
AnchorAttention: Difference-Aware Sparse Attention with Stripe
Granularity

Anonymous EMNLP submission

Abstract
Large Language Models (LLMs) with extended001
context lengths face significant computational002
challenges during the pre-filling phase, primar-003
ily due to the quadratic complexity of self-004
attention. Existing methods typically employ005
dynamic pattern matching and block-sparse006
low-level implementations. However, their re-007
liance on local information for pattern identi-008
fication fails to capture global contexts, and009
the coarse granularity of blocks leads to per-010
sistent internal sparsity, resulting in subop-011
timal accuracy and efficiency. To address012
these limitations, we propose AnchorAtten-013
tion, a difference-aware, dynamic sparse at-014
tention mechanism that efficiently identifies015
critical attention regions at a finer stripe gran-016
ularity while adapting to global contextual017
information, achieving superior speed and018
accuracy. AnchorAttention comprises three019
key components: (1) Pattern-based Anchor020
Computation, leveraging the commonalities021
present across all inputs to rapidly compute022
a set of near-maximum scores as anchor; (2)023
Difference-aware Stripe Sparsity Identifica-024
tion, performing difference-aware comparisons025
with anchor to quickly obtain discrete coordi-026
nates of significant regions in a stripe-like spar-027
sity pattern; (3) Fine-grained Sparse Com-028
putation, replacing the traditional contiguous029
loading strategy with a discrete key-value load-030
ing approach to maximize sparsity rates while031
preserving hardware computational potential.032
Additionally, we integrate the identification033
strategy into a single operator to maximize par-034
allelization potential. With its finer-grained035
sparsity strategy, AnchorAttention achieves036
higher sparsity rates at the same recall level,037
significantly reducing computation time. Com-038
pared to previous state-of-the-art methods, at039
a text length of 128k, it achieves a speedup of040
1.44× while maintaining higher recall rates.041

1 Introduction042

Large Language Models (LLMs) have brought043

transformative advancements to numerous domains044

(a) Block sparse (b) Stripe sparse

Figure 1: (a) Block-sparse pattern, with yellow regions
indicating computed blocks; (b) Stripe-sparse pattern,
with red regions showing computed areas, enabling
higher sparsity by loading non-contiguous positions
across multiple blocks.

by enabling sophisticated natural language under- 045

standing and generation(Zhou et al., 2024; Kaddour 046

et al., 2023; Qin et al., 2024). However, as the sup- 047

ported context lengths continue to increase, the 048

inference cost — particularly in the prefill phase — 049

has become a major bottleneck. This is primarily 050

due to the quadratic computational complexity of 051

full-attention mechanisms with respect to sequence 052

length, which leads to significant efficiency issues 053

in long-sequence inference tasks. 054

To mitigate the computational overhead during 055

the prefill phase, FlashAttention (Dao et al., 2022) 056

leverages memory transfer disparities across hard- 057

ware hierarchies and incorporates the online Soft- 058

max algorithm (Milakov and Gimelshein, 2018), 059

thereby significantly reducing transmission costs at 060

the hardware level.Meanwhile, several studies (Li 061

et al., 2024; Zhang et al., 2023; Fu et al., 2024; 062

Yang et al., 2024) have revealed the inherent spar- 063

sity in attention mechanisms, demonstrating that 064

retaining only a small subset of key-value (KV) 065

pairs is sufficient to preserve model accuracy. How- 066

ever, these methods still rely on computing full 067

attention scores to identify the retained KV subset, 068

and therefore do not reduce the runtime cost dur- 069

ing the prefill phase.Recent efforts have attempted 070

1



4k 8k 16k 32k 64k 128k
Context Length

0

1

2

3

4

5

6
Ac

ce
le

ra
tio

n 
Ra

tio

1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

0.2x 0.2x
0.5x

1.1x

1.7x

3.2x

0.6x 0.7x

1.1x
1.4x

2.0x

4.6x

1.44x

Flash Attention
Flex_Prefill
Ours

Figure 2: Acceleration of attention computation com-
pared to FlashAttention.

