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ABSTRACT

Low-Rank Adaptation (LoRA) is a popular technique for efficient fine-tuning of
foundation models. However, applying LoRA in federated learning environments,
where data is distributed across multiple clients, presents unique challenges. Exist-
ing methods rely on traditional federated averaging of LoRA adapters, resulting in
inexact updates. To address this, we propose Federated Exact LoRA, or FedEx-
LoRA, which adds a residual error term to the pretrained frozen weight matrix. Our
approach achieves exact updates with minimal computational and communication
overhead, preserving LoRA’s efficiency. We evaluate the method on various models
across arithmetic reasoning, commonsense reasoning, natural language understand-
ing and natural language generation tasks, showing consistent performance gains
over state-of-the-art methods across multiple settings. Through extensive analysis,
we quantify that the deviations in updates from the ideal solution are significant,
highlighting the need for exact aggregation. Our method’s simplicity, efficiency,
and broad applicability position it as a promising solution for accurate and effective
federated fine-tuning of foundation models.

1 INTRODUCTION

The introduction of large language models (LLMs) has revolutionized natural language processing,
enabling unprecedented performance across a wide range of tasks (Achiam et al., 2023; Touvron
et al., 2023; Team et al., 2023; Chang et al., 2024; Raffel et al., 2020; Zeng et al., 2022). While these
models excel at transfer learning, their true potential is often unlocked through fine-tuning — a critical
process that aligns these general-purpose models with specific tasks or domains. Moreover, the sheer
size of these models presents significant challenges for fine-tuning and deployment, particularly in
resource-constrained or distributed environments. To address these challenges, parameter-efficient
fine-tuning (PEFT) methods have gained prominence, with Low-Rank Adaptation (LoRA) emerging
as a particularly effective approach (Hu et al., 2021). LoRA’s success lies in its ability to adapt LLMs
to new tasks by training only a small number of parameters, while freezing rest of the parameters. This
significantly reduces computational and memory requirements without compromising performance.
Although good progress in training of LLMs has been realized by entities equipped with massive
computational resources, there is hoards of unreachable data in verticals such as healthcare, finance,
law firms, social-media and logistics. Federated learning (FL) is a popular paradigm to learn a
machine learning model in this setting with multiple distributed entities (Konečný et al., 2017;
Kairouz et al., 2021; Bonawitz et al., 2019) holding siloed data.

Federated Fine-Tuning (FFT) for foundation models addresses the challenge of leveraging distributed
datasets while preserving data privacy. The current state-of-the-art, Federated Instruction Tuning
(FedIT, Zhang et al. (2024b)), uses conventional federated aggregation to average the low-rank
matrices A and B individually. The resulting update matrix which is formed post aggregation is
thus the product of the averaged matrices A and B. However, the ideal update should be the average
of the products of the low-rank adapters A and B. The discrepancy results from the fact that "the
average of the products is not equal to the product of the averages". A naive adhoc intervention of
modifying the aggregation to directly average the client updates is not a viable solution, since the
subsequently obtained weight matrix loses its low-rank structure. The low-rank structure provides
the efficiency benefits of LoRA in the first place, making this approach computationally intractable.
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(a) FedIT (b) FedEx-LoRA

Figure 1: Comparison of federated LoRA methods: (a) FedIT averages the individual client low-rank
adapters Ai and Bi, resulting in inexact updates. (b) FedEx-LoRA sends the error residual ∆Wres

along with the individual adapters Ai and Bi, which is added to the pretrained weight matrix W0,
ensuring exact aggregation. Clients transmit low-rank adapters Ai and Bi in both methods.

The aggregation process must be carefully designed for both accuracy and simplicity. We introduce
FedEx-LoRA, a method that improves federated aggregation for LoRA by incorporating an error
residual term, ∆Wres, into the pretrained weight matrix to address inexact aggregation, as shown in
Figure 1. This adjustment preserves the low-rank efficiency of LoRA without adding computational
overhead. Since the average update is inherently higher rank and cannot fit into the low-rank adapters,
it is absorbed into the pretrained weight matrix, which is already high rank. This error term requires
no training and is added at each aggregation step, ensuring no additional training costs.

