
PINNs with Learnable Quadrature

Sourav Pal
UW-Madison

spal9@wisc.edu

Kamyar Azizzadenesheli
NVIDIA Corporation

kaazizzad@gmail.com

Vikas Singh
UW-Madison

vsingh@biostat.wisc.edu

Abstract

The growing body of work on Physics-Informed Neural Networks (PINNs) seeks
to use machine learning strategies to improve methods for solution discovery of
Partial Differential Equations (PDEs). While classical solvers may remain the
preferred tool of choice in the short-term, PINNs can be viewed as complementary.
The expectation is that in some specific use cases, they can be effective, standalone.
A key step in training PINNs is selecting domain points for loss evaluation, where
Monte Carlo sampling remains the dominant but often suboptimal in low dimen-
sion settings, common in physics. We leverage recent advances in asymptotic
expansions of quadrature nodes and weights (for weight functions belonging to
the modified Gauss-Jacobi family) together with suitable adjustments for parame-
terization towards a data-driven framework for learnable quadrature rules. A direct
benefit is a performance improvement of PINNs, relative to existing alternatives,
on a wide range of problems studied in the literature. Beyond finding a standard
solution for an instance of a single PDE, our construction enables learning rules to
predict solutions for a given family of PDEs via hyper-networks, a useful capability
for PINNs.

1 Introduction

Differential equations are widely used across science, providing a framework for modeling/analyzing
diverse physical dynamics. Most real-world settings lead to differential equations where analytical
solutions are not possible, but research over decades has led to a mature set of numerical methods
[Ames, 2014, Trefethen and Bau, 2022]. Specifically, a growing body of work has identified novel
architectures, by marrying differential equation solvers with deep learning and these formulations
offer new capabilities. For example, one now has access to completely data-driven approaches [Li
et al., 2020b,a, Kovachki et al., 2021] which use observational data to estimate the operator for
a PDE. We also have a new class of differential equation solvers that exploit neural networks to
encode physical laws (PINNs) [Raissi et al., 2019, Kharazmi et al., 2019] without any observational
data. PINNs give solutions which are mesh-independent, easier to implement due to automatic
differentiation, and handle non-linearity well. As such, while classical solvers may remain the default
choice in general, developments in PINN suggest that they can be an alternative in certain scenarios.

Roughly speaking, the aforementioned line of work [Karniadakis et al., 2021], discussed in more
detail later in §7 can be broadly classified under three main threads: (a) Solving PDEs using neural
networks (PINNs) [Raissi et al., 2019]; (b) PDE discovery (e.g., symbolic regression) [Holt et al.,
2023, d’Ascoli et al., 2023] and (c) operator learning (e.g., Fourier Neural Operator) [Azizzadenesheli
et al., 2024]. This classification is loosely based on the amount of data or physics used to solve/inform
the forward/inverse problem, [Boullé and Townsend, 2023]. Our work falls under the first category,
where we wish to solve a single (or multiple instances) of a PDE with PINNs. Here, we seek to
identify how a learning mechanism can deliver efficiency gains solely based on the shared structure
and knowledge of physics, without the use of any labeled data.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

PDEs and Quadrature. Consider the second-order PDE,

∂2u

∂x2
+
∂2u

∂y2
= log(x) sin(y) + f(x, y)y3 (1)

One way to find u is to integrate both sides with a test function v(x, y) resulting in:∫ ∫ (
∂2u

∂x2
+
∂2u

∂y2

)
v(x, y)dxdy =

∫ ∫ (
log(x) sin(y) + f(x, y)y3

)
v(x, y)dxdy (2)

Doing so enables the use of numerical methods which build-up sums that converge to the integral’s
true value. This has the benefit of easing regularity conditions on u. It solves the original problem in
a weighted sense. A quadrature method [Golub and Welsch, 1969] chooses evaluation points (nodes)
and corresponding weights to minimize approximation error. These points/nodes may be constant
step/uniform or adaptive, i.e., either fixed or adaptive quadrature rules for estimating the integral.

Challenges in computing an integral. In many applications from fluid dynamics (turbulent flow)
[Kutz, 2017] to radiation treatment planning (fluence calculation at tissue interfaces) [Lou et al.,
2021, Beckham et al., 2002] to materials science (fracture mechanics) [Aliabadi and Rooke, 1991,
Rice and Tracey, 1973], the associated data involves irregular behavior including singularities.

Figure 1: Relevance of learnable quadratures. Given
a fixed number of quadrature points, one can update a
learnable module based on how good/bad the numerical
approximation of the integral is.

Uniformly splitting the domain of integration
into equal sub-domains, in many cases, is insuf-
ficient owing to the singularity associated with
the integrand. Further, even a sophisticated par-
titioning scheme, runs into difficulties in the
multi-dimensional case. A common solution is
to use some variant of Monte Carlo sampling.
In higher dimensions, we have no choice but
to sample at large and expect the estimated so-
lution to converge to the true solution, given
enough runtime. In lower dimensions, Monte
Carlo sampling is sub-optimal [Lu et al., 2021]
and several strategies to improve the speed and
accuracy of the integral computation are known,
the prominent ones being some variant of adap-
tive quadrature scheme, essentially choosing an adaptive grid dependent on the integrand.

Main Idea. We propose a learnable quadrature scheme (Fig.1) utilizing a rich theory of orthogonal
polynomials (OP) and asymptotic expansions. Consider solving a PDE with PINNs either in its strong
form (PINN) [Karniadakis et al., 2021] or weak form (VPINN, hp-VPINN) [Kharazmi et al., 2019,
2021]. In both cases, the goal is to either (a) determine which points in the domain to evaluate the
function on (this is the strong form) or (b) determine which test functions to use (for evaluation of
the weak form). We tie these choices to the roots of OP w.r.t. the modified Gauss-Jacobi weight
functions. Next, we use recent advances in asymptotic expansions of quadrature nodes and weights
[Opsomer and Huybrechs, 2023] to achieve a scheme to compute these efficiently.

Contributions: For solving PDE with PINNs, we describe two separate learning modules. First is
the solution function for the PDE parameterized using a neural network (standard in PINNs). The
second is a parameterized weight function which induces a family of OP. Our parameterization of the
weight function together with asymptotic expansions takes advantage of parallel compute on GPUs
to generate a massive number (millions) of quadrature nodes and weights in near constant time. This
provides an alternative to Monte Carlo sampling for low-dimensional problems. Our model can solve
most PDEs from the PINN literature achieving better performance than existing adaptive/non-adaptive
sampling schemes. Our parameterization of the weight function also allows learning a quadrature
predictor for a family of PDEs (with shared structure), which may be of independent interest.

2 Preliminaries

We review some key concepts that will be useful throughout.

Orthogonal Polynomials (OP). A sequence of real-valued polynomials p0(x), p1(x), p2(x), ...,
where each pn(x) is a polynomial of degree n are orthogonal [Olver et al., 2020] with respect to a

2

continuous and non-negative weight function w(x) defined in the interval (a, b) if:

⟨pm, pn⟩w =

∫ b

a

pm(x)pn(x)w(x)dx =

{
0 if m ̸= n,

hn if m = n
(3)

where hn is a normalization constant. In fact, if hn = 1 for all n, then the family is orthonormal.

Modified Gauss-Jacobi Weight functions. We use weight functions from the modified Gauss-Jacobi
family Opsomer and Huybrechs [2023] to induce our family of OP (3) which have the form:

w(x) = (1− x)α(1 + x)βh(x); x ∈ [−1, 1] (4)

where α, β > −1. h(x) is the modifier over the standard Gauss-Jacobi weight function: w(x) =
(1−x)α(1+x)β . The only restriction on h(x) is that it should be a strictly positive analytic function.

Cauchy Residue Theorem. The Cauchy Residue Theorem [Stein and Shakarchi, 2010] is a powerful
tool to compute line integrals of analytic functions over closed curves. Let f be a function that is
holomorphic on a simply connected open subset of the complex plane, except possibly at a finite set
of points a1, · · · , an(called poles) and γ be a positively oriented simple closed curve, then we have:∮

γ

f(z)dz = 2πi

n∑
k=1

Res(f, ak); Res(f, ak) =
1

2πi

∮
γk

f(z)dz (5)

where the quantity Res(f, ak) is the complex residue of the pole ak. γk is a positively oriented
simple closed curve around the pole ak not including other singularities. This is the general formula;
in our case, we will only deal with simple poles, so it simplifies [Stein and Shakarchi, 2010],

Res(f, ak) = lim
z→ak

(z − ak)f(z) (6)

3 Strong and Weak Forms

We use u to denote the solution for a given PDE. Since, u is learned (parameterized using neural
networks), it is commonly called the trial function. In its most generic form, a PDE is:

Lu = f, in Ω; u = g, in ∂Ω (7)

where, L denotes the differential operator acting on u, f denotes the non-homogeneity.. Also,
g, g1, . . . denote functions corresponding to the initial and/or boundary conditions as needed and Ω
gives the domain of definition of the PDE and ∂Ω denotes its boundary.

Solving PDEs. We examine the canonical form of a second order elliptic PDE, the Poisson’s equation
(in 2 dimensions) as a running example. In 2D-Poisson’s equation, the operator L is the Laplace
operator, ∇2. For u : Ω → R, where Ω ⊂ R2 is the domain of interest this is given by:

−∇2u(x, y) = f(x, y), (x, y) ∈ Ω; u(x, y) = 0, (x, y) ∈ ∂Ω (8)

where f is the forcing function. We consider Ω to be [−1, 1]× [−1, 1] and ∂Ω as the natural boundary.

Before getting into details of our proposal, we summarize two solution approaches: via the strong and
weak form of the PDE respectively. This will help us see how certain choices (such as quadrature
rule and collocation points) will be key to our parameterization and thereby, learning.

