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ABSTRACT

Many methods have been proposed for removing batch effects and aligning single-
cell RNA (scRNA) datasets. However, performance is typically evaluated based
on multiple parameters and few datasets, creating challenges in assessing which
method is best for aligning data at scale. Here, we introduce the K-Neighbors
Intersection (KNI) score, a single score that both penalizes batch effects and mea-
sures accuracy at cross-dataset cell-type label prediction alongside carefully cu-
rated small (scMARK) and large (scREF) benchmarks comprising 11 and 46 hu-
man scRNA studies respectively, where we have standardized author labels. Using
the KNI score, we evaluate and optimize approaches for cross-dataset single-cell
RNA integration. We introduce Batch Adversarial single-cell Variational Infer-
ence (BA-scVI), as a new variant of scVI that uses adversarial training to penalize
batch-effects in the encoder and decoder, and show this approach outperforms
other methods. In the resulting aligned space, we find that the granularity of cell-
type groupings is conserved, supporting the notion that whole-organism cell-type
maps can be created by a single model without loss of information.

1 INTRODUCTION

To build comprehensive organism-wide and inter-species maps of cell types and states, we must
build integrated transcriptional atlases that combine studies and patient populations at scale Regev
et al. (2017). The now large number of published scRNA studies creates an opportunity for building
a largely aligned scRNA atlas that would enable standardized reference-based analysis and cross-
dataset comparison Lotfollahi et al. (2024). However, the challenge in combining data from dis-
parate scRNA studies remains due to batch effects Lotfollahi et al. (2024); Lähnemann et al. (2020);
Gavish et al. (2023).

While studies have looked at the alignment of batches within datasets or between a handful of
datasets focused on a specific tissue type, few have looked at model alignment across studies from
different tissue types and instruments, as would be required for the generation of a reference atlas.
Meanwhile, those studies that have used models to align datasets across tissue types and studies
have used supervised models trained on cell-type labels, such as scBERT, Celltypist, SCimilarity,
and SATURN Yang et al. (2022); Domı́nguez Conde et al. (2022); Heimberg et al. (2024); Rosen
et al. (2024). However, unsupervised alignment is often preferred for cell-type discovery and com-
parative analysis of cell-type variation Vasighizaker et al. (2022). Thus, there remains a demand for
unsupervised methods that can verifiably align scRNA data at scale Lotfollahi et al. (2024).

In this study, we propose a single-metric the K-Neighbors Intersection (KNI) score that combines
the K-bet score Büttner et al. (2019), with accuracy at author label prediction. We use this score
to evaluate and optimize the ability of models to align a small (MNIST-like) and large benchmark
(ImageNet-like) dataset that we present with standardized author labels. On this benchmark, we
introduce a variant of the popular single-cell Variational Inference (scVI) model Lopez et al. (2018),
Batch Adversarially trained single-cell Variational Inference (BA-scVI), that outperforms other ap-
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proaches, including newer foundational models. The resulting embedding space maintains the cell-
type clusters identified in the studies that comprise the benchmark, supporting the notion that a single
unsupervised model can be used for organism-wide scRNA integration. Moreover, the prediction of
cell types outside of the benchmark correlates well with benchmark scores, indicating author labels
are a valid approximation of ground truth.

2 RELATED WORK

2.1 METRICS AND BENCHMARKS FOR ASSESSMENT OF SCRNA ALIGNMENT QUALITY

The most comprehensive assessment of metrics and methods for scRNA alignment performance to
date is performed in Luecken et al. (2020). Here, the authors benchmark 16 commonly used methods
in 13 integration tasks. Performance on each task is assessed by a score that integrates five batch
correction metrics, with nine metrics focused on the conservation of biological signal. Notably,
this assessment includes the kBET score for batch effects Büttner et al. (2019), and F1 accuracy
metric at cell-type prediction. This study has proven extremely valuable in helping authors pick
specific models for specific scRNA analysis use cases Luecken et al. (2020). However, integrating
these metrics after averaging of all data points creates a lower bar for success. Namely, a data
point can improve the score obtained by being labeled correctly or by being well integrated with
other datasets. We propose that top-performing alignment methods must both integrate data points
with other studies and enable accurate prediction of cell type. This requires a metric that integrates
batch-effect detection with accuracy for individual data points.

2.2 SUPERVISED METHODS FOR CROSS-DATASET CELL-TYPE PREDICTION

Recent studies have looked to use cross-dataset prediction of cell-type labels as a means of auto-
mated annotation. Notably, Fischer et al. describe a deep-learning architecture scTAB that performs
well at cross-dataset cell-type prediction on datasets generated from 10X technologies Fischer et al.
(2024). Here, the authors leverage the CELLxGENE corpus and schema, with automated filtering of
cell-type groups for those having more fine-grained cell-type labels, with over 5000 instances, in at
least 30 donors. They benchmark existing approaches and determine that the scTAB architecture per-
forms best at cell type prediction with donor versus study level holdout of cells Fischer et al. (2024).
Ergen et al. also recently described a consensus-based approach to cell-type annotation Ergen et al.
(2024). Here, the authors develop a tool that performs unsupervised / semi-supervised alignment
of scRNA datasets using three common approaches, BBKN, Scanorama, scVI, and scANVI, prior
to the application of eight supervised models and then selection of the consensus cell-type label
from these methods. This meta-approach performs well at unsupervised cell-type classification on
a lung-tissue atlas but highlights that no single method has yet emerged that solves the task of new
cell-type annotation. Our work here uses cell-type labels to assess performance at unsupervised
alignment versus using cell-type labels at train time to maximize prediction accuracy. We propose
that the top-performing unsupervised methods are likely better for cell-type, subtype, and state dis-
covery as they are less susceptible to over-fitting. We also hypothesize that a single top-performing
model can be identified that supersedes other approaches versus building off of a consensus.

