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Abstract
Large language models (LLMs), e.g., ChatGPT,
have revolutionized the domain of natural lan-
guage processing because of their excellent per-
formance on various tasks. Despite their great
potential, LLMs also incur serious concerns
as they are likely to be misused. There are al-
ready reported cases of academic cheating by
using LLMs. Thus, it is a pressing problem
to identify LLM-generated texts. In this work,
we design a zero-shot black-box method for
detecting LLM-generated texts. The key idea
is to revise the text to be detected using the
ChatGPT model. Our method is based on the
intuition that the ChatGPT model will make
fewer revisions to LLM-generated texts than it
does to human-written texts, because the texts
generated by LLMs are more in accord with the
generation logic and statistical patterns learned
by LLMs like ChatGPT. Thus, if the text to
be detected and its ChatGPT-revised version
have a higher degree of similarity, the text is
more likely to be LLM-generated. Extensive
experiments on various datasets and tasks show
that our method can effectively detect LLM-
generated texts. Moreover, compared with
other detection methods, our method has better
generalization ability and is more stable across
various datasets. The codes are publicly avail-
able at https://github.com/thunlp/LLM-gene
rated-text-detection.

1 Introduction

Benefiting from the emergent ability, large lan-
guage models (LLMs) have demonstrated excellent
performance on a large number of natural language
processing tasks (Brown et al., 2020; Sanh et al.,
2022). Recently, LLMs (e.g., ChatGPT) trained to
follow instructions (Ouyang et al., 2022; Wei et al.,
2022) can generate high-quality responses when
given specific instructions and input data by a user.
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The strong emergent abilities, however, also trig-
ger social concerns for the misuse of LLMs. The
academic cheating by using LLMs to write essays
and homework has been repeatedly reported. The
fabricated news generated by LLMs also causes
a significant problem to our society. Thus, it is
an important problem to detect whether a piece
of text is generated by the LLM. Following pre-
vious works (Jawahar et al., 2020; Mitchell et al.,
2023), we formulate the problem of detecting LLM-
generated texts as a binary classification task, i.e.,
classifying whether a piece of text is generated by
the LLM or written by human.

Previous methods for detecting LLM-generated
texts can be classified into two categories. The
first category is the zero-shot detection method (So-
laiman et al., 2019; Gehrmann et al., 2019; Mitchell
et al., 2023), which needs to access the model’s out-
put logits or losses for detection. However, many
LLM services provided by commercial companies
do not expose the model’s output logits or losses
at the inference time. Thus, these methods have
to rely on local proxy models to access the output
information. However, the inconsistency between
the online model and the local proxy model may
lead to poor detection performance. The second
category is the supervised fine-tuning method (Guo
et al., 2023), which trains a Deep Neural Network
(DNN)-based classifier with the labeled training
data. It is prone to overfitting the training data and
thus may have poor generalization ability.

To address the abovementioned problems, we
propose a zero-shot black-box detection method
leveraging the ChatGPT model. Our method is
based on the following finding. If we use the Chat-
GPT model to revise texts, it will make fewer revi-
sions to LLM-generated texts than it does to human-
written texts. The underlying reason may be that
the LLM-generated texts conform to the genera-
tion logic and statistical patterns learned by the
ChatGPT model. The overall framework of our
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Figure 1: The overall framework of our approach.
Firstly, the text to be detected xi is revised by Chat-
GPT. Then our method calculates the similarity score si
between the text xi and its corresponding revised text x̃i.
If the similarity score si is no smaller than the threshold
ε, the text xi is likely to be generated by LLM.

method is shown in Figure 1. Firstly, we leverage
the ChatGPT model to revise the text to be detected.
Then we measure the similarity between the text to
be detected and its ChatGPT-revised version using
the similarity metric. The applied similarity met-
ric could be BLEU score (Papineni et al., 2002),
ROUGE score (Lin, 2004), BERTScore (Zhang*
et al., 2020) or BARTScore (Yuan et al., 2021). The
LLM-generated texts are more likely to achieve
higher similarity scores compared with human-
written texts.

We perform experiments on six datasets includ-
ing question answering and summarization genera-
tion tasks. The experimental results prove that our
method can effectively detect LLM-generated texts.
Besides, we compare our method with other zero-
shot detection methods and the supervised fine-
tuning method. The experimental results show that
our detection method is more universal across var-
ious datasets and has better generalization ability.
Moreover, our method is robust to dataset biases.

2 Related Work

Large Language Models. Large language mod-
els (LLMs) have achieved fantastic performance
on a huge number of natural language processing
tasks (Brown et al., 2020). Some recent works
show that LLMs can be trained to follow instruc-
tions with instruction-tuning (Ouyang et al., 2022;
Wei et al., 2022; Chung et al., 2022). LLMs pro-
vided by AI companies like OpenAI can generate
responses to users’ inputs and solve different prob-

lems. Many applications are built upon them, e.g.,
chatbots. Though LLMs act as useful tools, mis-
using them may cause bad influence, e.g., students
use LLMs to do their homework.

LLM-Generated Text Detection. Previous
LLM-generated text detection methods can
generally be classified into two categories. The
first category is the zero-shot detection method (So-
laiman et al., 2019; Gehrmann et al., 2019;
Mitchell et al., 2023). However, these methods
rely on the model’s output logits or losses. If there
is no access to the output logits or losses of the
source model that generates the text to be detected,
these methods can use a proxy model to get the
proxy model’s output logits or losses for detection.
However, the difference between the source model
and the proxy model may cause poor detection
performance. Thus, it is essential to design a
detection method without accessing the model’s
output logits or losses.