Strong Form. Solving the PDE in its strong form (7) or (8) is equivalent to asking that the equations
in (8) are satisfied exactly at several points along the domain Ω and boundary ∂Ω. This can be done
by sampling a large number of points distributed uniformly (Monte Carlo). While this approach is
reasonable for simple cases, in more complex settings where the solution is not smooth, uniform
sampling may lead to reduced approximation quality Lu et al. [2021].

Weak Form. While the strong form enforces point-wise exactness, we may only want the property
to hold in a “weighted" sense for the entire function. This yields the weak form, which involves
integration with a test function. For the 2D-Poisson equation, using a test function v(x, y) and
integrating over the domain, we have∫ ∫

Ω

−∇2u v dxdy =

∫ ∫
Ω

f v dxdy (9)

3

Solving the PDE in its weak form moves the previous choice of points to a choice of test functions.
The idea is to use a family of test functions based on the problem at hand and different methods
emerge from this choice. These methods are called Galerkin methods. If one decides that the test
functions in the weak form are Dirac-delta functions, then the Galerkin method reduces to collocation
and the weak form becomes the strong form involving differential equations, which then need to be
satisfied at the collocation points. When we discuss the strong form, we will interchangeably use “the
choice of collocation points” and “the choice of test functions”.

4 How to learn Quadrature Rules?

The above discussion underscored the importance of choice of test functions in the weak form or the
choice of collocation points for solving the PDE in its strong form. One may ask: can the underlying
physics inform these choices? To do so, we leverage the rich theory of OP.

Learning the weight function: We consider weight functions to be continuous and positive functions
defined in some interval I . Each such weight function w(x) induces a family of OP given by (3). By
learning the weight function for a set of OP, we want to enable a learnable (or adaptive) quadrature.
For this to be practical, we want to compute these efficiently. Our method exploits asymptotic
expansions of quadrature nodes for efficiency which are most complete for modified Gauss-Jacobi
type weight function. So, we consider the modified Gauss-Jacobi form (4) and parameterize the
modifier h(x) in (4) using a neural network with parameters θ. This keeps the construction simple
but offers many nice benefits we will see soon. So, our learnable weight function has the form:

wθ(x) = (1− x)α(1 + x)βhθ(x); x ∈ I (10)

In (10), α and β can also be parameterized/learnt but in our experiments, we find that only learning
hθ(x) suffices. We consider the interval of the weight function I to be the same as Ω, the domain
of the PDE. Next, we will see how this learnable weight function cleanly ties to the choice of test
functions for the weak form and the collocation points in the strong form.
Remark 4.1. The method can, in principle, be extended to higher dimensions by treating each
dimension independently and stacking the sampled values. Realizing such extensions in practice,
however, would necessitate more elaborate constructions such as tensor-product formulations or
sparse grid techniques [Garcke et al., 2006] to appropriately handle increased complexity.

Relation to Solving PDEs in Weak Form: For the weak form, consider a weighted integral using
our weight function wθ as the test function v, on both sides of (9),∫ ∫

Ω

−∇2u wθ dxdy =

∫ ∫
Ω

f wθ dxdy (11)

We must compute both sides of the integral efficiently, especially for weight functions that produce the
largest error in the integral equality. Our choice of weight functions crucially helps this computation.

Use of Orthogonal Polynomial & Quadrature Rule: Consider a one-dimensional integral. It
is well-known that a n-point Gaussian quadrature rule can be constructed to yield a very good
approximation to the integral of a 2n − 1 degree polynomial, multiplied with the corresponding
weight function. For example, if we use the standard (non-modified) Gauss-Jacobi weight function:

w(x) = (1− x)α(1 + x)β ; x ∈ [−1, 1]; α, β > −1 (12)

Then, the n-th order approximation to the integral is given by:∫ 1

−1

f(x)(1− x)α(1 + x)βdx ≈
n∑

i=1

wif(xi) (13)

where xi denotes the i-th node and wi the corresponding weight of the n point Gauss-Jacobi
quadrature. Here, f(x) is a smooth function on [−1, 1]. The nodes xi are in fact the roots of the n-th
degree Jacobi polynomial, which form a family of OP w.r.t. the weight function in (12). Our learnable
weight function not only provides a data-dependent choice of test functions associated with the weak
form but also induces a learnable quadrature rule to compute the integral for the weak form!

Relation to Solving PDEs in Strong Form: Solving a PDE in its strong form means enforcing the
relationship at several collocation points. A popular method in this category is orthogonal collocation

4

[Young, 2019] where the collocation points used are roots of orthogonal polynomials. Thus, with
our choice of learnable weight function, wθ (which induces a family of OP (3)) also provides a
data-dependent method to sample collocation points to solve a PDE in its strong form.
Remark 4.2. Standard quadratures with fixed nodes and weights are easy to implement in PINNs,
but their lack of adaptivity leads to suboptimal residual minimization during training. Being data
independent they cannot be conveniently utilized for solving a family of PDEs via neural networks.

5 Learning Quadrature Rules Efficiently

Solving PDEs via strong form, means that we must identify collocation points to evaluate the PDE.
For the weak form, solving amounts to numerically approximating the integral via a quadrature rule.

ℜ(z)

ℑ(z)

Bulk

Left Right

Outer Region

−1 1

Figure 2: Different regions of com-
plex plane for asymptotic expansion.

While §4 described the relation between learnable weight
function with weak and strong form solution methods, it is
not obvious how this can be done efficiently. Let us lay out
the task. In strong form (7),(8), we must find the roots of
corresponding OP. These will serve as the collocation points.
In weak form, the learnable weight function(s) itself can act
as test function(s). But we must find the quadrature rule (roots
of OP and corresponding quadrature weights) to evaluate
(11) efficiently. Thus, while the weight function is relevant by
itself, our main interest is in the roots of OP induced by the weight function. Next, we show how use
of recent advances in asymptotic expansions of OP and their roots suggest an efficient instantiation.

5.1 Instantiating Asymptotic Expansions

There is a mature literature for fast computation of quadrature nodes and weights corresponding
to weight functions of OP [Townsend, 2015]. Over the last few years, this race is dominated
by asymptotic expansions [Bogaert, 2014, Townsend et al., 2016]. Very recently, Opsomer and
Huybrechs [2023] proposed asymptotic expansions for generalized (i.e., modified) versions of
canonical weight functions including Gauss-Jacobi and Gauss-Hermite type.

Division of Complex Plane. We briefly present asymptotic expansions of nodes (roots of OP)
and weights of quadrature rule for the modified Jacobi-type weight function (4) [Opsomer and
Huybrechs, 2023, Opsomer, 2018]. The details are not crucial, but useful to appreciate our choice of
parameterizations. The reader can check Appendix 9 and Opsomer and Huybrechs [2023] for more
details on the expansions. The complex plane is divided into four regions (Fig.2) each with a different
expansion. These are: the lens covering a bulk of the interval (−1, 1), the two end-points referred
to as left and right disks and everything else is the outer region. Let Γ be a shorthand notation for
(2n+ α+ β + 1) and n refers to the polynomial degree.

Left endpoint. Truncated asymptotic expansions of nodes (xk) and weights (wk) near x = −1 are:

xk∼−1+
2j2β,k

(Γ+d0)2
+

−2j2β,k(j
2
β,k−3α2−β2 + 1)

3(Γ + d0)4
+ . . . ;

wk

w(xk)
∼ 8

J2
β−1(jβ,k)[Γ− d0]2

+ . . .

(14)
where w(xk) is the value of the weight function at node xk, and c0 and d0 are expansion coefficients,
described shortly. The expansion uses both (a) the zeros of Bessel functions of order β denoted as
jβ,k (k-th zero) and the Bessel function of order (β − 1) denoted by Jβ−1.

Right endpoint. For the right end-point, we interchange α and β and use h(−x) instead of h(x)

Bulk region. For expansions in the bulk region, we need to find the leading order term, tk by solving:

π
4k + 2α+ 3

4k + 2α+ 2β + 2
= arccos(tk) +

√
1− t2k
Γ

1

2πi

∮
γ

log(h(ξ))dξ√
ξ2 − 1(ξ − tk)

(15)

Using tk, the truncated asymptotic expansions of nodes and relative weights in the bulk region are:

xk ∼ tk +
2α2 − 2β2 + (2α2 + 2β2 − 1)tk

2[Γ + τ0]2
+

wk

w(xk)
∼
π
√
1− t2k
Γ

[
2− 2τ1(1− t2k)− 2τ0tk

Γ
] + . . .

(16)

5

where τ0, τ1 are also expansion coefficients.

Summary. In (14)–(16), the values of α, β correspond to the one used in the modified Gauss-Jacobi
weight function (4). The value of n determines the degree of the OP pn(x) from the family (3)
whose roots we want to compute. Finally, given n, k ∈ {1, 2, . . . , n} corresponds to the k-th root of
polynomial pn(x), which is guaranteed to exist and be unique in the interval of definition.

Expansion Coefficients. In our description above, we used several coefficients: c0, d0 and τ0, and
τ1. While more details are in Appendix 9, a synopsis is that the coefficients ck, dk stem from series
expansion of the modulation function h(x) in (4) (or the parameterized version in (10)) around
z = ±1. The coefficients τi are the series coefficients resulting from the expansion of the contour
integral in (15) around the leading order tk of the k-th root of the orthogonal polynomial. The above
formulas involve computation of contour integrals, root finding, and series expansions. Computing
all these terms exactly within a learnable module will be challenging. We will next perform some
simplifications so that the model is amenable to learning.

5.2 Simplifications, Assumptions and Implementation

We outline key assumptions, simplifications and implementation details for an efficient instantiation.

