AnchorAttention: Difference-Aware Sparse Attention with Stripe
Granularity

Anonymous EMNLP submission

Abstract

Large Language Models (LLMs) with extended
context lengths face significant computational
challenges during the pre-filling phase, primar-
ily due to the quadratic complexity of self-
attention. Existing methods typically employ
dynamic pattern matching and block-sparse
low-level implementations. However, their re-
liance on local information for pattern identi-
fication fails to capture global contexts, and
the coarse granularity of blocks leads to per-
sistent internal sparsity, resulting in subop-
timal accuracy and efficiency. To address
these limitations, we propose AnchorAtten-
tion, a difference-aware, dynamic sparse at-
tention mechanism that efficiently identifies
critical attention regions at a finer stripe gran-
ularity while adapting to global contextual
information, achieving superior speed and
accuracy. AnchorAttention comprises three
key components: (1) Pattern-based Anchor
Computation, leveraging the commonalities
present across all inputs to rapidly compute
a set of near-maximum scores as anchor; (2)
Difference-aware Stripe Sparsity Identifica-
tion, performing difference-aware comparisons
with anchor to quickly obtain discrete coordi-
nates of significant regions in a stripe-like spar-
sity pattern; (3) Fine-grained Sparse Com-
putation, replacing the traditional contiguous
loading strategy with a discrete key-value load-
ing approach to maximize sparsity rates while
preserving hardware computational potential.
Additionally, we integrate the identification
strategy into a single operator to maximize par-
allelization potential. With its finer-grained
sparsity strategy, AnchorAttention achieves
higher sparsity rates at the same recall level,
significantly reducing computation time. Com-
pared to previous state-of-the-art methods, at
a text length of 128k, it achieves a speedup of
1.44 x while maintaining higher recall rates.

1 Introduction

Large Language Models (LLMs) have brought
transformative advancements to numerous domains

Sequential Sequential
& & B
q3 - q3 [11
: | :
|
= (= 1
= ‘ [= EEE
£ B | . l
B |
|
Kaleghes - Kakoks e
(a) Block sparse (b) Stripe sparse

Figure 1: (a) Block-sparse pattern, with yellow regions
indicating computed blocks; (b) Stripe-sparse pattern,
with red regions showing computed areas, enabling
higher sparsity by loading non-contiguous positions
across multiple blocks.

by enabling sophisticated natural language under-
standing and generation(Zhou et al., 2024; Kaddour
et al., 2023; Qin et al., 2024). However, as the sup-
ported context lengths continue to increase, the
inference cost — particularly in the prefill phase —
has become a major bottleneck. This is primarily
due to the quadratic computational complexity of
full-attention mechanisms with respect to sequence
length, which leads to significant efficiency issues
in long-sequence inference tasks.

To mitigate the computational overhead during
the prefill phase, FlashAttention (Dao et al., 2022)
leverages memory transfer disparities across hard-
ware hierarchies and incorporates the online Soft-
max algorithm (Milakov and Gimelshein, 2018),
thereby significantly reducing transmission costs at
the hardware level. Meanwhile, several studies (Li
et al., 2024; Zhang et al., 2023; Fu et al., 2024;
Yang et al., 2024) have revealed the inherent spar-
sity in attention mechanisms, demonstrating that
retaining only a small subset of key-value (KV)
pairs is sufficient to preserve model accuracy. How-
ever, these methods still rely on computing full
attention scores to identify the retained KV subset,
and therefore do not reduce the runtime cost dur-
ing the prefill phase.Recent efforts have attempted

B Flash Attention
B Flex_Prefill
= ours

ak 8 16k 32 64k 128k
Context Length

Figure 2: Acceleration of attention computation com-
pared to FlashAttention.

to exploit sparsity to optimize prefill computation.
For example, StreaminglL.LM (Xiao et al., 2024)
introduces a sparse pattern that retains only local
and initial positions during computation, signif-
icantly accelerating attention, but often missing
essential information from intermediate content.
Minference (Jiang et al., 2024) proposes that at-
tention patterns follow multiple coefficient modes
and accelerates computation by applying offline-
searched sparse configurations. However, its static
design is not adaptive to diverse input patterns and
often fails to select optimal configurations. Flex-
Prefill (Lai et al., 2025) improves upon this by
dynamically selecting patterns online, yet its selec-
tion heavily depends on local information, limiting
its generality. SpargeAttn (Zhang et al., 2025) and
X-Attention (Xu et al., 2025) attempt to identify
informative blocks using similarity-based or diag-
onal priors. However, their designs are primarily
targeted at general-purpose models and lack mech-
anisms tailored to the characteristics of language
models.On the other hand, current methods gener-
ally rely on coarse-grained block-level KV selec-
tion in attention computation, which is misaligned
with the naturally fine-grained sparsity observed
in attention maps, inevitably leading to redundant
attention computations.

To address these challenges, we propose An-
chorAttention, a difference-aware sparse attention
strategy with stripe granularity. AnchorAttention
introduces a sparsity mechanism centered around
the concept of an ancheor, inspired by the common
structural patterns observed in attention distribu-
tions across all inputs. We observe that the maxi-
mum values after dot-product computations consis-
tently emerge at initial or local window positions.
We therefore extract the maximum score from these
regions and designate it as the anchor. The impor-
tance of other positions is then determined by di-

