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Abstract
We perform an extensive empirical investigation
of three recent membership inference (MI) attacks
on vision and language models. Our investigation
includes the newly proposed Gradient Likelihood
Ratio (GLiR) attack, a white-box attack with the-
oretical optimality guarantees. Prior research has
suggested that white-box attacks cannot outper-
form black-box MI attacks. In this work, we chal-
lenge this hypothesis by running and evaluating
this attack on real-world models with up to 53M
parameters for the first time. We find that this
white-box attack does indeed have the potential to
outperform other attacks. We subsequently focus
on the problem of MI susceptibility prediction,
which is concerned with efficiently identifying in-
dividuals who are most susceptible to attack risk à
priori. By doing so, we uncover which characteris-
tics make instances susceptible to MI and whether
the targeted instances are the same across attacks
with different access (e.g., white-box or black-
box) to the target model. We implement and study
over 20 predictors of attack success. We find that
GLiR mostly targets the same points as loss-based
attacks and that the vulnerable instances can be
efficiently predicted.

1. Introduction
With the adaptation of Machine learning (ML) in domains
such as personalized AI assistance (Pataranutaporn et al.,
2021), we often face sensitive data that cannot be publicly
shared due to ethical or regulatory concerns. As machine
learning penetrates these domains, preserving data privacy
becomes essential. In particular, the trained model itself
or its predictions may leak information about the training
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data (Shokri et al., 2017; Carlini et al., 2022a; Haim et al.,
2022). For example, this is a critical problem for recent
Large Language models (LLMs), where larger models
have been observed to be even more prone to data leakage
(Carlini et al., 2021). This work focuses on a privacy threat
known as membership inference attacks (MIA), where
attackers attempt to identify instances in the training data.
Protecting against MIAs is crucial for enabling the secure
and trustworthy deployment of machine learning, especially
in domains dealing with sensitive personal data.

Prior work (Sablayrolles et al., 2019) has compared
white-box (where an attacker has full access to the training
pipeline and the model parameters) and black-box MIAs (al-
lowing the attacker only to query the model) and produced
evidence that nothing is to be gained through the white-box
access in terms of attack success. However, a recent work
(Leemann et al., 2023) proposed the Gradient-Likelihood
Ratio attack (GLiR), which is theoretically optimal for
single SGD-steps and showed that it outperforms loss-based
attacks (Carlini et al., 2022a) drastically for small models.
In this work, we are the first to put this attack to the test on
real-world models and show that the attack can keep some
of its advantages against the black-box attack in practice. As
there is a need to guarantee individual privacy (Aerni et al.,
2024) for every instance, we subsequently take an instance-
level perspective. We contribute to better understanding
individual attack susceptibility by studying the novel
problem of MI susceptibility prediction, where the goal is
to predict the success of MI attacks for identifying member-
ship of individual data points based on their characteristics.
By considering this task, we hope to reveal (1) what charac-
teristics make points susceptible to attacks and (2) whether
the diverse attacks considered exploit the same vulnerability
patterns. Specifically, we make the following contributions:

• We consider three recent membership inference attacks
with different access to the model: Counterfactual Dis-
tance (Pawelczyk et al., 2023), the Likelihood Ratio At-
tack on the loss (Carlini et al., 2022a), and the Gradient-
Likelihood Ratio attack (Leemann et al., 2023), which
the most powerful attack possible on single SGD steps
from a theoretical standpoint.

• We are the first to apply the recent Gradient Likelihood

1



Ratio (GLiR) attack machine learning models of sizes
up to 53M parameters, requiring practical solutions to
numerical problems. We find that the white-box attack
outperforms the black-box attacks in some cases.

• To determine which user’s data faces the highest mem-
bership inference risk, we compute individual attack
success rates for 10,000 instances across 3 datasets and
implement 20 attack risk predictors. We find that the
loss of models trained without the data point is most
predictive, even for the non-loss-based attacks, high-
lighting that success for even the most complex attacks
can be efficiently predicted.

In light of the above contributions, this work represents a
major step forward in terms of better identifying points at
risk and towards practical implementation of such checks
suitable for industrial use.