Our key contributions are summarized as follows:

• We identify a critical discrepancy in traditional federated averaging of LoRA adapters and address
it by explicitly assigning the error residual to the pretrained weight matrix, ensuring ideal updates.

• The error residual term is incorporated at each aggregation step, maintaining LoRA’s efficiency
without any additional training. We propose a communication protocol that minimizes both
communication and computational overhead.

• We demonstrate the effectiveness of our approach through extensive experiments on models ranging
from RoBERTa-base (125M) to Gemma-2 (9B) across arithmetic reasoning, commonsense reason-
ing, natural language understanding, and generation tasks. Our method consistently outperforms
state-of-the-art federated fine-tuning techniques, showing clear performance gains.

• We provide a detailed analysis of the deviations introduced by federated averaging compared
to ideal updates, and identify notable patterns. We further show that while multiple assignment
strategies exist for exact aggregation, our specific assignment approach is most effective.

2 RELATED WORK

Parameter-efficient Fine-tuning. PEFT methods aim to adapt foundation models while minimizing
the number of trainable parameters. Input-based techniques like prefix tuning (Li & Liang, 2021)
prepend trainable prompts, and prompt tuning (Lester et al., 2021) optimizes soft prompts in the
embedding space - both effective for task-specific adaptations. Architectural approaches, such as
adapter layers (Houlsby et al., 2019), add trainable components between transformer blocks (Vaswani
et al., 2017), facilitating multi-task learning. LoRA (Hu et al., 2021) reduces memory overhead by
representing weight updates with low-rank matrices, while AdaLoRA (Zhang et al., 2023b) improves
efficiency by dynamically adjusting the parameter budget. Optimization techniques, like QLoRA
(Dettmers et al., 2024), enable fine-tuning on consumer hardware via quantization, and LongLoRA
(Chen et al., 2024) targets long-context tasks. Recent advancements include combining multiple
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PEFT methods (Lin et al., 2024) and scaling these techniques for very large models (Zhang et al.,
2024a), advancing the state of efficient fine-tuning.

Federated Fine-Tuning of Foundation Models. Federated learning (Konečný et al., 2017) is a
decentralized approach that allows multiple clients to collaboratively train a shared model without
sharing their private data. Instead, clients perform local training on their own datasets, and only
the resulting model updates are securely aggregated to update the global model (Kairouz et al.,
2021). This iterative process of local training and global aggregation continues until the model
converges. FedBERT (Tian et al., 2022) introduced federated pre-training for BERT, while recent
efforts have focused on federated fine-tuning of foundation models (Zhang et al., 2022; Kuang et al.,
2024; Babakniya et al., 2023). The current state-of-the-art, FedIT (Zhang et al., 2024b)), fine-tunes
LLMs by averaging LoRA parameters across clients using vanilla Federated Averaging (FedAvg,
McMahan et al. (2017)). However, averaging low-rank adapters independently introduces noise
and results in inexact global updates. Federated Freeze A LoRA (FFA-LoRA) (Sun et al., 2024)
mitigates this by keeping one set of adapters trainable, improving aggregation stability but limiting
the training flexibility of other adapters. This method is particularly advantageous in privacy-sensitive
settings (Huang et al., 2022; Zhang et al., 2021). Another challenge arises from heterogeneous rank
settings, where clients adjust LoRA ranks based on their capacities (Zhao et al., 2018; Li et al., 2019).
Some methods address this by self-pruning local LoRA modules and employing sparsity-weighted
aggregation (Cho et al., 2024), though this introduces substantial computational overhead.

3 PRELIMINARIES AND MOTIVATION

Fine-tuning with LoRA. LoRA (Hu et al., 2021) leverages low-rank matrix factorization to efficiently
represent the updates of pre-trained model weights. Specifically, the fine-tuned weights, W′, are
expressed as a sum of the original weights W0 and a low-rank update ∆W:

W′ = W0 +∆W = W0 +BA (1)

where W0,W
′ ∈ Rm×n are the pretrained and fine-tuned weight matrices, respectively, and

A ∈ Rr×n, B ∈ Rm×r represent the low-rank decomposition of ∆W. Here, the rank r is
significantly smaller than both m and n, leading to a substantial reduction in the number of trainable
parameters for ∆W. Instead of directly updating W0 during fine-tuning, LoRA optimizes the
smaller matrices A and B, resulting in considerable savings in memory usage. For instance, in
GPT-2, LoRA reduces the number of trainable parameters from 124.44 M to just 0.41 M when using
a rank of r = 4, with no observed degradation in performance (Hu et al., 2021).