3 RESULTS

3.1 THE KNI SCORE IS A SINGLE-METRIC THAT EVALUATES SCRNA ALIGNMENT QUALITY

In scRNA dataset alignment, the task is to reduce gene space for individual datasets into a shared
low-dimensional representation of cell types that are aligned between studies. It is important that
this space captures underlying biological variation versus noise introduced by the experiment (batch-
effects). Previously, the kBET score has been developed as an effective means of testing for the
presence of batch effects Büttner et al. (2019). Accuracy at cross-dataset cell-type prediction of au-
thor labels also represents a gold-standard metric for evaluating the preservation of biological signal
Domı́nguez Conde et al. (2021). We propose the K-Neighbors Intersection (KNI) score as a score
that combines these metrics at the level of individual data points Figure 1a. To calculate the KNI we
consider the set C = {c1, c2...cn} of cells in a low-dimensional cell-type feature space where each
cell ci is defined by its coordinates xi, batch identifier bi, and cell-type identifier ti. The distance
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function D between two cells is the Euclidean distance between their embedded coordinates. For the
KNI, we thus identify the k-nearest neighbors for each cell ck as per a K-nearest neighbors search
K = {ci : D(ck, ci) ≤ D(ck, cj) for all j ̸= k and |K| = k}. For each cell ck, we then identify a
subset B of K in which cells have the same batch identifiers, defined as B = {ci ∈ K : bk = bi}.
Each cell ck is then labeled as either (1) an outlier if the number of elements in B is above a cutoff
number τ < k, i.e., too many nearest neighbors belong to the same batch (the K-bet score); or (2)
the most common label from cells in K but not B (cross-dataset prediction accuracy).

L(ck) =

{
null |B| ≥ τ

mode(ti : ci ∈ K −B) |B| < τ

}
The KNI score is then the total number of predicted labels that match author-standardized labels:

KNI =
1

n

n∑
k=1

1[L(ck) = tk]

We term this metric the K-nearest Neighbor Intersection (KNI) score since it evaluates accuracy at
the intersection of batches (Appendix A). We find this metric has desirable properties when com-
pared with other metrics on a simple theoretical test case (Appendix A), as well as a real-world
scRNA dataset with simulated batch effects and noise (Appendix B). We also find that a Radius-
based search can be used in place of the K-neighbors search such that, K = {ci : D(ck, ci) ≤
r for all i ̸= k}. In the resulting score that we term the RbNI, a threshold percent of ‘self’ data
points τ∗ is also used; in contrast to the KNI, cells with no neighbors within the radius r are also
given an outlier label such that,

L(ck) =

{
null |K| = 0
null |B| ≥ τ∗

mode(ti : ci ∈ K −B) |B| < τ∗

}

While we focus on the KNI, we also report key results under the RbNI metric and find it has similar
properties to the KNI (Appendix A,B), indicating neighborhood search strategy is not a key factor.

3.2 EVALUATION OF MODELS USING THE KNI SCORE ON SCMARK

We first used the KNI to evaluate aligned cell-type spaces generated by alignment approaches on
a small MNIST-like benchmark to focus on scaling top-performing methods. For this, we curated
the scMARK, a benchmark comprising of 11 high-quality scRNA publications from different labs,
with a 10,000 random cell sample from each study (see Appendix C for details). We recorded 29
standardized cell-type labels occurring in two or more studies and 13,865 genes in common across
the 11 studies. Of the 11 studies, 10 studies were produced using 10X Chromium technology, while
Azizi et al. (2018) was generated using the inDrop. We selected the 11 studies such that each cell-
type/tissue-type combination appears in at least two studies, and thus, no ‘true’ outlier cell types
should exist.

We used the KNI to evaluate the ability of commonly used methods to reduce scMARK into a shared
10-dimensional embedding space (Figure 1b). Namely: (1) Principal Component Analysis (PCA)
applied to highly variable genes (PCA)Kiselev et al. (2018); (2) Reciprocal PCA as described in the
Seurat workflow (RPCA) Hao et al. (2021); (3) Scanorama Hie et al. (2019); (4) Variational Auto-
Encoder with Mean Squared Error Loss (VAE MSE; included as a base-case for more advanced
deep-learning tools); (5) Harmony, Korsunsky et al. (2019); (6) Base-line Single-cell Variational
Inference (scVI)Lopez et al. (2018); (7) An optimized scVI, where we picked a scVI architecture
that scores well under the KNI (Appendix 4); (8) A variant of the scVI architecture that we introduce
here and that leverages an adversarial training to further enforce batch-effect removal as has been
proposed e.g., in Shaham (2018) or Cao et al. (2020). We term this model Batch-Adversarial scVI
(BA-scVI). In this model a discriminator is trained to predict batches on layers adjacent to the central
embedding layer, versus the embedding layers itself, as we find this improves stability in training
(Figure 1c). Secondly, we removed batch-ID concatenation from the encoder (as is performed in
scVI) to enable inference without batch-ID ; (9) geneFormer Theodoris et al. (2023), and (10) scGPT
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Figure 1: Comparison of Model Performance on scMARK: a) The KNI score combines accuracy at
cell-type labeling with batch-effect correction (KBET) at the data-point level; b) The KNI score is
used to assess scRNA alignment model performance at aligning the 11 datasets in scMARK. KNI
scores here are plotted for each of the 11 datasets alongside the dataset mean and standard deviation.
A perfect score is 1; c) comparison of the scVI and BA-scVI architectures; d) UMAP projections
of alignments produced by the eight different methods where cells are colored by author-provided
‘ground-truth’ cell-type label; e) UMAP projections as in (d), but colored by study. The NKT-
cell grouping is highlighted to show variation in cell-type alignment quality between the methods
notably the Azizi et al. (2018) study (dark blue) is performed on the in-drop.

Cui et al. (2024) – where in both cases we fine-tune an auto-encoder to reduce the transformed gene-
space into a shared space as per recommendation; and finally (11) geneFormer and (12) scGPT –
where we use BA-scVI to reduce the transformed gene space into a 10-dimensional shared space
(parameters for these models and details on the BA-scVI architecture are given in Appendix D).