to exploit sparsity to optimize prefill computation.071

For example, StreamingLLM (Xiao et al., 2024)072

introduces a sparse pattern that retains only local073

and initial positions during computation, signif-074

icantly accelerating attention, but often missing075

essential information from intermediate content.076

Minference (Jiang et al., 2024) proposes that at-077

tention patterns follow multiple coefficient modes078

and accelerates computation by applying offline-079

searched sparse configurations. However, its static080

design is not adaptive to diverse input patterns and081

often fails to select optimal configurations. Flex-082

Prefill (Lai et al., 2025) improves upon this by083

dynamically selecting patterns online, yet its selec-084

tion heavily depends on local information, limiting085

its generality. SpargeAttn (Zhang et al., 2025) and086

X-Attention (Xu et al., 2025) attempt to identify087

informative blocks using similarity-based or diag-088

onal priors. However, their designs are primarily089

targeted at general-purpose models and lack mech-090

anisms tailored to the characteristics of language091

models.On the other hand, current methods gener-092

ally rely on coarse-grained block-level KV selec-093

tion in attention computation, which is misaligned094

with the naturally fine-grained sparsity observed095

in attention maps, inevitably leading to redundant096

attention computations.097

To address these challenges, we propose An-098

chorAttention, a difference-aware sparse attention099

strategy with stripe granularity.AnchorAttention100

introduces a sparsity mechanism centered around101

the concept of an anchor, inspired by the common102

structural patterns observed in attention distribu-103

tions across all inputs. We observe that the maxi-104

mum values after dot-product computations consis-105

tently emerge at initial or local window positions.106

We therefore extract the maximum score from these107

regions and designate it as the anchor. The impor-108

tance of other positions is then determined by di-109

rectly comparing their values against the anchor, ef- 110

fectively bypassing expensive sorting operations.In 111

contrast to traditional block-level sparsity meth- 112

ods (Zhang et al., 2025; Xu et al., 2025; Lai et al., 113

2025; Jiang et al., 2024; Yang et al., 2025), An- 114

chorAttention adopts a more flexible stripe spar- 115

sity strategy, reducing the identification granular- 116

ity from coarse blocks to finer-grained stripes and 117

enabling higher sparsity rates. During sparse com- 118

putation, we further replace the conventional con- 119

tiguous key-value (KV) loading scheme with a 120

discrete KV loading approach, which enhances 121

recognition precision over block-based strategies 122

while preserving parallel computation efficiency. 123

AnchorAttention comprises the following three 124

steps:Pattern-based Anchor Computation: We 125

observe that the distribution of the most significant 126

values remains fixed and stable across various in- 127

put transformations. We first compute these values 128

and designate the obtained approximate maximum 129

value as the anchor.Difference-aware Stripe Spar- 130

sity Identification: Compared to block sparsity, 131

we adopt a finer-grained stripe sparsity approach. 132

By performing dot-product computations between 133

the compressed query and the full set of keys, we 134

use direct comparisons with the anchor’s differ- 135

ence to rapidly identify which keys and values are 136

significant, avoiding costly sorting operations.Fine- 137

grained Sparse Computation: We transition from 138

block sparsity’s continuous key-value (KV) load- 139

ing to discrete KV loading. During computation, 140

we maintain block-based computations to maxi- 141

mize sparsity while preserving parallel computing 142

capabilities. 143

We evaluate AnchorAttention on Llama-3.1- 144

8B-Instruct (Touvron and et al., 2023) and 145

Qwen2.5-7B-Instruct(Qwen et al., 2025) across 146

various context lengths. The benchmarks used in- 147

clude RULER (Hsieh et al., 2024), Needle In A 148

Haystack (Kamradt, 2023), and Longbench (Bai 149

et al., 2024).All of our experiments are conducted 150

under context lengths up to 128k. Our goal is not 151

to endlessly extend the context length while rely- 152

ing on simple-task performance as the evaluation 153

metric, but rather to approximate full attention with 154

minimal computation. Therefore, we adopt recall 155

as the primary evaluation metric. Under this crite- 156

rion, our method surpasses the state-of-the-art Flex- 157

Prefill (Lai et al., 2025) in recall while achieving a 158

1.44× speedup. Compared to full KV FlashAtten- 159

tion (Dao et al., 2022), our method achieves a 4.6× 160

2



speedup, significantly reducing attention compu-161

tation time.The results demonstrate that Anchor-162

Attention delivers substantial acceleration while163

preserving model accuracy.

(a) Heatmaps of different in-
puts

(b) Stripe sparse and local in-
formation sparse

Figure 3: (a) Heatmaps vary significantly across differ-
ent inputs. (b) Stripe sparse appears in specific attention
maps, demonstrating that local information fails to cap-
ture the full attention distribution.

164

2 Observation and Analysis165

2.1 Observation166

2.1.1 Diversity of Sparse Attention Patterns167

Sparse attention patterns are prevalent in large lan-168

guage models, yet the sparsity distribution within a169

single attention head varies significantly due to in-170

put content(Lai et al., 2025). As shown in Figure 3a,171

different inputs yield distinct sparsity patterns, in-172

dicating that static pattern recognition cannot adapt173

to dynamic inputs, necessitating more flexible174

sparsity strategies. Additionally, Figure 3b shows175

that critical information often appears at a finer176

granularity, concentrating in only a few columns177

and forming a striped pattern in the heatmap. This178

phenomenon highlights that using block sparsity179

as the minimum granularity fails to fully leverage180

sparsity, underscoring the need for finer-grained181

selection strategies.182

Moreover, Figure 3b demonstrates that relying183

solely on the local information from the last query184

fails to reconstruct the full attention heatmap(Jiang185

et al., 2024; Lai et al., 2025), as these stripes may186

vanish at the end, highlighting that local informa-187

tion lacks generalizability and requiring broader188

positional data.189

2.1.2 Commonality of Sparse Attention190

Patterns191

Although sparsity patterns vary significantly across192

different models, certain consistent features remain193

Figure 4: The distribution of maximum attention scores
highlights the dominance of anchor positions.

prominent. As shown in Figures 3a and 3b, the at- 194

tention scores at the local window positions and the 195

initial token position are consistently critical. We 196

further analyze these positions in Figure 4, examin- 197

ing the first token and a local window of 128 tokens 198

under a 128k context length. The results show that 199

in the LLaMA (Touvron and et al., 2023) model, 200

approximately 99% of the highest attention scores 201

are concentrated in these regions, whereas in the 202

Qwen (Qwen et al., 2025) model, the proportion 203

is around 90%. Although prior works (Xiao et al., 204

2024; Jiang et al., 2024) have identified the impor- 205

tance of these positions and focused on preserving 206

them, their potential for guiding the construction of 207

broader sparsity structures remains underexplored. 208

In contrast, we propose to define these high-impact 209

positions as anchor, emphasizing their critical role 210

in attention computation and their utility in precom- 211

puting and approximating the sparsity distribution 212

of other positions. 213

2.2 Analysis 214

In this section, we primarily analyze the impact 215

of identification schemes and identification gran- 216

ularities on the final recall rate, elucidating how 217

different identification approaches and granulari- 218

ties affect the output. 219

2.2.1 Performance of Different Identification 220

Schemes in Sparsity Strategies 221

Previous work has widely adopted top-k(Xiao et al., 222

2024; Li et al., 2024; Holmes et al., 2024; Tang 223

et al., 2024; Liu et al., 2024) and top-cdf(Lai et al., 224

2025) strategies to identify important positions in 225

sparsity strategies. In the top-k strategy, the value 226

of k is fixed. As shown in Figure 5a, this static 227

selection of k can result in some heads having re- 228

3



(a) Top-K(4096) (b) Top-CDF(0.95) (c) Difference-Aware(11)

Figure 5: Recall heatmaps of Sparsity Strategies using LLaMA-3.1-8B on the 128k Ruler(Hsieh et al., 2024)
dataset, with average sparsity rates of 93.7% (a), 96.4% (b), and 94.1% (c).Per-head sparsity rates are detailed in
Appendix A.Recall is defined as the percentage of attention values that are numerically equal between the current
sparse attention and the full attention(Jiang et al., 2024).

call rates well below the target, prompting prior229

methods to assign different k values for different230

heads. However, such static k settings often per-231

form poorly with dynamic inputs, as further de-232

tailed in Appendix A. To address this limitation,233

some methods employ the top-cdf strategy (see234

Figure 5b), which ensures each head meets the de-235

sired recall rate by computing cumulative attention236

scores. However, both approaches rely on sort-237

ing, incurring significant computational overhead.238

In contrast, the difference-aware strategy (see Fig-239

ure 5c) begins with a known maximum value and240

directly subtracts other values to obtain the dif-241

ferences. If the difference exceeds a predefined242

threshold, subsequent computations are skipped.243

This method eliminates the need for sorting opera-244

tions and achieves performance comparable to that245

of top-cdf, while the maximum value, as discussed246

in Section 2.1.2, can be obtained with minimal247

computational overhead.248

Method Recall Rate Sparsity Rate

Block (Top-K=256) 88.5% 56.3%
Stripe (Top-K=16384) 91.2% 76.6%

Table 1: Comparison of block and stripe granularity
in sparsity strategies for LLaMA-3.1-8B on the 128k
ruler(Hsieh et al., 2024) dataset.