2. Related Work
2.1. Membership Inference Attacks

MI attacks attempt to determine whether a given instance
was part of the training dataset of a machine learning model.
In the recent literature, many of these attacks have been
proposed (Yeom et al., 2018; Shokri et al., 2017; Long et al.,
2018; Sablayrolles et al., 2019; Haim et al., 2022; Carlini
et al., 2023; Pawelczyk et al., 2023; Tan et al., 2022; 2023;
Choquette-Choo et al., 2020; Leemann et al., 2023). Shokri
et al. (2017) proposed a loss-based membership inference
attack that determines if an instance is in the training set
by testing if the loss of the model for that instance is be-
low a specific threshold. Many recent membership inference
attacks are also predominantly loss-based, where the calibra-
tion of the threshold varies from one proposed attack to the
other and may be different for each instance (Carlini et al.,
2022a; Ye et al., 2022; Watson et al., 2022). While there are
theoretical claims that no information can be gained from
white-box access over loss access (Sablayrolles et al., 2019),
recent work has shown promising results with a training-
gradient-based attack (Leemann et al., 2023). We investigate
this claim further in this work.

2.2. Risks Quantification for Individual Instances

Theoretical Results. Azize and Basu (2024) consider
the problem of private mean estimation on an instance-level
perspective and find that attack susceptibility is mainly deter-
mined by the Mahalanobis distance. Considering averaged
gradients in stochastic gradient descent (SGD), Leemann
et al. (2023) discover a gradient susceptibility term to ap-
pear in their privacy bound that also depends on the sample
gradient’s Mahalanobis distance.

Empirical Observations. The overlap between points with

Attack Query
Access

Label
Access

Minibatch
Gradients

CFD (Pawelczyk et al., 2023) ✓ ✗ ✗

LiRA (Carlini et al., 2021) ✓ ✓ ✗

GLiR (Leemann et al., 2023) ✓ ✓ ✓

Table 1: MI attacks studied in this work and background
knowledge required to run them (✓denotes required knowl-
edge by the attacker, ✗ is not required)

associated privacy risks has been previously studied by Ye
et al. (2022), who find that the strongest loss-based attack
“R” used in their work can identify points with a high test
loss. Other works have observed that outliers are most prone
to attacks (Carlini et al., 2022a; Feldman and Zhang, 2020).
Murakonda and Shokri (2020) present ML Privacy Meter, a
tool that quantifies MI risk by running multiple MI attacks.
In this work, we (i) investigate at instance level and are (ii)
interested in finding good predictors for strong attacks that
are more efficient than running the full attacks.

3. Attacks and Risk Predictors
3.1. Attacks Considered

As the main goal of privacy is to protect personal data, the
MI attack is a frequently employed method to evaluate the
privacy of real-world models (Murakonda and Shokri, 2020).
This attack aims to infer whether a specific instance was part
of the model’s training dataset and is defined as follows:

Definition 3.1 (Membership Inference Experiment (Yeom
et al., 2018)). Let A be an attacker, A be a learning algo-
rithm, N be a positive integer, and D be a distribution over
data points x ∈ D, where the vector x may also be a tuple
of data and labels. The MI experiment proceeds as follows:
The model and data owner O samples S ∼ Dn (i.e., sample
n points i.i.d. from D) and trains AS = A(S). They choose
b ∈ {0, 1} uniformly at random and draw x′ ∼ D if b = 0,
or x′ ∼ S if b = 1. Finally, the attacker is successful if
A(x′, AS , n,D) = b. A must output either 0 or 1.

In this work, we consider three fundamentally different
membership inference attacks requiring varying data and
model access. We provide a summary in Table 1.

Counterfactual Distance Attack (CFD). This attack
(Pawelczyk et al., 2023) is based on the distance to the
decision boundary. No labels are needed to run this attack.

Loss Likelihood-Ratio Attack (LiRA). LiRA by Carlini
et al. (2022a) is a common baseline MI attack that relies on
the prediction loss and uses many shadow models that either
include or exclude a point in the training set. These models
are required to estimate an instance-specific loss threshold.
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Gradient Likelihood Ratio Attack (GLiR). Leemann et al.
(2023) study MI risk for SGD-trained models from a fun-
damental perspective. They inspect the information flow
in SGD and devise an optimal Likelihood Ratio test for
membership inference of a single SGD step. This, however,
requires access to training gradients and stepwise model pa-
rameters, which can occur, for instance, in federated learn-
ing scenarios (Kairouz et al., 2021). While theoretically
optimal – at least for single steps – their attack is only imple-
mented and tested for models of up to around 2500 trainable
parameters. One of our contributions is to adapt this attack
to apply to large-scale models with up to 53M parameters.