Based on this framework, BA-scVI outperforms other methods at aligning the scMARK dataset
under the KNI score and related RbNI score, Table 3.2). We found that the transformer models,
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Table 3.2: KNI and RbNI scores on the scMARK and scREF benchmarks
Model/Method scMARK KNI scMARK RbNI scREF KNI scREF RbNI
VAE MSE 0.352 0.322 - -
PCA 0.470 0.004 0.483 0.5123
RPCA 0.456 0.456 - -
Scanorama 0.446 0.477 - -
scVI 2L 0.550 0.592 - -
Harmony 0.646 0.615 0.488 0.4862
scVI 4L 0.643 0.645 0.578 0.586
BA-scVI 0.711 0.687 0.632 0.619
gF scVI 0.596 0.637 0.399 0.437
gF BA-scVI 0.604 0.641 0.400 0.441
scGPT AE 0.319 0.459 0.468 0.478
scGPT BA-scVI 0.627 0.658 0.425 0.463

geneFormer and scGPT, generated poor-quality alignments when using the suggested fine-tuning
approach. Fine-tuning with BA-scVI improved results significantly but failed to improve the align-
ment quality generated from untransformed data. Qualitatively, in UMAP projections, BA-scVI re-
solved cell subtypes, e.g., CD4+ vs. CD8+ T-cells on challenging datasets, e.g., Azizi et al. (2018),
while removing any clear batch groupings. More broadly, the quality of alignment and batch-effect
removal aligned well with the KNI score as visualized by UMAP, the tool most commonly used by
biologists in exploring this data type (Figure 1d); this further supports the KNI’s value for align-
ment assessment. We also see that the KNI and RbNI scores align well, indicating that the score is
independent of the neighbor search strategy.

3.3 EVALUATION OF MODELS USING THE KNI SCORE ON SCREF

Next, we assessed how well top-performing methods can align scRNA data at an organism-wide
scale. For this, we present the scREF benchmark, a collection of 46 human scRNA studies span-
ning 2,359 samples and 36 tissues, where for each dataset, quality checks have been performed
and metadata standardized (see Appendix C for details). In scREF, we include organ-specific and
human-wide datasets, e.g., the Tabula Sapiens Tabula Sapiens Consortium (2022) and the Human
Cell Landscape Han et al. (2020). Importantly, scREF includes data from droplet-based (10X 5’,
10X 3’, 10X multiome, and Dropseq) and plate/bead based methods (Microwell-seq, Seq-Well and
SMARTScribe) which allows for testing cross-technology alignment. Author-provided cell-type
labels for 43 studies were acquired and standardized, while for three cases, we generated labels
reproducing the original author’s pipeline; this resulted in 60 unique cell-type labels. Tissue-type
labels were standardized for plotting and analyses, and a study-stratified sample was taken, seeking
to balance tissue-type representation, leading to the final 1.21 million cell scREF benchmark.

We then tested the top performing scRNA alignment models on this benchmark (Figure 2a). Again,
BA-scVI outperformed other approaches (Table 3.2). We also again saw that the transformer mod-
els, geneFormer and scGPT, introduced batch-effects that then could not be removed by fine-tuning
either by author protocol or BA-scVI. Qualitatively, UMAP projections showed that BA-scVI pro-
duced a clear alignment by cell-type Figure 2b. Notably, organism-wide studies from markedly
different technologies Microwell-seq Han et al. (2020), and 10X Tabula Sapiens Consortium (2022)
overlapped extensively with each other (Figure 2c), indicating alignment independent of technology.
We thus find that the BA-scVI model can be used to perform effective large-scale alignment. Again,
the ability to distinguish cell types and the level of mixing observed qualitatively in UMAP projec-
tions mapped well to the KNI score (Figure 2d). A high degree of alignment was again observed
between the KNI and RbNI scores (Table 3.2).

3.4 BA-SCVI ALIGNMENT OF THE SCREF BENCHMARK DATASET MAINTAINS CELL-TYPE
GRANULARITY

A major concern in the atlas-building community is that aligning datasets reduces the granularity
of cell-type detection. To qualitatively assess how well cell-type labeling are preserved at the organ
level in the aligned cell-type space, we fit UMAP to the three best-represented tissues: breast (4
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Figure 2: Comparison of Model Performance on scREF: a) KNI scores were determined for align-
ment of the 46 study scREF benchmark. Data points correspond to the average score achieved by the
model on a study. The average score obtained on the entire benchmark plotted as a line; b) UMAP
projections of the BA-scVI aligned scREF benchmark (n=1.27m), colored by ‘ground-truth’ stan-
dardized author cell-type label. The legend is omitted for brevity (coloring is the same as , boxes
show major cell-type groupings; c) same projection as (b), colored by study name the legend is
omitted; d) UMAP projections of scREF embedding spaces for the set of models presented colored
by standardized author cell-type labels (left), and study (right).

studies), brain (4 studies), and blood (7 studies). Supporting effective alignment with BA-scVI, we
found significant overlap between studies (Figure 3a-c). BA-scVI could also resolve ‘original au-
thor’ labels in UMAP projections of an example study for each tissue type, qualitatively supporting
the preservation of cell-type resolution in the aligned space (Figure 3d-f).

Quantitatively, using a KNN accuracy test with 2-fold cross-validation, we find that the cell-type
embeddings of the original author labels are conserved as a high degree of accuracy can be achieved
on held-out data. Specifically, KNN accuracies of; (1) 83% are obtained on a large breast dataset
Reed et al. (2024); increasing to 96% on ‘numerical’ subtype merging (e.g. cell subtypes ‘LP1’ to
‘LP5’ become ‘LP’); 2) 99% for a brain study Gabitto et al. (2024); and 3) 83% for the Kock et al.
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blood dataset where T-cell subtype label overlap is notably seen in projections in the original study
Kock et al. (2024). Overall, this supports the preservation of cell-type granularity.

Figure 3: BA-scVI scREF maintains cell-type granularity on alignment: a, b an c) 10-dimensional
scRNA embeddings from BA-scVI corresponding to (a) Breast (n=0.4m cells), (b) Brain (n=4.8m
cells), and (c) Blood (n=1.6m cells) tissue-types were projected into a 2-dimensional space with
UMAP. Cells are colored by study name; d, e and f) The same UMAP projections but colored by
original author labels for 3 example studies from each tissue type. Namely, (a) Breast Reed et al.
(2024) (n=0.3m cells), (b) Brain Gabitto et al. (2024)(n=0.8m cells), and (c) Blood Kock et al. (2024)
(n=1m cells) The cell type and study legends omitted for brevity; major groupings are in boxes.