2.2.2 Performance of Different Identification249

Granularities in Sparsity Strategies250

In Section 2.2.1, we systematically analyzed the251

impact of various strategies on the final recall rate.252

However, identifying these positions requires com-253

puting full attention scores, offering only limited254

acceleration for attention computation. Many prior 255

methods rely on the underlying block-sparse at- 256

tention implementation, employing different block 257

identification approaches. Yet, as discussed in 258

Section 2.1.1, not all elements within a block are 259

equally significant; the heatmap often exhibits a 260

stripe sparse. To address the issue of overly coarse 261

block granularity, we simplify the block size to 262

retain only the column dimension and set the row 263

dimension to 1, which we term “stripe granularity.” 264

Through comparative experiments between 265

stripe-granularity strategies and traditional block- 266

sparse identification (block granularity (128,128) 267

vs. stripe granularity (128,1)), we evaluated achiev- 268

able sparsity rates while maintaining equivalent 269

recall rates. As shown in Table 1, the stripe- 270

granularity approach achieves higher sparsity rates 271

at comparable or higher recall thresholds. This 272

finding offers an innovative, implementation-level 273

alternative to traditional block-sparse solutions via 274

stripe-based sparsification. 275

3 Method 276

In this section, we present AnchorAttention, a 277

difference-aware and stripe sparse attention strat- 278

egy. AnchorAttention consists of three key com- 279

ponents: (1) Pattern-based Anchor Computation, 280

(2) Difference-aware Stripe Sparsity Identifica- 281

tion, and (3) Fine-Grained Sparse Computation. 282

We implement all three strategies as kernel oper- 283

ations, as described in (4) Kernel Optimization 284

and Algorithm. 285

3.1 Pattern-based Anchor Computation 286

As discussed in Section 2.1.2, attention scores con- 287

sistently exhibit prominent peaks in two specific 288

4



regions: the initial token positions and the local289

window position. This structurally stable pattern290

motivates us to explicitly compute the attention291

scores at these positions and define the resulting292

maximum value as the anchor.293

The anchor computation is highly efficient, as294

it requires only a small subset of the key. This295

enables us to approximate the maximum attention296

score at a very low computational cost, avoiding297

the need to compute the full attention. The com-298

puted anchor can then directly guide the selection299

of sparse attention patterns.300

Formally, the anchor is computed as follows:301

xa = max

(
Q[Kinit,Kw]