3.2. Implementing GLiR for Practical Models

The original GLiR attack, as proposed in Leemann et al.
(2023), requires some modifications to be applied in prac-
tice. The main bottleneck of this attack is the estimation of
the inverse covariance matrix Σ−1 ∈ Rd×d of the parameter
gradients at each step. Even storing the matrix is intractable
for models with parameter counts d in the millions. Further-
more, using the common covariance estimator for gradients
θ ∈ Rd, Σ̂ = 1

n−1

∑n
i=1(θi − θ̄)(θi − θ̄)⊤, where θ̄ is

the empirical mean, we require at least n = d estimation
samples even to have non-singular estimated covariance that
can be inverted (and many more samples are required for
this inversion to be numerically stable). An initial approach
that we followed would be to assume independence between
dimensions and only estimate a diagonal matrix. However,
we observed that the independence assumption was
harshly violated for the parameter gradients and obtained
no promising results. As some information loss seems
inevitable in the first place, we finally chose to consider only
a limited number of parameter dimensions. In this work, we
only use the parameters in the last layers of the models, e.g.,
the classification head of a language model (LM). We only
estimate the covariance matrix for the gradients of these
parameters. However, we still observed some dimensions
that exhibited an extremely small variance, again making
the numerical inversion of Σ̂ unstable. We excluded these
dimensions with a variance below a certain threshold τ . In
summary, we only chose a subset of the model parameters
for the attack à priori and dynamically excluded dimensions
with insufficient variance. This allowed us to run the GLiR
attack on real-world models with promising results. We
provide additional details in Appendix A.

3.3. Instance-Wise Attack Risk Predictors

Ye et al. (2022) defined the per-sample MI attack which
adapts Definition 3.1 such that the sample x′ that the MI
attack is run on is fixed, i.e., if b = 1 we insert x′ in the
training dataset. By carefully considering the related liter-
ature, we identify the following variables to be potentially
indicative of MI risk:

Loss. We compute the loss of the ground truth label and the
model output as the first predictor variable. Many popular
MI attacks are based on the prediction loss (Shokri et al.,
2017; Ye et al., 2022; Watson et al., 2022).

Confidence. We define confidence as the difference (in
log-odds) between the most confident class and the second
most confident class. In contrast to the loss, this estimator
does not require a label. Exploiting extreme confidence has
been previously used as a MIA itself (Salem et al., 2018).

Input-Grad. Following Shokri et al. (2021) who use model
explanations for launching membership inference attacks,
we investigate input gradients of the loss that can be inter-
preted as a simple type of feature attribution (Simonyan
et al., 2013). Shokri et al. (2021) suggest that points with a
high variance in feature importance may be members of the
dataset, whereas points with rather uniform (low variance)
feature importances can be interpreted as non-members. We,
therefore, use the variance of input gradients as a predictor.

Parameter Gradients. We perform the same computation
as above on the gradients w.r.t. the parameters. As the
GLiR attack (Leemann et al., 2023) uses the parameter
gradients, we are interested in determining whether their
variance predicts attack risk.

SHAP values. A particular form of explanations that are
considered by (Shokri et al., 2021) and is recurring in the
literature on privacy risks of model explanations (Liu et al.,
2024) are Shapley value explanations, in particular, the
SHAP framework (Lundberg and Lee, 2017). We also com-
pute the SHAP values’ variance across features to predict
attack risk.

Loss Curvature. Following the intuition by Li et al.
(2023b), points in the training set should result in dents in
the loss landscape. Due to this effect, the model’s curvature
at this point should be high. The curvature is defined as the
trace of the Hessian of the loss w.r.t. to the inputs. We use
the stochastic Hutchinson Trace Estimator as described in
Peebles et al. (2020) to estimate the curvature efficiently.

Mahalanobis Distance. We compute the Mahalanobis
distance of the inputs w.r.t. the data distribution. Several the-
oretical works have identified this quantity (cf. Sec. 2.2), so
we consider it a good candidate for risk prediction. As this
distance is not defined for discrete inputs, we use the Ma-
halanobis distance of the latent representations on IMDB.

