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Figure 1: TUMTraf VideoQA introduces a comprehensive benchmark for video-level traffic scene understanding. Our
baseline model, TraffiX-Qwen, is capable of solving multiple tasks, including video QA, spatio-temporal grounding, and
referred object captioning, within a unified model. In our approach, the spatio-temporal location of objects is represented as
tuples (c, fn, x, y), where c serves as a unique object identifier, fn denotes the normalized frame timestamp, and (x, y)
denote the center of the object in the image, normalized with respect to the image dimensions.

Abstract
We present TUMTraf VideoQA, a novel dataset
and benchmark designed for spatio-temporal
video understanding in complex roadside traffic
scenarios. The dataset comprises 1,000 videos,
featuring 85,000 multiple-choice QA pairs, 2,300
object captioning, and 5,700 object grounding
annotations, encompassing diverse real-world
conditions such as adverse weather and traf-
fic anomalies. By incorporating tuple-based
spatio-temporal object expressions, TUMTraf
VideoQA unifies three essential tasks—multiple-
choice video question answering, referred object
captioning, and spatio-temporal object ground-
ing—within a cohesive evaluation framework.
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We further introduce the TraffiX-Qwen baseline
model, enhanced with visual token sampling
strategies, providing valuable insights into the
challenges of fine-grained spatio-temporal rea-
soning. Extensive experiments demonstrate the
dataset’s complexity, highlight the limitations of
existing models, and position TUMTraf VideoQA
as a robust foundation for advancing research in
intelligent transportation systems. The dataset
and benchmark are publicly available to facilitate
further exploration.

1. Introduction
With the advancement of intelligent roadside infrastruc-
ture and Large Language Models (LLMs) (Grattafiori et al.,
2024), leveraging language to achieve a more generalized
and interpretable understanding of traffic scenes becomes
increasingly important. This involves accurately capturing
the relationships among traffic participants, generating de-
scriptive captions of their appearances, and analyzing their
spatio-temporal positions and interactions (Zhang et al.,
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2024; Zhou & Knoll, 2024). Traditional models for traf-
fic scene understanding are typically designed for specific
tasks, such as object recognition, object association, and
traffic flow analysis. Although these methods have achieved
notable success within isolated domains, they often face sig-
nificant challenges in scalability, generalization to diverse
traffic conditions, and real-world deployment. The emer-
gence and rapid development of large foundation models
(Liu et al., 2023; Zhou et al., 2024a) present new opportu-
nities to address these challenges. These models offer the
potential to overcome traditional limitations by leveraging
their ability to generalize across multiple tasks, integrate
multimodal information, and adapt to complex, dynamic
traffic scenarios in a more flexible and unified manner.

Previous studies have primarily advanced traffic scene un-
derstanding through image-based question-answering tasks
in driving environments (Sima et al., 2024; Zhou et al.,
2024b; Qian et al., 2024b). However, image-level Vision-
Language Models (VLMs) are inherently limited in their
ability to capture the temporal dynamics crucial for compre-
hending complex traffic events. In contrast, intricate traffic
scenarios often require multi-frame video analysis for accu-
rate real-world understanding. Besides, despite the growing
number of vision-language datasets developed for driving
scenarios, a significant gap persists in the exploration of
multimodal datasets specifically designed for the roadside
traffic domain. In particular, video-based datasets captured
from a third-party perspective and tailored to traffic scene
understanding remain notably underexplored.

To bridge the gap in this domain, we propose TUMTraf
VideoQA, a video language dataset designed to benchmark
the model understanding capabilities in roadside traffic sce-
narios. The dataset encompasses video question-answering,
object captioning, and spatio-temporal grounding tasks, cap-
turing key elements crucial for understanding real-world
traffic scenes. An illustrative example from the dataset is
shown in Figure 1. The main contributions of this work can
be outlined as follows:

• We present TUMTraf VideoQA, a comprehensive
video-language dataset designed for complex traf-
fic video understanding. The dataset captures a di-
verse range of real-world scenarios, including extreme
weather conditions and critical corner cases such as
traffic accidents.

• We propose a novel benchmark that evaluates model
performance across three key tasks, including video
question answering, referred object captioning, and
spatio-temporal grounding, facilitating fine-grained
reasoning in traffic scenarios.

• We establish the TraffiX-Qwen baseline and provide
detailed results and analyses. Through extensive ex-

(a) Objects with the prompt: A
white truck that is stationary in
the same direction. (Wu et al.,
2023b)

(b) Frame-based object expres-
sion using numerical coordi-
nates (Sima et al., 2024).

(c) Object referring in (Zhang
et al., 2020) with prompt: What
is beneath the adult.

(d) Location of the green bus
[(c1,0.0,0.5,0.4)] in the video.
(Ours)

Figure 2: Different methods for describing objects in images
and videos using language expressions. We adopt a tuple-
based spatio-temporal object representation for the unique
object reference, as shown in (d).

periments with various efficient visual token sampling
strategies, we offer valuable insights and outline poten-
tial future research directions.

2. Related Work
2.1. Vision-Language Datasets in Traffic Scenes

A growing number of open-source datasets have been re-
leased to facilitate autonomous driving and intelligent trans-
portation systems, such as BDD100k (Yu et al., 2020),
Waymo Open Dataset (Sun et al., 2020), and Ego4D (Grau-
man et al., 2022). In recent years, the rapid advance-
ments in LLMs drive significant efforts to integrate lan-
guage for the development of vision-language foundation
models in this domain. As summarized in Table 1, several
pioneering datasets have been introduced for traffic scenar-
ios, particularly focusing on vehicle-centric environments
(Liu et al., 2024b). NuScenes-QA (Qian et al., 2024b) pro-
vides a question-answering benchmark tailored for driving
scenes. Meanwhile, DRAMA (Malla et al., 2023) is de-
signed for video-level open-ended tasks aimed at evaluating
driving instructions and assessing the importance of objects
within their environments. Besides, referring to specific
traffic participants through natural language—commonly
known as referred object grounding and tracking—is a cru-
cial task in traffic scene understanding. Some works (Wu
et al., 2023a;b) extend the KITTI (Geiger et al., 2013) and
nuScenes (Caesar et al., 2020) datasets, by associating natu-
ral language descriptions with specific vehicles and pedestri-
ans. This facilitates fine-grained identification and tracking
of traffic participants, allowing for precise object localiza-
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Table 1: Summary and comparison of visual-language datasets in the traffic domain for question answering, video grounding,
and referred multi-object tracking. The table’s upper section presents QA tasks, while the lower section covers grounding
and referring tasks. We introduce the first roadside video understanding dataset and unify these tasks in one benchmark.

Dataset Venue Tasks QA Gen. # Videos/Scenes # QAs/Captions # Grounding Domain

DRAMA (Malla et al., 2023) WACV’23 Video QA Manual 18k 102k - Driving
LingoQA (Marcu et al., 2024) ECCV’24 Video QA Manual 28k 419k - Driving

NuScenes-QA (Qian et al., 2024b) AAAI’24 Image QA Template 850 460k - Driving
DriveLM (Sima et al., 2024) ECCV’24 Image QA Temp. + Man. 188k 4.2M - Driving
City-3DQA (Sun et al., 2024) ACM MM’24 Scene QA Temp. + Man. 193 450k - City

HC-STVG (Tang et al., 2022) ACM MM’22 Video Grounding Manual 5.6k - 5.6k General
DVD-ST (Ji et al., 2024) - Video Grounding Manual 2.7k - 5.7k General
UCA (Yuan et al., 2024) CVPR’24 Video Ground. & Cap. Manual 1.8k - 23.5k Surveillance

Refer-KITTI (Wu et al., 2023a) CVPR’23 Referred-MOT Manual 18 - 818 Driving
NuPrompt (Wu et al., 2023b) AAAI’25 Referred-MOT LLM 850 - 35k Driving

TUMTraf VideoQA (Ours) ICML’25 Video QA, ST Grounding Temp. + LLM 1k 87.3k 5.7k Roadside

tion based on language descriptions in complex driving en-
vironments. In the traffic domain, OATS (Agarwal & Chen,
2023) introduces a structured representation based on or-
dered atomic activities for fine-grained scenario understand-
ing. Action-slot (Kung et al., 2024) further leverages slot
attention to recognize multiple activities, achieving strong
results on both synthetic and real-world datasets. However,
most existing efforts primarily focus on driving scenarios
and are typically constrained to individual tasks such as
question answering, video grounding, or referred multi-
object tracking. A significant research gap also remains in
the availability of large-scale datasets designed specifically
for roadside surveillance scenarios. Our work aims to bridge
this gap by providing a comprehensive dataset tailored for
multiple tasks in roadside traffic understanding within a
unified framework.