The second category is to train a DNN-
based classifier using some labeled human-written
and LLM-generated samples (Guo et al., 2023;
Uchendu et al., 2020). However, it is hard to col-
lect sufficient labeled training samples to train a
generalizable DNN-based classifier (Bakhtin et al.,
2019; Uchendu et al., 2020). Moreover, training
DNN-based classifiers are vulnerable to backdoor
attacks (Qi et al., 2021) and the DNN-based detec-
tor is lack of interpretability. Thus, it is important
to build an explainable detector without training
DNN-based classifiers.

Jawahar et al. (2020) survey some automatic de-
tection methods and identify some future directions
for building useful detectors. He et al. (2023) de-
velop a benchmark for evaluating existing detection
methods and call for more robust detection meth-
ods. In this paper, we aim to design a robust and
explainable black-box detection method without
training DNN-based classifiers.

3 Method

In this section, we illustrate our method step by step.
(1) Given the texts {x1, x2, ..., xn} to be detected,
we first revise the texts using the ChatGPT model.
Specifically, we add the prompt, i.e., “Revise the
following text: ”, before the texts to be detected.
Then we feed the modified texts into the ChatGPT
model M and use its responses {x̃1, x̃2, ..., x̃n} as
the revised texts.



x̃i = M(“Revise the following text: ” + xi),

i ∈ {1, 2, ...n}
(1)

(2) Then we use an unsupervised similarity metric
Sim to calculate the similarity score si between
the original text xi and its revised text x̃i.

si = Sim (xi, x̃i) (2)

We take the BARTScore as an example. Given
a sequence-to-sequence pre-trained model like
BART model (Lewis et al., 2020) which is pa-
rameterized by θ, the BARTScore is calculated
using the log probability of the target text xi given
the revised text x̃i as the source text. The target
text is tokenized into a sequence of tokens: xi =
{xi1, xi2, ..., xik}.

BARTScore =

k∑
t=1

log p
(
xit|xi(j<t), x̃i, θ

)
(3)

The BARTScore can measure the semantic cov-
erage between the source text and the target
text (Yuan et al., 2021). For the calculation of
BARTScore in this paper, we use the BARTScore-
CNN, which uses a BART model that is fine-tuned
on the CNNDM dataset (Hermann et al., 2015). For
more details of other evaluated similarity metrics,
please refer to appendix B. The LLM-generated
text and its revised text are more similar compared
with the human-written text and its revised text.
Thus, a higher similarity score si indicates that the
text xi is more likely to be LLM-generated.

4 Experiments

In this section, we evaluate the detection perfor-
mance of our method and compare our method
with other detection methods.

4.1 Experimental Setting
Datasets. For the summarization generation task,
we perform experiments on MultiNews (Fabbri
et al., 2019), GovReport (Huang et al., 2021) and
BillSum (Kornilova and Eidelman, 2019) datasets.
We use the representative LLM, i.e., ChatGPT (gpt-
3.5-turbo), as the source model to generate sum-
maries to be detected. For the question answer-
ing task, we consider three datasets including Fi-
nance (Maia et al., 2018), Medicine (Chen et al.,
2020), and Reddit Eli5 (Fan et al., 2019). In main
experiments, we use the ChatGPT-generated texts

collected by Guo et al. (2023). For more details of
the datasets, please refer to appendix D. We also
demonstrate that our method can detect texts that
are generated by other source models in section 4.3.

4.2 Main Experiments

4.2.1 Comparisons in Zero-Shot Setting

Zero-Shot Methods for Comparison. We com-
pare our method with other zero-shot detec-
tion methods including Log-Likelihood (Solaiman
et al., 2019), Rank (Gehrmann et al., 2019), Log-
Rank (Mitchell et al., 2023), Entropy (Gehrmann
et al., 2019) and DetectGPT (Mitchell et al., 2023).
These zero-shot detection methods are based on dif-
ferences between output losses/logits of the model
on human-written texts and LLM-generated texts.
They consider that the model will be more famil-
iar with LLM-generated texts. For example, the
Log-Likelihood method takes the negative loss
of the model on the text to be detected as the
Log-Likelihood score. A higher Log-Likelihood
score indicates the text is more likely to be LLM-
generated. The details of these detection methods
are shown in appendix C. Since the logits or losses
of ChatGPT can not be accessed at the inference
time, we use GPT-2-medium (Radford et al., 2019)
as the proxy model for deriving the logits or losses
for these methods, following He et al. (2023).
Metrics. Following Mitchell et al. (2023), we
use the AUROC as the evaluation metric. For our
method, we use the BARTScore-CNN (Yuan et al.,
2021) as the similarity metric. We also prove that
our method is effective under different similarity
metrics. For more details of our method’s detec-
tion performance when using different similarity
metrics including BLEU, ROUGE and BERTScore,
please refer to appendix A.
Results. As shown in Table 1, our method achieves
good detection performance across various datasets.
Specifically, the AUROC is consistently higher
than 70% for our method on all datasets. The av-
erage AUROC on all datasets is 90.05% for our
method. However, for other zero-shot detection
methods, the AUROC is low on MultiNews, Gov-
Report and BillSum datasets. The reason may be
that the training data of ChatGPT is different from
that of GPT-2-medium. Thus, the GPT-2-medium
model may be unfamiliar with some ChatGPT-
generated texts, reflected in the high losses on some
ChatGPT-generated texts. As a result, the detec-



Method Finance Medicine Reddit Eli5 MultiNews GovReport BillSum Average Value

Log-Likelihood 98.61 98.85 99.08 55.07 36.17 34.15 70.32
Rank 92.24 97.62 78.81 56.61 42.44 37.03 67.46

Log-Rank 98.64 98.91 99.26 56.12 36.93 35.79 70.94
Entropy 97.07 98.79 97.78 52.31 31.54 24.50 67.0

DetectGPT 88.56 96.43 83.66 40.36 43.63 36.57 64.87
Our Method (BARTScore-CNN) 97.40 95.06 99.15 86.28 75.64 86.77 90.05

Table 1: Comparisons with other zero-shot detection methods. The evaluation metric is AUROC (%). The "Average
Value" is the average performance on all datasets.