Simple Poles. Finding the leading order of the k-th root, tk, requires solving a contour integral (15).
We use the fact that roots in the bulk region are real and lie in (−1, 1), and assume the integrand has
only simple poles around tk, allowing us to compute residues via (6) as follows:

lim
z→tk

(ξ − tk)
log(h(ξ))√

1− ξ2(ξ − tk)
=

log(h(tk))√
1− t2k

(17)

Assuming real roots and simple poles, the Cauchy Residue Theorem (5), simplifies (15) as

π
4k + 2α+ 3

4k + 2α+ 2β + 2
= arccos(tk)−

log(h(tk))

Γ
(18)

Root finding and Implicit Function Theorem. While we avoided computing the contour integral,
we must solve (18) for tk. Since tk corresponds to the leading order of the root of an OP, it must exist
in (−1, 1). Thus, we use bisection method to find tk via root finding of:

F (tk) = π
4k + 2α+ 3

4k + 2α+ 2β + 2
− arccos(tk) +

log(h(tk))

Γ
(19)

We use automatic implicit differentiation from [Blondel et al., 2022], which uses auto-diff of F (tk)
and the implicit function theorem to automatically differentiate through the bisection method.

Benefits of simplifications & parameterization. We use fully connected layers followed by tanh
non-linearities to parameterize the solution function u, the modulating function h as well as to predict

Figure 3: Interlaced red and blue dots
on x axis correspond to the roots of
polynomial pn+1(x) (degree n + 1)
and pn(x) (degree n) respectively.

expansion coefficients of the nodes and weights,
c0, d0, d1, τ0, τ1, etc. for bulk and edge regions. The sim-
plifications above offer multiple benefits. First, we avoid
computing contour integrals within a differentiable learning
framework. Second, we are able to compute all nodes and
weights in parallel thereby making the process very efficient
even for a very large number (millions) of nodes. It is worth
noting that the exact procedure to compute the nodes (beyond the leading order term) in Section 4.2
of [Opsomer and Huybrechs, 2023] has a linear time complexity due to the several re-substitutions
involved to find the coefficients. Empirically, we verify that the distribution of nodes and weights
from the simplifications and parameterization choices does not hurt the distribution of quadrature
which converges to the expected distribution.

Interlacing of roots of orthogonal polynomial. A naive application of quadrature nodes and weights
for the OP is insufficient in several cases. This is because with a high degree polynomial (and so, a
large number of nodes), within a few epochs, jointly training the solution and quadrature functions
leads to over-fitting. Interestingly, this can be solved via a very useful property of the family of
OP, namely interlacing of roots. Given the roots of an OP of degree n+ 1, the roots of the OP of
degree n that belong to the same family are interlaced within the roots of pn+1 as shown in Fig. 3.

6

Thus, by utilizing quadrature nodes and weights stemming from varying degree of OP (all of whom
correspond to the same weight function being learned), we introduce the desired stochasticity to
prevent over-fitting.
Remark 5.1. In [Mishra and Molinaro, 2023], Theorem 2.6 decomposes the generalization error into
training error ET and a quadrature term CpdeC

1/p
quadN

−α/p, where Cquad depends on the sampling
distribution. LearnQuad directly targets Cquad by learning a sampling distribution that concentrates
collocation points where the residual is high, without modifying the PINN architecture or PDE model.

Implementation Details: To ensure that our learned weight function is positive, we use softplus
activation on the last layer of the network for hθ(x). Further, the presence of log in (19) can lead to
vanishing gradients, which we fixed by adding a small amount of noise (order of e−6). We use the
standard loss function used in PINN literature [Karniadakis et al., 2021, Cai et al., 2021] Additionally
to avoid invalid quadrature rules from numerical issues, we use:

lw = (

n∑
i=1

wi −
∫ 1

−1

wθ(x)dx)
2 + (

n∑
i=1

wi − 2)2 (20)

where the first term in (20) enforces the necessary condition that the sum of quadra-
ture weights is equal to the integral of the weight function over the domain of def-
inition. The second term in (20) discourages the quadrature weights from becom-
ing too small. We note that the quadrature weights wi are computed numerically
from the learned weight function using asymptotic expansions and not directly learned.

Algorithm 1 Training for a single PDE

1: Input: PDE parameter µ; #epoch: T , Learn-
able model uϕ, wθ; Loss L incorporates oper-
ator L, inhomogeneous term, initial/boundary
condition; regularizer lw.

2: for i = 1 to i = T do
3: Use §5 to get quadrature nodes {xl}
4: Use solution function uϕ on {xl}
5: Loss:l = L(uϕ(xl)) + lw(wθ)
6: Update uϕ and wθ based on l
7: end for
8: Output: Learned models θ and ϕ

Instead of integrating a PDE solver into the
learning framework, the PINN loss is chosen
due to challenges in differentiating through ex-
plicit/implicit solvers, including high memory
usage, numerical instability, and computational
overhead. Using PINN loss enables end-to-end
learning and facilitates the development of learn-
able quadrature rules that generalize across dif-
ferent PDE instances. Our overall procedure
has two trainable components: one is the learn-
able quadrature module (LearnQuad) and the
other is the learnable solution function for the
given PDE. These can be trained jointly using
the loss described above either to simultaneously
decrease it or in a min-max fashion where the quadrature module tries to provide hard-to-approximate
function points in the domain. Empirically, we do not find a large difference in this specific choice
of optimization. We provide pseudo-code for training PINN using LearnQuad in Algorithm 1. As
demonstrated in Appendix 10.1.8 variations of α and β in the modified Gauss-Jacobi weight function
only lead to minor variations in performance. So, we fix α, β to moderate values (typically in the
range 1–2) for all experiments. This choice is sufficient to achieve the desired performance, without
requiring extensive hyper-parameter sweeps. Our code is available at https://github.com/vsingh-
group/learn-quad.

6 Experimental Evaluations

Table 1: LearnQuad has lowest L2 relative error (mean
± standard deviation) in all PDEs.

PDE Burgers’ Allen-Cahn Wave
points 2000 1000 2000

N
on

-a
da

pt
iv

e Grid 0.12 ± 0.04 0.88 ± 0.06 0.42 ± 0.09
Random 0.13 ± 0.03 0.32 ± 0.14 0.48 ± 0.07
LHS 0.18 ± 0.15 0.32 ± 0.04 0.61 ± 0.13
Halton 0.06 ± 0.02 0.18 ± 0.05 0.46 ± 0.06
Hammersley 0.07 ± 0.05 0.17 ± 0.05 0.31 ± 0.09
Sobol 0.08 ± 0.03 0.20 ± 0.10 0.49 ± 0.09

A
da

pt
iv

e

Random-R 1.69 ± 1.67 0.55 ± 0.34 0.72 ± 0.90
RAR-G 0.12 ± 0.04 0.53 ± 0.19 0.81 ± 0.11
RAD 0.02 ± 0.00 0.08 ± 0.06 0.09 ± 0.04
RAR-D 0.03 ± 0.01 0.09 ± 0.03 0.29 ± 0.04
LearnQuad 0.003 ± 0.0020.03 ± 0.0080.005 ± 0.0006

We demonstrate the effectiveness of our
proposed framework involving the learn-
able quadrature module (LearnQuad) in
solving PDEs via PINNs next. First we
compare the empirical performance in solv-
ing single PDEs which demonstrate their
effectiveness when used with PINNs. We
emphasize that the use of LearnQuad
improves the performance of PINNs and
helps close the gap with numerical meth-
ods based solvers. Thereafter, we describe
how the use of hyper-networks can enable

7

https://github.com/vsingh-group/learn-quad
https://github.com/vsingh-group/learn-quad

Table 2: L2 error with 1000 collocation points. LearnQuad yields best results in 4 of 5 cases.

PDE Convection (β = 30) Convection (β = 50) Allen Cahn

Epochs. 100k 300k 150k 300k 200k

PINN (fixed) 107.5± 10.9% 107.5± 10.7% 108.5± 6.38% 108.7± 6.59% 69.4± 4.02%
PINN (dynamic) 2.81± 1.45% 1.35± 0.59% 24.2± 23.2% 56.9± 9.08% 0.77± 0.06%
Curr Reg 63.2± 9.89% 2.65± 1.44% 48.9± 7.44% 31.5± 16.6% –
CPINN (fixed) 138.8± 11.0% 138.8± 11.0% 106.5± 10.5% 106.5± 10.5% 48.7± 19.6%
CPINN (dynamic) 52.2± 43.6% 23.8± 45.1% 79.0± 5.11% 73.2± 3.6% 1.5± 0.75%
RAR-G 10.5± 5.67% 2.66± 1.41% 65.7± 1.77% 43.1± 28.9% 25.1± 23.2%
RAD 3.35± 2.02% 1.85± 1.90% 66.0± 1.55% 64.1± 11.9% 0.78± 0.05%
RAR-D 67.1± 4.28% 32.0± 25.8% 82.9± 5.96% 75.3± 9.58% 51.6± 0.41%
L∞ 66.6± 2.35% 41.2± 27.9% 76.6± 1.04% 75.8± 1.01% 1.65± 1.36%
R3 1.51± 0.26% 0.78± 0.18% 1.98± 0.72% 2.28± 0.76% 0.83± 0.15%
Causal R3 2.12± 0.67% 0.75± 0.12% 5.99± 5.25% 2.28± 0.76% 0.71± 0.007%
LearnQuad 0.78± 0.002% 0.68± 0.02% 0.79± 0.02% 0.76± 0.01% 0.87± 0.01%

LearnQuad to efficiently solve multiple instances of a given PDE. Our extensive set of baselines
include: PINN(fixed), PINN(dynamic) [Karniadakis et al., 2021], Curr Reg [Krishnapriyan et al.,
2021], CPINN (fixed, dynamic) Wang et al. [2022], RAR-G [Lu et al., 2021], RAD [Nabian et al.,
2021], RAR-D [Wu et al., 2023], R3 and Causal R3[Daw et al., 2023]. We performed experiments on
benchmark PDEs considered in the baselines. This ensured that we are able to clearly demonstrate
the advantage of LearnQuad.