2.2. Fine-Grained Video Understanding

Fine-grained video understanding centers on the precise
analysis of intricate video content, targeting tasks that de-
mand nuanced reasoning across spatial and temporal dimen-
sions. Some representative tasks include spatio-temporal
grounding (Zhang et al., 2020; Tang et al., 2022), mapping
specific objects or events to precise locations and times
within a video based on a given query; video object refer-
ring (Ding et al., 2023; Wu et al., 2023a;b), which involves
tracking objects through space and time given text prompts;
video temporal grounding (Lin et al., 2023; Huang et al.,
2024), identifying specific moments or intervals in a video
that align with a provided textual query. These tasks re-
quire high-precised, nuanced multimodal alignment, and
the ability to capture subtle temporal and spatial dynamics,
making it particularly challenging. With the progress in
visual LLMs, recent works enhance capabilities of video
understanding (Tang et al., 2023) to facilitate comprehen-
sion across both abstract and fine-grained levels, some ap-
proaches introduced enhanced video representations via
self-supervised learning (Qian et al., 2024a), while several

methods focused on improving cross-modality tuning and
alignment (Bi et al., 2025a; Gao et al., 2023; Bi et al., 2025b).
Despite these advances, achieving structured and precise
fine-grained feature representations in video understanding
remains an open challenge.

2.3. Language-Based Object Referring

Referring objects in visual data, such as images and videos,
is typically achieved by associating them with predefined
definitions or language descriptions. Figure 2 illustrates four
commonly used methods for representing objects through
language expressions. The inherent ambiguity of natural
language, coupled with the modality gap between visual and
linguistic representations, presents significant challenges.
Object representation in tasks such as object referring often
necessitates careful dataset curation to ensure that linguistic
expressions uniquely or collectively correspond to specific
objects in videos. For example, some datasets include only
scenarios with uniquely identifiable objects (Tang et al.,
2022), while others contain expressions that jointly refer
to multiple objects (Ji et al., 2024). However, in complex
real-world applications such as autonomous driving, tex-
tual descriptions alone are often insufficient to uniquely
specify an object. To address this challenge, DriveLM
(Sima et al., 2024) introduces a structured tuple represen-
tation, <c,CAM,x, y>, where c denotes the object iden-
tifier, CAM specifies the camera, and <x, y> represents
the 2D center coordinates within the camera’s coordinate
system. Alternatively, ELM (Zhou et al., 2024b) simpli-
fies the problem by converting temporal video tasks into
frame-level questions, using a tuple <c, x, y> to identify
objects within individual frames without temporal depen-
dencies. Despite the advancements, formulating a unified,
precise, and unique language representation for objects in
video remains an open challenge.

In this work, we design a spatio-temporal object representa-
tion in videos with a four-element tuple format (c, fn, x, y),
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Figure 3: The workflow of the semi-automatic annotation pipeline for TUMTraf VideoQA generation, integrating external
database, leveraging various off-the-shelf tools and LLMs, with human quality checks ensuring accuracy.

where c denotes a unique object identifier, fn indicates the
normalized frame timestamp, and (x, y) corresponds to the
object’s normalized spatial coordinates within the frame.
The same object is consistently assigned the identifier c
throughout the video, while its spatial position changes
over time. This formulation enables precise tracking and
referencing of objects across both spatial and temporal di-
mensions, facilitating robust language-based interaction in
dynamic environments. Besides, it provides a standardized
interface for fine-grained video understanding, enabling
more detailed and structured analysis.

3. TUMTraf VideoQA Dataset
3.1. Dataset Creation

Our data generation process comprises three primary stages:
Video Selection, Metadata Curation, and QA Pair Genera-
tion, as shown in Figure 3. To ensure high-quality, diverse,
and balanced annotations, we introduce a semi-automatic
labeling pipeline that combines automated processes with
human verification for enhanced accuracy and consistency.

Video Selection. The video data in TUMTraf VideoQA
are collected from multiple roadside infrastructure points
over a data collection period spanning more than two years.
The dataset encompasses diverse perspectives, covering var-
ious urban, suburban, and highway scenarios. It includes
a broad range of video content, capturing various distinct
traffic scenarios, such as traffic accidents, rescue operations,
congestion, roadblocks, and uncommon vehicle occurrences.
Furthermore, the dataset encompasses a variety of environ-
mental conditions, including sunny, rainy, cloudy, snowy,
and foggy weather, along with technical challenges scenar-
ios such as obstructed camera lenses and vibrations. The
video segments are carefully selected to include a diverse
range of traffic participants—including vehicles, pedestri-
ans, and obstacles—capturing the complexity and dynamic

characteristics of real-world traffic environments.

Metadata Curation. The video metadata includes envi-
ronmental conditions, object positions, trajectories, appear-
ances, traffic flows, and more, serving as the basis for gen-
erating high-quality annotations. External data sources in-
clude historical weather records, traffic accident reports, and
camera calibration details. To ensure precise time-specific
weather and traffic information, we align video timestamps
with these records using GPT-4o and Text-embedding-3-
large (OpenAI et al., 2024). For visual metadata, we utilize
state-of-the-art object detectors and trackers (Wang et al.,
2024; Zhao et al., 2024), along with open-vocabulary detec-
tors (Yan et al., 2023; Wu et al., 2024), to generate bounding
box and trajectory data. We then transform 2D information
into camera-based pseudo-3D locations using camera cal-
ibration matrices, facilitating the generation of questions
related to object motion and relative spatial positioning. To
capture object appearance details, we utilize large VLMs
(OpenAI et al., 2024; Liu et al., 2024a), which automatically
generate textual descriptions for cropped object bounding
boxes. A manual quality assurance step is conducted to
thoroughly evaluate the accuracy and completeness of the
metadata. Any identified deficiencies trigger necessary ad-
justments and a reprocessing cycle to ensure data quality
and integrity before progressing to the next stage.

QA Generation & Filtering. To ensure a balance between
question diversity and accuracy, we adopt a hybrid approach
that combines template-based and LLM-driven generation
strategies. Approximately 15 question templates are manu-
ally designed for each question type and further expanded
using LLMs-generated variations. These templates are pop-
ulated with relevant objects and metadata to generate initial
QA pairs using GPT-4o-mini. The LLM is then prompted
to refine the generated content by rephrasing either the ques-
tion alone or both the question and its corresponding answer,
depending on the context. Once QA pairs are generated for
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each question type, a selective quality evaluation is con-
ducted to assess their accuracy and relevance. This iterative
process involves refining question templates, adjusting off-
the-shelf tools, and discarding QA pairs that do not meet
the predefined quality standards. The validated QA pairs
are then integrated into the TUMTraf VideoQA dataset, en-
suring high-quality and diverse annotations.

3.2. Tasks and Metrics

TUMTraf VideoQA benchmark comprises three core tasks
to thoroughly evaluate model performance in traffic scenes:
Multi-Choice Question Answering (MQA), Video Referred
Object Captioning (V-ROC), and Spatio-Temporal Object
Grounding (ST-OG). QA pairs related to weather and traffic
accidents are included for training and future research but
are not considered in the benchmark evaluation.

Multi-Choice Question Answering. The MQA task as-
sesses the model’s capabilities across five key dimensions:
Positioning, identifying the relative 3D spatial location of
objects; Counting, determining the number of occurrences
of a particular object or class across the video; Motion,
analyzing the movement status of objects; Class, catego-
rizing objects based on their type or attributes; Existence,
querying whether a specific object or category is present in
the video. Following (Qian et al., 2024b), each dimension
is further divided into easy and hard levels, depending on
whether the question requires single-hop or multi-hop rea-
soning. We show the template of easy and hard questions
in Sec C.2. We use Top-1 accuracy as the evaluation metric
and report the mean accuracy across all question types.