Global Updates due to Vanilla Federated Averaging are Inexact. The widely adopted federated
learning algorithm, FedAvg (McMahan et al., 2017), updates the global model by performing a
weighted average of local client updates in each communication round for k clients:

Wglobal = W0 +
1

k

k∑
i=1

∆Wi = W0 +∆W (2)

where W0 and Wglobal represent the global model parameters before and after aggregation, respec-
tively. ∆Wi denotes the local update from the i-th client. FedIT (Zhang et al., 2024b) extends
FedAvg by incorporating LoRA for federated fine-tuning, where clients fine-tune LoRA modules
of a fixed rank. The global LoRA matrices A and B are updated via weighted averaging over the
client-specific LoRA parameters Ak and Bk:

A =
1

k

k∑
i=1

Ai, B =
1

k

k∑
i=1

Bi (3)

Although FedIT follows a similar aggregation process as FedAvg, only LoRA modules are updated
and communicated. However, this independent averaging of Ai and Bi introduces deviation from
the exact centralized LoRA updates, as the actual model updates depend on the product BiAi, not
the individual components B and A.

W̃global = W0 +
1

k

k∑
i=1

Bi ×
1

k

k∑
i=1

Ai︸ ︷︷ ︸
Parameters after aggregation with LoRA + FedAvg (FedIT)

̸= W0 +
1

k

k∑
i=1

(BiAi) = Wglobal

︸ ︷︷ ︸
Ideal parameters following model-averaging

(4)
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There is No Free Lunch. A naive approach would be to directly average the client updates as
1
k

∑k
i=1(BiAi) and use the result for the global update before resuming training. However, this

undermines the purpose of LoRA, as it forces subsequent training on the full-rank matrix Wglobal ∈
Rm×n rather than its intended low-rank adapters A ∈ Rr×n and B ∈ Rm×r.

An alternative is to decompose the averaged update 1
k

∑k
i=1(BiAi) into a low-rank matrix of rank

(k · r). However, this leads to an exponential growth in the rank with each aggregation round, as the
rank increases by a factor of k in every iteration, making this approach computationally intractable.

FFA-LoRA. FFA-LoRA addresses the problem of inexact aggregation, particularly in privacy-
preserving settings. Motivated from previous works (Zhang et al., 2023a; Tian et al., 2024), it
asymmetrically freezes the A adapters while keeping only the B adapters trainable. This approach
mitigates the issues of non-ideal aggregation by avoiding independent updates of A and B. However,
the drawback is that the A matrix remains static, which limits expressiveness. While this method
excels in privacy-sensitive scenarios where noise is amplified, it underperforms in non-private settings,
even when the number of trainable parameters is equivalent.

4 METHOD: FEDEX-LORA

4.1 NOISE-FREE EXACT AGGREGATION

To tackle the problem of inexact aggregation arising from the independent averaging of the A and
B matrices across clients, we introduce a novel method called FedEx-LoRA. Instead of separately
averaging the low-rank adapter matrices A and B, we compute the average of their product BA
across all clients. However, as previously noted in Section 3, we cannot keep this high-rank matrix
or its lower-rank decomposition (with rank (k · r)) trainable. Consequently, we append a high-rank
error term that captures the discrepancy between the average of the products and the product of
the averages. This error residual is incorporated into the global frozen weight matrix, ensuring its
non-trainability. The update at the jth aggregation round can be expressed as follows:

Bj+1
i ← 1

k

k∑
i=1

Bj
i , Aj+1

i ← 1

k

k∑
i=1

Aj
i (5)