Source Dataset Fine-Tuning Our Method

Finance 81.77 80.05
Medicine 67.35 80.62

Reddit Eli5 52.68 69.93
MultiNews 51.21 83.44
GovReport 83.62 82.67

BillSum 65.03 81.39

Table 2: The average accuracy (%) on all target datasets
of the fine-tuning method and our method in the OOD
setting when using original datasets as source datasets.

Source Dataset Fine-Tuning Our Method

Biased Finance 54.89 80.36
Biased Medicine 56.31 80.48

Biased GovReport 54.34 85.74

Table 3: The average accuracy (%) on all target datasets
of the fine-tuning method and our method in the OOD
setting when using biased datasets as source datasets.

tion performance of the methods that rely on the
output losses of the proxy model will degrade. For
the statistics of BARTScores and Log-Likelihood
scores, please refer to appendix A.

4.2.2 Comparisons with Fine-Tuning
Comparisons in Vanilla Setting. We compare
the accuracy of our method with the fine-tuning
method. To calculate the accuracy of our method,
we need to determine a threshold. If the test sam-
ple’s similarity score between it and its revised text
is no smaller than the threshold, it is predicted as
the LLM-generated text. The detailed steps to find
the optimal threshold on the source dataset are as
follows1. Firstly, we get the similarity scores for all
samples in the source dataset and their ChatGPT-
revised versions. We take the minimum similarity
score and the maximum similarity score. Then,
we split the range between the minimum similar-

1For the fine-tuning method, the source dataset is the train-
ing dataset, which is used to train a classifier. Our method
does not need to train a classifier. For our method, we find the
optimal threshold on the source dataset.

ity score and the maximum similarity score into
10,000 uniform intervals. We get 10,000 interpola-
tion values between the minimum similarity score
and the maximum similarity score. Finally, we
use the best interpolation value with the highest
classification accuracy on the source dataset as the
optimal threshold.

We find that the fine-tuning method performs
well in the situation where the distributions of the
training and testing data are identical, as shown in
appendix A. However, in practice, it is difficult to
guarantee that the distributions of the training and
testing data are identical. Thus, we also test the out-
of-distribution (OOD) robustness. Specifically, we
use one dataset as the training (source) dataset and
the other datasets as the testing (target) datasets.

As shown in Table 2, the OOD performance of
our method is better than the fine-tuning method
on Medicine, Reddit Eli5, MultiNews and BillSum
datasets. The fine-tuning method may overfit the
training datasets and thus has poor OOD perfor-
mance. Overall, our method is more robust under
the OOD setting. The reason is that the difference
between degrees of revisions for the human-written
texts and LLM-generated texts is the universal fea-
ture among various datasets.

Comparisons on Biased Datasets. The fine-
tuning method is proven to easily overfit the dataset
biases (McCoy et al., 2019). The dataset biases
are some spurious correlations that are not shared
among all datasets of a task (Lynch et al., 2023).
We construct the biased datasets by adding the pre-
fix “Answer: ” to the human-written answers of Fi-
nance and Medicine datasets and adding the prefix
“Summarization: ” to the human-written summaries
of the GovReport dataset.

As shown in Table 3, for the fine-tuning method,
the classification models that are fine-tuned on bi-
ased datasets have very poor OOD performance,
with all average accuracy falling below 60%. The
reason is that the trained classification model with



Source Model
BERTScore BARTScore-CNN

Finance Medicine Finance Medicine

Text-davinci-003 90.18 92.94 83.38 91.41
Text-davinci-002 86.83 86.21 88.90 90.81

Vicuna 78.68 88.40 95.43 97.88

Table 4: Performance of our method when detecting
texts that are generated by various source models. The
evaluation metric is AUROC (%).

the fine-tuning method overfits dataset biases, i.e.,
the mapping from the prefix to the label “human-
written”. However, these dataset biases are not
universal features among all datasets. Also, from
the results in Table 3, we can see that our method is
robust to the dataset bias. The average accuracy on
all target datasets of our method is above 80% with
whichever biased dataset as the source dataset. The
reason is that our method leverages the similarity
between a pair of texts and is less influenced by
the inserted prefix biases. For more details, please
refer to appendix A.

4.3 Detecting Texts Generated by Various
Source Models

We demonstrate that our method can be applied
to detect texts generated by various source mod-
els such as text-davinci-003, text-davinci-002 and
Vicuna (Chiang et al., 2023). Firstly, we use the
source model to generate answers of the Finance
and Medicine datasets. Then we leverage ChatGPT
to revise texts. As shown in Table 4, our method
can detect texts generated by various source mod-
els. The AUROC is higher than 78% under all the
evaluated settings. The revisions for other source
models’ generated texts are minor compared with
the revisions for human-written texts when using
ChatGPT to revise the texts. The texts generated by
ChatGPT and other source models may share some
similar characteristics. The deeper reason may be
that the training data of ChatGPT and other source
models may have similar or overlapping parts.

4.4 Case Study

We conduct the case study on a human-written
summary and the summary generated by Chat-
GPT for the same bill from the BillSum dataset.
From Figure 3 in the appendix, we can see that for
the ChatGPT-generated summary, the revisions are
mostly about synonym replacements or adding a
word. However, from Figure 2 in the appendix, we
can see that the revision is relatively large for the

human-written summary, which may change the
sentences’ structures. For example, a long human-
written sentence with complex logic is revised into
a relatively shorter sentence by ChatGPT. For more
details, please refer to appendix A.