T

√
d

, dim = −1

)
(1)302

where Q is the query matrix, [Kinit,Kw] is the con-303

catenated key vectors, Kinit corresponds to the ini-304

tial tokens, Kw corresponds to the local window,305

both selected as blocks for computation. The re-306

sulting xa is the highest score observed within the307

structurally important regions, which we define as308

the anchor, as detailed in Algorithm 1.309

3.2 Difference-aware Stripe Sparsity310

Identification311

Numerous prior studies have observed significant312

column-wise correlation in attention score distribu-313

tions—namely, a small subset of keys consistently314

receives high attention across multiple consecutive315

queries. However, as discussed in Section 2.1.1,316

these column-wise correlations are not always sta-317

ble or effective, often exhibiting vanishing and reap-318

pearing behaviors. This observation motivates our319

strategy to focus on global information by identi-320

fying the corresponding keys and values for each321

query segment individually, rather than determin-322

ing a set of global key-value pairs based on a subset323

of queries(Jiang et al., 2024; Lai et al., 2025).324

As discussed in Section 2.2, to efficiently325

identify these coordinates, we compress queries326

through block-average compression and compute327

their dot product with all keys. The result is directly328

compared to the average anchor value avgpool(xa)329

from Equation 1 through numerical difference. By330

setting a hyperparameter θ, we compute only the331

discrete keys and values whose difference is below332

this threshold.This approach outperforms static top-333

k strategies, achieving performance consistent with334

dynamic top-cdf strategies while avoiding costly335

sorting operations.336

We define the sparsity mask as: 337

mask = I
(
avgpool(xa)−

avgpool(Q)K⊤
√
d

≤ θ

)
338

S = {(i, j) | mask(i, j) = 1} (2) 339

where xa is the approximate highest attention score, 340

avgpool(xa) is its pooled average, avgpool(Q) is 341

the pooled queries, θ is the comparison threshold, 342

mask ∈ {0, 1}n×m is the binary mask, S is the 343

set of coordinates to be activated, and I(·) is the 344

indicator function. The detailed implementation is 345

provided in Algorithm 2. 346

3.3 Fine-Grained Sparse Computation 347

In contrast to prior strategies that load contiguous 348

key-value blocks, our fine-grained sparse compu- 349

tation methodology selectively loads multiple dis- 350

crete key-value pairs based on discrete key-value 351

coordinates. Throughout the computational pro- 352

cess, we adhere to the sharding strategy of FlashAt- 353

tention, employing the same computation logic. 354

However, compared to block-sparse approaches, 355

our discrete key-value loading, as discussed in Sec- 356

tion 2.2.2, achieves a higher sparsity rate due to 357

lower granularity with negligible additional over- 358

head, thereby significantly enhancing the efficiency 359

of sparse computation. 360

To formalize the fine-grained sparse computa- 361

tion, we construct the reduced key and value sets 362

by discretely loading key-value pairs based on the 363

sparse coordinate set S from Equation 2. The index 364

set I is defined as: 365

I = {j | (i, j) ∈ S}, (3) 366

and the reduced key and value sets are constructed 367

as: 368

K ′ = load_discrete(K,S) 369
370

V ′ = load_discrete(V,S) (4) 371

where load_discrete(M,S) = {M [j, :] | j ∈ I} 372

denotes selecting the key or value rows from the 373

matrix M (e.g., K or V ) corresponding to the in- 374

dices in I.The sparse attention output is then com- 375

puted as: 376

Output = A(Q,K ′, V ′) (5) 377

where A(Q,K ′, V ′) denotes the attention compu- 378

tation, with the granularity of key-value loading 379

modified from contiguous blocks (as in FlashAt- 380

tention) to discrete key-value pairs based on the 381

coordinates in S. The detailed implementation is 382

provided in Algorithm 3. 383

5



Models Methods Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg.
NarrQA Qasper MF-en HotpotQA 2Wiki Musique GovRep QMSum MNews TREC Trivia SAMSum PCount PR-en Lcc RP-P

LLaMA

Full-attn 31.44 25.07 29.40 16.89 17.00 11.79 34.22 23.25 26.69 72.50 91.65 43.74 5.95 98.20 54.04 51.49 39.58
StreamingLLM 21.27 23.48 24.05 14.26 13.43 8.46 33.47 22.28 26.76 66.50 90.32 44.46 7.26 38.24 54.55 52.56 33.83
Vertical_Slash 20.87 24.54 26.19 17.12 14.37 8.38 32.84 22.33 26.85 63.50 91.38 44.12 0.98 98.61 54.22 36.41 36.48
FlexPrefill 28.31 23.79 28.78 19.24 16.22 10.58 33.60 22.95 27.06 70.50 90.74 43.81 1.37 77.50 54.23 54.09 36.66
Ours 27.79 23.82 28.86 16.29 16.84 11.74 34.50 22.94 27.01 72.50 90.67 43.82 3.53 96.92 54.72 49.65 38.23

Qwen

Full-attn 11.53 13.99 31.83 10.88 10.02 7.12 32.52 20.65 22.58 71.50 89.47 46.68 3.92 98.42 59.63 66.57 37.33
StreamingLLM 11.70 13.68 31.39 11.34 9.77 5.94 32.63 19.85 22.52 72.00 89.02 45.76 4.18 73.83 59.22 65.28 35.51
Vertical_Slash 10.70 13.40 31.59 11.30 9.87 8.06 32.70 20.65 22.47 70.50 89.73 46.00 3.46 94.25 60.21 66.36 36.51
FlexPrefill 8.73 13.91 29.96 11.36 8.76 6.69 32.16 21.08 22.37 70.50 88.29 45.66 2.03 71.67 58.94 60.68 34.90
Ours 14.57 14.23 32.18 10.73 9.93 7.24 32.21 20.76 22.46 72.50 89.05 45.69 3.99 94.58 59.28 65.27 37.17

Table 2: Accuracy (%) of different attention mechanisms across models on LongBench.

Models Methods 4k 8k 16k 32k 64k 128k Avg

LLaMA

Full-attn 95.67 93.75 93.03 87.26 84.37 78.13 88.70
Streaming LLM 96.62 92.06 84.54 66.77 46.69 37.03 70.61
Vertical_Slash 95.81 92.82 93.26 88.96 85.09 58.18 85.69
FlexPrefill 95.46 93.18 93.53 90.02 84.73 75.03 88.66
Ours 95.98 93.27 93.67 87.79 84.53 74.91 88.36

Qwen

Full-attn 94.92 93.01 92.31 86.54 66.76 22.72 76.04
Streaming LLM 93.74 90.91 74.39 57.81 25.48 15.88 59.70
Vertical_Slash 94.91 92.16 92.17 85.59 60.10 24.78 74.95
FlexPrefill 93.04 90.69 90.16 80.37 40.42 25.43 70.01
Ours 94.98 92.86 89.74 84.68 66.79 25.71 75.79

Table 3: Accuracy (%) on RULER benchmark across models of different attention mechanisms.

3.4 Kernel Optimization and Algorithm384

To further accelerate sparse attention computation,385

we apply kernel-level optimizations to all algo-386

rithms, with the goal of satisfying two objectives387

simultaneously: (1) maximizing parallel compu-388

tation capacity and (2) introducing no additional389

memory overhead. To achieve this, we introduce390

an additional hyperparameter, step, which enables391

the simultaneous identification of coordinates cor-392

responding to step query blocks. If any of these393

blocks contain a key that satisfies the condition de-394

fined in Equation 2, all step consecutive blocks are395

marked as active for computation, allowing unified396

processing and enhanced parallelism.Meanwhile,397

to avoid redundant overhead, we temporarily cache398

the intermediate results generated in Section 3.1,399

and reuse them in Section 3.3. This design maxi-400

mizes computational efficiency while introducing401

only negligible memory overhead compared to the402

original key-value cache. The complete implemen-403

tation is detailed in Algorithms 1, 2, and 3.404

4 Experiment405

4.1 Setup406

Models Our evaluation is conducted on two ad-407

vanced large language models (LLMs) that natively408

support up to 128K context length in their pre-409

trained form: (i) LLaMA-3.1-8B (Touvron and410

et al., 2023), (ii) Qwen2.5-7B (Qwen et al., 2025).411

Both models are evaluated in their pre-trained form 412

without instruction tuning or fine-tuning, ensuring 413

a fair and consistent comparison. 414

Benchmark We evaluate models on three repre- 415

sentative long-context benchmarks, each designed 416

to test different aspects of long-context under- 417

standing and retrieval: (i) LongBench (Bai et al., 418

2024), a multilingual, multi-task benchmark cov- 419

ering question answering, summarization, classi- 420

fication, and retrieval, with diverse input formats; 421

(ii) RULER (Hsieh et al., 2024), a synthetic bench- 422

mark that enables controlled variations in context 423

length and reasoning complexity, including tasks 424

such as multi-hop tracing and aggregation; (iii) 425

Needle-in-a-Haystack (Kamradt, 2023), a stress 426

test designed to evaluate accurate retrieval perfor- 427

mance in ultra-long contexts. 428

Baseline We evaluate four baselines for acceler- 429

ating prefill attention: (i) Full-attn, dense attention 430

implemented via FlashAttention (Dao et al., 2022); 431

(ii) Vertical_Slash (Jiang et al., 2024), which se- 432

lects a fixed set of important vertical and slash 433

positions; (iii) StreamingLLM (Xiao et al., 2024), 434

retaining only key tokens from initial and local win- 435

dow regions; (iv) FlexPrefill (Lai et al., 2025), a 436

dynamic method selecting attention blocks based 437

on top-cdf scoring, representing recent state-of-the- 438

art. 439

Implementation All experiments are conducted 440

6



(a) Recall vs. Sparsity (b) Latency vs. Recall (c) Latency vs. Length

Figure 6: Performance metrics for recall, sparsity, and efficiency across different methods.