6.1 Solving PDEs using LearnQuad

Setup: We compare the performance of LearnQuad in PINN-based solutions of several well known
PDEs. We benchmark the performance of our proposed data adaptive quadrature scheme against
several other adaptive and non-adaptive algorithms [Wu et al., 2023, Lu et al., 2021, Daw et al., 2023].
Additional experimental details including the explicit form of the PDEs, hyper-parameter details
used in the experiment are included in Appendix 10.1. We used the exact same number of points
to train the solution model in all methods for a given PDE, and the number of collocation points is
chosen based on the baseline methods. The solution model in each case had the exact same number
of parameters to ensure a fair comparison.

Result: We report L2 relative error (48) as the performance metric following two different exper-
imental settings from Daw et al. [2023] and Wu et al. [2023] over 7 PDEs in Table 2 and Table 1
respectively. In all but one scenario, LearnQuad is able to achieve the best solution function. As can
be seen from the numerical results in Table 2 and 1, the L2 relative error for models trained using
LearnQuad are better by an order of magnitude in most cases and also have very little variance (results
reported are an average over five runs). The performance of LearnQuad improves as the number
of evaluation points increases, as presented in Table 6. Additionally, we observe that LearnQuad
can achieve similar performance to other adaptive methods with a much smaller number of points in
many cases. All methods have a comparable runtime and memory consumption.

Summary: As an adaptive method, LearnQuad is highly effective in PINN-style solving of PDEs,
leading to performance boost of PINNs in all cases. The findings highlight the usefulness of
adaptive methods over non-adaptive ones specifically when the solution function is not well-behaved.
LearnQuad can be used as drop in replacement for any sampling strategy.
Remark 6.1. We include additional results on solving PDEs via LearnQuad in their strong form, weak
form and also using the energy method in Appendix 10.3. These demonstrate that LearnQuad is a
versatile adaptive scheme which can be used to solve PDEs in multiple reformulations.
Remark 6.2. We use LearnQuad in solving a 100 dimensional PDE, a Poisson equation with a very
smooth solution (details in Appendix 10.2 following Yu et al. [2018]) and achieve a relative L2 error
of 0.085 which is similar to using naive Monte Carlo in this setting with relative L2 error of 0.09.
This illustrates the viability of LearnQuad for high dimensional PDEs. Since the solution is smooth
in this particular case, there is no substantial benefit in using a data-driven adaptive method.
Remark 6.3. In Appendix 10.1.7 we show that LearnQuad remains numerically stable and improves
performance by increasing the number of collocation points. We observe efficient scaling for number
of collocation points — runtime remains nearly flat up to large point sets, with only modest sub-

8

linear growth at very large scales due to hardware bandwidth limits (Appendix 11.1). We also
discuss runtime comparison of introducing LearnQuad in PINNs in Appendix 11.2. While our Jax
implementation is the fastest among adaptive alternatives, compared to vanilla PINNs LearnQuad is
slightly more expensive due to an additional compute operations.

6.2 Comparison of LearnQuad to Classical Solvers
Table 3: L2 Relative Error Comparison: Numer-
ical Solvers vs. Adaptive PINNs. Best perform-
ing numerical methods are in purple and most
competitive adaptive PINN methods are in blue.
LearnQuad (LQ) improves performance over other
adaptive methods, but there remains a performance
gap with numerical solvers. Legends: LW =
Lax-Wendroff; BW = Beam-Warming; FE = For-
ward Euler; BE = Backward Euler; CN = Crank-
Nicolson; LF = Leapfrog; CFD = Centered FDM;
NB = Newmark-beta; R3 [Daw et al., 2023], RAR-
G [Lu et al., 2021], RAD[Nabian et al., 2021].

PDE
Numerical Solvers Adaptive PINNs

Method / L2 Error Method / L2 Error

Convection Upwind LW BW R3 LQ
(β = 30) 0.0460 0.0002 0.0002 0.0078 0.0068
Convection Upwind LW BW R3 LQ
(β = 50) 0.0755 0.0003 0.0003 0.0228 0.0076

Diffusion FE BE CN RAR-G LQ
0.0004 0.0004 0.0004 0.0009 0.0005

Wave LF CFD NB RAD LQ
0.0021 0.0021 0.0015 0.0900 0.0050

Setup: We benchmark strong non-PINN solvers
on multiple problems and report the results
alongside adaptive PINN solvers, including
LearnQuad. We used the PDEs from the Sec-
tion 6.1, the details of which are in Appendix
10.1. The relative L2 error is computed against
the true analytical solution which is readily avail-
able in these cases.

Result: As expected, standard methods (e.g.,
Lax-Wendroff, Crank-Nicolson), achieve the
lowest relative errors as shown in Table 3. How-
ever, LearnQuad consistently improves PINN
performance across all cases and notably outper-
forms the strongest adaptive PINN baselines.

Summary: LearnQuad advances PINN perfor-
mance over existing sampling methods, though
there still exists a gap with classical solvers. We
also acknowledge that PINNs in their current
state are typically more expensive and less accu-
rate than classical solvers for forward problems.
The results do not suggest superiority over nu-
merical methods but helps put the scale of gains
LearnQuad brings for PINNs in context.

6.3 Solving a family of PDEs via LearnQuad

Setup: Given the effectiveness of LearnQuad in solving a given PDE, we now utilize our framework
to tackle a harder problem. We consider a family of PDEs, where our end goal is to solve a PDE given
a particular choice of forcing function and/or PDE hyper-parameters and initial and/or boundary
conditions. Based on (7), a family of PDEs corresponding to differential operator L refers to the
set of triplets, {(fi, gi, ui)}Ni=1, where each i-th PDE satisfies Lui = fi, in Ω;ui = gi, in ∂Ω.
We only assume access to fi, gi’s and L. We note that fi denotes the forcing function and/or PDE
hyper-parameter and gi denotes the initial and/or boundary condition corresponding to the i-th PDE
which is governed by operator L. As an example, if f has the following parametric form:

fκ(x) = −(a(πθ)2 sin(πθx) + b(πψ)2 cos(πψx)); where κ = {a, b, θ, ϕ} ∼ p (21)

we sample κ∼ p to obtain fi’s (similarly for gi’s) and learn to solve for PDEs corresponding to
Table 4: Absolute relative error on the test set of four
different PDEs. Details are in Appendix 10.4.

PDE Wave Advection Heat Burgers’
IC/BC (70) (71) (74) (75) (65) (66) (80) (81)

Error 9.9e-6 3.3e-5 1.9e-5 7.9e-5 2.1e-4 3.5e-4 2.8e-4 3.3e-4

L. We use two hyper-networks with
parameter(s) θ and ϕ which provide pa-
rameters of the weight function wκ(x)
and solution function uκ(x) respectively
based on the input κ ∼ p. This weight
function is then used to generate a suit-
able quadrature {xl}κ for the PDE corre-
sponding to κ. These are then used to evaluate the Luκ(x) and fκ(x) and minimize the loss based
on the strong form as in Fig. 4. Pseudo-code and experimental details are in Appendix 10.4. We
demonstrate the effectiveness of LearnQuad via: Laplace, Advection, Burger’s, Wave and Heat
equation.

Result: We report the absolute relative error compared to the numerical solution obtained using the
same number of domain points used for LearnQuad in Table 4. As can be seen, the model generalizes
very well to test set PDEs. Additional visualizations are included in Appendix 10.4.

9

Summary: Learning quadratures for a family of PDEs is beneficial. Once trained, given a new
forcing function and boundary/initial condition can generate the solution in a single forward pass.

Figure 4: Solving a family of PDEs governed by operator L,
forcing function/external condition/PDE hyper-parameter are
parameterized by known distribution p. Two hyper-networks with
parameters θ and ϕ generate the weight and solution function.

This is highly efficient in terms
of time and eliminates the need to
store or process separate solutions,
unlike standalone PINNs.
Remark 6.4 (Distinction with Op-
erator Learning). While the end
result of learning for a family of
PDEs is similar to operator learn-
ing, the setting is different. While
operator learning uses paired data
(fi, ui), PINNs with LearnQuad
only utilize fi’s and shared op-
erator L without requiring any
problem-solution paired data.

7 Related Work

Beyond the literature described in §1, a large body of work focuses on discovering solutions to
PDEs using neural networks. LearnQuad enables PINNs Raissi et al. [2019], to use data-dependent
sampling of collocation points. While Variational-PINN [Kharazmi et al., 2019] and hp-VPINN
[Kharazmi et al., 2021] solve PDEs in weak form, they use a careful choice of test functions, which
is learnable in our case. Compared to Deep-Ritz [Yu et al., 2018], our method does not need the
minimum energy principle to be applicable. Our work provides a novel way to improve different
variants of PINNs and is complementary to existing literature. We acknowledge recent ideas adjacent
to adaptive quadrature [Rivera et al., 2022, Omella and Pardo, 2024, Lau et al., 2024], which either
directly try to optimize node locations thereby resulting in a much larger optimization problem or
fall-back to problem-specific regularizer(s) which limit their applicability. The learnable weight
function in LearnQuad induces problem-specific quadrature rules. It differs from classical adaptive
methods and ML-based techniques like R3 [Daw et al., 2023], RAR [Lu et al., 2021], RAD [Wu
et al., 2023] which rely on residual-based error estimators or gradient thresholding. Other works like
[Wang et al., 2021] introduce an annealed learning rate and a refined network architecture; [Urbán
et al., 2025] proposed a modified optimizer and an adjusted loss. LearnQuad is orthogonal to these
techniques—focusing on adaptive sampling and hence can be seamlessly integrated with them.

8 Conclusions

We present a data-driven approach to solve PDEs via PINNs, by exploiting new results of fast
quadrature computation using asymptotic expansions and recent capabilities of implicit function dif-
ferentiation. We demonstrate that incorporating our learnable quadrature scheme, LearnQuad within
PINNs can lead to performance improvement over exisiting adaptive and non-adaptive sampling
schemes across a diverse set of PDEs. Additionally, we show that incorporation of LearnQuad is
quite beneficial when solving a family of PDEs – where the alternative would be to deploy a Monte
Carlo based scheme for each instance individually. Our hyper-network based approach generates the
solution to a PDE instance from a given family in just a single forward pass without requiring any
additional training.