3.5 COMPARISON OF THE KNI SCORE TO KNN ACCURACY AND THE KBET SCORE

We present the KNI score as a score that combines accuracy at predicting standardized author cell-
type labels from held-out data with a KNN classifier, with batch-effect detection based on the kBET
score Büttner et al. (2019). To better understand the relationship between these scores, we compared
the performance each model achieves on each dataset under each of these three scores on scMARK
and scREF. The results, including R-values and significance, are plotted in Figure 4. This analysis
highlights that the KNI score requires both a high KNN accuracy value and a high KBET score
for a model to perform well on a specific dataset since the KNN-accuracy / kBET score is always
equal to or better than the KNI score (Figure 4a,b,d,e). When comparing the kBET and KNN scores
with each other, we see much less correlation on both benchmarks (Figure 4c,f). This means that,
in many cases, approaches may be good at removing either batch effects or aligning cell types. In
contrast, achieving both at the same time is a much higher bar. We also tested our ability to identify
cell types not in the set of standardized cell-type labels described here (Appendix E) and found that
KNI scores are comparable, supporting our assumption that standardized author labels can be used
to approximate a ground truth. Overall, this supports the KNI score as a valuable new metric for
evaluating scRNA alignment quality.

4 DISCUSSION AND CONCLUSIONS

Most scRNA data alignment benchmarking studies have used only a handful of datasets to evaluate
performance Pasquini et al. (2021); Abdelaal et al. (2019); Diaz-Mejia et al. (2019). This study
presents scMARK and scREF as benchmark datasets for evaluating unsupervised model perfor-
mance at scRNA alignment, at scale. This is in line with similar efforts underway, for example in
image-based cell profiling Arevalo et al. (2024). A key concern with scRNA alignment metrics is
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Figure 4: Comparison of evaluation metrics on the scMARK and scREF benchmarks: a) Correlation
of KNI scores (x axis) and the KNN scores (y axis) on the studies in the scMARK benchmark
achieved by the set of models tested in this paper. Here, the KNN classifier score is calculated using
the nearest 50 neighbors from held-out datasets; b) Correlation of the KNI (x axis) score with the
kBET score (y axis) Büttner et al. (2019); c) Correlation of the kBET score (y axis) with the KNN
classifier score (x axis); d, e, and f) the same charts as (a, b, and c) but for models tested on studies
in the scREF benchmark; to enable computation, here the KNN classifier score is calculated from
the nearest 50 neighbors, less those from the same dataset.

highlighted in Wang et al. (2024). Specifically, the authors use a supervised model to demonstrate
that cell ’islands’ can form, whereby a model can group cells of the same cell-type label into a dis-
tinct island. By then forcing cell-type mixing within the island, very high scores can be achieved
under the presented metrics. We consider this work to primarily show how easy it is to over-fit
supervised models. Indeed, the authors highlight that weaker supervision is necessary Wang et al.
(2024). The KNI score would be susceptible to thwarting by a supervised model; as such, we only
present it as valuable for assessing unsupervised alignment (i.e., where only technical variables are
used in training).

We note that in our evaluation of the KNI metric, we have qualitatively compared UMAP projections
to KNI scores. Although there are challenges with over-interpreting UMAP projections Chari &
Pachter (2023), they remain the dominant approach used by biologists for the discovery and grouping
of cell types. Thus, we consider it important that quantitative metrics align well with qualitative
UMAP observations. We also stress that the KNI metric performs well in both theoretical and
simulated scRNA alignment test cases (Appendix A, B), and is based on an intuitive combination of
prior high-quality accuracy Domı́nguez Conde et al. (2021) and kBET metrics Büttner et al. (2019),
providing firm quantitative support to its value.

Lotfollahi et al. (2024) highlight the need for models capable of reference-based alignment. Un-
like the scVI architecture, BA-scVI does not require batch-ID for inference, thus we consider this
model a good starting point for potential reference-based scRNA alignment tools. A key concern in
the atlas-building community is the loss of granularity in cell-type resolution. The alignments we
achieve with the BA-scVI model we present here provide compelling evidence that alignments can
preserve cell-type granularity. While we encourage users to maintain caution, we think that with
BA-scVI and further advances, this concern can be addressed, and the promise of reference-based
scRNA analysis Lotfollahi et al. (2024) realized.

MEANINGFULNESS STATEMENT

For us, a meaningful representation of life reflects life’s natural evolution and development. Or-
ganisms share common ancestors and begin from a single-cell or branching event. We thus should
be able to represent life with a continuous manifold, intersected with only rare discontinuities. In
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the space of single-cell biology, this means all cells, from all organisms, at any time, should be
mappable to a single manifold; this free from technical effects and defined cell-type labels. We
present significant results in unsupervised mapping of human scRNA data at scale, and hope this
will advance efforts to map the wider manifold of life.
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A APPENDIX 1: METRICS FOR SCRNA ALIGNMENT

In this study, we sought to develop metrics to assess the quality of scRNA data alignments. In this
Appendix, we consider the simple theoretical case of two cell types C1, C2, and batches W1, W2.
Each cell in this analysis has both a cell type and a batch to which it corresponds. The probability
distribution of a given cell’s type C1, C2 and the probability distribution of a given cell’s batch W1,
W2 can each be approximated using a mixture of two Gaussians, with the difference between means
being ϕ and ω respectively for cell-type and batch, i.e.,

X ≈
[
C
W

]
=

[
N(µ, σ2) +N(µ+ ϕ, σ2)
W (µ, σ2) +W (µ+ ω, σ2)

]

A random sampling of a cell, X , is thus represented by a 2D vector where the first dimension
corresponds to the cell-type and the second to the batch. In a good cell-type space, cells are well
separated by biological variability (ϕ ≫ 0), meaning a vertical line can discriminate cell types,
while batch effects are small (ω ≈ 0). We, therefore, are seeking a metric that is large when
(ϕ ≫ 0),(ω ≈ 0). In this example, we can use a bisecting line to demonstrate the need for explicitly
penalizing batch effects in evaluation metrics (Figure 5a). Specifically, let’s consider a classifier that
splits the data along the cell-type variable line. We can see that data can be arbitrarily separated
along the batch with no impact on the classifier. We thus reason that scRNA alignment metrics must
explicitly penalize batch effects. Similarly, if we consider only batch-effect removal cell-clusters can
be arbitrarily close together with no effect on the score. Thus, scores must factor in both batch-effect
correction and preservation of cell-type groupings. We thus developed four approaches to evaluating
cell-type spaces below that reward separation of cell-type groupings as defined by “ground-truth”
standardized author labels while penalizing batch-effects directly. These are:

• Batch-corrected Silhouette score (B-Sil): To calculate this score, we calculate the Silhou-
ette coefficient calculated on cell-type labels and deduct the coefficient calculated on batch-
labels i.e., SC(C)− SC(W ).