on a single NVIDIA A100 GPU with 80GB mem-441

ory, leveraging Triton (Tillet et al., 2019) for opti-442

mized GPU computations. To ensure fair compari-443

son, all methods adopt a uniform block size of 128.444

Across all datasets, our method and FlexPrefill use445

consistent hyperparameter settings: for ours, we446

set θ = 12 and step = 16; for FlexPrefill, we use447

γ = 0.95, τ = 0.1, and min_budget = 1024. For448

LongBench, which has relatively shorter average449

sequence lengths, StreamingLLM uses a global450

window and a local window of 1024, and Verti-451

cal_Slash sets both vertical and slash window sizes452

to 1024. For other datasets, StreamingLLM adopts453

a global window of 1024 and a local window of454

8192, while Vertical_Slash uses a vertical window455

of 1024 and a slash window of 8192.456

4.2 Result457

Longbench To demonstrate the applicability of our458

method to nearly all input scenarios, we selected459

the LongBench benchmark for accuracy evaluation.460

LongBench encompasses a variety of tasks that ex-461

hibit input diversity, testing whether our method462

maintains high accuracy across different inputs.463

The accuracy results are presented in Table 2.464

Ruler To demonstrate the potential of our ap-465

proach for large language models handling varying466

context lengths, we conducted evaluations on mul-467

tiple methods using the ruler benchmark. Table 3468

shows that, as context length increases, our method469

consistently maintains accuracy close to that of full470

KV computations.471

Needle-in-a-Haystack As shown in Figure 7,472

we present the results of the Needle-in-a-Haystack473

task across different context lengths and depth per-474

centages. The results indicate that both our method475

and flex_prefill can dynamically adapt the spar-476

sity rate based on input variations, achieving per-477

formance comparable to full attention. In contrast,478

16
K

30
K

44
K

58
K

72
K

86
K

10
0K

11
4K

12
8K

Context Length

0
12
25
38
50
62
75
88

100

De
pt

h 
Pe

rc
en

t (
%

)

Llama-3.1-8B-Instruct w/ours 128K Context

0.0

0.2

0.4

0.6

0.8

1.0

16
K

30
K

44
K

58
K

72
K

86
K

10
0K

11
4K

12
8K

Context Length

0
12
25
38
50
62
75
88

100

De
pt

h 
Pe

rc
en

t (
%

)

 w/flex_prefill 128K Context

0.0

0.2

0.4

0.6

0.8

1.0

16
K

30
K

44
K

58
K

72
K

86
K

10
0K

11
4K

12
8K

Context Length

0
12
25
38
50
62
75
88

100

De
pt

h 
Pe

rc
en

t (
%

)

Llama-3.1-8B-Instruct w/full-attn 128K Context

0.0

0.2

0.4

0.6

0.8

1.0

16
K

30
K

44
K

58
K

72
K

86
K

10
0K

11
4K

12
8K

Context Length

0
12
25
38
50
62
75
88

100

De
pt

h 
Pe

rc
en

t (
%

)

 w/vertical_slash 128K Context

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Comparison of attention patterns on Needle-
in-a-Haystack tasks (128K context).

the static strategy vertical_slash shows a notice- 479

able accuracy drop as the context length increases. 480

Recall vs. Sparsity We adjust the hyperparame- 481

ters of different methods to obtain varying sparsity 482

rates and compare the recall performance of differ- 483

ent strategies under each sparsity level. As shown 484

in Figure 6a, our method achieves the highest spar- 485

sity rate under the same recall level. 486

Latency vs. Recall Prior work primarily differs 487

in search strategies, with distinctions arising from 488

the blocks requiring computation. Our method 489

abandons block-level sparsity strategies, instead 490

adopting a finer-grained computation strategy that 491

loads multiple discrete keys and values at once. As 492

illustrated in Figure 6b, at the same recall level, our 493

strategy significantly outperforms other methods in 494

terms of time efficiency. 495

Latency vs. Length Compared to prior strate- 496

gies, our approach considers the entire region dur- 497

ing search.This higher search overhead also brings 498

us more accurate recognition, which is reflected in 499

the recall curves and the computation time sec- 500

tion. As shown in Figure 6c, our method in- 501

curs additional recognition time in most cases, but 502

it achieves a higher important recognition ratio, 503

thereby optimizing overall time efficiency and re- 504

7



call.505

4.3 Ablation Study506

Anchor Attention θ Sparsity (%) Recall (%) Time (ms)

With Anchor

10.0 97% 70.9 5.7
11.0 93% 76.8 6.4
12.0 89% 82.8 8.2
13.0 81% 88.0 10.9
14.0 72% 91.4 13.8
15.0 61% 94.7 19.3

Without Anchor

10.0 63% 69.5 9.3
11.0 69% 83.7 14.6
12.0 52% 90.2 29.5
13.0 47% 95.8 41.3
14.0 18% 96.2 49.7
15.0 3% 98.5 57.2

Table 4: Ablation study of Anchor Attention.