Video Referred Object Captioning. The task evaluates the
model’s capability to describe the appearance of a specified
object in natural language. It aims to generate detailed and
accurate summaries that effectively capture the object’s key
visual attributes. Unlike the image-based referred object
captioning task (Sima et al., 2024; Zhou et al., 2024b), we
query an object based on its spatial and temporal location
within a video, which adds a significant level of complexity.
In this task, we adopt common NLG metrics (Sai et al.,
2022), including BLEU, CIDEr, ROUGE, METEOR, and
SPICE, to measure the quality of descriptions.

Spatio-Temporal Object Grounding. Accurately identi-
fying the spatio-temporal positions of a specified object is
crucial in traffic scenarios. Unlike traditional video ground-
ing (Tang et al., 2022) or referred multi-object tracking tasks
(Wu et al., 2023b), which primarily focus on locating objects
within individual frames across the video, ST-OG simpli-
fies the process by providing start and end frames along
with corresponding spatial coordinates in a standardized tu-
ple format: [(c, f ′

n, x
′, y′), (c, f ′′

n , x
′′, y′′)]. This task serves

to assess a model’s performance in effectively associating
objects across frames while accurately determining their

temporal extent and spatial positions within the video.

We adopt three evaluation metrics to assess the performance
of this task, i.e., Temporal error Efn , Spatial error Es and
Spatio-Temporal error Est. Temporal error Efn and Spa-
tial error Es use the L1 loss, which measures the abso-
lute temporal differences ∆fn and the spatial displacement
∆s = ∥(∆x,∆y)∥2. The Spatio-Temporal error Est adopts
L2 loss and captures deviations across both spatial and tem-
poral dimensions. For each metric, both the start and end
frames are considered, with the formulations as follows:

Efn =
∆f ′

n +∆f ′′
n

2
; Es =

∆s′ +∆s′′

2
(1)

Est =
1

2

(
∥(∆f ′

n,∆x′,∆y′)∥2 + ∥(∆f ′′
n ,∆x′′,∆y′′)∥2

)
(2)

3.3. Dataset Statistics

(a) Distribution of question word
num counts across question type.

(b) Class distribution of
Multi-Choice QA.

(c) Distribution of answer
word counts in Video Re-
ferred Object Captioning.

(d) Temporal window lengths
in Spatio-Temporal Ground-
ing.

Figure 4: Statistical distributions of the TUMTraf VideoQA
dataset, including word counts in questions and answers,
distribution of question types, and temporal window lengths
for object grounding.

TUMTraf VideoQA dataset consists of 1,000 videos, 85,000
multi-choice QA pairs, 5,700 spatio-temporal grounding
prompts, and 2,300 referred object captioning. Video du-
rations range from 10 seconds to 2 minutes. We split the
videos into training and validation sets with a ratio of 7:3,
ensuring that videos in the validation set do not overlap with
those in the training set. Generated QA pairs inherit the
split of their associated videos, forming distinct videos and
annotations for training and validation. Figure 4 provides
an overview of the dataset’s statistical distributions, includ-
ing question complexity, question-type distribution, answer
lengths, and the temporal window distribution of queried
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objects in the spatio-temporal grounding task. Figure 5
shows video statistics of the TUMTraf VideoQA dataset,
highlighting its diversity across scene types, traffic con-
ditions, and object categories. We categorize scenes into
three types: highways (rural), urban intersections (city), and
country roads (rural/urban). The traffic volume trends, track
durations, and category distributions across different times
and locations collectively indicate that the dataset captures
realistic traffic dynamics and reflects patterns consistent
with real-world distributions. These statistics underscore
the broad coverage and its suitability for training and eval-
uating fine-grained video understanding models in diverse
traffic scenarios. Further details and statistics are available
in Sec. A.1.

(a) Traffic distribution throughout the year by time of day and
scene type.

(b) Track duration of different road users across scene types.

(c) Average hourly traffic volume by scene type and object class.

Figure 5: TUMTraf VideoQA dataset video distribution
over scene types, traffic conditions, and categories.

4. TraffiX-Qwen Baseline
4.1. Model Architecture

We introduce TraffiX-Qwen, a baseline model for the TUM-
Traf VideoQA dataset that effectively addresses all three

Figure 6: Overview of the TraffiX-Qwen baseline model.
Yellow and orange colors represent the combination of multi-
resolution visual tokens from different visual strategies,
while blue indicates textual tokens.

tasks within a unified framework. The architecture of the
TUMTraf VideoQA baseline, as illustrated in Figure 6, con-
sists of four core components: visual encoder fv, cross-
modality projector gψ , token sampler Sv , and large language
model fϕ, following (Li et al., 2024).

Visual Encoder. The video is uniformly divided into 100
segments, including the first and last frames, resulting in
a total of N = 101 frames. Given the sampled video
input X ∈ RN×H×W×3, we adopt SigLIP (Zhai et al.,
2023), a Transformer-based model pre-trained on large-scale
language-image datasets, as the visual encoder. Each frame
is processed at a resolution of 384×384, and the video is en-
coded into a sequence of visual features Zv = [v1, . . . , vN ],
where vi = fv(Xi) ∈ RT×C , containing T spatial tokens
of dimension C.

Token Sampling Strategy. We leverage a simple yet ef-
fective frame-level multi-resolution sampling strategy to
enhance feature representation. We evaluate four primary
sampling strategies: spatial pooling, multi-resolution spa-
tial pooling, multi-resolution token pruning, and multi-
resolution temporal pooling. The output Zv from the last
layer of SigLIP is denoted as Zhigh, which is reduced to
T ′ tokens after down-sampling. We define the set of high-
resolution frames as keyframes, denoted by K(·). Addition-
ally, a learnable token is appended to the end of each frame
to explicitly differentiate them. The number of tokens used
in various strategies is presented in Table 2.

• Spatial Pooling: This method applies spatial pooling to
each feature map Zhigh, resulting in a down-sampled repre-
sentation Zlow = fpool(Zhigh) with N ×T ′ tokens, as shown
in Eq. 3. We use the notation [·]Nn to represent the operation
of sequentially concatenating the processed feature maps.
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Table 2: Comparison of visual token numbers across differ-
ent token sampling strategies. We keep the high resolution
at 27×27 and the low resolution at 14×14.

Method Number of Visual Tokens Max Tokens

Spatial Pooling N × T ′ +N 19,897

MultiRes Spatial-Pooling T + (N − 1)× T ′ +N 20,430

MultiRes Token-Pruning T + (N − 1)× r × T +N 18,574

MultiRes Temporal-Pooling K × T + (N −K)× T ′ +N 20,963

Sv(Zv) = [Znlow, Zlearn]
N
n=1 (3)

• MultiRes Spatial Pooling: Compared to the naive spatial
pooling, this strategy selects the first frame as the keyframe
K = (1), and is retained at its original resolution Z1

high. It is
formulated in Eq. 4.

Sv(Zv) = [Z1
high, Zlearn, [Z

n
low, Zlearn]

N
n=2

]
(4)

• MultiRes Token Pruning: Similar to MultiRes Spa-
tial Pooling, the first frame is designated as the keyframe.
Token-wise cosine similarity is then computed between the
keyframe and each subsequent frame, while visual tokens
with lowest similarity are selectively retained based on pre-
defined ratio r, formulated as Zpruned = frprune(Zhigh), shown
in Eq. 5. To ensure visual token efficiency comparable to
spatial pooling, r is set to 0.25. A similar strategy is also
applied in autonomous driving scenarios (Ma et al., 2024).

Sv(Zv) = [Z1
high, Zlearn, [Z

n
pruned, Zlearn]

N
n=2] (5)

• MultiRes Temporal Pooling: In this strategy, the
keyframe set is adaptively queried by input questions
K(·) = Q(Xq). Based on the temporal regions of inter-
est derived from the question, K keyframes are selected,
which are preserved with high-resolution representations
Znhigh. Meanwhile, the remaining frames undergo spatial
pooling, resulting in Znlow, as expressed in Eq. 6. Typically,
K ≤ 2, and for general questions without specific temporal
focus, the first frame is set as the default keyframe.