Limitations and Broader Impact: LearnQuad improves the capabilities of PINNs on commonly
studied benchmark PDEs described in the literature. However, we should acknowledge that despite
active work surrounding PINNs, in their current stage, these models are not a drop-in substitute for
classical solvers for common real-world PDEs. This gap will likely get smaller with time but this
context should clarify that PINNs (with or without LearnQuad) are not intended to substitute the
mature body of existing work on traditional numerical methods algorithms and efficient implementa-
tions deployed across many fields. Extending LearnQuad to effective higher dimensional settings
will likely involve the use of tensor products or sparse grids and is a ripe direction for future work.
Our work describes mathematical development to improve PINNs, and as such, does not have an
immediate societal impact.

10

Acknowledgments: Our work was motivated by interesting discussions with Daryl Nazareth (Roswell
Park Cancer Institute) around the use of physics informed models [Zhou et al., 2023] for radiation
therapy [Bedford, 2019]. We are grateful to Daryl and Anant Gopal (also at RPCI) for their time.
We thank Peter Opsomer and Daan Huybrechs for their helpful discussion during the initial phase of
this project and Lopamudra Mukherjee for feedback on a first draft of this paper. S.P. and V.S. were
partly supported by a contract via the DARPA Strengthen program.

References
Mohammad H Aliabadi and David P Rooke. Numerical fracture mechanics, volume 8. Springer

Science & Business Media, 1991.

William F Ames. Numerical methods for partial differential equations. Academic press, 2014.

Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi, and
Anima Anandkumar. Neural operators for accelerating scientific simulations and design. Nature
Reviews Physics, pages 1–9, 2024.

WA Beckham, PJ Keall, and JV Siebers. A fluence-convolution method to calculate radiation therapy
dose distributions that incorporate random set-up error. Physics in Medicine & Biology, 47(19):
3465, 2002.

James L Bedford. Calculation of absorbed dose in radiotherapy by solution of the linear boltzmann
transport equations. Physics in Medicine & Biology, 64(2):02TR01, 2019.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López,
Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. Advances
in neural information processing systems, 35:5230–5242, 2022.

Ignace Bogaert. Iteration-free computation of gauss–legendre quadrature nodes and weights. SIAM
Journal on Scientific Computing, 36(3):A1008–A1026, 2014.

Nicolas Boullé and Alex Townsend. A mathematical guide to operator learning. arXiv preprint
arXiv:2312.14688, 2023.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, 37(12):
1727–1738, 2021.

Stéphane d’Ascoli, Sören Becker, Alexander Mathis, Philippe Schwaller, and Niki Kilbertus.
Odeformer: Symbolic regression of dynamical systems with transformers. arXiv preprint
arXiv:2310.05573, 2023.

Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Mitigating propagation failures
in physics-informed neural networks using retain-resample-release (R3) sampling. In Proceedings
of the 40th International Conference on Machine Learning, 2023.

Jochen Garcke et al. Sparse grid tutorial. Mathematical Sciences Institute, Australian National
University, Canberra Australia, 7, 2006.

Gene H Golub and John H Welsch. Calculation of gauss quadrature rules. Mathematics of computation,
23(106):221–230, 1969.

Samuel Holt, Zhaozhi Qian, and Mihaela van der Schaar. Deep generative symbolic regression. arXiv
preprint arXiv:2401.00282, 2023.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. Variational physics-informed
neural networks for solving partial differential equations. arXiv preprint arXiv:1912.00873, 2019.

11

Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. hp-vpinns: Variational physics-
informed neural networks with domain decomposition. Computer Methods in Applied Mechanics
and Engineering, 374:113547, 2021.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in neural
information processing systems, 34:26548–26560, 2021.

J Nathan Kutz. Deep learning in fluid dynamics. Journal of Fluid Mechanics, 814:1–4, 2017.

Gregory Kang Ruey Lau, Apivich Hemachandra, See-Kiong Ng, and Bryan Kian Hsiang Low. Pinna-
cle: Pinn adaptive collocation and experimental points selection. arXiv preprint arXiv:2404.07662,
2024.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020a.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, Anima Anandkumar, et al. Fourier neural operator for parametric partial differential
equations. In International Conference on Learning Representations, 2020b.

Qin Lou, Xuhui Meng, and George Em Karniadakis. Physics-informed neural networks for solving
forward and inverse flow problems via the boltzmann-bgk formulation. Journal of Computational
Physics, 447:110676, 2021.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM review, 63(1):208–228, 2021.

Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics-informed
neural networks for approximating pdes. IMA Journal of Numerical Analysis, 43(1):1–43, 2023.

Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Efficient training of physics-
informed neural networks via importance sampling. Computer-Aided Civil and Infrastructure
Engineering, 36(8):962–977, 2021.

Sheehan Olver, Richard Mikaël Slevinsky, and Alex Townsend. Fast algorithms using orthogonal
polynomials. Acta Numerica, 29:573–699, 2020.

Ángel J Omella and David Pardo. r-adaptive deep learning method for solving partial differential
equations. Computers & Mathematics with Applications, 153:33–42, 2024.

Peter Opsomer. Asymptotics for orthogonal polynomials and high-frequency scattering problems.
2018.

Peter Opsomer and Daan Huybrechs. High-order asymptotic expansions of gaussian quadrature
rules with classical and generalized weight functions. Journal of Computational and Applied
Mathematics, 434:115317, 2023.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

JR Rice and Dennis Michael Tracey. Computational fracture mechanics. In Numerical and computer
methods in structural mechanics, pages 585–623. Elsevier, 1973.

Jon A Rivera, Jamie M Taylor, Ángel J Omella, and David Pardo. On quadrature rules for solving
partial differential equations using neural networks. Computer Methods in Applied Mechanics and
Engineering, 393:114710, 2022.

12

Elias M Stein and Rami Shakarchi. Complex analysis, volume 2. Princeton University Press, 2010.

Alex Townsend. The race for high order gauss–legendre quadrature. SIAM News, 48:1–3, 2015.

Alex Townsend, Thomas Trogdon, and Sheehan Olver. Fast computation of gauss quadrature nodes
and weights on the whole real line. IMA Journal of Numerical Analysis, 36(1):337–358, 2016.

Lloyd N Trefethen and David Bau. Numerical linear algebra, volume 181. Siam, 2022.

Jorge F Urbán, Petros Stefanou, and José A Pons. Unveiling the optimization process of physics
informed neural networks: How accurate and competitive can pinns be? Journal of Computational
Physics, 523:113656, 2025.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies
in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–A3081,
2021.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality is all you need for training
physics-informed neural networks. arXiv preprint arXiv:2203.07404, 2022.

Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 403:115671, 2023.

Larry C Young. Orthogonal collocation revisited. Computer Methods in Applied Mechanics and
Engineering, 345:1033–1076, 2019.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving variational
problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Jiahang Zhou, Ruiyang Li, and Tengfei Luo. Physics-informed neural networks for solving time-
dependent mode-resolved phonon boltzmann transport equation. npj Computational Materials, 9
(1):212, 2023.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have presented experimental evidence to back our claims in Section 6. The
abstract and introduction have well defined the scope of these experiments and set the tone.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations of our work in Section 8
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

14

Justification: We do not provide a theoretical result in the paper. Hence, this question is not
applicable here.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we include all experimental details necessary to reproduce in Section 6
and Appendix 10. Pseudo code for the main algorithms presented are in Algorithm 1 and
Algorithm 2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, our code will be released when accepted for publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide extensive details for experiments in Section 6 and in Appendix 10.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our performance is reported as an average of several runs along with mean
and standard deviation as is standard in relevant literature.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These details are available in the Appendix 10.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research performed conforms, in every respect, with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, we include this in Section 8.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper doesn’t invlove the release of pre-trained models or datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, all sources have been cited appropriately.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

18

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The work presented does not involve LLMs as any important, original, or
non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Appendix

9 Asymptotic Expansion

In this section, we list the full expansion of nodes and weights used for experiments in the paper in
Section 5:

For the left hard edge at x = −1 used in ((14))

xk ∼ −1 +
2j2β,k

(Γ + d0)2
+

−2j2β,k
3(Γ + d0)4

[j2β,k − 3α2 − β2 + 1] + . . .

+
−j2β,k

6(2n+ α+ β + 1 + d0)5
[16(d0 − 3d1)j

4
β,k + 3(4α2 − 1)c0 + (12α2 + 8β2 − 5)d0

− 6(4β2 − 1)d1] + . . .+O(n−8)

wk

w(xk)
∼ 8

J2
β−1(jβ,k)[Γ− d0]2

+
8

3J2
β−1(jβ,k)[2n+ α+ β + 1− d0]4

[3α2 + β2 − 1− 2j2β,k]

−
2[32(d0 − 3d1)j

2
β,k + 3(4α2 − 1)c0 + (12α2 + 8β2 − 5)d0 − 6(4β2 − 1)d1]

3J2
β−1(jβ,k)[2n+ α+ β + 1− d0]5

+ . . .+O(n−8)

(22)

where Γ = 2n+ α+ β + 1

For the bulk region used in ((16)):

xk ∼ tk +
2α2 − 2β2 + (2α2 + 2β2 − 1)tk

2[Γ + τ0]2
− 1

4[2n+ α+ β + 1 + τ0]3
(
4(α2 − 1)c0+

+4(β2 − 1)d0 + 8(α2 − β2)τ0 − 4(α2 − β2)τ1 + 2(2α2 + 2β2 − 1)τ1t
3
k

+2[(2α2 + 2β2 − 1)τ0 + 2(α2 − β2)τ1]t
2
k

+[4(α2 − 1)c0 − 4(β2 − 1)d0 + 4(3α2 + β2 − 1)τ0 − 2(2α2 + 2β2 − 1)τ1]tk
)
+ h.o.t.

wk

w(xk)
∼
π
√
1− t2k
Γ

[
2− 2τ1(1− t2k)− 2τ0tk

Γ
] +

1

(2n+ α+ β + 1)2
(
2τ21 t

4
k + 4τ0τ1t

3
k

−4τ0τ1tk + 2(τ20 − 2τ21)t
2
k + 2α2 + 2β2 + 2τ21 − 1

)
+ h.o.t.