Anchor Importance In this section, we assess507

the impact of introducing anchors when search-508

ing for important tokens by comparing sparsity,509

recall, and computation time under different val-510

ues of θ. As shown in Table 4. The original atten-511

tion(With Anchor) consistently achieves high recall512

rates while maintaining impressively low sparsity,513

indicating effective attention guidance. In contrast,514

the Without Anchor configuration,which set the an-515

chor as a zero tensor in implementation, requires516

significantly higher sparsity to reach comparable517

recall levels. This suggests that fixed thresholding518

alone, without anchor guidance, is less adept at cap-519

turing the global attention distribution efficiently,520

resulting in a less optimal sparsity-recall balance.521

5 Related Work522

LLM Inference Acceleration Inference accelera-523

tion techniques aim to reduce the latency and mem-524

ory overhead of large language models (LLMs) dur-525

ing text generation. At the system level, FlashAt-526

tention (Dao et al., 2022) significantly improves at-527

tention computation efficiency by optimizing mem-528

ory access patterns, while RingAttention (Liu et al.,529

2023) distributes attention workloads across multi-530

ple devices to achieve parallel acceleration. Page-531

dAttention (Kwon et al., 2023) further enhances532

overall inference performance through efficient533

key-value (KV) cache management.534

Sparse Attention The quadratic complexity of535

attention has driven extensive research into sparse536

attention strategies to improve the inference effi-537

ciency of large language models (LLMs). Impor-538

tantly, attention distributions in LLMs are inher-539

ently sparse—many attention weights are close to540

zero and can be safely pruned without significantly541

affecting model performance (Child et al., 2019). 542

More recent methods such as H2O (Zhang et al., 543

2023) and SnapKV (Li et al., 2024) prune unim- 544

portant tokens by comparing cumulative attention 545

scores. Although partially effective, these methods 546

offer limited acceleration benefits during the prefill 547

stage.StreamingLLM (Xiao et al., 2024) signifi- 548

cantly improves efficiency by retaining only initial 549

and recent tokens, but often misses critical informa- 550

tion from intermediate regions. MInference (Jiang 551

et al., 2024) accelerates the prefill stage by applying 552

statically determined attention patterns, but such 553

static designs are often suboptimal for diverse and 554

dynamic inputs. FlexPrefill (Lai et al., 2025) im- 555

proves adaptivity via runtime-driven dynamic pat- 556

tern selection, yet relies heavily on local informa- 557

tion, limiting its ability to capture globally impor- 558

tant positions.Recently, research has shifted toward 559

building general-purpose sparse attention frame- 560

works rather than designing architectures tailored 561

specifically to LLM characteristics. For exam- 562

ple, SpargeAttn leverages similarity-based filtering 563

and quantization to accelerate attention, while X- 564

Attention introduces an antidiagonal scoring mech- 565

anism to efficiently prune irrelevant blocks. Fur- 566

thermore, most existing methods rely on block- 567

level granularity, where block size fundamentally 568

constrains the achievable sparsity ceiling. There- 569

fore, there is an urgent need for a lower-granularity 570

sparse attention mechanism with a stronger em- 571

phasis on global context, in order to mitigate the 572

increasingly heavy computational burden during 573

the prefill stage as context lengths continue to grow. 574

6 Conclusion 575

In this work, we propose AnchorAttention, a 576

difference-aware, dynamic sparse attention mecha- 577

nism designed to address the computational chal- 578

lenges faced by Large Language Models (LLMs) 579

during the prefill phase under long-context settings. 580

The method efficiently identifies critical attention 581

regions at a finer stripe-level granularity. 582

To further improve speed, we implement all op- 583

erators at the kernel level. By combining pattern- 584

based anchor computation, difference-aware stripe 585

sparsity identification, and fine-grained sparse com- 586

putation, AnchorAttention achieves higher spar- 587

sity and superior computational efficiency com- 588

pared to existing methods. At a sequence length of 589

128k, it achieves a 1.44× speedup while maintain- 590

ing a higher recall rate. 591

8



Limitations592

Our evaluation is limited to the LLaMA-3.1-8B593

and Qwen2.5-7B models, and we have not yet val-594

idated the generality of AnchorAttention across a595

broader range of architectures and model scales; fu-596

ture work will extend our analysis to additional597

models. Furthermore, this work focuses exclu-598

sively on the prefill phase of attention computation599

and does not analyze the impact or adaptivity of600

our method during the decode phase; subsequent601

studies will investigate performance and sparsity602

behavior during generation.603

Ethics Statement604

We believe this work raises no ethical concerns. At-605

tention is a key component in Transformers, widely606

used in Large Language Models (LLMs). There-607

fore, accelerating the execution of attention is bene-608

ficial for developing LLM applications that address609

diverse societal challenges.610

References611

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,612
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao613
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,614
and Juanzi Li. 2024. Longbench: A bilingual, multi-615
task benchmark for long context understanding.616

Rewon Child, Scott Gray, Alec Radford, and Ilya617
Sutskever. 2019. Generating long sequences with618
sparse transformers.619

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,620
and Christopher Ré. 2022. Flashattention: Fast and621
memory-efficient exact attention with io-awareness.622

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue623
Dong, and Wen Xiao. 2024. Not all heads matter: A624
head-level kv cache compression method with inte-625
grated retrieval and reasoning.626

Connor Holmes, Masahiro Tanaka, Michael Wyatt, Am-627
mar Ahmad Awan, Jeff Rasley, Samyam Rajbhan-628
dari, Reza Yazdani Aminabadi, Heyang Qin, Arash629
Bakhtiari, Lev Kurilenko, and Yuxiong He. 2024.630
Deepspeed-fastgen: High-throughput text generation631
for llms via mii and deepspeed-inference.632

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-633
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,634
and Boris Ginsburg. 2024. Ruler: What’s the real635
context size of your long-context language models?636

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang,637
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,638
Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing639

Yang, and Lili Qiu. 2024. Minference 1.0: Acceler- 640
ating pre-filling for long-context llms via dynamic 641
sparse attention. 642

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her- 643
bie Bradley, Roberta Raileanu, and Robert McHardy. 644
2023. Challenges and applications of large language 645
models. 646

Greg Kamradt. 2023. Llmtest needle in a haystack 647
- pressure testing llms. https://github.com/ 648
gkamradt/LLMTest_NeedleInAHaystack. Ac- 649
cessed: [Insert Date]. 650

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 651
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. 652
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi- 653
cient memory management for large language model 654
serving with pagedattention. 655

Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and 656
Xun Zhou. 2025. Flexprefill: A context-aware sparse 657
attention mechanism for efficient long-sequence in- 658
ference. 659