• K-means Mutual Information (KmMI): To calculate the KmMI score, we take 4 clusters K
to account for all membership possibilities x ∈ Ci,Wj , (i, j){0, 1}. We then deduct the
MI between the 4 cluster labels and batch label from the MI between the cluster labels and
cell-type, i.e., MI(K;C)−MI(K;W ).

• K-Neighbors Intersection (KNI): We determined that we could easily modify the K-BET
score as defined in (Büttner et al. 2019), to factor in the separation of cell-types by calcu-
lating the accuracy of cross-batch prediction of cell-type. The calculation of the KNI score
is as described in the main text. We termed this metric the K-neighbors intersection, as this
metric calculates cell-type group membership where batches intersect in the aligned space.

• Radius-based Neighbors Intersection (RbNI): The RbNI is equivalent to the KNI, except
that: (1) The set of neighboring cells is defined by a radius, as per Radius-based Nearest
Neighbors; and (2) cells with no neighbors within the radius r are given an outlier label,
the calculation of the RbNI score is also described in the main text.

The silhouette score has no parameters, and the KmMI has a single parameter, cluster number.
Meanwhile, the KNI and RbNI metrics each have two parameters: the number of neighbors (or
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Figure 5: Analysis of metric behavior on theoretical example: a) Scatter plots of the three test
cases used to compare candidate metrics for evaluating scRNA alignments, the key parameters are
separation of the two cell-types by ϕ and separation of the two batch effects by ω; b) Under the
KNI score, cells that are surrounded by more than τ cells from the same batch are classified as null,
this example demonstrates the effect of this, by considering two batches separated by a batch effect
ω = 4. Cells that are labeled as null are blue, vs. those that would be tested for label accuracy red,
two regimes are considered τ = 15 and τ = 20; c) The KmMI score on the ideal case ϕ = 4, ω = 0
vs. the case of batch effects ϕ = 4, ω = 2 varying cluster number; f) same as (c) examples but
considering the KNI score, and varying the cutoff parameter τ and number of nearest neighbors k,
the score difference between the two test cases for the two parameters is also plotted (left); g) same
as (f) but for the RbNI, where the cutoff percent τ∗ and radius r are varied.

radius) searched (k, r) and the cutoff threshold at which to call a data point an outlier (τ , τ∗).
Changing these cutoff thresholds has the effect of increasing the size of the intersecting batch region
in which cell-type labels are evaluated, as shown in Figure 5b. We tested how the KmMI, KNI,
and RbNI metrics behave under different parameters in the theoretical cases of ’perfect’ alignment
ϕ = 4, ω = 0 versus a batch-effect case ϕ = 4, ω = 2 while varying metrics’ parameters. Firstly,
we note that the B-Sil score can distinguish these two cases, yielding a value of 0.557 for the perfect
case, and 0.341 given batch effects. Secondly, we determined that the KmMI score can robustly
distinguish the two cases for any cluster number greater than three (Figure 5c). Considering the

14



Published at LMRL Workshop at ICLR 2025

KNI and RbNI scores, we note that both metrics are sensitive to their respective cutoff values for
defining a batch effect (Figure 5d, e). At thresholds that separate batch effects well, these metrics
appear to be comparatively insensitive to the number of cells, or radius, searched. Finally, we see that
the KNI and RbNI methods show a much greater separation of score values, at optimal batch-effect
cutoffs, than either of the B-Sil or KmMI methods. In this section, we propose four potential metrics
for evaluating cell-type space alignment quality and show that all are capable of distinguishing an
ideal theoretical cell-type space from one containing batch effects.

B APPENDIX 2: METRIC PERFORMANCE ON SIMULATED NOISE AND
BATCH-EFFECTS

In a second case, we sought to understand how the scores perform on a more realistic simulated
example of an aligned scRNA cell-type space S. To create this more realistic example we took a
30,000 cell sample from one high-quality scRNA dataset Bassez et al. (2021) and embedded it into a
5-dimensional space S ∈ R5 using a basic implementation of a Variational Autoencoder with Mean
Squared Error loss function Kingma & Welling (2013), (VAE MSE; 2 layer encoder and decoder,
512 neurons per hidden layer, lr = 1E-4, patience = 15). We chose this model so as to reduce bias
in our model comparison, where we anticipate published models specifically designed for scRNA
analysis should outperform this approach. We took the resulting embedded cell-type space and
simulated both poorer alignment, and worse batch-effects, to compare how the metrics scores these
spaces vs. the unmodified VAE encoding.

To simulate progressively worse alignment, we introduced random Gaussian noise to the cell-type
space S +N(µ, σ2) where µ = 0 and σ2 = {0, 0.2, 0.4, 0.6, 0.8}. Data was then re-normalized to
unit mean and variance after the addition of noise. UMAP projections of the cell-type spaces for
cases σ2 = {0, 0.4, 0.8} are given in Figure 6a and highlight the progressive increase in cell-type
cluster overlap associated with introduction of this noise. To simulate progressively worse batch
effects, we split the embedded data into 5 equally sized groups Ci, i = {1 . . . 5}, C ∈ R5 and add
a constant value to the respective dimension for each group where µ = {0, 0.1, 0.2, 0.3, 0.4}. Data
was then re-normalized to unit mean and variance after the addition. The effect of this can be seen
in UMAP projections of the embedding space for µ = {0.0, 0.2, 0.4} Figure 6b.

We then evaluated metric performance on these test cases, to understand how well each metric could
distinguish noise and batch-effects:

• Batch Adjusted Silhouette Score (B-sil): In both the cases of simulated noise and simulated
batch-effect, the B-sil decreased linearly with increasing noise, or batch effect (Figure 6c).
Of note, however, these values were dramatically smaller than those calculated for the
theoretical case of two batch effects and two cell types, likely a result of the higher di-
mensionality of the embedding space and many more clusters. The B-sil score shows such
variability based on the underlying dataset, thus making it a potentially poor choice for
evaluating model performance on benchmarks, especially as complexity increases. More-
over, changes in the score in response to the addition of significant batch effects were 3x
smaller than those seen in response to the addition of noise, another potential issue with
using this score as a metric of alignment quality.