]
(23)

The coefficients ck and dk are given by:

ck =
1

2πi

∮
γ

log(h(ξ))

(ξ2 − 1)1/2
dξ

(ξ − 1)k+1 (24)

dk =
1

2πi

∮
γ

log(h(ξ))

(ξ2 − 1)1/2
dξ

(ξ + 1)k+1 (25)

The coefficients τ0 and τ1 are expansion coefficients in the following:

1

2πi

∮
γ

log h(ζ)dζ√
ζ2 − 1(ζ − z)

∼
∞∑
i=0

τi(z − tk)
i (26)

Hereafter, we refer the reader to [Opsomer, 2018, Opsomer and Huybrechs, 2023] for further detail
on the asymptotic expansions pertinent to modified Gauss-Jacobi weight functions.

In Fig. 5 we demonstrate how different choices for hθ(x) lead to different wθ(x) and how these
modifications are different from the standard Gauss-Jacobi weight function.

21

Figure 5: Comparison of weight functions. The left most plot is for the standard Gauss-Jacobi weigh
function. The remaining plots are from different neural network parameterization of the modifier
hθ(x). One can see that the weight function changes significantly when optimizing for the modified
Gauss-Jacobi function. In every case, we fixed α and β to be 1 and note that varying these is not
necessary for our desired use-case.

10 Experiment Details

10.1 Solving PDEs via LearnQuad

Below we describe the PDEs used in the experimental results of Table 2 and Table 1.

10.1.1 Convection Equation

For the Convection equation in Table 2, we considered the following PDE:
∂u

∂t
+ β

∂u

∂x
= 0, x ∈ [0, 2π], t ∈ [0, 1] (27)

u(x, 0) = h(x) (28)
u(0, t) = u(2π, t) (29)

The model used in this case is a fully connected neural network with hidden layers of width 50 and
depth 4.

10.1.2 Diffusion Equation

We consider the following one dimensional diffusion equation:
∂u

∂t
=
∂2u

∂x2
+ e−t

(
− sin(πx) + π2 sin(πx)

)
, x ∈ [−1, 1], t ∈ [0, 1], (30)

u(x, 0) = sin(πx), (31)
u(−1, t) = u(1, t) = 0, (32)

with domain [−1, 1] in space and [0, 1] in time. The exact solution to this diffusion equation is given
by u(x, t) = sin(πx)e−t, which is a smooth one and hence all methods as illustrated in Table 1
perform reasonably well even with a small number of points. The model used in this case is a fully
connected neural network with hidden layers of width 32 and depth 3.

10.1.3 Burger’s Equation

We consider the following Burger’s equation:
∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ [−1, 1], t ∈ [0, 1], (33)

u(x, 0) = − sin(πx), (34)
u(−1, t) = u(1, t) = 0, (35)

where ν is the viscosity of the fluid and u is the desired flow velocity. In our experiments, we have
used ν = 0.01/π which results in a non-smooth solution. The model used in this case is a fully
connected neural network with hidden layers of width 64 and depth 3.

22

Table 5: L2 relative error (mean ± standard deviation) of the trained solution function obtained while
using different adaptive and non-adaptive methods. The lowest error for each problem is denoted in
boldface. Model trained via LearnQuad achieves the lowest L2 relative error in all case.

PDE Diffusion
points 30

N
on

-a
da

pt
iv

e Grid 0.004 ± 0.001
Random 0.005 ± 0.002
LHS 0.003 ± 0.002
Halton 0.002 ± 0.0006
Hammersley 0.001 ± 0.0007
Sobol 0.002 ± 0.002

A
da

pt
iv

e

Random-R 0.12 ± 0.06
RAR-G 0.0009 ± 0.0008
RAD 0.0019 ± 0.00097
RAR-D 0.004 ± 0.0041
LearnQuad 0.0005 ± 0.0001

10.1.4 Allen-Cahn Equation

The Allen-Cahn PDE considered in our experiments and reported in Table 1 is as follows:

∂u

∂t
= D

∂2u

∂x2
+ 5(u− u3), x ∈ [−1, 1], t ∈ [0, 1], (36)

u(x, 0) = x2 cos(πx), (37)
u(−1, t) = u(1, t) = −1, (38)

We use a value of D = 0.001 as the diffusion coefficient in the PDE. The model used in this case is a
fully connected neural network with hidden layers of width 64 and depth 3.
The Allen-Cahn PDE considered in Table 2 is as follows:

∂u

∂t
− 0.0001

∂2u

∂x2
+ 5u3 − 5u = 0, x ∈ [−1, 1], t ∈ [0, 1] (39)

u(x, 0) = x2 cos(πx) (40)
u(t,−1) = u(t, 1) (41)
∂u

∂t

∣∣∣∣
x=−1

=
∂u

∂t

∣∣∣∣
x=1

(42)

The model used in this case is a fully connected neural network with hidden layers of width 128 and
depth 4.

10.1.5 Wave Equation

We consider the following one dimensional wave equation:

∂u

∂t
= c2

∂2u

∂x2
, x ∈ [0, 1], t ∈ [0, 1], (43)

u(0, t) = u(1, t) = 0, t ∈ [0, 1] (44)

u(x, 0) = sin(πx) +
1

2
sin(4πx), x ∈ [0, 1] (45)

∂u

∂t
(x, 0) = 0, x ∈ [0, 1] (46)

with c = 2, where c is the velocity of the wave. The solution in this specific choice demonstrates a
multi-scale behavior in both space and time dimension and is as follows:

u(x, t) = sin(πx) cos(2πt) +
1

2
sin(4πx) cos(8πt) (47)

The model used in this case is a fully connected neural network with hidden layers of width 100 and
depth 5.

23

10.1.6 Other Details

The number of parameters used for the learnable weight function in the LearnQuad module was
roughly 500 parameters in all cases. All neural networks were implemented using fully connected
layers with tanh as the activation function. All experiments were performed on a single NVIDIA
2080 Ti GPU. The number of epochs used for diffusion PDE was 100k while for Burger’s, Wave
and Allen-Cahn PDE they were run for 200k epochs. This was determined empirically based on
convergence of the L2 relative error. We used a learning rate of 1e-3. As noted in Algorithm 1, one
could either use a noise sampled from the standard normal or the PDE specific parameters as an
input to the learnable quadrature module and results are not too different, but slightly better on using
standard normal noise as input. We find jointly optimizing both the LearnQuad and solution model
provides very good performance without the need for a sophisticated min-max optimization scheme.
The L2 relative error reported in the paper is computed as the following:

L2error =
||uθ − u||2

||u||2
(48)

Here, uθ is the learned solution function and u is the “ground truth” solution. In a small number
of cases where the true solution is available in a closed form we use that as u or we use u to be a
numerical solution achieved using a traditional numerical scheme (finite difference). In any case, the
test error is evaluated on a uniform grid of a much higher density (10x) than the number of points
used in the training scenario. We emphasize that the “ground truth” solution is not used in any form
during the training period.

10.1.7 Performance of LearnQuad

We enumerate the performance of LearnQuad with increasing number of points in three different
PDEs, (outlined previously) in Table 6. As expected, the performance in terms of L2 relative error
improves on increasing the number of points. Note that the solution to the diffusion equation is very
smooth and hence even a very small number of points can lead to very good performance.

Table 6: L2 Relative Error for Different PDEs with varying number of points used by LearnQuad.
Performance improves on increasing the number of points as expected.

Diffusion Equation Allen-Cahn Equation Wave Equation
No. of Points L2 Error No. of Points L2 Error No. of Points L2 Error

20 0.0013 200 0.017
25 0.0007 200 0.0444 500 0.0076
30 0.0004 700 0.0331 1500 0.0064
35 0.0003 2500 0.0052
40 0.0002 1500 0.0280 3500 0.0044

10.1.8 Performance of LearnQuad with varying hyper-parameter

We investigate the performance of LearnQuad with varying the hyper-parameters of α and β in the
modified Gauss-Jacobi weight function from ((10)). We report the test performance in terms of the
relative L2 relative error in Table 7. We observe minor variations in the performance of LearnQuad
based on the choice of these hyper-parameters.

Table 7: L2 Relative Error for Different PDEs with varying α and β in the modified Gauss-Jacobi
weight function used by LearnQuad. We observe there are minor variations based on the choice of
these hyper-parameters.

(α, β) Diffusion Wave Convection
(2, 2) 0.0004 0.0058 0.7299
(3, 3) 0.0005 0.0056 0.7163
(1, 2) 0.0004 0.0065 0.7207
(2, 1) 0.0006 0.0044 0.7323
(10, 10) 0.0007 0.0062 0.6774

24

Figure 6: True/Predicted solution functions. 2 right-most two plots for 2 different conditions on the
1D-Laplace operator. 2 left-most two plots for solutions to 2 settings for the operator d2

dx2 + d
dx

10.2 Solving high dimensional PDE

We consider the following high-dimensional Poisson equation.

−∆u = −200, x ∈ (0, 1)100 (49)

u(x) =

100∑
i=1

x2i , x ∈ ∂(0, 1)100 (50)

which is in a 100 dimensional space with the true solution being u(x) =
∑100

i=1 x
2
i . This is a Poisson

equation with a very smooth solution [Yu et al., 2018]. LearnQuad achieves a relative L2 error
of 0.085 which is similar to using naive Monte Carlo in this setting with relative L2 error of 0.09.
This illustrates the viability of LearnQuad for high dimensional PDEs. Since the solution is smooth
in this particular case, there is no substantial benefit in using a data-driven adaptive method. This
experiment, demonstrates that LearnQuad is not restricted to low dimensional problems. We used
a fully connected neural network with hidden layers having a depth of 3 and width of 100 as the
solution model with tanh as the activation function. We used 1000 points in 100 dimensions. For this
problem, our training took 18 seconds to converge in 300 epochs. After this, evaluating the trained
model on any given resolution takes 0.0065 seconds. The test errors were computed with respect to
the true analytical solution which is readily available in this case.