rectly comparing their values against the anchor, ef-
fectively bypassing expensive sorting operations.In
contrast to traditional block-level sparsity meth-
ods (Zhang et al., 2025; Xu et al., 2025; Lai et al.,
2025; Jiang et al., 2024; Yang et al., 2025), An-
chorAttention adopts a more flexible stripe spar-
sity strategy, reducing the identification granular-
ity from coarse blocks to finer-grained stripes and
enabling higher sparsity rates. During sparse com-
putation, we further replace the conventional con-
tiguous key-value (KV) loading scheme with a
discrete KV loading approach, which enhances
recognition precision over block-based strategies
while preserving parallel computation efficiency.
AnchorAttention comprises the following three
steps:Pattern-based Anchor Computation: We
observe that the distribution of the most significant
values remains fixed and stable across various in-
put transformations. We first compute these values
and designate the obtained approximate maximum
value as the anchor.Difference-aware Stripe Spar-
sity Identification: Compared to block sparsity,
we adopt a finer-grained stripe sparsity approach.
By performing dot-product computations between
the compressed query and the full set of keys, we
use direct comparisons with the anchor’s differ-
ence to rapidly identify which keys and values are
significant, avoiding costly sorting operations.Fine-
grained Sparse Computation: We transition from
block sparsity’s continuous key-value (KV) load-
ing to discrete KV loading. During computation,
we maintain block-based computations to maxi-
mize sparsity while preserving parallel computing
capabilities.

We evaluate AnchorAttention on Llama-3.1-
8B-Instruct (Touvron and et al.,, 2023) and
Qwen2.5-7B-Instruct(Qwen et al., 2025) across
various context lengths. The benchmarks used in-
clude RULER (Hsieh et al., 2024), Needle In A
Haystack (Kamradt, 2023), and Longbench (Bai
et al., 2024).All of our experiments are conducted
under context lengths up to 128k. Our goal is not
to endlessly extend the context length while rely-
ing on simple-task performance as the evaluation
metric, but rather to approximate full attention with
minimal computation. Therefore, we adopt recall
as the primary evaluation metric. Under this crite-
rion, our method surpasses the state-of-the-art Flex-
Prefill (Lai et al., 2025) in recall while achieving a
1.44x speedup. Compared to full KV FlashAtten-
tion (Dao et al., 2022), our method achieves a 4.6 x

speedup, significantly reducing attention compu-
tation time.The results demonstrate that Anchor-
Attention delivers substantial acceleration while
preserving model accuracy.

input,

input,

stripe sparse

head;

head,

last q sparse
v

(a) Heatmaps of different in- (b) Stripe sparse and local in-
puts formation sparse

Figure 3: (a) Heatmaps vary significantly across differ-
ent inputs. (b) Stripe sparse appears in specific attention
maps, demonstrating that local information fails to cap-
ture the full attention distribution.

2 Observation and Analysis

2.1 Observation

2.1.1 Diversity of Sparse Attention Patterns

Sparse attention patterns are prevalent in large lan-
guage models, yet the sparsity distribution within a
single attention head varies significantly due to in-
put content(Lai et al., 2025). As shown in Figure 3a,
different inputs yield distinct sparsity patterns, in-
dicating that static pattern recognition cannot adapt
to dynamic inputs, necessitating more flexible
sparsity strategies. Additionally, Figure 3b shows
that critical information often appears at a finer
granularity, concentrating in only a few columns
and forming a striped pattern in the heatmap. This
phenomenon highlights that using block sparsity
as the minimum granularity fails to fully leverage
sparsity, underscoring the need for finer-grained
selection strategies.

Moreover, Figure 3b demonstrates that relying
solely on the local information from the last query
fails to reconstruct the full attention heatmap(Jiang
et al., 2024; Lai et al., 2025), as these stripes may
vanish at the end, highlighting that local informa-
tion lacks generalizability and requiring broader
positional data.

2.1.2 Commonality of Sparse Attention
Patterns

Although sparsity patterns vary significantly across
different models, certain consistent features remain

Distribution of Top Attention Score

LLaMA (Inputl) 4

LLaMA (Input2) 4

Qwen (Inputl) 4

Qwen (Input2) 4

0.0 0.2 0.4 0.6 0.8 1.0

Initial Local Other

Figure 4: The distribution of maximum attention scores
highlights the dominance of anchor positions.

prominent. As shown in Figures 3a and 3b, the at-
tention scores at the local window positions and the
initial token position are consistently critical. We
further analyze these positions in Figure 4, examin-
ing the first token and a local window of 128 tokens
under a 128k context length. The results show that
in the LLaMA (Touvron and et al., 2023) model,
approximately 99% of the highest attention scores
are concentrated in these regions, whereas in the
Qwen (Qwen et al., 2025) model, the proportion
is around 90%. Although prior works (Xiao et al.,
2024; Jiang et al., 2024) have identified the impor-
tance of these positions and focused on preserving
them, their potential for guiding the construction of
broader sparsity structures remains underexplored.
In contrast, we propose to define these high-impact
positions as anchor, emphasizing their critical role
in attention computation and their utility in precom-
puting and approximating the sparsity distribution
of other positions.

2.2 Analysis

In this section, we primarily analyze the impact
of identification schemes and identification gran-
ularities on the final recall rate, elucidating how
different identification approaches and granulari-
ties affect the output.

2.2.1 Performance of Different Identification
Schemes in Sparsity Strategies

Previous work has widely adopted top-k(Xiao et al.,
2024; Li et al., 2024; Holmes et al., 2024; Tang
et al., 2024; Liu et al., 2024) and top-cdf(Lai et al.,
2025) strategies to identify important positions in
sparsity strategies. In the top-k strategy, the value
of k is fixed. As shown in Figure 5a, this static
selection of k can result in some heads having re-

Recall Rate(92.3%)

Recall Rate(77.0%)

Recall Rate(89.88%)

| | | |
12 16 20 24 28 0 4 8
Head

o 4 8
Head

(a) Top-K(4096)

12 16 20 24 28 . o 4 8

(b) Top-CDF(0.95)

|

12 16 20 24 28
Head

(c) Difference-Aware(11)