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat 660
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai, 661
Patrick Lewis, and Deming Chen. 2024. SnapKV: 662
LLM knows what you are looking for before gener- 663
ation. In The Thirty-eighth Annual Conference on 664
Neural Information Processing Systems. 665

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhen- 666
hua Han, Qianxi Zhang, Qi Chen, Chengruidong 667
Zhang, Bailu Ding, Kai Zhang, Chen Chen, Fan Yang, 668
Yuqing Yang, and Lili Qiu. 2024. Retrievalattention: 669
Accelerating long-context llm inference via vector 670
retrieval. 671

Hao Liu, Matei Zaharia, and Pieter Abbeel. 2023. 672
Ring attention with blockwise transformers for near- 673
infinite context. 674

Maxim Milakov and Natalia Gimelshein. 2018. Online 675
normalizer calculation for softmax. 676

Libo Qin, Qiguang Chen, Xiachong Feng, Yang Wu, 677
Yongheng Zhang, Yinghui Li, Min Li, Wanxiang 678
Che, and Philip S. Yu. 2024. Large language models 679
meet nlp: A survey. 680

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, 681
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, 682
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, 683
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, 684
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, 685
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, 686
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji 687
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang 688
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang 689
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru 690
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical 691
report. 692

9

http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2410.19258
http://arxiv.org/abs/2410.19258
http://arxiv.org/abs/2410.19258
http://arxiv.org/abs/2410.19258
http://arxiv.org/abs/2410.19258
http://arxiv.org/abs/2401.08671
http://arxiv.org/abs/2401.08671
http://arxiv.org/abs/2401.08671
http://arxiv.org/abs/2404.06654
http://arxiv.org/abs/2404.06654
http://arxiv.org/abs/2404.06654
http://arxiv.org/abs/2407.02490
http://arxiv.org/abs/2407.02490
http://arxiv.org/abs/2407.02490
http://arxiv.org/abs/2407.02490
http://arxiv.org/abs/2407.02490
http://arxiv.org/abs/2307.10169
http://arxiv.org/abs/2307.10169
http://arxiv.org/abs/2307.10169
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2502.20766
http://arxiv.org/abs/2502.20766
http://arxiv.org/abs/2502.20766
http://arxiv.org/abs/2502.20766
http://arxiv.org/abs/2502.20766
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
http://arxiv.org/abs/2409.10516
http://arxiv.org/abs/2409.10516
http://arxiv.org/abs/2409.10516
http://arxiv.org/abs/2409.10516
http://arxiv.org/abs/2409.10516
http://arxiv.org/abs/2310.01889
http://arxiv.org/abs/2310.01889
http://arxiv.org/abs/2310.01889
http://arxiv.org/abs/1805.02867
http://arxiv.org/abs/1805.02867
http://arxiv.org/abs/1805.02867
http://arxiv.org/abs/2405.12819
http://arxiv.org/abs/2405.12819
http://arxiv.org/abs/2405.12819
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2412.15115


Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,693
Baris Kasikci, and Song Han. 2024. Quest: Query-694
aware sparsity for efficient long-context llm infer-695
ence.696

Philippe Tillet, H. T. Kung, and David Cox. 2019. Tri-697
ton: an intermediate language and compiler for tiled698
neural network computations. In Proceedings of the699
3rd ACM SIGPLAN International Workshop on Ma-700
chine Learning and Programming Languages, MAPL701
2019, page 10–19, New York, NY, USA. Association702
for Computing Machinery.703

Hugo Touvron and et al. 2023. Llama: Open and effi-704
cient foundation language models.705

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song706
Han, and Mike Lewis. 2024. Efficient streaming707
language models with attention sinks.708

Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian709
Guo, and Song Han. 2025. Xattention: Block sparse710
attention with antidiagonal scoring.711

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin712
Zhang, and Hai Zhao. 2024. Pyramidinfer: Pyra-713
mid kv cache compression for high-throughput llm714
inference.715

Shang Yang, Junxian Guo, Haotian Tang, Qinghao Hu,716
Guangxuan Xiao, Jiaming Tang, Yujun Lin, Zhijian717
Liu, Yao Lu, and Song Han. 2025. Lserve: Effi-718
cient long-sequence llm serving with unified sparse719
attention.720

Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia721
Wei, Haocheng Xi, Jun Zhu, and Jianfei Chen. 2025.722
Spargeattn: Accurate sparse attention accelerating723
any model inference.724

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong725
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-726
dong Tian, Christopher Re, Clark Barrett, Zhangyang727
Wang, and Beidi Chen. 2023. H2o: Heavy-hitter ora-728
cle for efficient generative inference of large language729
models. In Thirty-seventh Conference on Neural In-730
formation Processing Systems.731

Shuang Zhou, Zidu Xu, Mian Zhang, Chunpu Xu,732
Yawen Guo, Zaifu Zhan, Sirui Ding, Jiashuo Wang,733
Kaishuai Xu, Yi Fang, Liqiao Xia, Jeremy Yeung,734
Daochen Zha, Genevieve B. Melton, Mingquan Lin,735
and Rui Zhang. 2024. Large language models for736
disease diagnosis: A scoping review.737