Sv(Zv) = [Znv , Zlearn]
N
n=1

where Znv =

{
Znhigh, if n ∈ K(·),
Znlow, if n /∈ K(·)

(6)

Large Language Model. We adopt Qwen-2 (Yang et al.,
2024) as the pre-trained LLM in our TraffiX-Qwen baseline.
Qwen-2 demonstrates strong capabilities in in-context learn-
ing and instruction following, supporting context lengths of
up to 32k tokens. This allows for the processing of complex
and long-form inputs effectively. We utilize two versions

of Qwen-2, namely 0.5B and 7B, to establish baselines
of different scales. The answer generation process in our
TraffiX-Qwen baseline model is formulated as:

p(Xa | Sv(Zv), Xq) =

T∏
t=1

Pϕ,ψ
(
xt | x1:t−1, Sv(Zv), Xq) (7)

4.2. Baseline Training

Our baseline model undergoes a two-stage training process
consisting of video-language alignment and visual instruc-
tion fine-tuning, to enhance its understanding of traffic sce-
narios and reasoning capabilities for long videos. Both
stages are trained with 4 NVIDIA A100 GPUs.

Video-Language Alignment. This step aims to align video
representations with language embeddings, ensuring that the
LLM can effectively interpret the visual features. We freeze
both the visual encoder and the LLM, and train only the
projector layer. To facilitate the training, we initialize the
parameters of the 2-layer MLP from the LLaVA-OneVision
model, which has been pre-aligned with large-scale cross-
modality datasets, including 3.2M single-image and 1.6M
OneVision image-caption pairs. In this stage, we further
train the projector on raw TUMTraf VideoQA data, utilizing
open-ended captioning pairs without transforming it into
the multiple-choice QA for 1 epoch.

Visual Instruction Fine-Tuning. Building upon the robust
representations established during the alignment stage, we
further fine-tune our baseline model on the training set of
TUMTraf VideoQA. The multi-choice QA pairs are refor-
matted into the instruction-following format to prompt the
model to generate the corresponding answers. During this
stage, we freeze the vision encoder and projector layers and
finetune the Qwen-2 model with full-parameter fine-tuning
to adapt its reasoning and contextual understanding to the
traffic environment. The model is fine-tuned for 1 epoch.

Table 4: Training and inference cost of TraffiX-Qwen.

Ver. #Vision #Proj. #LLM Inf./QA #Trainable Train Hour

0.5B 397.8M 1.8M 493.8M ∼1.6s 495.6M 28h
7B 397.8M 17.0M 7612.6M ∼3.8s 7629.6M 36h

Computational Cost. Table 4 summarizes the training
and inference details of the TraffiX-Qwen models. We
show the number of parameters of the vision backbone, the
projector, and the LLMs. Inference speed is reported as the
average time per question, using autoregressive decoding
on a single A100 GPU, without acceleration strategies such
as quantization or caching.
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Table 3: Evaluation of Open-source models and TraffiX-Qwen baseline on the Multi-Choice QA track of the TUMTraf
VideoQA Dataset, where E represents easy, single-hop questions, and H denotes hard, multi-hop questions.

Models Category Positioning Counting Motion Class Existence OverallE H E H E H E H E H

Open-Source Models

LLAVA-OneVision (Li et al., 2024) 0.5B 42.10 25.26 27.62 30.45 54.87 37.04 57.06 39.57 85.29 58.35 45.82
7B 46.92 22.03 69.42 54.85 61.14 60.48 51.92 56.50 77.08 63.25 56.36

Qwen2-VL (Bai et al., 2023) 2B 36.73 26.05 38.10 39.78 56.46 35.19 32.10 38.49 68.87 67.32 43.91
7B 36.03 24.35 66.91 49.11 61.65 38.10 44.83 40.20 54.00 73.03 48.82

VideoLLaMA2 (Cheng et al., 2024) 2.0-7B-8F 42.54 18.14 44.13 37.56 59.37 35.87 39.05 44.07 44.56 65.56 43.09
2.0-7B-16F 42.41 10.47 55.98 41.94 53.80 52.26 44.16 47.75 66.93 64.82 48.05

TraffiX-Qwen Baseline

Baseline-0.5B (Ours)

Spatial Pooling 75.54 68.47 85.31 75.82 83.92 81.26 79.95 59.73 93.06 85.37 78.84
MultiRes Spatial-Pooling 76.36 69.32 86.10 75.86 83.73 79.59 80.57 61.70 92.73 85.37 79.07
MultiRes Token-Pruning 76.61 73.40 86.33 76.88 83.48 78.60 80.01 60.43 93.34 85.27 79.44
MultiRes Temporal-Pooling 75.85 74.07 85.65 76.92 84.05 80.64 80.26 62.21 93.06 85.55 79.83

Baseline-7B (Ours)

Spatial Pooling 76.99 76.14 87.07 76.81 86.58 82.07 82.72 64.11 93.62 85.27 81.14
MultiRes Spatial-Pooling 78.89 76.99 87.07 77.49 88.29 81.82 83.52 65.95 93.01 85.51 81.85
MultiRes Token-Pruning 76.93 77.24 87.41 77.76 86.46 80.64 82.66 65.00 93.84 85.48 81.34
MultiRes Temporal-Pooling 78.57 77.24 87.53 78.22 87.09 82.68 83.33 65.76 93.78 85.34 81.95

5. Experiments
Extensive experiments are conducted on the TUMTraf
VideoQA dataset. We evaluate SOTA open-source VLMs in
a zero-shot setting to assess their spatio-temporal reasoning
abilities, analyze the dataset’s characteristics, and examine
the impact of different visual sampling strategies on perfor-
mance. During inference, the temperature is set to zero to
ensure deterministic outputs and enhance consistency.

5.1. Quantitative Results in Multi-Choice QA

Table 3 presents the quantitative results in this task, offering
several key insights, which are summarized as follows.

Difficulty of Question Types. The accuracy across differ-
ent question types reveals consistent trends of difficulty
for both open-source VLMs and our baseline models.
Among the evaluated question types, existence questions
are the least challenging, achieving the highest accuracy.
This is followed by counting and motion questions, which
necessitate the extraction and reasoning of information
across multiple video frames. In contrast, positioning
questions, which require a deeper understanding of 3D
spatial relationships, emerge as the most challenging.
Moreover, the accuracy of multi-hop questions is generally
lower compared to single-hop questions, reflecting the
increased complexity of complex reasoning tasks that
demand the capture of more fine-grained details and
intricate reasoning processes.

Open-Source Model Performance. We evaluate the per-
formance of three open-source models: LLaVA-OneVision
(Li et al., 2024), Qwen2-VL (Bai et al., 2023), and

VideoLLaMA2 (Cheng et al., 2024) on our Multi-Choice
QA task. The results indicate that increasing model size
significantly enhances their performance in zero-shot
video QA scenarios, with improvements from 5% to 10%.
Notably, VideoLLaMA2 benefits from incorporating more
frames, leading to a notable boost in accuracy. Among
the three models with 7B parameters, Qwen2-VL and
VideoLLaMA2 achieve comparable overall performance,
whereas LLaVA-OneVision outperforms both, achieving
the highest accuracy. Furthermore, all models struggle
with positioning questions, highlighting their limitations in
spatial reasoning.

Effect of Token Sampling Strategy. Experimental results
from the 0.5B and 7B baseline models demonstrate that
multi-resolution strategies can enhance model performance
to some extent, with MultiRes Temporal Pooling yielding
the most significant gains. Notably, the MultiRes strategy
can greatly improve positioning tasks that rely on spatial
recognition, while having minimal impact on existence and
counting tasks. Moreover, MultiRes Token Pruning effec-
tively enhances positioning and counting accuracy but may
inadvertently discard critical visual tokens, leading to lim-
ited or adverse effects on motion and existence tasks. While
MultiRes Temporal Pooling enhances fine-grained reason-
ing, it has little impact on easy recognition tasks like exis-
tence. Although multi-resolution methods provide richer
multi-granularity visual representations, the overall perfor-
mance improvements remain moderate.