Outlier Detection (VAE). We use a Variational Autoen-
coder’s (VAE) reconstruction loss as an outlier detector (Ed-
uardo et al., 2020; Lai et al., 2023). Prior work has identified
outliers to be most prone to MI attacks (Section 2.2).
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Figure 1: Success-rates for non-instance-calibrated attacks. We show
the success rates of the three attacks studied in this paper, when the scores
are not recalibrated instance-wise using shadow models. Loss performs
best on Cancer but on a similar level as GLiR on the other two datasets.
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Figure 2: Relating instance-wise success for
different attacks. We observe that the loss-
based LiRA and GLiR attack similar points,
with GLiR usually being more powerful.
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Figure 3: Success-rates for instance-calibrated attacks. We recalibrate the attack scores per instance to make the scores
comparable over instances, using the same 200 shadow models for each attack. This results in the LiRA attack for the loss.
We subsequently compute the trade-off curves. GLiR outperforms LiRA on CIFAR and IMDB.

4. Experiments
Setup and Datasets. We use the CIFAR-10 (Krizhevsky
et al., 2009), which has been used in previous privacy stud-
ies (Carlini et al., 2022a). However, we are interested in
evaluating the attacks on a real-world dataset of sensitive
nature, which is why we also select a dataset of Skin Cancer
images (Tschandl et al., 2018). Finally, to connect to recent
language model applications, we use the IMDB dataset of
movie reviews (Maas et al., 2011). We use ResNet-18 (He
et al., 2016) models with 11M parameters for images and a
DistillBERT model with four layers (Sanh et al., 2019) and
a total of around 53M parameters for the IMDB dataset. We
provide source code for our experiments online.1

Prediction Dataset. We split each dataset into an attack
assessment dataset and a background dataset, which will
be used by the attacker as an estimate of the background
distribution D. We train N=200 models for each task using
the same training routine on randomly sampled 50%-splits
of the attack assessment dataset. This results in around 100
models where each instance is a member and the same num-
ber of models are trained without each instance. We can
compute the attack scores for each model and instance. Hav-
ing access to a large number of models with or without each
instance and the corresponding attack scores, we can com-

1https://github.com/tleemann/gaussian_mip

pute the empirical trade-off curve between False Positives
and True Positives on an instance level. We aggregate this
curve to a single score. In this work, we use the maximum
attack accuracy that is possible for a particular instance.
Note that while accuracy should not be used for evaluating
MI success on a dataset level (Carlini et al., 2022a), the
accuracy is meaningful on an instance level. An overview of
the individual score distribution is given in Figure 4 (Appx.).
The goal will be to predict this individual accuracy score
(dependent variable) from a data point’s own characteristics
or the model behavior at the point (independent variable).

Independent Models. Some predictors, e.g., loss, require
additional models to be trained. To this end, we further train
50 more models not used in the attacks, where each instance
from the assessment dataset has a 50% of being included.
We average the model characteristics either for all models
(“all”), the models with an instance (“in”), or the models
trained without the instance (“out”) as predictors, e.g., loss
(“out”) denotes the average loss of the independent models
trained without a certain instance.

4.1. Attack Efficacy

We plot trade-off curves obtained for the standard attack
scores in Figure 1 where the same threshold is used across all
instances. We observe that the loss-based attack is the most
powerful on CIFAR and Skin Cancer without recalibration.
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(a) CIFAR-10

Predictor CFD LiRA GLiR

loss (in) 0.12 0.29 0.28
loss (out) 0.48 0.91 0.89
loss (all) 0.47 0.89 0.89

confidence (in) 0.43 0.41 0.36
confidence (out) 0.36 0.52 0.60
confidence (all) 0.23 0.61 0.64

param-grad (in) 0.08 0.23 0.22
param-grad (out) 0.38 0.71 0.79
param-grad (all) 0.37 0.70 0.77

input-grad (in) 0.04 0.15 0.14
input-grad (out) 0.37 0.52 0.61
input-grad (all) 0.36 0.52 0.60

curvature (in) 0.18 0.21 0.21
curvature (out) 0.28 0.53 0.60
curvature (all) 0.22 0.52 0.60