W0
j+1 ←W0

j +
1

k

k∑
i=1

(Bj
iA

j
i )−

1

k

k∑
i=1

Bj
i ×

1

k

k∑
i=1

Aj
i︸ ︷︷ ︸

Residual

(6)

We now demonstrate that our formulation results in exact aggregation for every client:

Wj+1
global = W0

j +Bj
iA

j
i (7)

Wj+1
global = W0

j +
1

k

k∑
i=1

(Bj
iA

j
i )−

1

k

k∑
i=1

Bj
i ×

1

k

k∑
i=1

Aj
i +

1

k

k∑
i=1

Bj
i ×

1

k

k∑
i=1

Aj
i (8)

Wj+1
global = W0

j +
1

k

k∑
i=1

(Bj
iA

j
i )︸ ︷︷ ︸

Ideal aggregation

(9)

4.2 FEDEX-LORA: OVERALL PIPELINE

Initially, the server distributes the global pretrained model to all k clients and initializes the low-rank
adapters A and B according to standard LoRA settings: B is initialized to zero, while A is initialized
using a random Gaussian distribution.

B0
i ← Binit, A0

i ← Ainit, W0
0 ←Wpretrained (10)

Each client then independently trains their low-rank adapters A and B using their local data for a
specified number of epochs (referred to as “local epochs”). Upon completion of training, the clients
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send their updated low-rank adapters back to the server for aggregation. The server aggregates these
low-rank adapters and incorporates the residual term into the global model:

Bj
global =

1

k

k∑
i=1

Bj
i , Aj

global =
1

k

k∑
i=1

Aj
i (11)

∆Wj
res =

1

k

k∑
i=1

(Bj
iA

j
i )−

1

k

k∑
i=1

Bj
i ×

1

k

k∑
i=1

Aj
i (12)

The server then sends the aggregated matrices back to each client. After receiving these updates, the
clients proceed to update their low-rank adapters A and B, as well as the weight matrix:

Bj+1
i ← Bj

global, Aj+1
i ← Aj

global (13)

Wj+1
0 ←Wj

0 +∆Wj
res (14)

Following this, clients independently resume fine-tuning for a set number of local epochs. This
process repeats across multiple aggregation rounds (also referred to as communication rounds).

Multiple Assignment Strategies can Lead to Exact Aggregation. Several methods can be used
for achieving exact aggregation, with our choice of assignments for Ai and Bi being particularly
pivotal. Each such assignment strategy allows us to adjust the corresponding error offset within the
frozen weight matrix, facilitating precise aggregation. In Section 6, we investigate various methods
and empirically show that our proposed assignments for Ai and Bi deliver the best performance.

Communication Protocol. At first glance, it may seem necessary for the server to transmit the
high-rank update matrix ∆Wres to the clients, which could introduce substantial communication
overhead. However, the rank of this update matrix is capped at (k · r). Consequently, ∆Wres can be
decomposed into two low-rank matrices using methods such as Gram-Schmidt orthogonalization.
This decomposition expresses the matrix as a product of the basis of its column (or row) space and
the corresponding linear coefficients. The computational overhead incurred by this operation at each
aggregation step is negligible compared to the numerous matrix multiplications involved in training.
Importantly, clients are only required to transmit their low-rank adapters Ai and Bi, avoiding the
need to send any high-rank update matrices. In practice, the communication overhead is minimal
compared to FedIT, and overall, the communication cost remains significantly lower than that of full
federated fine-tuning. Detailed communication overhead analysis is provided in Section 6.

Best Inexact Approximation. For exact aggregation, the communication cost scales linearly with the
number of clients, becoming prohibitive in hyperclient settings. To address this, we propose relaxing
the exact aggregation condition through truncated SVD of the residual matrix. This reconstruction
yields a low-rank approximation which, by the Eckart-Young theorem (Eckart & Young, 1936), is
provably optimal for the high-rank update matrix. Specifically, for a target rank r′, the best low-rank
approximation ∆W r′

rec is computed as:

U, S, V T ← SVD(∆Wres) (15)

∆W r′

rec ← U [1 : r′]S[1 : r′, 1 : r′]V T [1 : r′] (16)

While this method introduces approximation error, it provides the theoretically optimal approximation
to exact aggregation. A key advantage is that the server can control communication costs, a capability
absent in previous methods - FedIT (Zhang et al., 2024b) and FFA-LoRA (Sun et al., 2024).