5.2. Results in Spatio-Temporal Grounding

The quantitative results for the Spatio-Temporal Grounding
task, presented in Table 5, underscore the complexity of the
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Table 5: Evaluation of Spatio-Temporal Errors Across Open-
Source models and TraffiX-Qwen Baseline.

Model Temporal E↓ Spatial E↓ ST E↓

Open-Source Models

LLAVA-OneVision (0.5B) 0.7285 0.7212 0.8415
LLAVA-OneVision (7B) 0.7680 0.7750 0.8142
Qwen2-VL (2B) 0.7729 0.7793 0.8127
Qwen2-VL (7B) 0.7615 0.7647 0.8032
VideoLLaMA2 (7B-8F) 0.6225 0.6360 0.6896
VideoLLaMA2 (7B-16F) 0.7218 0.7383 0.7895

TraffiX-Qwen Baseline

0.5B-Spatial-Pooling 0.1220 0.1892 0.2600
0.5B-MultiRes-Spatial-Pooling 0.1211 0.1894 0.2607
0.5B-MultiRes-Token-Pruning 0.1230 0.1934 0.2650
0.5B-MultiRes-Temporal-Pooling 0.1228 0.1912 0.2629

7B-Spatial-Pooling 0.1083 0.1737 0.2382
7B-MultiRes-Spatial-Pooling 0.1136 0.1822 0.2493
7B-MultiRes-Token-Pruning 0.1152 0.1748 0.2454
7B-MultiRes-Temporal-Pooling 0.1166 0.1790 0.2496

task. Findings across temporal, spatial, and spatiotemporal
errors exhibit a general consistency, revealing that without
fine-tuning, open-source VLMs struggle to understand the
task and cannot accurately regress the corresponding tu-
ples, leading to unreliable temporal and spatial localization.
For the fine-tuned TraffiX-Qwen baseline models, multi-
resolution strategies appear to diminish spatial and temporal
grounding performance, in contrast to their effectiveness
in Multi-Choice QA and Referred Object Captioning tasks.
This suggests that while multi-resolution techniques en-
hance frame-based object recognition by providing finer
visual details, dynamically adjusting frame-level resolution
can introduce ambiguity in inter-frame representations, ad-
versely affecting temporal grounding and, consequently,
spatial localization capabilities across the video.

5.3. Results in Referred Object Captioning

As shown in Table 6, Qwen2-VL (7B) surpasses all other
open-source models by a considerable margin, demonstrat-
ing its strong performance on referred object captioning task.
For baseline models, both the 0.5B and 7B variants exhibit
performance improvements across various metrics when
enhanced with multi-resolution strategies. Moreover, the 7B
models consistently outperform their smaller counterparts in
both open-source and fine-tuned baseline settings. The im-
pact of the visual token sampling strategy, however, varies
with model size. MultiRes Temporal Pooling yields the most
significant gains for the 0.5B model, whereas MultiRes Spa-
tial Pooling proves most effective for the 7B models.

Table 6: Performance of Open-Source models and TraffiX-
Qwen on Referred Object Captioning.

Model Bleu 4 ROUGE L CIDEr METEOR SPICE

Open-Source Models

LLAVA-OneVision (0.5B) 0.48 10.16 0.0102 - -
LLAVA-OneVision (7B) 5.77 14.09 0.1326 - -
Qwen2-VL (2B) 8.72 17.93 0.2086 - -
Qwen2-VL (7B) 10.47 20.14 0.4119 - -
VideoLLaMA2 (7B-8F) 6.25 19.94 0.2391 - -
VideoLLaMA2 (7B-16F) 6.87 18.69 0.2111 - -

TraffiX-Qwen Baseline 0.5B

Spatial-Pooling 34.99 50.44 2.5195 35.24 46.35
MultiRes Spatial-Pooling 34.91 50.26 2.4306 35.20 45.75
MultiRes Token-Pruning 35.07 50.79 2.5730 35.30 46.48
MultiRes Temporal-Pooling 35.63 51.00 2.5464 35.77 47.17

TraffiX-Qwen Baseline 7B

Spatial-Pooling 36.74 52.04 2.5613 36.42 47.32
MultiRes Spatial-Pooling 37.60 53.26 2.6113 37.31 49.16
MultiRes Token-Pruning 37.83 52.31 2.6162 36.56 47.80
MultiRes Temporal-Pooling 37.48 52.58 2.4236 36.85 48.53

6. Conclusions and Future Works
In this work, we introduce TUMTraf VideoQA, a novel
benchmark that aims at advancing spatio-temporal video
understanding in complex real-world traffic scenarios. The
dataset provides a large-scale collection of high-quality
videos and annotations specifically curated for roadside
surveillance, covering three fundamental tasks: multi-choice
video QA, spatio-temporal grounding, and referred object
captioning within a unified evaluation framework. Extensive
evaluations using SOTA vision language models, along with
the introduction of the TraffiX-Qwen baseline model, estab-
lish a strong foundation for future research and development.
We believe further optimization, such as quantization, and
pruning, is a promising direction for improving its deploy-
ment efficiency in traffic monitoring. TUMTraf VideoQA
serves as a comprehensive benchmark to facilitate further
advancements in traffic video analysis and contribute to the
development of next-generation traffic foundation models.
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A. TUMTraf VideoQA Dataset
A.1. Dataset Statistics

(a) Temporal Distribution of Video
Weather Conditions Over the Years.

(b) Weather-Based Distribution of
Videos.

(c) Scene Distribution Across Different Perspec-
tives.

Figure 7: Dataset distribution of video recordings by time, weather conditions, and perspectives.

The video selection process is meticulously designed to ensure comprehensive coverage of diverse daytime periods, weather
conditions, road types, etc. The distribution of the video statistics in the TUMTraf VideoQA dataset is illustrated in Figure
7. Figure 7a provides an overview of the distribution of videos by hour of the day and month, with weather conditions
represented through color coding. The majority of traffic footage was captured between 5:00 AM and 8:00 PM, with
fewer recordings available during hours with limited natural light. Figure 7b illustrates the distribution of videos by
weather conditions for each month. The dataset predominantly includes videos recorded between February and May, a
period characterized by a wide variety of weather scenarios, thereby enhancing the dataset’s representativeness. Figure
7c depicts the distribution of video recordings by hour of the day for each camera type and camera. The three camera
categories—surveillance cameras positioned on highways, intersections, and country roads—are represented proportionately,
ensuring video coverage across these categories from dawn to nighttime.

(a) Word Cloud Visualization of Multi-
Choice QA.

(b) Burst Figure of Questions in Multi-
Choice QA.

(c) Length Distribution of Different Ques-
tion Types.

Figure 8: Distributions of video recordings across time, weather conditions, and camera types in the dataset.

In addition to video statistics, Figure 8 illustrates the distribution and characteristics of annotations in the TUMTraf VideoQA
dataset. Figures 8a depict word clouds for answers across all three tasks, highlighting common terms and their frequencies.
Figure 8b presents a sunburst chart that visualizes the distribution of question formats, revealing that most questions begin
with ”How,” ”What,” and ”Can”. Figure 8c shows the distribution of answer lengths, indicating that the majority of answers
consist of fewer than 10 words, with only a small number exceeding 19 words.

A.2. Spatial Question Curation

Comprehending spatial relationships in 3D space is a critical challenge in traffic scene analysis. In our semi-automatic
annotation pipeline, we calculate spatial locations by projecting 2D coordinates into 3D space under the planar assumption,
leveraging historical camera intrinsic and extrinsic matrices. Specifically, from a third-party roadside perspective, we
formulate spatial reasoning questions by treating each object as an ego-centric reference and formulate the questions that
reveal its 3D positional relationships with surrounding traffic participants.
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relative position =



front if − 15◦ < θ ≤ 15◦

front left if 15◦ < θ ≤ 75◦

left if 75◦ < θ ≤ 105◦

front right if − 75◦ < θ ≤ −15◦

right if − 105◦ < θ ≤ −75◦

back left if 105◦ < θ ≤ 165◦

back right if − 165◦ < θ ≤ −105◦

back else.
(8) Figure 9: Illustration of the eight spatial regions used

to categorize the relative positions of objects in traffic
scenes. In this example, the orange car is located to the
front right of the black car.