shap (in) 0.04 0.07 0.07
shap (out) 0.21 0.17 0.20
shap (all) 0.14 0.14 0.15

mahalanobis 0.06 0.04 0.05
vae-loss 0.06 0.04 0.05

(b) IMDB

Predictor CFD LiRA GLiR

loss (in) 0.03 0.55 0.56
loss (out) 0.04 0.90 0.89
loss (all) 0.03 0.90 0.89

confidence (in) 0.03 0.67 0.66
confidence (out) 0.03 0.73 0.79
confidence (all) 0.04 0.78 0.82

param-grad (in) 0.03 0.36 0.34
param-grad (out) 0.03 0.65 0.66
param-grad (all) 0.03 0.64 0.64

input-grad (in) 0.01 0.14 0.13
input-grad (out) 0.02 0.89 0.89
input-grad (all) 0.03 0.88 0.88

curvature (in) 0.02 0.40 0.39
curvature (out) 0.03 0.88 0.87
curvature (all) 0.03 0.87 0.87

shap (in) 0.04 0.57 0.56
shap (out) 0.04 0.74 0.80
shap (all) 0.04 0.92 0.92

mahalanobis-latent (in) 0.03 0.55 0.54
mahalanobis-latent (out) 0.03 0.59 0.64
mahalanobis-latent (all) 0.04 0.63 0.65

(c) Skin Cancer

Predictor CFD LiRA GLiR

loss (in) 0.06 0.72 0.42
loss (out) 0.07 0.82 0.45
loss (all) 0.06 0.79 0.44

confidence (in) 0.06 0.60 0.39
confidence (out) 0.07 0.52 0.37
confidence (all) 0.05 0.57 0.39

param-grad (in) 0.06 0.69 0.41
param-grad (out) 0.05 0.78 0.48
param-grad (all) 0.05 0.76 0.46

input-grad (in) 0.00 0.04 0.01
input-grad (out) 0.01 0.11 0.06
input-grad (all) 0.00 0.07 0.03

curvature (in) 0.06 0.63 0.40
curvature (out) 0.05 0.69 0.46
curvature (all) 0.06 0.68 0.45

shap (in) 0.06 0.18 0.20
shap (out) 0.07 0.18 0.21
shap (all) 0.06 0.19 0.21

mahalanobis 0.05 0.19 0.14

Table 2: Evaluation of the attack predictors to predict MI success (R2-Score of RF-Regressor).

On IMDB, GLiR performs on par. The CFD attack only
performs substantially better than random on the CIFAR-10
dataset. We then recalibrate the attacks per instance. To this
end, we use the 200 models trained and computing quantiles
for the attack scores per instance. We then run the attack
using the quantiles as a score. We show the corresponding
curves in Figure 3. However, when recalibrating scores
instance-wise with shadow models (resulting in the LiRA
attack for the loss), we observe that GLiR outperforms LiRA
on CIFAR-10 and IMDB across the entire trade-off curve.
LiRA maintains its advantage for Skin-Cancer, although
success rates for both attacks have substantially improved.
We provide log-log plots in Appendix B.

4.2. Predicting Individual Attack Susceptibility

Evaluating Risk Predictors. We fit a simple non-linear
random forest-regressor, which we constrain to have a max-
depth of 5 to prevent overfitting to the prediction dataset to
predict attack accuracy. We then evaluate this regressor’s
R2 score. The R2 score corresponds to the share of vari-
ance that can be explained by the predictor and report the
results in Table 2 (cf. Table 6 for rank-correlation). We
find that the loss of models trained without the instance is
most predictive of MI success. This is not unexpected for
the loss-based attack because all points have a relatively
small loss when they are in the training dataset. MI risk is
therefore determined by their behavior when in the test set,
if the points have a low loss, they will be relatively safe to
attacks. Surprisingly, the loss is also most predictive for
the other attacks, suggesting the most vulnerable points stay

rather similar across attacks. We show that a small number
of “out“ models can reliably predict MI success in Figure 7
(Appx.), even for the most complex GLiR attack, making it
possible to warn users of risks without implementing and
running the complex attack.