Figure 5: Recall heatmaps of Sparsity Strategies using LLaMA-3.1-8B on the 128k Ruler(Hsieh et al., 2024)
dataset, with average sparsity rates of 93.7% (a), 96.4% (b), and 94.1% (c).Per-head sparsity rates are detailed in
Appendix A.Recall is defined as the percentage of attention values that are numerically equal between the current

sparse attention and the full attention(Jiang et al., 2024).

call rates well below the target, prompting prior
methods to assign different &k values for different
heads. However, such static k settings often per-
form poorly with dynamic inputs, as further de-
tailed in Appendix A. To address this limitation,
some methods employ the top-cdf strategy (see
Figure 5b), which ensures each head meets the de-
sired recall rate by computing cumulative attention
scores. However, both approaches rely on sort-
ing, incurring significant computational overhead.
In contrast, the difference-aware strategy (see Fig-
ure 5c) begins with a known maximum value and
directly subtracts other values to obtain the dif-
ferences. If the difference exceeds a predefined
threshold, subsequent computations are skipped.
This method eliminates the need for sorting opera-
tions and achieves performance comparable to that
of top-cdf, while the maximum value, as discussed
in Section 2.1.2, can be obtained with minimal
computational overhead.

Method Recall Rate Sparsity Rate
Block (Top-K=256) 88.5% 56.3%
Stripe (Top-K=16384) 91.2% 76.6%

Table 1: Comparison of block and stripe granularity
in sparsity strategies for LLaMA-3.1-8B on the 128k
ruler(Hsieh et al., 2024) dataset.

2.2.2 Performance of Different Identification
Granularities in Sparsity Strategies

In Section 2.2.1, we systematically analyzed the
impact of various strategies on the final recall rate.
However, identifying these positions requires com-
puting full attention scores, offering only limited

acceleration for attention computation. Many prior
methods rely on the underlying block-sparse at-
tention implementation, employing different block
identification approaches. Yet, as discussed in
Section 2.1.1, not all elements within a block are
equally significant; the heatmap often exhibits a
stripe sparse. To address the issue of overly coarse
block granularity, we simplify the block size to
retain only the column dimension and set the row
dimension to 1, which we term “stripe granularity.”

Through comparative experiments between
stripe-granularity strategies and traditional block-
sparse identification (block granularity (128,128)
vs. stripe granularity (128,1)), we evaluated achiev-
able sparsity rates while maintaining equivalent
recall rates. As shown in Table 1, the stripe-
granularity approach achieves higher sparsity rates
at comparable or higher recall thresholds. This
finding offers an innovative, implementation-level
alternative to traditional block-sparse solutions via
stripe-based sparsification.

3 Method

In this section, we present AnchorAttention, a
difference-aware and stripe sparse attention strat-
egy. AnchorAttention consists of three key com-
ponents: (1) Pattern-based Anchor Computation,
(2) Difference-aware Stripe Sparsity Identifica-
tion, and (3) Fine-Grained Sparse Computation.
We implement all three strategies as kernel oper-
ations, as described in (4) Kernel Optimization
and Algorithm.

3.1 Pattern-based Anchor Computation

As discussed in Section 2.1.2, attention scores con-
sistently exhibit prominent peaks in two specific

regions: the initial token positions and the local
window position. This structurally stable pattern
motivates us to explicitly compute the attention
scores at these positions and define the resulting
maximum value as the anchor.

The anchor computation is highly efficient, as
it requires only a small subset of the key. This
enables us to approximate the maximum attention
score at a very low computational cost, avoiding
the need to compute the full attention. The com-
puted anchor can then directly guide the selection
of sparse attention patterns.

Formally, the anchor is computed as follows:

L. T
T, = max (Cm\;’;{w],dim = —1) (1)

where () is the query matrix, [Kijpjt, K] is the con-
catenated key vectors, Kj,;; corresponds to the ini-
tial tokens, K, corresponds to the local window,
both selected as blocks for computation. The re-
sulting @, is the highest score observed within the
structurally important regions, which we define as
the anchor, as detailed in Algorithm 1.

3.2 Difference-aware Stripe Sparsity
Identification

Numerous prior studies have observed significant
column-wise correlation in attention score distribu-
tions—namely, a small subset of keys consistently
receives high attention across multiple consecutive
queries. However, as discussed in Section 2.1.1,
these column-wise correlations are not always sta-
ble or effective, often exhibiting vanishing and reap-
pearing behaviors. This observation motivates our
strategy to focus on global information by identi-
fying the corresponding keys and values for each
query segment individually, rather than determin-
ing a set of global key-value pairs based on a subset
of queries(Jiang et al., 2024; Lai et al., 2025).

As discussed in Section 2.2, to efficiently
identify these coordinates, we compress queries
through block-average compression and compute
their dot product with all keys. The result is directly
compared to the average anchor value avgpool(x,)
from Equation 1 through numerical difference. By
setting a hyperparameter 6, we compute only the
discrete keys and values whose difference is below
this threshold.This approach outperforms static top-
k strategies, achieving performance consistent with
dynamic top-cdf strategies while avoiding costly
sorting operations.

We define the sparsity mask as:

mask =1 <avgpool(a:a) - W < 9)
S ={(i,j) | mask(i, j) = 1})

where x, is the approximate highest attention score,
avgpool(x,) is its pooled average, avgpool(Q) is
the pooled queries, 6 is the comparison threshold,
mask € {0,1}™*" is the binary mask, S is the
set of coordinates to be activated, and I(-) is the
indicator function. The detailed implementation is
provided in Algorithm 2.

3.3 Fine-Grained Sparse Computation

In contrast to prior strategies that load contiguous
key-value blocks, our fine-grained sparse compu-
tation methodology selectively loads multiple dis-
crete key-value pairs based on discrete key-value
coordinates. Throughout the computational pro-
cess, we adhere to the sharding strategy of FlashAt-
tention, employing the same computation logic.
However, compared to block-sparse approaches,
our discrete key-value loading, as discussed in Sec-
tion 2.2.2, achieves a higher sparsity rate due to
lower granularity with negligible additional over-
head, thereby significantly enhancing the efficiency
of sparse computation.