• K-means Mutual Information (KmMI): The KmMI score showed a linear relationship to
the addition of noise and was only able to separate the smallest addition of noise 2=0.2 at
cluster numbers over 100 (Figure 6d). However, at these higher cluster numbers, robust
separation between all scenarios was observed. The KmMI metric showed even greater
insensitivity to the addition of small batch effects than it did to noise. Here, greater than
440 clusters were needed to even begin to see a separation between =0.0 and =0.1; at this
number of clusters, only 70 cells on average are present per cluster. This is a number of
cells to those analyzed in the local neighborhood by the Radius-based and K-neighbors
metrics. This analysis indicates the KmMI as a poor metric for identifying batch effects
and suggests local analysis of cell-type space is likely better.

• K-Neighbors intersection (KNI): The KNI score showed a decrease in score for all cutoff
values greater than τ ≈ 0.5, indicating this score is effective over a reasonably wide set of
parameters (Figure 6e). Of note, this is the same value of τ for which optimal separation of
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Figure 6: Appendix 2: Analysis of metric behavior on real example with spiked noise and batch-
effects: a) UMAP projections of 3 test cases corresponding to addition of noise to the 5 dimensional
embedding space, σ2 = {0, 0.4, 0.8}, default UMAP parameters are used as per (McInnes, Healy,
and Melville 2018), cells are colored by ‘ground-truth’ cell-type; b) same as (b) but with simulation
of batch-effects, where cells are split into 5 batches and µ = {0.0, 0.2, 0.4} is added to one of the
5 dimensions for each batch. c) B-sil values for the 5 noise σ2 = {0, 0.2, 0.4, 0.6, 0.8} and 5 batch
test cases are shown µ = {0.0, 0.2, 0.4, 0.6, 0.8}; d) KmMI values for the 5 noise and batch test
cases are shown as lines (colored and labeled), the parameter, cluster number is varied on the x-axis;
e) same as (d), but varying the cutoff parameter and keeping Neighbors search constant, or varying
the neighbor search range and keeping the cutoff constant as described in the Appendix text.

scores was seen in the theoretical case described in the first section, indicating this param-
eter may also be robust to dimensionality and dataset complexity. Varying the number of
neighbors k while setting τ = 0.8 of the value of k also highlights that for values of k ¿ 10,
a robust separation between all scenarios is observed. The KNI also emerges as being very
effective in identifying and quantifying the addition of batch effects to the aligned cell-type
space (Figure 6e). Varying the cutoff number τ shows that all batch effects can be well
separated for values of τ > 0.5 (k set at 25). Setting τ = 0.8 and varying the number of
neighbors k used for label calling demonstrates that for k¿5 there is good separation be-
tween all batch effect scenarios, again the best separation is seen for similar cutoff values
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Appendix Table A scMARK Datasets
First Author Year PMID Normal Tissues Cancer Tissues Technology
Azizi 2018 29961579 Breast Breast InDrop
Bassez 2021 33958794 None Breast 10x Ch 5’ or 3’
Bi 2021 33711272 None Kidney 10x Ch. 3’ v2
Elyada 2019 31197017 Pancreas Pancreas 10x Ch. 3’ v2
Karlsson 2021 34321199 Breast, Kidney,

Lung, Ovarian
None 10x Ch. 5’ or 3’

Lee 2020 32451460 Colorectal Colorectal 10x Ch. 3prime v2
Nath 2021 34031395 None Ovarian 10x Ch. 3’ v3 and

iCell8
Peng 2019 31273297 Pancreas Pancreas 10x Ch. 3’ v2
Qian 2020 32561858 Colorectal, Lung,

Ovarian
Breast, Colorec-
tal, Lung, Ovar-
ian

10x Ch. 5’ or 3’ v2

Slyper 2020 32405060 None Lung 10x Ch. 3’ v2 or v3
Zhang 2021 34099557 Kidney Kidney 10x Ch. 3’ v2

in this data, as is seen in the simple theoretical case given in the first section, indicating
limited sensitivity in the cutoff value as the dimensionality and complexity of the data in-
creases. The KNI overall emerges as a metric that performs well at identifying simulated
batch-effects and noise.

• Radius-based Neighbors intersection (RbNI): the RbNI score showed a similar nonlinear
sensitivity to the RbNN score with respect to the addition of noise, a valuable property as
noted above. Similar to the KNI, the RbNI score was insensitive to the selection of the
cutoff percent τ∗, for τ∗ > 0.5 when the radius was fixed at a value of 0.3, indicating
stability here (Figure 6e). This result also matched that seen in the theoretical test case
above, suggesting that this parameter is likely stable of cell-type space dimensionality and
complexity. Finally, a similar relationship between the selection of r and sensitivity to
the addition of noise was seen between the RbNI and RbNN methods when a cutoff of
τ∗ = 0.75 was used. Again, we find that the RbNI metric performs well at identifying both
batch-effects and noise.

Based on this analysis, we find the KNI and RbNI scores perform particularly well at
identifying both batch effects and noise and appear to generalize well between datasets.
We focus on and recommend the KNI score, given its similarity to the K-bet score that
is now well-described and used for batch-effect detection, though report RbNI values to
demonstrate that both metrics can be used and correlate well, indicating insensitivity to the
method of neighborhood search.