4.3. Relating Vulnerabilities Across Attacks

Inspired by Ye et al. (2022), we are interested in relating
the success of the attacks across different instances. This
is important to answer the question of whether the same
points are at risk for all the attacks or whether the attacks
actually use different characteristics of the instances. We
show scatter plots in Figure 2. We find that GLiR and
LiRA target mostly the same instances, while CFD is most
successful for the instances that were mildly certain for
LiRA (i.e., medium test loss). CFD’s success decreases
again for high test loss points, while LiRA’s still increases.

5. Discussion and Conclusion
In this work, we obtained several insights that have interest-
ing implications for future research.

Scaling Training Gradient Attacks. First, we found that
even when using only a small subset of the model param-
eters (e.g., <0.0001% for DistilBERT), the GLiR attack
already outperforms the LiRA attack. This suggests that
the attack is even more powerful with more computational
resources and a larger background dataset. Recalibrating at-
tack scores instance-wise is however required to obtain this
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result. The most brittle part of the attack remains the com-
putation of the inverse covariance and gradient product. We
leave an investigation of better estimators to compute this
quantity to future work. Nevertheless, our finding does not
confirm prior work’s hypothesis (Sablayrolles et al., 2019)
on the equivalence of black-box and white-box attacks, pos-
sibly due to overly stringent assumptions on the parameters’
distribution. Therefore, we argue that additional research
on more resource efficient white-box MIAs is required.

Predicting Attack Risk In Practice. Overall, our results
highlight that points with high test loss are still most vulner-
able to MI attacks. Therefore, a practical strategy to identify
points at risk could be training a model on public data from
the same domain and subsequently testing this model on
the private data points. Model developers should especially
consider the privacy risks associated with the points that
incur high losses on the public data-trained model.

Protecting Vulnerable Instances. While complete removal
of the instances at risk often results in the vulnerability
merely shifting to other points (Carlini et al., 2022b), the
identification of vulnerable instances can be crucial to better
understanding risk factors and to developing adaptive de-
fenses while keeping the overall utility of the models high.
One proposed approach is to artificially increase the training
loss for these points (Li et al., 2023a). Our observation
that the three MI attacks all target points with high test loss
highlights that defenses that focus on these points may also
be effective protection against non-loss-based attacks.

In conclusion, we hope this work provides further insights
into the structure of instances vulnerable to MI attacks that
can be useful in developing better defenses against this
prominent privacy threat.
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A. Experimental Details
We integrate source code to run the attacks in this project
in the Github repository of the GLiR attack2. We provide
some more details on the implementation below:

Datasets. Recall that we rely on CIFAR-10, Skin Cancer,
and IMDB datasets in this paper. Table 3 summarizes their
main characteristics. Note that the final images of Skin
Cancer were cropped manually to fit the 800× 600 pixels.
Furthermore, since IMDB is a language dataset, its data
shape cannot be determined à priori.

Table 3: Dataset characteristics.

Datasets

CIFAR-10 Skin Cancer IMDB

Type Image Image Text
Num. instances 60,000 10,015 50,000
Assess Dataset Size 4,000 2,000 4,000
Num. classes 10 7 2
Data shape 32× 32× 3 800× 600× 3 -
Model Resnet-18 Resnet-18 DistilBert (4 layers)
Training Batch Size 32 64 64
Training Epochs 30 40 8
Training LR (Adam) 1e-3 1e-3 5e-5
Main applications Image classification Medical image analysis Sentiment analysis

Hyperparameters and Details for GLiR Attack. Table
4 shows each dataset’s hyperparameters used in the GLiR
attack. We do not use every updates batch gradient but
instead store a fixed number of training minibatch gradi-
ents alongside with the model parameters for each training
run. We later use these samples to perform the attack. The
background samples are used to estimate the gradients’ dis-
tribution, while the number of parameters is used to estimate
the CDF scores: i.e., compute the p-values under the null
hypotheses “x′ is a test point”. We chose to use the parame-
ters in the last layers of the networks for our attack as we
observed their gradients to have the highest variance and
therefore provided a clearer signal. Despite only using a
small fraction of the parameters and the minibatch gradients
due to computational constraints, the attack performance
was quite high, especially after recalibration. We leave it
to future work to assess the maximum performance of this
attack, when all available information is processed.

Table 4: GLiR hyperparameters for each dataset.