To formalize the fine-grained sparse computa-
tion, we construct the reduced key and value sets
by discretely loading key-value pairs based on the
sparse coordinate set S from Equation 2. The index
set Z is defined as:

T={jl(j) €S} 3)

and the reduced key and value sets are constructed
as:
K’ = load_discrete(K, S)

V' = load_discrete(V, S) 4

where load_discrete(M,S) = {M[j,:] | j € Z}
denotes selecting the key or value rows from the
matrix M (e.g., K or V') corresponding to the in-
dices in Z.The sparse attention output is then com-
puted as:

Output = A(Q, K', V') 5)

where A(Q, K', V') denotes the attention compu-
tation, with the granularity of key-value loading
modified from contiguous blocks (as in FlashAt-
tention) to discrete key-value pairs based on the
coordinates in S. The detailed implementation is
provided in Algorithm 3.

Models Methods Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code ‘ Ave.
NarrQA Qasper MF-en | HotpotQA 2Wiki Musique | GovRep QMSum MNews | TREC Trivia SAMSum | PCount PR-en | Lcc RP-P
Full-attn 31.44 25.07 29.40 16.89 17.00 11.79 34.22 23.25 26.69 | 72.50 91.65 43.74 595 9820 | 54.04 51.49 | 39.58
StreamingLLM ~ 21.27 2348 24.05 14.26 13.43 8.46 33.47 2228 2676 | 66.50 90.32 44.46 726 38.24 | 5455 52.56 | 33.83
LLaMA Vertical_Slash 20.87 2454 26.19 17.12 14.37 8.38 32.84 2233 2685 | 63.50 9138 44.12 098 98.61 | 5422 36.41 | 36.48
FlexPrefill 28.31 2379 28.78 19.24 16.22 10.58 33.60 2295 27.06 | 70.50 90.74 43.81 137 7750 | 5423 54.09 | 36.66
Ours 21.79 2382 28.86 16.29 16.84 11.74 34.50 2294 27.01 | 72,50 90.67 43.82 353 9692 5472 49.65 | 38.23
Full-attn 11.53 13.99 31.83 10.88 10.02 7.12 3252 20.65 2258 | 71.50 89.47 46.68 392 9842 | 59.63 66.57 | 37.33
StreamingLLM ~ 11.70 13.68 31.39 11.34 9.77 5.94 32.63 19.85 22,52 | 72.00 89.02 45.76 418 73.83 | 59.22 65.28 | 35.51
Qwen Vertical_Slash 10.70 1340 31.59 11.30 9.87 8.06 32.70 20.65 2247 | 70.50 89.73 46.00 346 9425 | 60.21 66.36 | 36.51
FlexPrefill 8.73 1391 29.96 11.36 8.76 6.69 32.16 21.08 22.37 | 70.50 88.29 45.66 203 71.67 | 58.94 60.68 | 34.90
Ours 14.57 14.23 3218 10.73 9.93 7.24 32.21 20.76 2246 | 7250 89.05 45.69 399 9458 5928 6527 | 37.17

Table 2: Accuracy (%) of different attention mechanisms across models on LongBench.

Models Methods 4k 8k 16k 32k 64k 128k | Avg
Full-attn 95.67 93.75 93.03 87.26 84.37 78.13 | 88.70
LLaMA Streaming LLM 96.62 92.06 84.54 66.77 46.69 37.03 | 70.61
Vertical_Slash 95.81 92.82 9326 8896 85.09 58.18 | 85.69
FlexPrefill 9546 93.18 9353 90.02 84.73 75.03 | 88.66
Ours 9598 93.27 93.67 87.79 84.53 7491 | 88.36
Full-attn 9492 93.01 9231 86.54 66.76 2272 | 76.04
Streaming LLM 93.74 9091 7439 57.81 2548 15.88 | 59.70
Qwen Vertical_Slash 9491 9216 9217 8559 60.10 24.78 | 74.95
FlexPrefill 93.04 90.69 90.16 80.37 4042 2543 | 70.01
Ours 9498 92.80 89.74 84.68 66.79 25.71 | 75.79

Table 3: Accuracy (%) on RULER benchmark across models of different attention mechanisms.

3.4 Kernel Optimization and Algorithm

To further accelerate sparse attention computation,
we apply kernel-level optimizations to all algo-
rithms, with the goal of satisfying two objectives
simultaneously: (1) maximizing parallel compu-
tation capacity and (2) introducing no additional
memory overhead. To achieve this, we introduce
an additional hyperparameter, step, which enables
the simultaneous identification of coordinates cor-
responding to step query blocks. If any of these
blocks contain a key that satisfies the condition de-
fined in Equation 2, all step consecutive blocks are
marked as active for computation, allowing unified
processing and enhanced parallelism.Meanwhile,
to avoid redundant overhead, we temporarily cache
the intermediate results generated in Section 3.1,
and reuse them in Section 3.3. This design maxi-
mizes computational efficiency while introducing
only negligible memory overhead compared to the
original key-value cache. The complete implemen-
tation is detailed in Algorithms 1, 2, and 3.

4 Experiment

4.1 Setup

Models Our evaluation is conducted on two ad-
vanced large language models (LLMs) that natively
support up to 128K context length in their pre-
trained form: (i) LLaMA-3.1-8B (Touvron and
et al., 2023), (ii)) Qwen2.5-7B (Qwen et al., 2025).

Both models are evaluated in their pre-trained form
without instruction tuning or fine-tuning, ensuring
a fair and consistent comparison.