A Sparsity Heatmap Comparison738

Figure 5 presents the per-layer, per-head recall dis-739

tributions on the LLaMA-3.1-8B model using the740

128k ruler datasets. In Figure 8, we further visu-741

alize the sparsity levels achieved under this target742

recall for different identification strategies. The re-743

sults indicate that our proposed Difference-Aware744

strategy achieves sparsity patterns comparable to745

those of Top-CDF, while maintaining similar recall 746

performance. 747

B Dynamic Sparsity Heatmap 748

To demonstrate the dynamic nature of the heatmap, 749

we selected a distinct dataset with the same length 750

of 128k. The recall rates under different sparsity 751

strategies are shown in Figure 9, with the corre- 752

sponding sparsity rates depicted in Figure 10. It is 753

evident that, as the input changes, both the topCDF 754

and difference-aware methods can effectively cap- 755

ture variations in sparsity rates. 756

C Algorithm 757

We provide the complete pseudocode of our pro- 758

posed sparse attention inference pipeline, consist- 759

ing of three key stages: 760

Algorithm 1: Anchor Computation. This al- 761

gorithm performs efficient block-wise attention to 762

obtain an approximate estimation of the attention 763

result, which is used later for sparsity identification. 764

The query matrix Q is divided into blocks Qi and 765

interacts only with a small number of key-value 766

blocks (e.g., the initial block and a local window). 767

The accumulated attention values Acci, normaliza- 768

tion terms Li, and maximum logits Mi are com- 769

puted and cached. These intermediate results are 770

reused in the final sparse attention step to avoid 771

redundant computation. 772

Algorithm 2: Stripe Sparsity Identification. 773

Based on the averaged queries and approximated 774

attention output from the previous step, this al- 775

gorithm identifies informative positions through a 776

lightweight thresholding mechanism. By compar- 777

ing the approximated anchor score xa with new 778

attention estimates, it selects positions with scores 779

close to the anchor. This enables the construc- 780

tion of stripe-wise sparse indices F_idx without 781

computing full attention maps, greatly improving 782

efficiency. 783

Algorithm 3: Sparse Attention Computation. 784

This stage computes the final attention output using 785

only the key/value blocks selected via sparse index- 786

ing. For each query block Qi, the algorithm loads 787

its corresponding anchor values (Mi, Li, Acci) and 788

incrementally accumulates the attention using the 789

sparse key-value entries. This computation avoids 790

redundant processing and yields high sparsity while 791

maintaining high recall and accuracy. 792

10

http://arxiv.org/abs/2406.10774
http://arxiv.org/abs/2406.10774
http://arxiv.org/abs/2406.10774
http://arxiv.org/abs/2406.10774
http://arxiv.org/abs/2406.10774
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2503.16428
http://arxiv.org/abs/2503.16428
http://arxiv.org/abs/2503.16428
http://arxiv.org/abs/2405.12532
http://arxiv.org/abs/2405.12532
http://arxiv.org/abs/2405.12532
http://arxiv.org/abs/2405.12532
http://arxiv.org/abs/2405.12532
http://arxiv.org/abs/2502.14866
http://arxiv.org/abs/2502.14866
http://arxiv.org/abs/2502.14866
http://arxiv.org/abs/2502.14866
http://arxiv.org/abs/2502.14866
http://arxiv.org/abs/2502.18137
http://arxiv.org/abs/2502.18137
http://arxiv.org/abs/2502.18137
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
http://arxiv.org/abs/2409.00097
http://arxiv.org/abs/2409.00097
http://arxiv.org/abs/2409.00097


(a) Top-K (4096) (b) Top-CDF (0.95) (c) Difference-Aware (11)

Figure 8: Sparsity heatmaps under different sparsity strategies. The recall heatmap corresponds to Figure 5.

(a) Top-K (4096) (b) Top-CDF (0.95) (c) Difference-Aware (11)

Figure 9: Recall heatmaps under different sparsity identification strategies.

(a) Top-K (4096) (b) Top-CDF (0.95) (c) Difference-Aware (11)

Figure 10: Sparsity heatmaps for different sparsity strategies.

11



Algorithm 1 Anchor Computation

Require: Q,K, V ∈ RN×d (FP16), block sizes bq , bkv , step size step
1: Divide Q into Tm = N/bq blocks {Qi}; K, V into Tn = N/bkv blocks {Kj}, {Vj}
2: for i = 1 to Tm do
3: Load Qi, K1, V1 into shared memory
4: Compute initial attention: qk ← Qi ·K1

5: m← max(qk, dim = −1)
6: p← exp(qk −m), l←

∑
(p, dim = −1), acc← p · V1

7: Determine local window range:
8: jstart ← max(2, ⌊(i− 1)/step⌋ · step · (bq/bkv))
9: jend ← i · (bq/bkv)

10: for j = jstart to jend do
11: Load Kj , Vj into shared memory
12: Compute qk ← Qi ·Kj , m′ ← max(m,max(qk))
13: p← exp(qk −m′), α← exp(m−m′)
14: l← l · α+

∑
(p), acc← acc · α+ p · Vj

15: Update m← m′

16: end for
17: Write Mi ← m, Li ← l, Acci ← acc
18: end for
19: return M , L, Acc

Algorithm 2 Stripe Sparsity Identification

Require: Q,K ∈ RN×d (FP16), anchor score Acc, block sizes bq , bkv , threshold θ, step size step
1: Compute averaged query Qmean ← avgpool(Q, bq)
2: Compute anchor average xa ← avgpool(Acc, bq)
3: Divide Qmean into Tm = N/(bq · step) blocks {Qm

i }
4: Divide K into Tn = N/bkv blocks {Kj}
5: for i = 1 to Tm do
6: Initialize fc ← 0, fidx ← ∅
7: jend ← (i− 1) · step · (bq/bkv)
8: for j = 2 to jend do
9: Load Kj

10: Compute qk ← Qm
i ·Kj

11: mask← (xa − qk) < θ
12: Append matching indices to fidx, count to fc
13: end for
14: Write F

(i)
idx ← fidx, F

(i)
c ← fc

15: end for
16: return Fidx, Fc

Algorithm 3 Sparse Attention Computation (Reusing Anchor and Stripe Outputs)

Require: Query Q, Key K, Value V ∈ RN×d (FP16), precomputed M , L, Acc (from Alg. 1), and sparse indices Fidx, Fc

(from Alg. 2); block sizes bq , bkv; step size step
1: Divide Q into Tm = N/bq blocks {Qi}
2: Divide M , L, Acc into {Mi}, {Li}, {Acci}
3: Divide Fc, Fidx into {F (k)

c }, {F (k)
idx } where k = ⌊(i− 1)/step⌋

4: for i = 1 to Tm do
5: Load Qi, and corresponding Mi, Li, Acci
6: Initialize m←Mi, l← Li, acc← Acci
7: Let k ← ⌊(i− 1)/step⌋
8: for each index chunk f j

idx in F
(k)
idx do

9: Load sparse key/value: Kj = K[f j
idx], Vj = V [f j

idx]
10: Compute qk = Qi ·Kj , m′ = max(m,max(qk))
11: p = exp(qk −m′), α = exp(m−m′)
12: l = l · α+

∑
(p), acc = acc · α+ p · Vj

13: Update m = m′

14: end for
15: Write output Oi = acc/l
16: end for
17: return Final attention output O

12