Datasets

CIFAR-10 Skin Cancer IMDB

Training batch size 32 32 64
Num. parameters used 5120 3584 2306
Share of parameters used 0.00046% 0.00032% 0.00004%
Bg. samples 45000 6500 5000
Num of Batch Grads. 30 40 40
Var. limit τ 10−1 10−2 10−3

2https://github.com/tleemann/gaussian_mip

Additional Details on Risk Predictors.

Shapley Values. We use the shap libarary to compute
the Shapley values. For the Resnet models, we use the
shap.DeepExplainer. For the language model, we
use the shap.KernelExplainer. As for input grad
and suggested by (Carlini et al., 2022b), we take the variance
of the SHAP values as risk predictor.

VAE-Loss. For CIFAR-10, we also use an autoencoder
available online 3. However, as the results were not promis-
ing and we did not find available VAE implementations for
the remaining two datasets, we decided to skip this predictor
on IMDB and Skin Cancer.

Mahalanobis Distance. The Mahalanobis distance for an
instance x w.r.t. a distribution D with mean µ and covari-
ance Σ is defined as

d(x, D) = (x− µ)⊤Σ−1(x− µ) (1)

As we need to estimate the covariance to compute it, this
predictor can only be used if dimensionality is small enough.
To this end, for the LLM which has large embedding matri-
ces as inputs, we compute the Mahalanobis distance on the
latent embeddings (it is therefore dependent on trained mod-
els). For the Cancer dataset, we use a random subportion of
2500 input dimensions to estimate Mahalanobis distance.

B. Additional Results
Individual success rate histograms. We show histograms
of the individual success rates in Figure 4 for CIFAR-10.
This dataset’s median and mean accuracy are the highest for
the GLiR attack.

Log-Log-Plots. We show the logarithmic plots of the trade-
off curves in Figure 5 and Figure 6 with similar results as in
the main plots.

Spearman Rank-Correlation. The Spearman rank corre-
lation for the risk predictors is given in Table 6. From this
metric we can also see the signs of the relation between
the predictors and the attack risk. Loss (out) still maintains
the highest correlation. As the CFD attack does not sub-
stantially outperform random guesses there is only weak
correlation.

How many models are required for reliable risk pre-
diction? We consider the number of models we require
to predict risk reliably. Using the most powerful predictor
from our previous results (“loss, out”), we use more models
trained without specific points and average their loss suc-
cessively. We show the results in Figure 7. We find that
even a single model can already be quite predictive, whereas
stable results can be obtained using ten or more models.

3https://github.com/o-tawab/Variational-Autoencoder-pytorch
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Table 5: Coefficients of predictors in a linear regression
model. We combine the predictors to a linear regression
model for risk prediction on CIFAR-10. As the out scores
where usually most predictive and as “in” “out” and “all”
are linearly related, we use only the “out” versions of the
predictors. We obtain the following coefficients (predictor
scores have been normalized):

Dataset VAE mahal. Loss Confid. shap curva. inp-grad grad tot. R2

LiRA 0.000 0.003 0.075 -0.037 -0.007 0.002 0.013 -0.001 0.88
GLiR 0.002 0.003 0.059 -0.045 -0.008 0.001 0.022 0.002 0.84
CFD 0.000 0.007 -0.022 -0.046 0.004 -0.006 0.009 0.016 0.54

This highlights that even for computationally challenging
attacks like GLiR, the points with an attack surface can be
identified at low costs.

Combining predictors. We investigate combining the pre-
dictors to a more powerful predictor with linear regression
in Table 5 and report the coefficient. However, we observed
that at least the linear combined model cannot outperform
the single scores on their own. Loss has the highest pre-
dictive coefficients for Loss and GLiR, whereas the label-
independent confidence has the highest coefficient for the,
also label-independent, CFD attack.