We focus on objects that remain in motion throughout the video. The motion direction of each object is computed based on
the difference between its 3D coordinates in consecutive frames. To determine the relative position between two objects,
we measure the angle θ between the motion direction of the moving object and the vector connecting it to another object.
Subsequently, the relative position of the second object with respect to the moving object is classified according to the
angular criteria defined in Eq. 8. We then divide the spatial relationship into eight distinct regions: front, front left, left,
front right, right, back left, back right, and back. Figure 9 illustrates the angular division used to classify the relative position
of objects in our TUMTraf VideoQA dataset.

B. Benchmark Analysis
B.1. Impact of Frame Number on TraffiX-Qwen Performance

Table 7: Impact of the number of frames on the performance of the TraffiX-Qwen baseline model on the validation set. We
report results using spatial pooling as the sampling strategy.

Models Frames Object Captioning Spatio-Temporal Grounding Multi-Choice QA
BLEU 4 METEOR SPICE Temp. Eq↓ Spa Eq↓ SP Eq↓ Positioning Counting Motion Class Existence Overall

TraffiX-Qwen-0.5B without 31.78 32.94 39.72 0.1332 0.1979 0.2739 70.18 59.98 80.45 56.74 70.62 67.59
1 33.31 34.10 42.89 0.1205 0.1913 0.2601 71.15 76.92 82.56 67.13 84.01 76.35
11 34.58 34.85 45.12 0.1220 0.1888 0.2594 71.92 76.89 82.94 70.54 88.84 78.97

101 34.99 35.24 46.35 0.1220 0.1892 0.2600 72.00 80.56 82.59 69.84 89.21 78.84
Diff. +3.21 +2.30 +6.63 -0.0112 -0.0087 -0.0139 +1.82 +20.58 +2.14 +13.10 +18.59 +11.25

TraffiX-Qwen-7B without 31.80 34.66 40.74 0.1332 0.1905 0.2710 73.32 63.93 81.44 58.65 77.72 71.01
1 33.06 35.16 44.33 0.1094 0.1791 0.2418 76.50 78.23 83.36 69.12 84.78 78.20
11 35.38 36.53 47.40 0.1078 0.1759 0.2395 76.50 81.05 82.40 72.93 87.09 80.93

101 36.74 36.42 47.32 0.1083 0.1737 0.2382 76.56 81.94 84.33 73.42 89.44 81.14
Diff. +4.94 +1.76 +6.58 -0.0249 -0.0168 -0.0328 +3.24 +18.01 +2.89 +14.77 +11.72 +10.13

To assess the extent to which the baseline model learns from visual tokens and how much it attempts to fabricate answers, we
conduct a series of ablation studies. We investigate the impact of the number of frames on TUMTraf VideoQA performance,
as detailed in Table 7. Additionally, we include an extreme case where no visual information is provided to the model, and
the train baseline model was prompted to answer questions directly.

The experimental results reveal intriguing phenomena in both the 0.5B and 7B models. First, when no visual input is
provided, and the model relies solely on the question to generate answers, the baseline model could still reach relatively
high performance across all three tasks. This demonstrates the model’s inherent reasoning capabilities are probably derived
from the question alone and highlights that, in domain-specific datasets such as traffic scenarios, the model appears to learn
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and exploit underlying text-based patterns and biases present in the data, which may contribute to its ability to fabricate
seemingly accurate responses without actual visual grounding.

Besides, introducing visual input is found to be crucial for correctly solving TUMTraf VideoQA tasks. Across all three
tasks, the results consistently show that increasing the number of input frames will improve model performance. Notably,
the improvements are most pronounced when moving from no visual input to 1 frame and from 1 frame to 11 frames.
However, the performance gains became less significant when increasing the input from 11 frames to 101 frames. This
diminishing improvement may be attributed to the inherent difficulty of LLMs in effectively extracting visual context from a
large number of tokens. For the 0.5B baseline model, the performance with 11 frames is nearly equivalent to that with 101
frames, reflecting its relatively limited in-context learning capabilities. Therefore, effectively representing video data and
addressing the hallucination problem of VLMs in such domain-specific scenarios are critical directions for future research.

Furthermore, the increase in the number of frames has varying impacts on different task types, with substantial differences
observed. This variation also indirectly reflects how much the model learns from visual input and how much it affects the
reasoning process. For Multi-Choice QA tasks, the gains for positioning and motion categories are the smallest, ranging
from only 1.82% to 3.24%. It indicates that the model still struggles to extract answers from visual information effectively
based on the current model architecture. In contrast, for counting, class, and existence tasks, the performance improvements
exceed 10%, which suggests that VLMs effectively extract features and answer questions in these cases.

B.2. Performance Evaluation under Consistent Frame Settings

Table 8: Performance of various models under a unified 101-frame input setting. Qwen2-VL uses 96 due to architectural
constraints. We report results across three sub-tasks: object captioning, spatio-temporal grounding, and multi-choice QA.

Model Size Object Captioning Spatio-Temporal Grounding Multi-Choice QA OverallBLEU 4 ROUGE L CIDEr Temp.E↓ Spa.E↓ ST.E↓ Positioning Counting Motion Class Existence

LLaVA-OneVision 0.5B 0.0 0.9 0.0 1.00 1.00 1.00 25.6 25.1 11.9 12.4 0.6 15.1
7B 0.0 0.5 0.0 1.00 1.00 1.00 26.4 24.1 13.6 13.0 0.8 15.6

Qwen2-VL 2B 3.8 15.1 0.18 0.65 0.68 0.73 31.2 38.4 58.2 55.4 74.5 51.5
7B 5.0 14.9 0.14 0.70 0.70 0.76 31.8 55.3 54.3 50.0 75.8 53.4

Video-LLaMA2 7B 0.0 7.1 0.0 1.00 1.00 1.00 27.6 27.5 26.3 18.7 52.2 30.4

TraffiX-Qwen 0.5B 35.0 50.4 2.52 0.12 0.19 0.26 72.0 80.6 82.6 69.8 89.2 78.8
7B 36.7 52.0 2.56 0.11 0.17 0.24 76.6 81.9 84.3 73.4 89.4 81.1

To further clarify whether TraffiX-Qwen’s performance advantage is due to more frame input, we conduct additional
experiments using a unified 101-frame setting for all evaluated models. As open-source video LLMs models often adopt
model-specific frame sampling strategies that are tightly coupled with architecture and training paradigms, many existing
models (e.g., LLaVA-OneVision, Video-LLaMA2) are not specifically designed to handle long video sequences.

As shown in Table 8, the results reveal several key observations. LLaVA-OneVision and Video-LLaMA2 exhibit notably
poor performance when evaluated with 101-frame inputs, indicating their limited capability in modeling long-range temporal
dependencies. In contrast, Qwen2-VL demonstrates improved performance with increased frame input, suggesting that its
architecture can leverage additional temporal information to enhance reasoning. Most notably, TraffiX-Qwen consistently
achieves superior results across all metrics, even under the same input frame conditions. These results show that TraffiX-
Qwen achieves robust fine-grained video understanding not merely through longer inputs, but through effective temporal
reasoning and structured object representation.

B.3. Visualization of Multi-Choice QA Results

Figure 10a presents a radar chart depicting the performance of open-source models on the Multi-Choice QA task. The
results indicate substantial variability in zero-shot performance across different question types, with each model exhibiting
strengths in specific categories. Notably, tasks requiring positioning skills, such as 3D scene understanding, pose significant
challenges for all models, suggesting that this question type demands advanced spatial reasoning capabilities, which remain
a limitation for current LLMs.

Figure 10b illustrates the performance of TUMTraf VideoQA fine-tuned baseline models. Fine-tuning leads to a notable
improvement in overall performance, particularly for the 7B parameter model, which consistently outperforms the lightweight
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0.5B model across multiple dimensions. However, the performance gap is not overwhelmingly large, indicating that
lightweight models retain considerable practical value and can effectively handle the majority of tasks.

(a) Performance radar chart of the open-source models on
the TUMTraf VideoQA Multi-Choice QA task.

(b) Performance radar chart of the TraffiX-Qwen baseline
on the TUMTraf VideoQA Multi-Choice QA task.