C APPENDIX 3: DATASET CONSTRUCTION

Raw scRNA UMI count matrices were obtained from public repositories. Quality control followed
the original author filters. Cells labeled by the authors as; (i) Unknown; (ii) Undetermined; or (iii)
Mixed were excluded from benchmark analysis. Gene identifiers were standardized across studies
based on (i) Human Protein Atlas (HPA) versions 13 to 20; and (ii) ENSEMBL GRCh38 versions
78 to 103. Priority was given to HPA identifiers. For scMARK, genes present in all datasets were
used for training. For scREF, genes common to 30 datasets or more were used for training. In cases
where the authors provided only general T-cell annotations, we used Azimuth’s Human PBMC
signatures (Hao et al. 2021) to assign those cells into CD8+ or CD4+ cells. Gamma-delta T-cells
were also included for scREF. The studies present in scMARK are given in Appendix Table A, while
the studies given in scREF are provided in Table Appendix Table B. Mappings of author labels to
standardized cell-type labels and specific gene details can be found on github [LINK PROVIDED
AFTER BLINDED REVIEW].
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Appendix Table B scREF Datasets
First Author Year PMID Normal Tissues Technology
Adams 2020 PMID:32832599 Lung 10x Ch. 3’ v2
Aida 2023 Cell x Gene Blood 10x Ch. 5’ v2
Andrews 2022 PMID:34792289 Liver 10x Ch. 3’ v2 or v3
Bakken 2021 PMID:34616062 Brain 10x Ch. 3’ v3
Bautista 2021 PMID:33597545 Thymus 10x Ch. 3’ v2 or v3
Bhatnakshatri 2021 PMID:33763657 Breast 10x Ch. 3’ v3
Cillo 2020 PMID:31924475 Blood, Head-and-neck 10x Ch. 3’ v2
Demicheli 2020 PMID:32624006 Skeletal-muscle 10x Ch. 3’ v2
Elmentaite 2021 PMID:34497389 Colorectal, Intestine,

Lymph-node
10x Ch. 5’ v2 or 3’ v2

Fan 2019 PMID:31320652 Ovarian 10x Ch. 3’ v2
Garciaalonso 2021 PMID:34857954 Uterus 10x Ch. 3’ v2 or v3
Guo 2018 PMID:30315278 Testis 10x Ch. 3’ v2
Habermann 2020 PMID:32832598 Lung 10x Ch. 3’ v2 or 5’
Han 2020 PMID:32214235 Many / Whole Organism microwell-seq
He 2020 PMID:33287869 Many / Whole Organism 10x Ch. 5’
Henry 2018 PMID:30566875 Prostate 10x Ch. 3’ v2
Hildreth 2021 PMID:33907320 Adipose 10x Ch. 3’ v3
Jones 2022 PMID:35549404 Many / Whole Organism 10x Ch. 3’ v2 or 5’ v2
Kfoury 2021 PMID:34719426 Bone-marrow 10x Ch. 3’ v2
Kong 2023 PMID:36720220 Colorectal, Intestine 10x Ch. 3’ v2 or v3
Lake 2023 PMID:37468583 Kidney 10x Ch. 3’ v3
Lein 2023 Cell x Gene Brain 10x Ch. 3’ v3 or 10x multi-

ome
Lengyel 2022 PMID:36543131 Ovarian 10x Ch. 3’ v3 or Drop-seq
Liang 2023 PMID:37388908 Eye 10x Ch. 3’ v3
Litvinukova 2020 PMID:32971526 Heart 10x Ch. 3’ v3 or 10x Ch. 3’

v2
Lukassen 2020 PMID:32246845 Bronchus 10x Ch. 3’ v2
Macparland 2018 PMID:30348985 Liver 10x Ch. 3’ v2
Madissoon 2019 PMID:31892341 Head-and-neck, Lung,

Spleen
10x Ch. 3’ v2

Mayr 2021 PMID:33650774 Lung Drop-seq
Menon 2019 PMID:31653841 Eye 10x Ch. 3’ v3 and Seq-Well
Nie 2022 PMID:35504286 Testis 10x Ch. 3’ v3
Nowickiosuch 2023 PMID:36929873 Gastric, Head-and-neck,

Intestine
10x Ch. 3’ v2 or v3

Pal 2021 PMID:33950524 Breast 10x Ch. 3’
Parikh 2019 PMID:30814735 Colorectal 10x Ch. 5’ v2 and Smart-

seq2
Perez 2022 PMID:35389781 Blood 10x Ch. 3’ v2
Qadir 2020 PMID:32354994 Pancreas 10x Ch. 3’ v2
Reed 2023 PMID:38548988 Breast 10x Ch. 3’ v3
Siletti 2023 PMID:37824663 Brain 10x Ch. 3’ v3
Sohni 2019 PMID:30726734 Testis 10x Ch. 3’ v2
Soleboldo 2020 PMID:32327715 Skin 10x Ch. 3’ v2
Vangalen 2019 PMID:30827681 Bone-marrow Seq-Well
Ventotormo 2018 PMID:30429548 Blood, Decidua, Placenta 10x Ch. 3’ v2 and Smart-

seq2
Wang 2020 PMID:31915373 Heart SMARTScribe/Takara
Wang 2020 PMID:31753849 Colorectal, Intestine, Heart 10x Ch. 3’ v2
Wiedemann 2023 PMID:36732947 Skin 10x Ch. 3’ v2 or v3
Zhao 2020 PMID:33173058 Testis 10x Ch. 3’ v2
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D APPENDIX 4: MODEL METHODS

Cell-type space alignment parameters and methods were implemented as follows:

• PCA: Highly variable genes were selected based on higher dispersion than genes with
similar mean expression Satija et al. (2015), implemented in scanpy v1.7.2 Wolf et al.
(2018). PCA was run on scaled, normalized expression of highly variable genes.

• RPCA: Implemented in R using Seurat (v4.0.3) Hao et al. (2021) with top-10 larger
samples as references for anchor detection (parameters: dims=10, npcs=10, k.filter=150,
k.weight=100). Output from RunPCA (npcs=10) and RunUMAP (n.components=10) with
assay=”SCT” were used for KNI/RbNI calculations.

• Harmony: PCs identified from highly variable genes with PCA were passed to harmony-
pytorch v.0.1.7, using default parameters.

• scVI 2L Sample: Reimplemented the scVI variational auto-encoder Lopez et al. (2018)
with sample level batch-correction. 1) Used 2-layer encoder and decoders. 2) 512 hidden
nodes per linear layer. 3) Dropout regularization (0.1 probability). 4) Batch normalization
between hidden layers. 5) ReLU activation function. 6) 10-dimensional latent space with
Normal distribution. 7) Zero-Inflated Negative Binomial distribution for gene counts. 8)
Adam optimizer (learning rate = 1E-4, weight decay = 1E-5, eps = 0.01). 9) Early stopping
(patience = 15 epochs). 10) Batch size 64, maximum 100 epochs. 11) Implemented in
Python using Pytorch (1.7.0). 12) One-hot Batch ID vectors for unique Sample ID (386
batches/samples across 10 studies).

