RED-diff DAPSDPS ReSample DMPlug OursMeasurement

Figure 14: Gaussian deblurring. (Top) FFHQ (256 × 256). (Bottom) ImageNet (256 × 256).
σy = 0.05

Ground Truth DiffPIR RED-diff DAPSDPS ReSample DMPlug OursMeasurement

Figure 15: Nonlinear deblurring. (Top) FFHQ (256 × 256). (Bottom) ImageNet (256 × 256).
σy = 0.05

Ground Truth DiffPIR RED-diff DAPSDPS ReSample DMPlug OursMeasurement

Figure 16: Phase retrieval. FFHQ (256× 256).
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Ground Truth DiffPIR RED-diff DAPSDPS ReSample DMPlug OursMeasurement

Figure 17: HDR reconstruction. (Top) FFHQ (256 × 256). (Bottom) ImageNet (256 × 256).
σy = 0.05
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