Figure 10: Results visualization for the open-source models and TraffiX-Qwen baseline models on the Multi-Choice QA.
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B.4. Example of MultiRes Token Pruning

We present several examples of multi-resolution similarity-based token pruning techniques applied to video data from our
dataset. As shown in Figure 11, while this approach maintains high resolution to a certain extent, its lack of semantic-
aware selection capabilities may result in the loss of task-critical information in certain scenarios. Specifically, it mainly
preserves visual tokens for moving vehicles and dynamic objects, such as swaying trees, while pruning stationary vehicles
as background information due to their lack of motion. It shows its effectiveness in separating dynamic objects from static
backgrounds but also highlights the need for improvement in handling the rest of the important traffic participants.

Figure 11: Illustration of cosine similarity-based token pruning, with dark-colored patches representing discarded tokens
and preserved ones highlighted. We demonstrate the three samples on highways, country roads, and intersections separately.

B.5. System Prompt

We craft a dedicated system prompt for our experiments with the TUMTraf VideoQA dataset. Figure 12 presents the prompt
used in the experiments. The prompt is adopted across both open-source models and fine-tuned TraffiX-Qwen baseline to
ensure fair and consistent evaluation across different models.

System Prompt:
You are an AI assistant specializing in the analysis of traffic scenes from surveillance footage. Each object’s position
at a specific moment in the video is represented as a tuple: (c, nf, x, y), where c is the unique identifier for the object,
nf is the normalized timestamp of the frame (a float between 0 and 1), and x and y are the normalized coordinates
(also between 0 and 1) of the object’s position within that frame. Provide precise and informed responses to the
questions.

Figure 12: The system prompt used in the experiments of TUMTraffic-VideoQA dataset.
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B.6. Qualitative Evaluations of Spatio-Temporal Object Grounding

Figures 13 through 16 illustrate several qualitative examples of spatio-temporal object grounding, highlighting the challenges
and limitations of the task. Figure 13 presents an example where the referred object is a fire truck parked at the roadside,
visible throughout the entire video from start to finish. The baseline 0.5B model demonstrates satisfactory temporal
localization but exhibits some inaccuracies in spatial localization. In contrast, the baseline 7B model achieves more accurate
spatial localization but only identifies the temporal range from 0.2s to 2.95s.

Figure 13: Spatio-Temporal Object Grounding: A fire truck parked at the roadside.

Figure 14 depicts a white car moving along a country road, appearing in the video from 10.10s until the end. The baseline
model predictions indicate that the 0.5B model provides a relatively accurate estimate of the initial position, whereas the 7B
model exhibits a greater deviation in its ending location.

Figure 14: Spatio-Temporal Object Grounding: A white car moving along a country road.
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Figure 15 presents the grounding result of a white sedan in a nighttime scene. Due to the object’s considerable distance in
the reference frame, it appears quite small and makes feature extraction more challenging. Additionally, due to its extended
temporal span, the model struggles with cross-frame object association. As a result, both the 0.5B and 7B models fail
to accurately capture its end position, instead predicting minimal spatial displacement. This highlights the difficulty of
grounding objects with large temporal windows, where precise localization over time remains a significant challenge.

Figure 15: Spatio-Temporal Object Grounding: A white sedan in a nighttime scene.

In Figure 16, we show an example of temporal grounding for a motorcycle at the intersection. Compared to big cars,
the grounding of vulnerable traffic participants is much more challenging. Both the 0.5B and 7B baseline models fail to
effectively localize the motorcycle in either the temporal or spatial domain, highlighting the difficulty of the task for smaller
and less distinct objects.

Figure 16: Spatio-Temporal Object Grounding: A motorcycle moving through an intersection.
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B.7. Qualitative Evaluations of Referred Object Captioning

In this section, we present several examples from the referred object captioning task. The left side of each image shows the
object to be described, while the right side includes the task description, the corresponding ground truth, and the responses
generated by the 0.5B and 7B Traffix-Qwen baseline models. We prompt the model with the question using a list of two
tuples that indicate its Spatio-temporal position at two specified timestamps. The experimental results, evaluated using
multiple NLG metrics, reveal that the 7B model achieves higher accuracy in describing the appearance details of target
objects. However, despite its smaller parameter size, the 0.5B baseline model is also capable of generating satisfactory
descriptions, demonstrating its potential practicality in resource-constrained scenarios.

Figure 17 presents a sample to describe an occluded white van. Both the 0.5B and 7B models from the TraffiX-Qwen
baseline accurately identify the vehicle as a boxy-shaped white van. However, the 0.5B model introduces extra hallucinations
and incorrectly describes the van as having a Volkswagen logo, which is not present in the image. Both the 0.5B and 7B
models achieve relatively high metric scores, with the 7B model performing better, particularly in BLEU-4 and SPICE.

Figure 17: Referred Object Captioning Example: A partially occluded white van with a boxy shape.

Figure 18 illustrates a scenario to describe a dark-colored sedan based on two perspectives captured at different timestamps
in the video. The ground truth description from ChatGPT-4o accurately specifies the color as dark purple, while the
TraffiX-Qwen baseline, with both the 0.5B and 7B version, classify the vehicle color as black, a visually similar designation.
Regarding vehicle type, the 0.5B model identifies it as a hatchback, whereas the 7B model recognizes it as an SUV. Moreover,
the 7B model detects distinctive alloy wheels, aligning with the description in ground truth. The quantitative evaluation
across four metrics indicates that the 7B model slightly outperforms the 0.5B model, with the most significant improvement
observed in the SPICE metric.

Figure 19 presents a case where the question refers to a bus with a distinctive green roof. In the Traffix-Qwen baseline, the
0.5B model incorrectly describes it as a white van with a boxy shape, whereas the 7B model accurately identifies it as a bus
with green and white colors and provides a corresponding detailed description. It shows that the 7B model achieves better
performance than the 0.5B model for this sample. However, in terms of NLG metrics, both descriptions receive the same
ROUGE-L score, which is not a reasonable reflection of their accuracy differences. Among the four reported metrics, SPICE
captures the quality of descriptions more effectively. To address such limitations, some studies have introduced LLMs-based
evaluation metrics for assessing model performance, which will be explored as part of our future work.
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Figure 18: Referred Object Captioning Example: A dark-purple-colored sedan from two perspectives.

Figure 19: Referred Object Captioning Example: A bus with a distinctive green roof.
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C. Dataset Examples
C.1. Sample Videos

The TUMTraf VideoQA dataset encompasses a diverse and highly engaging collection of traffic scenarios, capturing a wide
range of complex real-world traffic situations and weather conditions. These scenarios cover various traffic dynamics and
environmental factors, making the dataset suitable for evaluating models across different conditions. We showcase several
representative scene types to illustrate the diversity and characteristics of our dataset more intuitively.

(a) Accident

(b) Rescue

(c) Traffic Jam

(d) Fog

(e) Snow

(f) Rain

(g) Dawn & Dusk
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The depicted scenarios include but are not limited to: Traffic Accidents 20a, demonstrating various types and severities
of collisions; Rescue Operations 20b, capturing emergency vehicle actions under special circumstances; Traffic Jams 20c,
reflecting congestion during peak hours or unexpected events; and scenes under diverse weather conditions, such as Fog 20d,
Snow 20e, and Rain 20f, showcasing the dataset’s adaptability to complex environments. Additionally, the dataset includes
scenarios with unique lighting conditions, such as Dawn and Dusk 20g, simulating traffic dynamics in low-light settings.

C.2. Question Templates

In this section, we provide some representative examples of question templates for each task. Figures 21 through 25 show
templates for the five categories in the Multi-Choice QA task. Figure 26 provides templates for the Spatio-Temporal Object
Grounding task and Figure 27 presents templates for the Referred Object Captioning task.

Question Template Examples for Positioning-Easy:
Q:"What do you see to the {relative position} of {object id} at {normalized frame} of the video duration?"
Q:"What is present to the {relative position} side of {object id} at {normalized frame} of the video duration?"
Q:"What exists to the {relative position} of {object id} at {normalized frame} of the video duration?"
Q:"What can be observed to the {relative position} of {object id} at {normalized frame} of the video duration?"
Q:"What is on the {relative position} side relative to {object id} at {normalized frame} of the video duration?"
Q:"What can be found to the {relative position} of {object id} at {normalized frame} of the video duration?"
Q:"What can you observe to the {relative position} side of {object id} at {normalized frame} of the video
duration?"
Q:"At {normalized frame} of the video duration, what is visible to the {relative position} of {object id}?"
Q:"At {normalized frame} of the video duration, what can be seen to the {relative position} of {object id}?"