5 EXPERIMENTS

Models and Datasets. We evaluate our method on four NLP benchmarks using models ranging from
RoBERTa-base with 125M parameters to Gemma-2 with 9B parameters, covering both masked and
autoregressive architectures. Our experiments include fine-tuning Mistral-7B (Jiang et al., 2023),
Gemma-2 9B (Team et al., 2024), Llama-3.2 3B (Dubey et al., 2024), RoBERTa-base, RoBERTa-large
(Liu et al., 2019), and GPT-2 (Radford et al., 2019) using FedEx-LoRA. This comprehensive setup
allows us to assess the effectiveness of our approach across different tasks and model architectures.
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For arithmetic reasoning, we fine-tune the decoder-only models Mistral-7B and Gemma-2 9B using
10K samples from the MetaMathQA dataset (Yu et al., 2024). These models are evaluated on two
standard arithmetic reasoning benchmarks, GSM8K (Cobbe et al., 2021) and MATH (Hendrycks
et al., 2021). In the commonsense reasoning category, we use Llama-3.2 3B, which is trained on
COMMONSENSE170K—a compilation of eight commonsense reasoning datasets (Hu et al., 2023).
We evaluate the RoBERTa models on natural language understanding tasks with the GLUE benchmark
(Wang et al., 2019) and assess GPT-2 on natural language generation tasks through the E2E NLG
Challenge (Novikova et al., 2017). We implement all algorithms using PyTorch (Paszke et al., 2019),
based on the widely-used HuggingFace Transformers codebase (Wolf et al., 2020). We run all
experiments on a single NVIDIA A100/A6000 GPU, and present the results as average of 3 different
random runs. Base models are loaded in torch.bfloat16 to save memory. Dataset details are
presented in Appendix A.

Implementation Details. The residual and product matrices are scaled by the factor α/r, where α is
a constant in r, consistent with the approach in LoRA (Hu et al., 2021). We run our experiments in a
three-client cross-silo federated setting, based on the settings described in FFA-LoRA (Sun et al.,
2024). For data distribution among clients, we use the common method to sample data at random for
each client, as implemented in standard works (Zhang et al., 2024b; He et al., 2020; Lai et al., 2022).

Baselines. We primarily compare FedEx-LoRA with other federated fine-tuning versions of LoRA,
but include centralized LoRA as a performance benchmark or skyline. We also include other baselines,
where possible. Full Fine-Tuning (FT) refers to fine-tuning the entire pretrained model. LoRA (Hu
et al., 2021) represents the traditional centralized LoRA approach. FedIT (Zhang et al., 2024b), the
current state-of-the-art federated fine-tuning method, applies vanilla federated averaging (FedAvg)
to LoRA (McMahan et al., 2017). FFA-LoRA (Sun et al., 2024) freezes the A matrices and trains
only the B matrices, allowing for exact aggregation in a federated setting but at the cost of losing the
benefits of training A.

5.1 INSTRUCTION TUNING

Implementation Details. For arithmetic reasoning, we fine-tune Mistral-7B (Jiang et al., 2023) and
Gemma-2 9B (Team et al., 2024) on 10K samples from the MetaMathQA dataset (Yu et al., 2024) and
evaluate them on the GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) benchmarks.
For commonsense reasoning, we use Llama-3.2 3B, training it on COMMONSENSE170K—a dataset
combining eight commonsense reasoning datasets (Hu et al., 2023)—and evaluate its performance
on each of those datasets. In all instruction tuning tasks, we apply LoRA modules to the key, value,
query, attention output, and all fully connected weight matrices. We fine-tune over a single local
epoch within one aggregation round, using a rank of r = 32.

Main Results. Tables 1 and 2 present the results for commonsense and arithmetic reasoning. Our
method consistently surpasses state-of-the-art federated fine-tuning techniques across both arithmetic
benchmarks and all eight commonsense reasoning tasks for every evaluated model. For example, on
average accuracy for commonsense reasoning, FedEX-LoRA outperforms FFA-LoRA by 8.63% and
FedIT by 2.42% respectively.