Benchmark We evaluate models on three repre-
sentative long-context benchmarks, each designed
to test different aspects of long-context under-
standing and retrieval: (i) LongBench (Bai et al.,
2024), a multilingual, multi-task benchmark cov-
ering question answering, summarization, classi-
fication, and retrieval, with diverse input formats;
(i) RULER (Hsieh et al., 2024), a synthetic bench-
mark that enables controlled variations in context
length and reasoning complexity, including tasks
such as multi-hop tracing and aggregation; (iii)
Needle-in-a-Haystack (Kamradt, 2023), a stress
test designed to evaluate accurate retrieval perfor-
mance in ultra-long contexts.

Baseline We evaluate four baselines for acceler-
ating prefill attention: (i) Full-attn, dense attention
implemented via FlashAttention (Dao et al., 2022);
(>i1) Vertical_Slash (Jiang et al., 2024), which se-
lects a fixed set of important vertical and slash
positions; (iii) StreamingLLLM (Xiao et al., 2024),
retaining only key tokens from initial and local win-
dow regions; (iv) FlexPrefill (Lai et al., 2025), a
dynamic method selecting attention blocks based
on top-cdf scoring, representing recent state-of-the-
art.

Implementation All experiments are conducted

Sparsity for Different Attention Mechanisms

vs. Recall for Different Attention Mechanisms

Latency Dec Across Sequence Lengths

i

Latency (ms)

0580 7
Sparsity

(a) Recall vs. Sparsity

)
Recall (%)

(b) Latency vs. Recall

8K 16K 32%
Sequence Length

(c) Latency vs. Length

Figure 6: Performance metrics for recall, sparsity, and efficiency across different methods.

on a single NVIDIA A100 GPU with 80GB mem-
ory, leveraging Triton (Tillet et al., 2019) for opti-
mized GPU computations. To ensure fair compari-
son, all methods adopt a uniform block size of 128.
Across all datasets, our method and FlexPrefill use
consistent hyperparameter settings: for ours, we
set § = 12 and step = 16; for FlexPrefill, we use
v = 0.95, 7 = 0.1, and min_budget = 1024. For
LongBench, which has relatively shorter average
sequence lengths, Streamingl.LM uses a global
window and a local window of 1024, and Verti-
cal_Slash sets both vertical and slash window sizes
to 1024. For other datasets, Streamingl.LLM adopts
a global window of 1024 and a local window of
8192, while Vertical_Slash uses a vertical window
of 1024 and a slash window of 8192.

4.2 Result

Longbench To demonstrate the applicability of our
method to nearly all input scenarios, we selected
the LongBench benchmark for accuracy evaluation.
LongBench encompasses a variety of tasks that ex-
hibit input diversity, testing whether our method
maintains high accuracy across different inputs.
The accuracy results are presented in Table 2.

Ruler To demonstrate the potential of our ap-
proach for large language models handling varying
context lengths, we conducted evaluations on mul-
tiple methods using the ruler benchmark. Table 3
shows that, as context length increases, our method
consistently maintains accuracy close to that of full
KV computations.

Needle-in-a-Haystack As shown in Figure 7,
we present the results of the Needle-in-a-Haystack
task across different context lengths and depth per-
centages. The results indicate that both our method
and flex_prefill can dynamically adapt the spar-
sity rate based on input variations, achieving per-
formance comparable to full attention. In contrast,

Figure 7: Comparison of attention patterns on Needle-
in-a-Haystack tasks (128K context).

the static strategy vertical_slash shows a notice-
able accuracy drop as the context length increases.

Recall vs. Sparsity We adjust the hyperparame-
ters of different methods to obtain varying sparsity
rates and compare the recall performance of differ-
ent strategies under each sparsity level. As shown
in Figure 6a, our method achieves the highest spar-
sity rate under the same recall level.

Latency vs. Recall Prior work primarily differs
in search strategies, with distinctions arising from
the blocks requiring computation. Our method
abandons block-level sparsity strategies, instead
adopting a finer-grained computation strategy that
loads multiple discrete keys and values at once. As
illustrated in Figure 6b, at the same recall level, our
strategy significantly outperforms other methods in
terms of time efficiency.

Latency vs. Length Compared to prior strate-
gies, our approach considers the entire region dur-
ing search.This higher search overhead also brings
us more accurate recognition, which is reflected in
the recall curves and the computation time sec-
tion. As shown in Figure 6c, our method in-
curs additional recognition time in most cases, but
it achieves a higher important recognition ratio,
thereby optimizing overall time efficiency and re-

call.

4.3 Ablation Study

Anchor Attention 6 Sparsity (%) Recall (%) Time (ms)

10.0 97% 70.9 57

11.0 93% 76.8 6.4

) 12.0 89% 82.8 8.2
With Anchor 13.0 81% 88.0 10.9
14.0 72% 91.4 13.8

15.0 61% 947 19.3

10.0 63% 69.5 9.3

11.0 69% 83.7 14.6

) 12.0 52% 90.2 29.5
‘Without Anchor 13.0 7% 05.8 413
14.0 18% 96.2 497

15.0 3% 98.5 572

Table 4: Ablation study of Anchor Attention.

Anchor Importance In this section, we assess
the impact of introducing anchors when search-
ing for important tokens by comparing sparsity,
recall, and computation time under different val-
ues of 6. As shown in Table 4. The original atten-
tion(With Anchor) consistently achieves high recall
rates while maintaining impressively low sparsity,
indicating effective attention guidance. In contrast,
the Without Anchor configuration,which set the an-
chor as a zero tensor in implementation, requires
significantly higher sparsity to reach comparable
recall levels. This suggests that fixed thresholding
alone, without anchor guidance, is less adept at cap-
turing the global attention distribution efficiently,
resulting in a less optimal sparsity-recall balance.