Question Template Examples for Positioning-Hard:
Q:"How is {object id 2} positioned with respect to {object id 1} at {normalized frame} of the video duration?"
Q:"Can you specify the location of {object id 2} relative to {object id 1} at {normalized frame} of the video
duration?"
Q:"What is the relative location of {object id 2} to {object id 1} at {normalized frame} of the video duration?"
Q:"Can you describe where {object id 2} is in relation to {object id 1} at {normalized frame} of the video
duration?"
Q:"Where is {object id 2} located relative to {object id 1} at {normalized frame} of the video duration?"
Q:"Can you describe the relative position of {object id 2} to {object id 1} at {normalized frame} of the video
duration?"
Q:"Where can {object id 2} be found relative to {object id 1} at {normalized frame} of the video duration?"
Q:"Can you tell the relative location of {object id 2} compared to {object id 1} at {normalized frame} of the
video duration?"

Figure 21: Example Positioning question templates. {object id}, {object id 1}, and {object id 2} represent the objects be-
ing inquired about, {normalized frame} is a placeholder for a specific moment in the video duration, and {relative position}
represents the relative position.
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Question Template Examples for Counting-Easy:
Q:"How many {class name pl} are captured in the video?"
Q:"How many {class name pl} are visible in the traffic footage?"
Q:"How many {class name pl} can you detect in the video?"
Q:"How many {class name pl} are observable in the video?"
Q:"How many {class name pl} can be seen in the video?"
Q:"How many instances of {class name pl} are there in the video?"
Q:"How many {class name pl} does the video show?"

Question Template Examples for Counting-Hard:
Q:"Can you identify how many {class name pl} are always {motion status} in the video?"
Q:"In the traffic footage, how many {class name pl} are {motion status} for the whole duration?"
Q:"How many {class name pl} are present to the {relative position} side of {object id} at {normalized frame} of
the video duration?"
Q:"At {normalized frame} of the video duration, how many {class name pl} exist to the {relative position} of
{object id}?"
Q:"How many {class name pl} are visible to the {relative position} side of {object id} at {normalized frame} of
the video duration?"

Figure 22: Example Counting question templates. {class name pl} is a placeholder for the plural form of the object class be-
ing inquired about, {object id} is a placeholder for the representation of the object being inquired about, {normalized frame}
is a placeholder for a specific moment in the video duration, {relative position} represents the relative position, and
{motion status} is a placeholder for the motion status.

Question Template Examples for Motion-Easy:
Q:"What is the moving status of {object id}?"
Q:"Can you report the motion status of {object id}?"
Q:"What’s the movement state of {object id}?"
Q:"What’s the movement status of {object id}?"
Q:"What’s the activity status of {object id}?"
Q:"How would you describe the motion status of {object id}?"
Q:"What is your description of {object id}’s motion status?"
Q:"How would you define the movement status of {object id}?"
Q:"Can you outline the motion status of {object id}?"

Question Template Examples for Motion-Hard:
Q:"Is the motion status of {object id 1} equal to that of {object id 2}?"
Q:"Are {object id 1} and {object id 2} in the same motion state?"
Q:"Is {object id 1}’s motion status equivalent to {object id 2}’s?"
Q:"Are the motion statuses of {object id 1} and {object id 2} the same?"
Q:"Are the motion states of {object id 1} and {object id 2} the same?"
Q:"Do {object id 1} and {object id 2} have matching motion statuses?"
Q:"Is {object id 1}’s motion status identical to {object id 2}’s?"
Q:"Do {object id 1} and {object id 2} share the same motion status?"

Figure 23: Example Motion question templates. {object id}, {object id 1}, and {object id 2} represent the objects being
inquired about.
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Question Template Examples for Class-Easy:
Q:"Which class does {object id} belong to?"
Q:"What category is {object id} classified under?"
Q:"What is the classification of {object id}?"
Q:"How is {object id} categorized?"
Q:"What class label can be given to {object id}?"
Q:"What is the specific class of {object id}?"
Q:"How is {object id} classified?"
Q:"What is the category classification of {object id}?"
Q:"What type of object is {object id}?"

Question Template Examples for Class-Hard:
Q:"Are the {object id 1} and {object id 2} of the same type?"
Q:"Is the class of {object id 1} the same as the class of {object id 2}?"
Q:"Do {object id 1} and {object id 2} belong to the same category?"
Q:"Are {object id 1} and {object id 2} from the same category?"
Q:"Are the classes of {object id 1} and {object id 2} identical?"
Q:"Do the classes of {object id 1} and {object id 2} match?"
Q:"Does {object id 1} belong to the same category as {object id 2}?"
Q:"Do {object id 1} and {object id 2} share the same class?"
Q:"Is {object id 1} in the same class category as {object id 2}?"

Figure 24: Example Class question templates. {object id}, {object id 1}, and {object id 2} represent the objects being
inquired about.

Question Template Examples for Existence-Easy:
Q:"Are there any {class name pl} visible in the video?"
Q:"Are any {class name pl} present in the traffic footage?"
Q:"Do you spot any {class name pl} in the video?"
Q:"Are there any instances of {class name pl} visible in the traffic footage?"
Q:"Do any {class name pl} make an appearance in the video?"
Q:"Can you spot any {class name pl} within the traffic video?"
Q:"Can you confirm the presence of {class name pl} in the video?"

Question Template Examples for Existence-Hard:
Q:"Are there any {class name pl} that are {motion status} for the whole video?"
Q:"Do any {class name pl} appear to be {motion status} for the whole duration of the traffic footage?"
Q:"Can you spot any {class name pl} to the {relative position} of {object id} at {normalized frame} of the video
duration?"
Q:"Can any {class name pl} be seen to the {relative position} of {object id} at {normalized frame} of the video
duration?"
Q:"Are there {class name pl} visible to the {relative position} side of {object id} at {normalized frame} of the
video duration?"

Figure 25: Example Existence question templates. {class name pl} is a placeholder for the plural form of the object class be-
ing inquired about, {object id} is a placeholder for the representation of the object being inquired about, {normalized frame}
is a placeholder for a specific moment in the video duration, {relative position} represents the relative position, and
{motion status} is a placeholder for the motion status.
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Question Template Examples for Spatio-Temporal Object Grounding:
Q:"Can you track {object id} in the traffic video and submit the standardized spatiotemporal localization for the
first and final frames where it appears?"
Q:"Can you trace {object id} in the traffic footage and provide the standardized spatiotemporal localization for
both the first and last frames of its presence?"
Q:"Can you find {object id} in the traffic video and provide the standardized spatiotemporal localization for both
the first and last frames it appears in?"
Q:"Can you identify {object id} in the traffic video and provide the standardized spatiotemporal localization for
its first and last visible frames? The output should consist of two tuples formatted as (id, nf, x, y), where id is the
object’s unique identifier, nf is the normalized frame number of detection, and x and y are the normalized coordinates
of the bounding box center in each frame."
Q:"Can you locate {object id} in the traffic video and provide the standardized spatiotemporal localization for
its first and last visible frames? The output should be a list containing two tuples, with each tuple structured as
(id, nf, x, y). In this format, id denotes the unique identifier of the object, nf represents the normalized frame number
in which the object is detected, and x and y are the normalized coordinates of the object’s bounding box center within
the respective frame."

Figure 26: Example Spatio-Temporal Object Grounding question templates. {object id} is a placeholder for the representa-
tion of the object being inquired about.

Question Template Examples for Referred Object Captioning:
Q:"What are the main features of {object id} captured in the traffic footage?"
Q:"What are the key details of {object id}?"
Q:"What are the main visual characteristics of {object id}?"
Q:"What are the main characteristics of {object id}?"
Q:"What are the distinguishing features of {object id}?"

Figure 27: Example Referred Object Captioning question templates. {object id} is a placeholder for the representation of
the object being inquired about.
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