5 Conclusion

In this paper, we design a simple and effective
baseline method for detecting LLM-generated texts.
Our proposed method is based on the intuition that
the ChatGPT model revises less for LLM-generated
texts than it does for human-written texts. Com-
pared with previous methods, our method neither
needs to train a DNN-based classifier nor requires
access to the source model’s output logits or losses.
Thus, our method has better generalization ability
and is more practical. We perform experiments on
six datasets of question answering and summariza-
tion generation tasks. The experimental results on
various datasets show that our method can effec-
tively detect LLM-generated texts. Moreover, our
method is robust to dataset biases.

6 Limitations

Although our method is simple and effective, it still
has some limitations. Firstly, our method needs
to query the ChatGPT model and thus may cost
money. Secondly, if the text to be detected is ex-
tremely short, the difference of revisions for human-
written and LLM-generated texts may not be evi-
dent, which may lower the detection performance
of our method.

Acknowledgments

This work is supported by the National Key
R&D Program of China (No.2022ZD0116312), Na-
tional Natural Science Foundation of China (No.
62236004) and Institute Guo Qiang at Tsinghua
University.

Biru Zhu, Lifan Yuan and Chong Fu designed
the methods. Biru Zhu, Lifan Yuan, Ganqu Cui,
Yangyi Chen and Bingxiang He designed the exper-
iments. Yangdong Deng, Zhiyuan Liu, Maosong
Sun and Ming Gu advised the project and partici-
pated in the discussion.

References
Anton Bakhtin, Sam Gross, Myle Ott, Yuntian

Deng, Marc’Aurelio Ranzato, and Arthur Szlam.



2019. Real or fake? learning to discriminate ma-
chine from human generated text. arXiv preprint
arXiv:1906.03351.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Shu Chen, Zeqian Ju, Xiangyu Dong, Hongchao Fang,
Sicheng Wang, Yue Yang, Jiaqi Zeng, Ruisi Zhang,
Ruoyu Zhang, Meng Zhou, et al. 2020. Meddialog: a
large-scale medical dialogue dataset. arXiv preprint
arXiv:2004.03329.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and
Dragomir Radev. 2019. Multi-news: A large-scale
multi-document summarization dataset and abstrac-
tive hierarchical model. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 1074–1084, Florence, Italy. Asso-
ciation for Computational Linguistics.

Angela Fan, Yacine Jernite, Ethan Perez, David Grang-
ier, Jason Weston, and Michael Auli. 2019. Eli5:
Long form question answering. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3558–3567.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander
Rush. 2019. GLTR: Statistical detection and visual-
ization of generated text. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 111–116,
Florence, Italy. Association for Computational Lin-
guistics.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang,
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng
Wu. 2023. How close is chatgpt to human experts?
comparison corpus, evaluation, and detection. arXiv
preprint arXiv:2301.07597.

Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes,
and Yang Zhang. 2023. Mgtbench: Benchmarking
machine-generated text detection. arXiv preprint
arXiv:2303.14822.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. Advances in neural information
processing systems, 28.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng
Ji, and Lu Wang. 2021. Efficient attentions for long
document summarization. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1419–1436, Online.
Association for Computational Linguistics.

Ganesh Jawahar, Muhammad Abdul-Mageed, and
VS Laks Lakshmanan. 2020. Automatic detection
of machine generated text: A critical survey. In Pro-
ceedings of the 28th International Conference on
Computational Linguistics, pages 2296–2309.

Anastassia Kornilova and Vladimir Eidelman. 2019.
BillSum: A corpus for automatic summarization of
US legislation. In Proceedings of the 2nd Workshop
on New Frontiers in Summarization, pages 48–56,
Hong Kong, China. Association for Computational
Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Aengus Lynch, Gbètondji JS Dovonon, Jean Kaddour,
and Ricardo Silva. 2023. Spawrious: A benchmark
for fine control of spurious correlation biases. arXiv
preprint arXiv:2303.05470.

Macedo Maia, Siegfried Handschuh, André Freitas,
Brian Davis, Ross McDermott, Manel Zarrouk, and
Alexandra Balahur. 2018. Www’18 open challenge:
financial opinion mining and question answering. In
Companion proceedings of the the web conference
2018, pages 1941–1942.

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/P19-3019
https://doi.org/10.18653/v1/P19-3019
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/D19-5406
https://doi.org/10.18653/v1/D19-5406
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013


Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3428–3448, Florence,
Italy. Association for Computational Linguistics.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D Manning, and Chelsea Finn. 2023.
Detectgpt: Zero-shot machine-generated text detec-
tion using probability curvature. arXiv preprint
arXiv:2301.11305.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang,
Zhiyuan Liu, Yasheng Wang, and Maosong Sun.
2021. Hidden killer: Invisible textual backdoor at-
tacks with syntactic trigger. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 443–453, Online. Asso-
ciation for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In International Conference on Learning
Representations.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Rad-
ford, Gretchen Krueger, Jong Wook Kim, Sarah
Kreps, et al. 2019. Release strategies and the so-
cial impacts of language models. arXiv preprint
arXiv:1908.09203.

Adaku Uchendu, Thai Le, Kai Shu, and Dongwon Lee.
2020. Authorship attribution for neural text gener-
ation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 8384–8395, Online. Association for
Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text genera-
tion. In Advances in Neural Information Processing
Systems, volume 34, pages 27263–27277. Curran As-
sociates, Inc.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/2021.acl-long.37
https://doi.org/10.18653/v1/2021.acl-long.37
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.18653/v1/2020.emnlp-main.673
https://doi.org/10.18653/v1/2020.emnlp-main.673
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr


Appendix

A Additional Experimental Results

Results of Different Similarity Metrics. We
evaluate the effectiveness of our method with dif-
ferent similarity metrics, including BLEU score,
ROUGE score, BERTScore and BARTScore-CNN.
We use the similarity score as the prediction score
and the labels of LLM-generated texts are set as
1. The experimental results are shown in Table 5.
From the experimental results, we can see that the
AUROC is above 60% no matter which similar-
ity metric is used on all datasets, which demon-
strates the effectiveness of our method. The results
verify our intuition, i.e., compared with human-
written texts and their corresponding revised texts,
LLM-generated texts and their corresponding re-
vised texts are more similar.