5 Related Work

LLM Inference Acceleration Inference accelera-
tion techniques aim to reduce the latency and mem-
ory overhead of large language models (LLMs) dur-
ing text generation. At the system level, FlashAt-
tention (Dao et al., 2022) significantly improves at-
tention computation efficiency by optimizing mem-
ory access patterns, while RingAttention (Liu et al.,
2023) distributes attention workloads across multi-
ple devices to achieve parallel acceleration. Page-
dAttention (Kwon et al., 2023) further enhances
overall inference performance through efficient
key-value (KV) cache management.

Sparse Attention The quadratic complexity of
attention has driven extensive research into sparse
attention strategies to improve the inference effi-
ciency of large language models (LLMs). Impor-
tantly, attention distributions in LLMs are inher-
ently sparse—many attention weights are close to
zero and can be safely pruned without significantly

affecting model performance (Child et al., 2019).
More recent methods such as H20 (Zhang et al.,
2023) and SnapKV (Li et al., 2024) prune unim-
portant tokens by comparing cumulative attention
scores. Although partially effective, these methods
offer limited acceleration benefits during the prefill
stage.Streamingl.ILM (Xiao et al., 2024) signifi-
cantly improves efficiency by retaining only initial
and recent tokens, but often misses critical informa-
tion from intermediate regions. MInference (Jiang
et al., 2024) accelerates the prefill stage by applying
statically determined attention patterns, but such
static designs are often suboptimal for diverse and
dynamic inputs. FlexPrefill (Lai et al., 2025) im-
proves adaptivity via runtime-driven dynamic pat-
tern selection, yet relies heavily on local informa-
tion, limiting its ability to capture globally impor-
tant positions.Recently, research has shifted toward
building general-purpose sparse attention frame-
works rather than designing architectures tailored
specifically to LLM characteristics. For exam-
ple, SpargeAttn leverages similarity-based filtering
and quantization to accelerate attention, while X-
Attention introduces an antidiagonal scoring mech-
anism to efficiently prune irrelevant blocks. Fur-
thermore, most existing methods rely on block-
level granularity, where block size fundamentally
constrains the achievable sparsity ceiling. There-
fore, there is an urgent need for a lower-granularity
sparse attention mechanism with a stronger em-
phasis on global context, in order to mitigate the
increasingly heavy computational burden during
the prefill stage as context lengths continue to grow.

6 Conclusion

In this work, we propose AnchorAttention, a
difference-aware, dynamic sparse attention mecha-
nism designed to address the computational chal-
lenges faced by Large Language Models (LLMs)
during the prefill phase under long-context settings.
The method efficiently identifies critical attention
regions at a finer stripe-level granularity.

To further improve speed, we implement all op-
erators at the kernel level. By combining pattern-
based anchor computation, difference-aware stripe
sparsity identification, and fine-grained sparse com-
putation, AnchorAttention achieves higher spar-
sity and superior computational efficiency com-
pared to existing methods. At a sequence length of
128k, it achieves a 1.44x speedup while maintain-
ing a higher recall rate.

Limitations

Our evaluation is limited to the LLaMA-3.1-8B
and Qwen2.5-7B models, and we have not yet val-
idated the generality of AnchorAttention across a
broader range of architectures and model scales; fu-
ture work will extend our analysis to additional
models. Furthermore, this work focuses exclu-
sively on the prefill phase of attention computation
and does not analyze the impact or adaptivity of
our method during the decode phase; subsequent
studies will investigate performance and sparsity
behavior during generation.

Ethics Statement

We believe this work raises no ethical concerns. At-
tention is a key component in Transformers, widely
used in Large Language Models (LLMs). There-
fore, accelerating the execution of attention is bene-
ficial for developing LLM applications that address
diverse societal challenges.

References

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. Longbench: A bilingual, multi-
task benchmark for long context understanding.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue
Dong, and Wen Xiao. 2024. Not all heads matter: A
head-level kv cache compression method with inte-
grated retrieval and reasoning.

Connor Holmes, Masahiro Tanaka, Michael Wyatt, Am-
mar Ahmad Awan, Jeff Rasley, Samyam Rajbhan-
dari, Reza Yazdani Aminabadi, Heyang Qin, Arash
Bakhtiari, Lev Kurilenko, and Yuxiong He. 2024.
Deepspeed-fastgen: High-throughput text generation
for llms via mii and deepspeed-inference.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,
and Boris Ginsburg. 2024. Ruler: What’s the real
context size of your long-context language models?

Huigiang Jiang, Yucheng Li, Chengruidong Zhang,
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,
Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing

Yang, and Lili Qiu. 2024. Minference 1.0: Acceler-
ating pre-filling for long-context llms via dynamic
sparse attention.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her-
bie Bradley, Roberta Raileanu, and Robert McHardy.
2023. Challenges and applications of large language
models.

Greg Kamradt. 2023. Llmtest needle in a haystack
- pressure testing llms. https://github.com/
gkamradt/LLMTest_NeedleInAHaystack. Ac-
cessed: [Insert Date].

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention.

Xunhao Lai, Jiangiao Lu, Yao Luo, Yiyuan Ma, and
Xun Zhou. 2025. Flexprefill: A context-aware sparse
attention mechanism for efficient long-sequence in-
ference.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. SnapKV:
LLM knows what you are looking for before gener-
ation. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhen-
hua Han, Qianxi Zhang, Qi Chen, Chengruidong
Zhang, Bailu Ding, Kai Zhang, Chen Chen, Fan Yang,
Yuqing Yang, and Lili Qiu. 2024. Retrievalattention:
Accelerating long-context llm inference via vector
retrieval.

Hao Liu, Matei Zaharia, and Pieter Abbeel. 2023.
Ring attention with blockwise transformers for near-
infinite context.

Maxim Milakov and Natalia Gimelshein. 2018. Online
normalizer calculation for softmax.