Method Accuracy (↑)
BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.

Centralized LoRAr=32 73.45 89.65 82.23 94.41 87.97 93.88 82.76 86.60 86.37
FedITr=32 70.73 87.59 79.17 91.06 83.42 92.71 81.31 82.68 83.57
FFA-LoRAr=32 65.78 84.22 72.41 82.27 72.53 90.36 76.28 75.00 77.35
FedEx-LoRAr=32 73.21 89.01 81.98 94.29 87.29 93.68 82.33 86.20 85.99

Table 1: Results for Llama-3.2 3B on eight commonsense reasoning datasets, comparing various
federated LoRA methods at rank r = 32. Centralized LoRA (in grey) sets the benchmark skyline
for its federated versions. Best results among federated methods (in blue) are highlighted in bold for
each setting.
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Model Method Accuracy (↑)

GSM8K MATH

Mistral-7B

Centralized LoRAr=32 62.77 16.24
FedITr=32 56.94 14.96
FFA-LoRAr=32 56.41 14.88
FedEx-LoRAr=32 62.62 16.54

Gemma-2 9B

Centralized LoRAr=32 76.34 39.32
FedITr=32 74.57 37.16
FFA-LoRAr=32 75.04 35.18
FedEx-LoRAr=32 76.19 39.00

Table 2: Arithmetic reasoning performance on GSM8K and MATH for Mistral-7B and Gemma-2 9B,
comparing various federated LoRA methods at rank r = 32. Centralized LoRA (in grey) sets the
benchmark skyline for its federated versions. Best results among federated methods (in blue) are
highlighted in bold for each setting.

5.2 NATURAL LANGUAGE UNDERSTANDING

Implementation Details. RoBERTa (Liu et al., 2019) is a widely used pretrained model known for
its competitive performance among its size. We use the pretrained RoBERTa-base (125M parameters)
and RoBERTa-large (355M parameters) from the HuggingFace Transformers library (Wolf et al.,
2020) and evaluate them on several datasets from the GLUE benchmark: CoLA, RTE, MRPC, SST-2,
QNLI, and STS-B. We apply LoRA modules only to the self-attention layers, following the setup
from the original LoRA paper (Hu et al., 2021). Models are fine-tuned at ranks r = {4, 1} over
local epochs of 3 and 10. For RoBERTa-base, we run 50 aggregation rounds for 3 local epochs and
15 rounds for 10 local epochs. For RoBERTa-large, we perform 15 aggregation rounds for 3 local
epochs and 5 rounds for 10 local epochs. Detailed experimental settings are provided in Appendix B.

Main Results. We present results for RoBERTa-base and RoBERTa-large in Table 3, evaluated
at ranks r = {4, 1}. Our method consistently outperforms state-of-the-art federated fine-tuning
approaches across all datasets and settings. Notably, our method occasionally achieves performance
on par with centralized LoRA. Additional results in Appendix D (Table 10) further demonstrate the
robustness and superiority of our method over other federated LoRA variants across multiple settings.

5.3 NATURAL LANGUAGE GENERATION

Implementation Details. We fine-tune GPT-2 (124M parameters) (Radford et al., 2019) on the E2E
NLG Challenge dataset (Novikova et al., 2017). We apply LoRA modules only to the self-attention
layers. The model is fine-tuned at ranks r = {4, 1} with local epochs set to 3 and 10, using 6
aggregation rounds for both settings. Detailed experimental settings are provided in Appendix B.

Main Results. Table 4 presents the performance of GPT-2 fine-tuned with ranks r = {4, 1}. FedEx-
LoRA consistently outperforms leading federated fine-tuning methods, across all metrics and settings.
Additional evaluations, provided in Appendix E (Table 11), further demonstrate the reliability and
strength of FedEx-LoRA across different configurations.

6 ANALYSIS

To fully understand the implications of our method, we performed several in-depth analyses, each
targeting a specific aspect of FedEx-LoRA’s performance and efficiency.