Besides, we can find that the performance of
our detection method varies with different sim-
ilarity metrics. For example, when the similar-
ity metric is BARTScore-CNN, the average AU-
ROC on all datasets is 90.05%. When the simi-
larity metric is BLEU score, the average AUROC
on all datasets is 77.29%. The BLEU score and
ROUGE score are based on n-gram matches. The
BERTScore and BARTScore-CNN are DNN-based
similarity metrics. To sum up, the DNN-based
similarity metrics perform better than those based
on n-gram matches. The reason may be that the
DNN-based similarity metrics can capture the se-
mantic similarity better than those based on n-gram
matches. The BERTScore performs better than
BARTScore-CNN on MultiNews, GovReport and
BillSum datasets. However, the BARTScore-CNN
achieves the highest average performance among
all similarity metrics.

Statistics of BARTScores. For both human-
written texts and ChatGPT-generated texts, we
record the mean value and variance of BARTScores
between the original texts and their corresponding
revised texts. We use BARTScore-CNN as the sim-
ilarity metric to calculate the BARTScores. The
higher BARTScore indicates the higher similarity
between the text and its corresponding revised text.
As shown in Table 6, the average BARTScore of
ChatGPT-generated texts and their revised texts
is higher than that of human-written texts for
each dataset. The ChatGPT model revises more
for human-written texts compared with ChatGPT-
generated texts. Also, the variance of BARTScores

of ChatGPT-generated texts and their revised texts
is lower than that of human-written texts for each
dataset. This means that the extents of revisions
vary largely among human-written texts while vary-
ing little among ChatGPT-generated texts.

Log-Likelihood Scores on Different Datasets.
The Log-Likelihood method takes the negative loss
of the model on the text to be detected as the Log-
Likelihood score. A higher Log-Likelihood score
means this piece of text is more likely to be LLM-
generated. Since the output losses of ChatGPT
are not available at the inference time, we use the
GPT-2-medium model as the proxy model for the
Log-Likelihood method. We record the mean value
of negative losses of the GPT-2-medium model (i.e.,
the Log-Likelihood scores) on human-written texts
and that on ChatGPT-generated texts. As shown in
Table 7, the losses derived from the GPT-2-medium
model are high on the ChatGPT-generated texts of
MultiNews, GovReport and BillSum.

Results of Comparisons with Fine-Tuning in
Vanilla Setting. We compare the accuracy (ACC)
of our method with the fine-tuning method. Besides
considering the setting that the training (source)
and testing (target) data have the same distribu-
tion, we also test OOD robustness. For the ex-
periments where the training (source) and testing
(target) datasets are of the same distribution, we
evaluate the detection performance in the classic
cross-validation manner. For the experiments of
testing OOD robustness, we use one dataset as
the training dataset (source dataset) and a different
dataset as the testing dataset (target dataset).

The experimental results are shown in Table 8.
We can see that the fine-tuning method achieves
good performance when the training and testing
data have the same distribution. However, as shown
in Table 8, there are 14 results whose accuracy are
below 60% for the fine-tuning method. Also, we
can see that there are 2 results whose accuracy are
below 60% for our method. From this point of
view, our method has better generalization ability
compared with the fine-tuning method. The trained
classification model is easy to overfit the training
data for the fine-tuning method. Thus, the gener-
alization ability of the fine-tuning method is poor.
Our method is more robust under the OOD setting.

Results of Comparisons with Fine-Tuning on
Biased Datasets. The dataset biases are some
spurious correlations that are not shared among



Similarity Metric Finance Medicine Reddit Eli5 MultiNews GovReport BillSum Average Value

BLEU Score 83.93 90.18 83.80 70.73 69.55 65.54 77.29
ROUGE-1 F1 Score 85.43 90.28 82.34 73.16 68.69 70.25 78.36
ROUGE-2 F1 Score 87.60 90.18 81.17 69.85 65.18 63.40 76.23
ROUGE-L F1 Score 87.23 87.48 80.43 72.10 64.72 66.13 76.35

BERTScore 84.41 89.47 89.87 86.73 83.55 91.62 87.61
BARTScore-CNN 97.40 95.06 99.15 86.28 75.64 86.77 90.05

Table 5: Performance of our method using different similarity metrics. The evaluation metric is AUROC (%). The
"Average Value" is the average performance on all datasets.

Dataset H-Mean H-Var C-Mean C-Var

Finance -2.504 0.271 -1.373 0.088
Medicine -2.780 0.493 -1.630 0.339

Reddit Eli5 -3.373 0.331 -1.651 0.161
MultiNews -2.250 0.209 -1.614 0.127
GovReport -1.826 0.218 -1.411 0.125

BillSum -2.004 0.200 -1.401 0.099

Table 6: Statistics of BARTScores computed on human-
written/ChatGPT-generated texts and their correspond-
ing revised texts. The prefix “H” and “C” repre-
sent “human-written” and “ChatGPT-generated”, re-
spectively. “Mean” and “Var” represent mean value
and variance, respectively.

Dataset H-Score C-Score

Finance -3.355 -1.864
Medicine -3.888 -1.893

Reddit Eli5 -3.689 -2.062
MultiNews -2.994 -2.941
GovReport -2.634 -2.788

BillSum -2.526 -2.694

Table 7: The mean value of negative losses (Log-
Likelihood scores) on human-written texts and that on
ChatGPT-generated texts. “H-Score”/“C-Score” rep-
resents the mean value of negative losses on human-
written texts/ChatGPT-generated texts.

all datasets of a specific task (McCoy et al., 2019;
Lynch et al., 2023). We select 3 datasets as the
source datasets that the classification model is fine-
tuned on, including Finance, Medicine, and Gov-
Report. The classification models trained on these
three original datasets have relatively good OOD
performance, as shown in Table 8. We construct
the biased datasets by adding the prefix “Answer:
” to the human-written answers of Finance and
Medicine datasets and adding the prefix “Summa-
rization: ” to the human-written summaries of the
GovReport dataset. We do not perform any addi-
tional operations on the LLM-generated texts.