Libo Qin, Qiguang Chen, Xiachong Feng, Yang Wu,
Yongheng Zhang, Yinghui Li, Min Li, Wanxiang
Che, and Philip S. Yu. 2024. Large language models
meet nlp: A survey.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yugiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report.

http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2410.19258
http://arxiv.org/abs/2410.19258
http://arxiv.org/abs/2410.19258
http://arxiv.org/abs/2410.19258
http://arxiv.org/abs/2410.19258
http://arxiv.org/abs/2401.08671
http://arxiv.org/abs/2401.08671
http://arxiv.org/abs/2401.08671
http://arxiv.org/abs/2404.06654
http://arxiv.org/abs/2404.06654
http://arxiv.org/abs/2404.06654
http://arxiv.org/abs/2407.02490
http://arxiv.org/abs/2407.02490
http://arxiv.org/abs/2407.02490
http://arxiv.org/abs/2407.02490
http://arxiv.org/abs/2407.02490
http://arxiv.org/abs/2307.10169
http://arxiv.org/abs/2307.10169
http://arxiv.org/abs/2307.10169
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2502.20766
http://arxiv.org/abs/2502.20766
http://arxiv.org/abs/2502.20766
http://arxiv.org/abs/2502.20766
http://arxiv.org/abs/2502.20766
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
http://arxiv.org/abs/2409.10516
http://arxiv.org/abs/2409.10516
http://arxiv.org/abs/2409.10516
http://arxiv.org/abs/2409.10516
http://arxiv.org/abs/2409.10516
http://arxiv.org/abs/2310.01889
http://arxiv.org/abs/2310.01889
http://arxiv.org/abs/2310.01889
http://arxiv.org/abs/1805.02867
http://arxiv.org/abs/1805.02867
http://arxiv.org/abs/1805.02867
http://arxiv.org/abs/2405.12819
http://arxiv.org/abs/2405.12819
http://arxiv.org/abs/2405.12819
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2412.15115

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,
Baris Kasikei, and Song Han. 2024. Quest: Query-
aware sparsity for efficient long-context 1lm infer-
ence.

Philippe Tillet, H. T. Kung, and David Cox. 2019. Tri-
ton: an intermediate language and compiler for tiled
neural network computations. In Proceedings of the
3rd ACM SIGPLAN International Workshop on Ma-
chine Learning and Programming Languages, MAPL
2019, page 10-19, New York, NY, USA. Association
for Computing Machinery.

Hugo Touvron and et al. 2023. Llama: Open and effi-
cient foundation language models.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming
language models with attention sinks.

Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian
Guo, and Song Han. 2025. Xattention: Block sparse
attention with antidiagonal scoring.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin
Zhang, and Hai Zhao. 2024. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm
inference.

Shang Yang, Junxian Guo, Haotian Tang, Qinghao Hu,
Guangxuan Xiao, Jiaming Tang, Yujun Lin, Zhijian
Liu, Yao Lu, and Song Han. 2025. Lserve: Effi-
cient long-sequence llm serving with unified sparse
attention.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia
Wei, Haocheng Xi, Jun Zhu, and Jianfei Chen. 2025.
Spargeattn: Accurate sparse attention accelerating
any model inference.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Re, Clark Barrett, Zhangyang
Wang, and Beidi Chen. 2023. H20: Heavy-hitter ora-
cle for efficient generative inference of large language
models. In Thirty-seventh Conference on Neural In-
formation Processing Systems.

Shuang Zhou, Zidu Xu, Mian Zhang, Chunpu Xu,
Yawen Guo, Zaifu Zhan, Sirui Ding, Jiashuo Wang,
Kaishuai Xu, Yi Fang, Liqiao Xia, Jeremy Yeung,
Daochen Zha, Genevieve B. Melton, Mingquan Lin,
and Rui Zhang. 2024. Large language models for
disease diagnosis: A scoping review.

A Sparsity Heatmap Comparison

Figure 5 presents the per-layer, per-head recall dis-
tributions on the LLaMA-3.1-8B model using the
128k ruler datasets. In Figure 8, we further visu-
alize the sparsity levels achieved under this target
recall for different identification strategies. The re-
sults indicate that our proposed Difference-Aware
strategy achieves sparsity patterns comparable to

10

those of Top-CDF, while maintaining similar recall
performance.

B Dynamic Sparsity Heatmap

To demonstrate the dynamic nature of the heatmap,
we selected a distinct dataset with the same length
of 128k. The recall rates under different sparsity
strategies are shown in Figure 9, with the corre-
sponding sparsity rates depicted in Figure 10. It is
evident that, as the input changes, both the topCDF
and difference-aware methods can effectively cap-
ture variations in sparsity rates.

C Algorithm

We provide the complete pseudocode of our pro-
posed sparse attention inference pipeline, consist-
ing of three key stages:

Algorithm 1: Anchor Computation. This al-
gorithm performs efficient block-wise attention to
obtain an approximate estimation of the attention
result, which is used later for sparsity identification.
The query matrix @ is divided into blocks @); and
interacts only with a small number of key-value
blocks (e.g., the initial block and a local window).
The accumulated attention values Acc;, normaliza-
tion terms L;, and maximum logits M; are com-
puted and cached. These intermediate results are
reused in the final sparse attention step to avoid
redundant computation.

Algorithm 2: Stripe Sparsity Identification.
Based on the averaged queries and approximated
attention output from the previous step, this al-
gorithm identifies informative positions through a
lightweight thresholding mechanism. By compar-
ing the approximated anchor score x, with new
attention estimates, it selects positions with scores
close to the anchor. This enables the construc-
tion of stripe-wise sparse indices F_idx without
computing full attention maps, greatly improving
efficiency.