10.3 Solving PDEs in strong, weak and energy from via LearnQuad

We describe empirical evaluations of our proposed framework using LearnQuad. We show results
for solving a single given PDE via all three main approaches: (a) the strong form, (b) weak form and
(c) minimum principle.

(A) Numerical experiments with Strong Form. We begin by deploying our learnable quadrature
first in solving PDEs via the strong from described in §3. We consider two operators: (a) 1D-Laplace
and (b) d2

dx2 +
d
dx . For each of these operators, we consider two different non-homogeneous conditions.

As shown in Fig. 6, the results of the predicted and true solution function u coincide exactly in all
four cases. Both the domain and boundary loss are of the order of e-5, the same as the baseline
(PINN). [Raissi et al., 2019].

For the 1D-Laplace operator, we use the following two functions as the non-homogeneous terms:

f(x) = 2− sin(x) + 60x− 2((cos(x))2 − (sin(x))2) (51)

f(x) = 90(x8)− (4π2) sin(2πx)− (4π2) cos(2πx) (52)

For the 1D operator d2

dx2 + d
dx , we use the following two functions:

f(x) = 3x2 + 2πx cos(πx2) +
1

2
+ 6x+ 2π cos(πx2)− (4πx2) sin(πx2) (53)

f(x) = 3x2 + 6πx cos(3πx2) +
1

2
+ 6x+ 6π cos(3πx2)− 36π2x2 sin(3πx2) (54)

Remark 10.1. Using Monte Carlo based sampling to solve PDEs (as in PINNs) can have undesirable
outcomes when dealing with irregular boundary, hence adaptive quadrature methods have been
proposed very recently [Omella and Pardo, 2024]. Our method is data-driven does not suffer from
such challenges since the quadratures are adaptive by design.

25

Figure 7: Comparison of solution curves obtained via the proposed learnable method and baseline
method of Deep Ritz. Both methods perform equally well.

(B) Numerical experiments with Weak Form. We next apply our learnable quadratures to solve
PDEs written in their weak form as described in §3. Here, we consider the following two 1-D
operators: (a) 1D-Laplace and (b) d2

dx2 − d
dx . Similar to the strong form, we present results for two

different conditions for each operator. Again, we see from Fig. 8 that, the predicted and true solution
function in all cases coincide almost exactly. In terms of the domain and boundary loss, these are of
the same order of e−3 as the baseline method of hp-VPINN [Kharazmi et al., 2021].

Since the weight functions can be global, in using them as test functions to solve the weak form,
we can end up with a global test function. Avoiding this is possible via several schemes: one could
either choose a multitude of such test functions or simply use sub-domain splitting as suggested in
hp-VPINN over VPINN Kharazmi et al. [2019]. Due to its simplicity, we choose the latter in our
experiments.

For the 1D-Laplace operator, we use the following two functions as the non-homogeneous terms:

f(x) = 2− sin(x) + 60x− 2(cos2(x)− sin2(x)) (55)

f(x) = 90(x8)− 4π2 sin(2πx)− 4 ∗ π2 cos(2πx) (56)

For the 1D operator d2

dx2 − d
dx , we use the following two functions:

f(x) = 6x+ 2π cos(πx2)− 4πx2 sin(πx2)− (3x2 + 2πx cos(πx2) +
1

2
) (57)

f(x) = 6x+ 6π cos(3πx2)− 36π2x2 sin(3πx2)− (3x2 + 6πx cos(3πx2) +
1

2
) (58)

Figure 8: True/Predicted solution functions. 2 right-most two plots for 2 different conditions on the
1D-Laplace operator. 2 left-most two plots for solutions to 2 settings for the operator d2

dx2 − d
dx

Remark 10.2. For solving PDEs in their strong and weak forms as presented above, we adopt a two
stage training scheme. In the first stage, the asymptotic quadrature is learned and in the second stage
these learned quadratures are used to either provide orthogonal collocation points in the strong form
or test function(s) for the weak form. Our overall procedure is otherwise unchanged.

(C) Energy Method. We now demonstrate the utility of learnable quadrature for solving a PDE
where the loss function is derived based on the minimum energy principle.

26

We consider the 2D-Laplace equation: ∆u = −100 with zero boundary conditions on a square
domain: [−1, 1]× [−1, 1]. In the energy form, the loss function has the form

L(u) =

∫ ∫
Ω

(
1

2
|∆u|2 − fu

)
dxdy + β

∫ ∫
∂Ω

u2dxdy (59)

where β is a penalty term on the second component denoting the boundary loss. The first component
is the loss on the domain. We use our learnable quadrature to approximate both integrals in (59) and
compare the solution obtained with the baseline method of Deep-Ritz [Yu et al., 2018] with same
number of parameters, running each for roughly 400 epochs. As can be seen from Fig. 7, our method
achieves comparable performance, with approximate loss value −2000 in both case.
Remark 10.3. Since our proposed method is, in essence, a data-driven way to sample points, it
shows its utility in solving PDEs via all three formulations as demonstrated above, where the basic
framework remains the same. In the strong form, it provides orthogonal collocation points. In the
weak form, it provides test functions (which induce the quadrature rules). Finally, in the energy form
it is used to directly provide a quadrature rule.

10.4 Family of PDE via LearnQuad

We specify the details of the family of PDEs which were solved using LearnQuad and the procedure
outlined in 6.3. The overall algorithm is presented in Algorithm 2.

In all experiments, we used 500 parameters each for the hyper-networks predicting the weight
function and solution function as outlined in Section 6.3. Specifically, we used a MLP-based neural
network with depth 5; width 100 and tanh as the activation function. The number of parameters to
encode the actual solution function were kept smaller than 20. Using a learning rate of 0.0001, in all
cases, the methods took less than 10k epochs to converge. For each family, we sampled 100 instances
of the PDE and used a train/test split of 80/20. We used 600 points as a standard number of points to
sample from LearnQuad.

Algorithm 2 Training for a family of PDEs

1: Input: Operator L; distribution p; parametric form of forcing function F and boundary/initial
conditions B. #epochs: T , Training size: n, Learnable modules θ, ϕ; PDE Loss function L and
regularization loss lw (20)

2: Compute: Generate Training Set, S = {}
3: for i = 1 to i = n do
4: Sample κ ∼ p
5: Get fκ from F , Get bκ from B
6: S.append(κ, fκ, bκ)
7: end for
8: Compute: Training Loop
9: for i = 1 to i = T do

10: for each (κ, fκ, bκ) ∈ S do
11: Get wκ and {τ0, τ1, c0, d0, d1}κ from θ(κ)
12: Get uκ from ϕ(κ)
13: Use §5 to get quadrature nodes {xl}κ
14: Loss:l = L({Luκ(xl)}κ, {fκ(xi)}κ) + lw
15: Gradient based update for θ and ϕ based on l
16: end for
17: end for
18: Output: Learned modules θ and ϕ

10.4.1 Family of Laplace Equation

Here, we consider the 1D-Laplace operator which has the following parametric representation for the
non-homogeneous function:

fκ(x) = −(aπ2µ2 sin(πµx) + bπ2ν2 cos(πνx)) (60)

27

(a) Family corresponding to p ∼ U(1, 2.5)

(b) Family corresponding to p ∼ U(1, 4.0)

Figure 9: Test results for solving PDEs from two different family each with 1-D Laplace operator.
The second family 9(b) has more variance than the first. In all cases, the predicted solution almost
coincides with the original solution

where, κ = {a, b, µ, ν} belong to different distribution. In our experiments, we choose these
distributions as uniform, but our method can handle any distribution. In Figure 9 we show the
performance on the test set. It can seen that the predicted solution is very close to the true solution.

10.4.2 Family of Heat Equation

We consider the one dimensional heat equation and sample the heat diffusivity, c; initial distribution,
f ; and two boundary conditions, Tl and Tr. The PDE along with initial and Dirichlet boundary
conditions is given as follows:

∂u

∂t
= c2

∂2u

∂x2
, x ∈ [−1, 1], t ∈ [0, 2] (61)

u(−1, t) = Tl, t ∈ [0, 2] (62)
u(1, t) = Tr, t ∈ [0, 2] (63)
u(x, 0) = f(x), x ∈ [−1, 1] (64)

We perform experiments, with two choices for the initial distribution:

f(x) = mx+ n (65)
f(x) = a sin(πθx) + b cos(πϕx) (66)

We present a visualization of the true (numerical) solution obtained using the same number of domain
points as LearnQuad, the predicted solution and their relative error in Figure 10. The parameters
were sampled from uniform distribution U(0.8, 2.0).

10.4.3 Family of Wave Equation

We consider the 1D wave equation and sample the wave speed, c and the initial position, f and
velocity, g. The PDE along with initial conditions is given below:

∂2u

∂t2
= c2

∂2u

∂x2
, x ∈ [−1, 1], t ∈ [0, 2] (67)

u(x, 0) = f(x), x ∈ [−1, 1] (68)
∂u

∂t
(x, 0) = g(x), x ∈ [−1, 1] (69)

We perform experiments, with the following two sets of initial conditions:

f(x) = mx, g(x) = a+ x; x ∈ [−1, 1] (70)
f(x) = mx+ n, g(x) = a sin(πθx) + b cos(πϕx); x ∈ [−1, 1] (71)

28

Figure 10: (Left)True solution, (Center) Predicted solution and (Right) Relative error for an instance
from the test set of the family of heat equation using (61)-(64) and (66)

Figure 11: (Left)True solution, (Center) Predicted solution and (Right) Relative error for an instance
from the test set of the family of wave equation using (67)-(69) and (70)

We present visualization of the true (numerical) solution obtained using the same number of domain
points as LearnQuad, the predicted solution and their relative error in Figure 11 and Figure 12. The
parameters were sampled from uniform distribution U(0.5, 3.0).