We evaluate the fine-tuning method and our
method in the scenario where the source datasets

are biased datasets. As shown in Table 9, for the
fine-tuning method, the OOD performance of the
classification models that are fine-tuned on biased
datasets is very poor, with the accuracy below 60%
in most evaluated situations. The reason is that
the trained classification model with supervised
fine-tuning overfits dataset biases, i.e., the mapping
from the prefix “Answer: ” or “Summarization:
” to the label “human-written”. However, these
dataset biases are not the universal useful features
among all datasets and they can not be used for
classifying the human-written and LLM-generated
texts of other datasets without these biases. Thus,
the OOD performance of the fine-tuning method
declines much when the training dataset contains
biases. Besides, as shown in Table 9, our method
is robust to the dataset bias. Under all evaluated
situations, the accuracy of our method is above
65%, which demonstrates that our method is still
effective when the source dataset contains biases.

Results of the Case Study. We show examples
of a human-written summary and the summary
generated by ChatGPT for the same bill from the
BillSum dataset (Kornilova and Eidelman, 2019).
Specifically, we show the human-written summary
and its ChatGPT-revised version in Figure 2. The
ChatGPT-generated summary and its ChatGPT-
revised version are shown in Figure 3. Some re-
vised parts in the revised texts are highlighted in
red color. From Figure 2 and Figure 3, we can see
that the revisions are more obvious for the human-
written summary. For example, the human-written
sentence “Prescribes procedural guidelines ... for
Nonperformance of Transportation” is revised into
the sentence “It also establishes guidelines ... for
Nonperformance of Transportation offers the ser-
vice”. The ChatGPT model revises the long human-
written sentence into a relatively shorter sentence.

We show the similarity scores between the
human-written summary and its corresponding re-
vised text, and the similarity scores between the



Source/Target Dataset Finance Medicine Reddit Eli5 MultiNews GovReport BillSum

Fine-Tuning

Finance 99.66 87.32 92.61 75.2 70.75 82.95
Medicine 88.92 99.92 95.48 44.11 53.07 55.16

Reddit Eli5 52.15 60.26 99.99 49.98 50.02 50.98
MultiNews 51.50 48.89 51.15 100.0 51.12 53.38
GovReport 75.58 85.81 72.77 90.19 96.38 93.74

BillSum 72.63 66.37 78.21 50.13 57.83 99.97

Our Method
Finance 93.72 88.92 87.60 77.35 68.26 78.14

Medicine 91.97 90.25 93.41 77.85 65.44 74.41
Reddit Eli5 79.95 84.39 97.51 68.85 56.71 59.74
MultiNews 92.72 90.65 92.01 77.9 66.35 75.46
GovReport 92.91 84.95 81.51 75.18 69.22 78.79

BillSum 93.10 86.32 83.18 75.65 68.69 78.59

Table 8: Results of the fine-tuning method and our method when using original datasets as source datasets. The
evaluation metric is ACC (%).

Source/Target Dataset Finance Medicine Reddit Eli5 MultiNews GovReport BillSum

Fine-Tuning

Biased Finance 100.0 53.44 58.55 53.43 52.57 56.46
Biased Medicine 59.07 100.0 72.60 49.78 50.05 50.05

Biased GovReport 53.44 54.96 53.17 57.40 100.0 52.73

Our Method
Biased Finance 94.93 89.65 88.57 77.85 67.94 77.79

Biased Medicine 91.76 92.30 93.64 77.8 65.02 74.16
Biased GovReport 93.01 90.37 90.78 78.03 88.76 76.49

Table 9: Results of the fine-tuning method and our method when using biased datasets as source datasets. The
evaluation metric is ACC (%). For the experiments where the training (source) and testing (target) datasets are of
the same distribution, the training (source) and testing (target) data are both with dataset biases. For the experiments
of testing OOD robustness, the source dataset has the dataset bias while the target dataset (different from the source
dataset) does not have the dataset bias.

Similarity Metric Human-Written ChatGPT-Generated

BLEU Score 0.272 0.794
ROUGE-1 F1 Score 0.589 0.904
ROUGE-2 F1 Score 0.377 0.823
ROUGE-L F1 Score 0.529 0.865

BERTScore 0.538 0.909
BARTScore-CNN -2.67 -0.711

Table 10: Similarity scores between the human-
written/ChatGPT-generated summary and its revised
text in the case study, measured by different similarity
metrics.

ChatGPT-generated summary and its correspond-
ing revised text under different similarity metrics
in Table 10. From the results in Table 10, we can
see that the similarity score between the ChatGPT-
generated summary and its corresponding revised
text is higher than that between the human-written
summary and its corresponding revised text no mat-
ter which similarity metric is used.

B Details of Similarity Metrics

The details of the similarity metrics are as follows.

• BLEU score (Papineni et al., 2002): The
BLEU score is calculated based on the over-
lap between the hypothesis’s n-grams and the
reference’s n-grams. In our scenario, the ref-
erence is the text to be detected and the hy-
pothesis is its corresponding revised text. The
higher BLEU score indicates the higher simi-
larity between the text and its revised text.

• ROUGE score (Lin, 2004): Similar to the
BLEU score, the ROUGE score is also based
on the overlap between the hypothesis’s n-
grams and the reference’s n-grams. The
higher ROUGE score indicates the higher sim-
ilarity between two pieces of texts.