Algorithm 3: Sparse Attention Computation.
This stage computes the final attention output using
only the key/value blocks selected via sparse index-
ing. For each query block @), the algorithm loads
its corresponding anchor values (M;, L;, Acc;) and
incrementally accumulates the attention using the
sparse key-value entries. This computation avoids
redundant processing and yields high sparsity while
maintaining high recall and accuracy.

http://arxiv.org/abs/2406.10774
http://arxiv.org/abs/2406.10774
http://arxiv.org/abs/2406.10774
http://arxiv.org/abs/2406.10774
http://arxiv.org/abs/2406.10774
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2503.16428
http://arxiv.org/abs/2503.16428
http://arxiv.org/abs/2503.16428
http://arxiv.org/abs/2405.12532
http://arxiv.org/abs/2405.12532
http://arxiv.org/abs/2405.12532
http://arxiv.org/abs/2405.12532
http://arxiv.org/abs/2405.12532
http://arxiv.org/abs/2502.14866
http://arxiv.org/abs/2502.14866
http://arxiv.org/abs/2502.14866
http://arxiv.org/abs/2502.14866
http://arxiv.org/abs/2502.14866
http://arxiv.org/abs/2502.18137
http://arxiv.org/abs/2502.18137
http://arxiv.org/abs/2502.18137
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
http://arxiv.org/abs/2409.00097
http://arxiv.org/abs/2409.00097
http://arxiv.org/abs/2409.00097

Sparsity Rate(93.7%)

10

0

2

8 12 16 20 24 28
Head

(a) Top-K (4096)

0.0

Sparsity Rate(96.4%)
w

0

2

8 12 16 20 24 28
Head

(b) Top-CDF (0.95)

Figure 8: Sparsity heatmaps under different sparsity strategies. The

Recall Rate(78.4%)

10

(a) Top-K (4096)

0.0

Recall Rate(71.3%)

8 12 16 20 24 28
Head

(b) Top-CDF (0.95)

Sparsity Rate(94.1%) 10
L= L .

0 L]
4]
08
8]
12 0.6
&
16
04
20
24
02
28
0.0

0

4 8 12 16 20 24 28
Head

(c) Difference-Aware (11)

recall heatmap corresponds to Figure 5.

Recall Rate(82.8%)

: .ee
' -
EZD-JII -l-.-
24‘ R
P o ,,n.-F'F

4 8
Head

(c) Difference-Aware (11)

Figure 9: Recall heatmaps under different sparsity identification strategies.

Sparsity Rate(93.7%)

10

0

2

8 12 16 20 24 28
Head

(a) Top-K (4096)

0.0

Sparsity Rate(92.7%)
w

0

2

8 12 16 20 24 28
Head

(b) Top-CDF (0.95)

Sparsity Rate(91.4%)
E —n o T
. n
| L |
|
n

4 8 12 16 20 24 28
Head

(c) Difference-Aware (11)

Figure 10: Sparsity heatmaps for different sparsity strategies.

11

Algorithm 1 Anchor Computation

Require: Q, K,V € RV >4 (FP16), block sizes by, by, step size step
1: Divide Q into T}, = N/bg blocks {Q;}; K, V into T,, = N/by, blocks {K;},{V;}
2: for i =1to T, do
3: Load @i, K1, Vi into shared memory
4: Compute initial attention: gk < Q; - K1
5: m < max(gk,dim = —1)
6: p<«exp(gk —m),l + > (p,dim= —1),acc+ p- Vi
7 Determine local window range:
8: Jstart <— max(2, [(¢ — 1)/step] - step - (bg/bkv))
9: jend — - (bq/blm)

10: fOl’j = jstarl to jEnd do

11: Load K}, Vj into shared memory

12: Compute gk < Q; - Kj, m’ + max(m, max(gk))
13: p < exp(gk —m'), a + exp(m —m')

14: l1l-a+>(p),accacc-a+p-V;

15: Update m < m’

16: end for

17: Write M; < m, L; + 1, Acc; < acc

18: end for

19: return M, L, Acc

Algorithm 2 Stripe Sparsity Identification

Requlre Q, K € RNV*4 (FP16), anchor score Acc, block sizes by, by, threshold 0, step size step
: Compute averaged query Qmean <— avgpool(Q, by)
: Compute anchor average z, < avgpool(Acc, b)
Divide Qmean into T, = N/(bq - step) blocks {QZ"}
Divide K into T, = N/by, blocks { K}
for : = 1to T}, do

Initialize f. < 0, fiax < 0

Jena 4= (i — 1) - step - (bg/bkw)

for j = 2t0 jena do

Load K

10: Compute gk +— Q7" - K
11: maske(xaqu)<t9
12: Append matching indices to fiax, count to f
13: end for
14: Write F\Y « fux, F& < fe
15: end for
16: return Fig, Fe

ORI NHE R

Algorithm 3 Sparse Attention Computation (Reusing Anchor and Stripe Outputs)

Require: Query @, Key K, Value V' € R *¢ (FP16), precomputed M, L, Acc (from Alg. 1), and sparse indices Fl, F.
(from Alg. 2); block sizes by, by ; step size step

1: Divide @ into T3, = N/bg blocks {Q;}

2: Divide M, L, Accinto {M;}, {L;}, {Acc;}

3: Divide F., Fi4 into {Fék)}, {Flfif)} where k = | (i — 1)/step]
4: for i = 1to T}, do

5: Load Q;, and corresponding M;, L;, Acc;

6: Initialize m < M;,l < L;, acc <+ Acc;

7: Letk < [(¢—1)/step]

8: for each index chunk 7, in F*’ do

9: Load sparse key/value: K; = K[f}], V; = V[fi,]
10: Compute gk = Q; - K, m’ = max(m, max(qk))
11: p = exp(gk —m'), @ = exp(m — m/)
12: l=1l-a+> (p),acc=acc-a+p-V,
13: Update m = m’
14: end for
15: Write output O; = acc/!
16: end for

17: return Final attention output O

12