10.4.4 Family of Advection Equation

We consider the one dimensional advection equation and sample the advection speed, c and the initial
position f . The PDE along with the initial conditions is given by:

∂u

∂t
+ c

∂u

∂x
= 0, x ∈ [−1, 1], t ∈ [0, 2] (72)

u(x, 0) = f(x), x ∈ [−1, 1] (73)
We conduct experiments with the two following choices for the initial displacement:

f(x) = mx+ n, x ∈ [−1, 1] (74)
f(x) = a sin(πθx) + b cos(πϕx), x ∈ [−1, 1] (75)

We present visualization of the true (numerical) solution obtained using the same number of domain
points as LearnQuad, the predicted solution and their relative error in Figure 13 and Figure 14. The
parameters are sampled from the uniform distribution U(0.5, 1.5).

10.4.5 Family of Burger’s Equation

We consider the one dimensional viscous Burgers’ equation which is a non-linear PDE. We sample
the diffusivity coefficient, c; initial velocity distribution, f ; and the two boundary conditions, Tl and

29

Figure 12: (Left)True solution, (Center) Predicted solution and (Right) Relative error for an instance
from the test set of the family of wave equation using (67)-(69) and (71)

Figure 13: (Left)True solution, (Center) Predicted solution and (Right) Relative error for an instance
from the test set of the family of advection equation using (72)-(73) and (74)

Tr. The PDE along with the initial and boundary conditions is given by:

∂u

∂t
+ u

∂u

∂x
= c2

∂u

∂x2
, x ∈ [−1, 1], t ∈ [0, 2] (76)

u(−1, t) = Tl, t ∈ [0, 2] (77)
u(1, t) = Tr, t ∈ [0, 2] (78)
u(x, 0) = f(x), x ∈ [−1, 1] (79)

We consider the following two different choices for the initial condition:

f(x) = m, x ∈ [−1, 1] (80)

f(x) = a exp−bx2

, x ∈ [−1, 1] (81)

We present visualization of the true (numerical) solution obtained using the same number of domain
points as LearnQuad, the predicted solution and their relative error in Figure 15, Figure 16 and Figure
17. The parameters are sampled from the uniform distribution U(0.01, 0.1).

11 Additional Discussions

11.1 Parallel computation of Large number of nodes

LearnQuad’s design, specifically our choice of parameterization avoids explicit computation of several
contour integrals, allows for significant parallelization. This is due to two reasons: (a) using learnable
linear layers for modulating function and expansion coefficients allows bypassing compute-intensive
steps such as contour integral (b) computing each quadrature node via an independent root-finding
procedure. This is crucial since it means that the root-finding process for all nodes and the neural

30

Figure 14: (Left)True solution, (Center) Predicted solution and (Right) Relative error for an instance
from the test set of the family of advection equation using (72)-(73) and (75)

Figure 15: (Left)True solution, (Center) Predicted solution and (Right) Relative error for an instance
from the test set of the family of viscous Burgers’ advection equation using (76)-(79) and (80)

network evaluations to get the parameters can be performed concurrently, and maps well to GPUs.
We checked wall-clock time by varying the number of nodes on our commodity GPU (NVIDIA 2080
Ti).

Table 8: Generation time for different numbers of nodes.
Number of Nodes Generation Time (sec)

10 0.0008
100 0.0009
1000 0.0009

10000 0.0012
100000 0.0098

1000000 0.0754

We see from Table 8 that the runtime remains roughly flat upto 10000 nodes. Beyond this we see a
modest sub-linear increase in runtime. This increase is due to practical/implementation limitations.
As number of nodes reaches millions, transferring tensors associated with nodes between compute
units and memory increases runtime. This memory bandwidth issue specific to our GPU can be
mitigated (although not eliminated) by higher-end hardware and/or optimized implementation. The
core algorithm, by design, remains fully parallel.

11.2 Computational Requirement for LearnQuad

We present wall-clock time per iteration of the baseline methods and LearnQuad below for the
convection PDE. We used R3’s Pytorch code [Daw et al., 2023] for all methods, explaining longer
runtimes vs. our JAX version. We also tested PINN in JAX for transparency. LearnQuad’s higher

31

Figure 16: (Left)True solution, (Center) Predicted solution and (Right) Relative error for an instance
from the test set of the family of viscous Burgers’ equation using (76)-(79) and (81)

Figure 17: (Left)True solution, (Center) Predicted solution and (Right) Relative error for an instance
from the test set of the family of viscous Burgers’ equation using (76)-(79) and (81)

runtime over efficient JAX implementation of PINN is likely due to the extra learnable model that is
serialized before the PINN model. We find the trade-off fair given better performance. Our model
converges faster than R3 and other baselines.

11.3 PINNs and Classical Solvers

Our proposed method is not designed to compete with classical solvers. While for simple problems,
classical methods are indeed effective, one motivation behind the sizable PINN literature is an
alternative which is advantageous in many scenarios: (a) PINN based solutions are mesh-independent;
(b) they rely on automatic-differentiation which are easier to implement; and (c) can handle non-
linearity effectively given the universal function approximation properties of neural networks. We
note that PINN based methods never use “classical solution” as the ground truth in the training
procedure at all. It is only used to evaluate a test time performance metric. This is needed in cases
where the PDE solution is not given in a closed form, which is true for most scenarios.

11.4 PINN loss over PDE solver

Our object of interest in this work is PINN. PINNs provide a mesh independent solution, are more
amenable to non-linearities and are easier to scale and implement. Hence, PINNs offer many benefits
in several cases and for this reason, are being studied extensively. Next, we justify our choice of
PINN loss instead of a PDE solver.

While the learnable quadrature rule is amenable for classical solvers, there are several issues. Suppose
that we use a classical solver instead of a PINN loss. This means that for each update of parameters
θ in learnable weight function wθ (which induces the quadrature) we will need to (i) generate
quadrature points using current wθ, (ii) solve the system of equations (either implicitly using a solver

32

Table 9: Average time per iteration for different methods.
Method Avg. Time per Iteration (sec)
LearnQuad 0.00461 (Jax)
R3 0.01172
PINN 0.00274 (Jax)
Causal R3 0.01444
PINN (fixed) 0.01291
PINN (uniform) 0.01261
Curriculum Regularization 0.01278
Causal PINN 0.01317
RAR-G 0.01305
RAR-D 0.01316
RAD 0.01342
L-inf 0.01337

or iteratively), (iii) compute some loss/quality and (iv) update θ to improve this metric. This poses
several challenges. Explicit (iterative) solvers are memory-intensive when unrolling across time steps,
sensitive to numerical instabilities, thereby requiring fine time steps and increased computational cost.
When differentiating through a numerically unstable solver, the gradients can become inaccurate
or blow up. Implicit solvers demand solving linear or nonlinear systems. Computing Jacobians for
implicit differentiation requires significant computational resources. Furthermore, matrix inversion
or solving linear systems as part of implicit differentiation introduces high computational overhead.
Hence, we can agree that integrating PDE solvers into neural network modules presents challenges
for both explicit and implicit solvers due to the above mentioned issues in computing gradients which
are necessary to update the models via back-propagation. Therefore, in order to make learnable
quadrature feasible – the main goal of this work – we leverage the PINN loss which is more suited
for the end-to-end learning framework.

Another aspect worth mentioning is regarding the setup for a family of PDEs. Without a scheme to
learn the common structure shared between different instances of the PDE, it would require solving
each instance separately at each desired resolution. To conclude, the choice of PINN loss is important
not only for solving individual PDEs, but also for permitting the learning of quadrature rules that can
then be used across multiple problems/solution schemes.

11.5 Contrast with other adaptive methods for PINNs

Our main contribution is not just solving PDEs, but learning how to optimally sample points based
on the PDE’s structure. We emphasize that advantages stem directly from our core theoretical
contribution: the learnable weight function that induces problem-specific quadrature rules. This is
fundamentally different from both classical adaptive methods and other existing ML approaches like
R3Daw et al. [2023], RARLu et al. [2021], RADWu et al. [2023]; all of whom invariably rely on
computing error estimates through residual-based estimators or gradient thresh-holding which are
problem-specific, need to be chosen carefully, and sometimes may need to solve additional local
problems. Instead we adaptively learn where refinement may be needed in an end-to-end fashion in
conjunction with the PINN loss and no additional explicit error estimation is required.

33

	Introduction
	Preliminaries
	Strong and Weak Forms
	How to learn Quadrature Rules?
	Learning Quadrature Rules Efficiently
	Instantiating Asymptotic Expansions
	Simplifications, Assumptions and Implementation

	Experimental Evaluations
	Solving PDEs using LearnQuad
	Comparison of LearnQuad to Classical Solvers
	Solving a family of PDEs via LearnQuad

	Related Work
	Conclusions
	Asymptotic Expansion
	Experiment Details
	Solving PDEs via LearnQuad
	Convection Equation
	Diffusion Equation
	Burger's Equation
	Allen-Cahn Equation
	Wave Equation
	Other Details
	Performance of LearnQuad
	Performance of LearnQuad with varying hyper-parameter

	Solving high dimensional PDE
	Solving PDEs in strong, weak and energy from via LearnQuad
	Family of PDE via LearnQuad
	Family of Laplace Equation
	Family of Heat Equation
	Family of Wave Equation
	Family of Advection Equation
	Family of Burger's Equation

	Additional Discussions
	Parallel computation of Large number of nodes
	Computational Requirement for LearnQuad
	PINNs and Classical Solvers
	PINN loss over PDE solver
	Contrast with other adaptive methods for PINNs