• BERTScore (Zhang* et al., 2020): The
BERTScore is calculated based on the co-



Authorizes passenger transportation in foreign-flag 

cruise vessels between Alaska ports, and between 

Alaska ports and those on the west coast of the 
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Human-Written Text

Revised Human-Written Text

Figure 2: The human-written text and its ChatGPT-revised version.

The text discusses a congressional finding regarding 

the growing cruise ship industry in Alaska and the 

need to encourage the use of US facilities, labor, 

and services. It notes the importance of protecting 

existing US employment and economic activity and 

highlights the significant economic benefits received 

by Vancouver through the industry. The text also 

permits the transportation of passengers in foreign-

flag cruise vessels between ports in Alaska and on 

the west coast of the contiguous states, provided 

certain conditions are met. It allows coastwise 

privileges for US cruise vessels and outlines a 

process for terminating foreign-flag vessels' service 

after a notification period. The text provides 

definitions and a disclaimer regarding the 

transportation of passengers and merchandise in 

Canadian vessels between ports in Alaska and the 

US. 

The text discusses a congressional finding regarding 

the growing cruise ship industry in Alaska and 

emphasizes the need to prioritize US facilities, labor, 

and services. It stresses the importance of protecting 

existing US employment and economic activity while 

recognizing the significant economic benefits received 

by Vancouver through the industry. The text also 

permits the transportation of passengers in foreign-flag 

cruise vessels between ports in Alaska and on the west 

coast of the contiguous states, subject to specific 

conditions. It  grants coastwise privileges for US cruise 

vessels and outlines a process for terminating foreign-

flag vessels' service after a notice period. Additionally , 

the text provides definitions and a disclaimer 

regarding the transportation of passengers and 

merchandise in Canadian vessels between ports in 

Alaska and the US. 

ChatGPT-Generated Text Revised ChatGPT-Generated Text

Figure 3: The ChatGPT-generated text and its ChatGPT-revised version.

sine similarities of pairwise tokens’ represen-
tations of two sentences. The tokens’ rep-
resentations are encoded by the pre-trained
language model. The higher BERTScore indi-
cates the higher similarity between two pieces
of texts.

• BARTScore (Yuan et al., 2021): For the calcu-
lation of BARTScore in this paper, we use the
BARTScore-CNN, which uses a BART model
that is fine-tuned on the CNNDM dataset (Her-
mann et al., 2015). The revised text is input
to the BART model and the original text to be
detected is the target text. The BARTScore
is the negative loss between the output logits

of the BART model and the target text. The
higher BARTScore indicates the higher simi-
larity between the text to be detected and its
corresponding revised text.

C Details of the Compared Detection
Methods

The details of the detection methods we compare
our method with are as follows.

(1) Log-Likelihood (Solaiman et al., 2019): The
text that needs to be detected is fed into the GPT-2-
medium model. The Log-Likelihood score is the
negative output loss of the model. A higher Log-
Likelihood score means the text is more likely to



Statistics Finance Medicine Reddit Eli5 MultiNews GovReport BillSum

Number of Samples 7866 2492 29190 4000 1878 3994
Average Length of H-Texts 175.6 82.2 147.9 202.1 303.1 182.1

Average Length of Revised H-Texts 136.3 97.6 102.0 158.8 223.8 156.3
Average Length of C-Texts 205.2 187.4 173.6 102.3 151.9 129.1

Average Length of Revised C-Texts 168.7 161.1 140.8 103.8 147.6 126.8

Table 11: Dataset statistics. “H-Texts” and “C-Texts” represent the human-written texts and ChatGPT-generated
texts, respectively. The number of samples for each dataset takes both human-written samples and ChatGPT-
generated samples into account.

be LLM-generated.

(2) Rank (Gehrmann et al., 2019): The text that
needs to be detected is fed into the GPT-2-medium
model. Then this method sorts the output logits in
descending order for each token. After sorting, the
method gets the rank of each label token. Then the
method gets the final rank score by averaging the
rank scores of all label tokens. A lower rank score
means the text is more likely to be generated by the
LLM.

(3) Log-Rank (Mitchell et al., 2023): A little
different from the Rank method, the Log-Rank
method just adds an additional operation by apply-
ing a log function on the rank score of each token.
Similar to the rank score, a lower log-rank score
means the text is more likely to be LLM-generated.

(4) Entropy (Gehrmann et al., 2019): The text
that needs to be detected is fed into the GPT-2-
medium model. The Entropy method calculates the
entropy of the softmax logits derived from the GPT-
2-medium model and then averages the entropy of
each token to get the final entropy score. A lower
entropy score means the text is more likely to be
LLM-generated.

(5) DetectGPT (Mitchell et al., 2023): For the
DetectGPT method, it perturbs the text to be de-
tected using the T5-large (Raffel et al., 2020) model
and gets the perturbed text. Then it applies a log
function on the ratio of the original text’s proba-
bility to the perturbed text’s probability to get the
final ratio. If this ratio is high, it means the text is
likely to be LLM-generated.

(6) Supervised Fine-Tuning (Guo et al., 2023):
For the implementation of the supervised fine-
tuning method, we fine-tune the RoBERTaBASE (Liu
et al., 2019) model on the labeled training samples
to get a classification model.