9



0.6 0.8 1.0

MI attack accuracy (Loss)

0

200

400

600

800

1000

#
in

st
an

ce
s

mean acc: 0.843
median acc: 0.869

(a) LiRA

0.6 0.8 1.0

MI attack accuracy (GLiR)

0

200

400

600

800

1000

#
in

st
an

ce
s

mean acc: 0.891
median acc: 0.935

(b) GLiR

0.5 0.6 0.7 0.8 0.9

MI attack accuracy (CFD)

0

200

400

600

800

1000

#
in

st
an

ce
s

mean acc: 0.740
median acc: 0.752

(c) CFD

Figure 4: Success-rates for individual instances. We show the distribution of the individual success rates for the three
attacks on the CIFAR-10 dataset. On this dataset, GLiR can identify many instances with high certainty.
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Figure 5: Success-rates for non-calibrated attacks. We show the success rates of the three attacks studied in this paper
when the scores are not recalibrated instance-wise using shadow models. Log-Log plot corresponding to Figure 1.
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Figure 6: Success-rates for recalibrated attacks. We recalibrate the attack scores per instance to make the scores
comparable over instances and subsequently compute the trade-off curves. We use empirical quantiles for each instance as
surrogate scores. Log-Log plot corresponding to Figure 3.
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(a) CIFAR-10

Predictor CFD LiRA GLiR

loss (in) 0.11 0.44 0.42
loss (out) 0.28 0.95 0.95
loss (all) 0.28 0.94 0.93

confidence (in) 0.01 -0.60 -0.57
confidence (out) 0.34 -0.55 -0.57
confidence (all) 0.22 -0.65 -0.65

input-grad (in) 0.15 0.39 0.37
input-grad (out) 0.50 0.51 0.54
input-grad (all) 0.48 0.52 0.54

curvature (in) 0.14 0.38 0.36
curvature (out) 0.44 0.49 0.51
curvature (all) 0.43 0.49 0.51

grad (in) 0.13 0.39 0.37
grad (out) 0.53 0.70 0.72
grad (all) 0.51 0.69 0.71

shap (in) 0.13 0.20 0.21
shap (out) 0.40 0.34 0.37
shap (all) 0.32 0.30 0.32

vae-reconstruction-loss 0.12 0.04 0.05
mahalanobis 0.11 0.03 0.04

(b) IMDB

Predictor CFD LiRA GLiR

loss (in) 0.01 0.76 0.75
loss (out) 0.00 0.90 0.90
loss (all) 0.00 0.90 0.90

confidence (in) -0.00 -0.81 -0.81
confidence (out) -0.01 -0.87 -0.88
confidence (all) -0.01 -0.89 -0.90

input-grad (in) -0.00 0.77 0.77
input-grad (out) 0.00 0.90 0.91
input-grad (all) -0.00 0.90 0.91

curvature (in) 0.01 0.71 0.70
curvature (out) -0.00 0.89 0.89
curvature (all) -0.00 0.89 0.89

grad (in) -0.01 0.64 0.62
grad (out) -0.01 0.80 0.80
grad (all) -0.01 0.79 0.78

shap (in) -0.00 0.01 0.01
shap (out) -0.00 0.02 0.03
shap (all) -0.01 0.03 0.03

mahalanobis-latent (in) 0.01 0.73 0.73
mahalanobis-latent (out) 0.01 0.80 0.80
mahalanobis-latent (all) 0.01 0.80 0.81

(c) Skin Cancer

Predictor CFD LiRA GLiR

loss (in) 0.03 0.85 0.59
loss (out) 0.02 0.88 0.64
loss (all) 0.02 0.88 0.63

confidence (in) -0.02 -0.79 -0.56
confidence (out) -0.01 -0.74 -0.57
confidence (all) -0.01 -0.77 -0.57

input-grad (in) 0.03 0.82 0.62
input-grad (out) 0.02 0.85 0.66
input-grad (all) 0.02 0.85 0.66

curvature (in) 0.03 0.80 0.60
curvature (out) 0.01 0.83 0.65
curvature (all) 0.01 0.83 0.64

grad (in) 0.03 0.83 0.60
grad (out) 0.02 0.87 0.66
grad (all) 0.02 0.86 0.65

shap (in) 0.00 0.37 0.38
shap (out) 0.02 0.38 0.39
shap (all) 0.01 0.39 0.40

mahalanobis 0.03 0.36 0.27

Table 6: Prediction scores as Spearman-rank correlation. The results confirm our prior findings.
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Figure 7: Ablation study for the number of models used compute “out”-loss. RF-Score corresponds to the R2 score used
in the main table. The results show that with 5 or 10 models, good MI risk predictions are possible.
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