• scVI 4L Sample: Optimized scVI model with 4 layers in encoder/decoder and patience =
5 for early stopping.

• scVI* (ScVI 4L-NoL-NoB Both): Optimized scVI model without batch ID requirement
in encoder. 1) Removed explicit library size handling. 2) No batch ID vector injection into
encoder layer. 3) Two-hot batch ID vector encoding Sample ID (386) and study ID (11). 4)
Learning rate = 5E-5.

• scGPT: Used authors’ tutorials for zero-shot and fine-tuned embeddings (accessed March
25th, 2024). 512-dimensional embeddings from fine-tuned models reduced to 10 dimen-
sions using two-layer autoencoder with cosine similarity loss.

• geneFormer: Used authors’ zero-shot pipeline for preprocessing, tokenization, and em-
bedding (accessed March 27th, 2024).

For geneFormer and scGPT, dataloaders used TileDB database, while VAE models (scVI, BA-scVI)
loaded data directly from H5AD files. All dataloaders and model training procedures leveraged
PyTorch lightning library.

For scVI, PCAscmap, Harmony, and BA-scVI, the count matrices were normalized on a per-cell ba-
sis using Scanpy v1.7.2 Wolf et al. (2018), by dividing each cell by its total count over all genes. The
normalized count was then multiplied by a scale factor of 10,000, after which a log(X+1) transforma-
tion was applied. For RPCA, Seurat’s SCTransform normalization was used with default parameters
Hao et al. (2021).

D.1 BA-SCVI ARCHITECTURE

Batch-Adversarial scVI (BA-scVI) leverages the same core architecture as scVI, but makes use of
an adversarial framework for removing batch effects. The key difference is where scVI injects one-
hot batch ID vectors into the encoder and decoder layers, BA-ScVI takes an adversarial learning
approach to learning and removing batch-effects.

Here discriminators seek to predict the batch-ID bi using the encoder outputs and decoder inputs.
Namely, the discriminator D seeks to minimize loss L with respect to batch-ID on the encoder
outputs WE and decoder outputs WD. The encoder and decoder weights are frozen in this step. We
use cross entropy loss such that:

Ldisc. =
∑
i

bi log(pi) +
∑
i

bi log(qi), pi = D(WE), qi = D(WD)
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The inference network then seeks to: 1) Maximize the probability of the posterior, which in this
case we use a Zero-Inflated Negative Binomial (ZINB) distribution as per Lopez et al. (2018); 2)
Minimize KL-divergence of the embedding distribution z and library encoder l Kingma & Welling
(2013); and 3) Maximize discriminator loss, i.e.

LBAscV I = −Eq(z,l|x) log p(x|z, l) +DKL(z) +DKL(l)− βLdisc.

The discriminator and inference networks are then trained in sequential steps with the first step used
to update weights on the discriminator networks and the second step weights on the inference net-
work. An optimal regimen for training was identified (Table S3) that leveraged an Adam optimizer
Kingma & Ba (2014), with learning rate = 5E-5 for the inference network, 1E-2 for the discrimina-
tor network; weight decay = 1E-5; and eps = 0.01, with a batch-size 64 and for a maximum of 100
epochs; β = 1000 was used for the model evaluated in the main text. Values of β = 10(−1..5) were
tested and an optimal value chosen. In this optimal training regime a two-hot batch ID vector was
also used that encoded ’Both’ Sample ID (386 long), and study ID (11 long) was also used.

D.2 MODEL TRAINING DETAILS

Models were trained on scREF, the scREF/scREF-mu atlas using a regime optimized on a smaller
benchmark scMARK that we discuss in the supplemental, with the exception of our handling of
a standardized gene set for training. For scMARK genes common to all datasets were used. For
scREF and the joint atlas we took a list of genes common across 30 datasets or more. To handle
missing genes for a specific dataset, we then applied a mask to the reconstruction loss function at
train time, such that only genes present in the dataset affected the overall loss. This mask was not
applied to either the encoder or decoder, and thus will not affect prediction results. For the joint
atlas, we used ENSEMBL v110. On scREF-mu, mouse genes identifiers common to all datasets
were used (Table S1).

E APPENDIX 5: KNI SCORES ON NEW CELL-TYPE LABELS

A key assumption in our benchmarking approach is that consensus author labels can be used to
identify models that align scRNA data effectively, and that the KNI readouts capture this. To test
this assumption, we evaluated model performance using the KNI score on three well-defined cell
types not included in the original dataset and that we define by gene expression vs. author labels.
Specifically, we use (1) CLEC9A+ Dendritic cells Caminschi et al. (2008); (2) T regulatory T-cells
(T-regs), expressing FOXP3 Fontenot et al. (2003); (3) and Lymphatic Endothelial cells, positive
for CCL21 Kriehuber et al. (2001). We assigned new cell-type labels to these cells based on the
non-zero expression of the respective marker gene and then assessed the model’s ability to identify
these cell types based on the KNI score. We note that only a subset of the true set of these cells
is likely labeled by this approach due to high dropout rates in scRNA-seq. Across all three cell
types, we noted that positive correlations were seen between the newly defined cell types and both
the KNI scores on scMARK (Figure 7a) and scREF (Figure 7b. Overall, this indicates that methods
that score well under the KNI on standardized labels are also best for identifying new-cell type
groupings as defined by gene expression. Importantly, BA-scVI, the top performing model, was the
best performing model in 4/6 tests, and second from the top in the remaining two. Overall, this
analysis thus supports our initial assumption that author labels approximate a ground truth, can be
used for effectively assessing model performance, and supports the validity of the scMARK and
scREF alignments presented here.
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Figure 7: Correlation of the KNI score between standardized and newly defined cell-types: a) Scatter
plots show the correlation between KNI scores achieved on the scMARK dataset using standardized
author labels (x-axis) and three cell-types (y-axis) defined by non-zero gene expression of CLEC9A
(Dendritic-cell subtype), FOXP3 (T-regs), and CCL21 (Lymphatic Endothelial) in the scMARK
dataset; b) the same as (a), but comparing KNI scores obtained on the scREF dataset and KNI
scores obtained on the three cell-types defined in the scREF dataset
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