D Implementation Details

D.1 Experimental Setting

Datasets. For the summarization generation task,
we perform experiments on the MultiNews (Fab-
bri et al., 2019), GovReport (Huang et al., 2021)
and BillSum (Kornilova and Eidelman, 2019)
datasets. For human-written texts, we directly
use the human-written summaries in the original
datasets. In the main experiments, we use the rep-
resentative LLM, i.e., ChatGPT (gpt-3.5-turbo), as
the source model to generate the LLM-generated
texts to be detected. We use the prompt “Please
summarize the following text: ” to make the Chat-
GPT model generate the summaries and get the
ChatGPT-generated summaries. For the question
answering task, the datasets we consider are Fi-
nance (Maia et al., 2018), Medicine (Chen et al.,
2020), and Reddit Eli5 (Fan et al., 2019). In the
main experiments, we use the ChatGPT-generated
texts collected by Guo et al. (2023) for these three
datasets. Specifically, we use the first human-
written answer in the human-written answer list
and the first ChatGPT-generated answer in the
ChatGPT-generated answer list for each question.
For some datasets, we sample some samples from
the original datasets. The detailed statistics of the
number of samples and the average length of sam-
ples for each dataset are shown in Table 11.

When we revise texts with ChatGPT, we use the
gpt-3.5-turbo API provided by OpenAI. When gen-
erating ChatGPT-generated summaries for Multi-
News, GovReport and BillSum datasets, we use the
gpt-3.5-turbo API provided by OpenAI.

All experiments that call gpt-3.5-turbo API in
this paper are done before June 2023, with the gpt-
3.5-turbo API being gpt-3.5-turbo-0301.

Similarity Metrics. For the calculation of
BARTScore in all experiments in this paper, we use
the BARTScore-CNN, which uses a BART model
that is fine-tuned on the CNNDM dataset (Her-



mann et al., 2015). For the ROUGE score and
BERTScore, we use the F1 score.

D.2 Main Experiments

Comparisons in Zero-Shot Setting. When cal-
culating the AUROC performance of other zero-
shot detection methods, we use the Log-Likelihood
score, negative rank score, negative log-rank score,
negative entropy score and log probability ra-
tio as the prediction score, respectively, for Log-
Likelihood, Rank, Log-Rank, Entropy and Detect-
GPT methods. The labels of ChatGPT-generated
texts are set as 1.

For the Medicine dataset, we drop a pair of
human-written and ChatGPT-generated answers of
one question for other zero-shot detection methods,
due to the NaN value of the Log-Likelihood score.
For the implementation of DetectGPT, we use the
T5-large as the mask filling model and the number
of perturbations is set as 10. The perturbation mode
is set as “z” for DetectGPT.

Comparisons with Fine-Tuning in Vanilla Set-
ting. For the experiments where the training and
testing datasets are of the same distribution, we
evaluate the detection performance in the classic
cross-validation manner. Specifically, we first split
the whole dataset into 4 parts. We train the model
and test the performance for 4 turns. In each turn,
we use 3 parts as the training part and the remaining
1 part as the testing part. In each turn, we use a part
that is different from the testing parts in other turns
as the testing part for this turn. Finally, we use
the total number of correctly predicted testing sam-
ples in 4 turns to divide the total number of testing
samples in 4 turns and get the final accuracy.

For the experiments of testing the OOD robust-
ness, we fine-tune the classification model with
three different seeds and get the average OOD per-
formance as the final OOD performance for the
fine-tuning method. The number of training epochs
is set as 10 and the learning rate is set as 2× 10−5

for the fine-tuning method.
For our method, we use the BARTScore-CNN as

the similarity metric to calculate similarity scores.

Comparisons with Fine-Tuning on Biased
Datasets. For the experiments where the train-
ing and testing datasets are of the same distribution,
we evaluate the detection performance in the clas-
sic cross-validation manner. Specifically, we first
split the whole dataset into 4 parts. We train the

model and test the performance for 4 turns. In
each turn, we use 3 parts as the training part and
the remaining 1 part as the testing part. In each
turn, we use a part that is different from the test-
ing parts in other turns as the testing part for this
turn. Finally, we use the total number of correctly
predicted testing samples in 4 turns to divide the
total number of testing samples in 4 turns and get
the final accuracy.

The source dataset on which the classification
model is fine-tuned is the biased dataset. For the
experiments where the training (source) and testing
(target) datasets are of the same distribution, the
training (source) and testing (target) data are both
with dataset biases. For the experiments of testing
OOD robustness, the source dataset has the dataset
bias while the target dataset (different from the
source dataset) does not have the dataset bias.

For the experiments of testing the OOD robust-
ness, we fine-tune the classification model with
three different seeds and get the average OOD per-
formance as the final OOD performance for the
fine-tuning method.

For our method, we use the BARTScore-CNN
as the similarity metric.

D.3 Detecting Texts Generated by Various
Source Models

For generating LLM-generated texts with Vicuna,
we first obtain a Vicuna model using the LLaMA-
7B model2 and the delta weight3, following the
official implementation4. Then we use the Vicuna
model to generate texts.

Some other details of the experiments are as fol-
lows. For generating LLM-generated texts with
the text-davinci-0025 and Vicuna models, we use
the instruction “Please generate a long answer for
the following question: ”. For generating LLM-
generated texts with the text-davinci-003 model6,
we do not add any additional instruction and just
input the questions of the Finance and Medicine
datasets into the model. For experiments of detect-
ing the text-davinci-002 model’s generated texts for
the Medicine dataset, we drop 15 pairs of human-
written and LLM-generated texts that correspond

2https://huggingface.co/decapoda-research/lla
ma-7b-hf

3https://huggingface.co/lmsys/vicuna-7b-delta
-v1.1

4https://github.com/lm-sys/FastChat
5https://openai.com/
6https://openai.com/

https://huggingface.co/decapoda-research/llama-7b-hf
https://huggingface.co/decapoda-research/llama-7b-hf
https://huggingface.co/lmsys/vicuna-7b-delta-v1.1
https://huggingface.co/lmsys/vicuna-7b-delta-v1.1
https://github.com/lm-sys/FastChat
https://openai.com/
https://openai.com/


to 15 questions due to the blank answers returned
by the text-davinci-002 model. We evaluate the
detection performance of our method using the
BERTScore and BARTScore-CNN as the similar-
ity metric, respectively.