Assignment Strategies for Ai and Bi. As discussed in Section 4, we can incorporate any high-rank
update matrix ∆Wres within the frozen full-rank matrix W0. However, assignment of the low-rank
adapters Ai and Bi post-aggregation is less straightforward. Any selection of Ai and Bi can be
offset by adjusting the residual update, by ensuring that W0+BiAi remains consistent across clients.
We evaluate three strategies: (1) Reinitialize Ai and Bi reinitializes Ai and Bi after aggregation
and appends the full update to the frozen weights (ensuring W0 +BiAi is identical). (2) Ai ← Ai

and Bi ← Bi leaves Ai and Bi unchanged across clients, maintaining their pre-aggregation values.
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Method CoLA RTE MRPC SST-2 QNLI STS-B All
Mcc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Corr ↑ Avg ↑

Centralized LoRAr=4 64.31 75.45 87.99 94.61 92.75 90.73 84.31
FedITr=4 60.82 73.64 88.48 94.61 92.07 90.91 83.42
FFA-LoRAr=4 59.34 70.04 87.50 94.27 91.37 90.26 82.13
FedEx-LoRAr=4 62.82 75.09 89.95 94.84 92.66 90.95 84.39

Centralized LoRAr=1 62.13 74.67 87.75 94.61 92.31 90.83 83.72
FedITr=1 61.33 71.48 87.99 94.52 92.01 90.81 83.02
FFA-LoRAr=1 57.52 71.20 87.48 94.03 91.78 90.34 82.06
FedEx-LoRAr=1 62.07 73.65 88.73 94.84 92.21 90.87 83.73

(a) Results with RoBERTa-base on the GLUE benchmark datasets

Method CoLA RTE MRPC SST-2 QNLI STS-B All
Mcc ↑ Acc ↑ F1 ↑ Acc ↑ Acc ↑ Corr ↑ Avg ↑

Centralized LoRAr=4 66.03 82.67 88.84 96.21 94.58 91.92 86.71
FedITr=4 64.48 78.43 88.48 95.87 94.41 91.29 85.49
FFA-LoRAr=4 62.05 75.39 86.52 95.27 94.35 90.23 83.97
FedEx-LoRAr=4 65.29 80.31 89.95 96.21 94.71 91.85 86.39

Centralized LoRAr=1 65.21 83.39 92.44 96.10 94.42 92.12 87.28
FedITr=1 62.82 78.11 91.29 96.10 94.35 91.62 85.72
FFA-LoRAr=1 60.58 74.67 89.47 95.58 94.01 91.34 84.28
FedEx-LoRAr=1 64.35 80.01 91.76 96.22 94.71 91.91 86.49

(b) Results with RoBERTa-large on the GLUE benchmark datasets

Table 3: Results with RoBERTa-base and Roberta-large on the GLUE benchmark datasets, comparing
various federated LoRA methods at ranks r = {4, 1}. Centralized LoRA (in grey) sets the
benchmark skyline for its federated versions. Best results among federated methods (in blue) are
highlighted in bold for each setting. There are 3 local epochs before every aggregation round. We
report Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy for others.
Higher is better for all metrics.

Method E2E NLG Challenge
BLEU ↑ NIST ↑ MET ↑ ROUGE-L ↑ CIDEr ↑

Centralized LoRAr=4 68.91 8.73 46.78 71.29 2.47
FedITr=4 67.60 8.67 46.30 68.96 2.41
FFA-LoRAr=4 66.79 8.61 45.24 67.98 2.39
FedEx-LoRAr=4 68.15 8.72 46.48 69.49 2.44

Centralized LoRAr=1 67.41 8.68 46.01 69.51 2.41
FedITr=1 66.01 8.56 45.21 68.14 2.28
FFA-LoRAr=4 65.87 8.54 45.02 68.05 2.27
FedEx-LoRAr=1 67.02 8.61 45.99 69.52 2.38

Table 4: Results with GPT-2 on the E2E NLG Challenge, comparing various federated LoRA methods
at ranks r = {4, 1}. Centralized LoRA (in grey) sets the benchmark skyline for its federated
versions. Best results among federated methods (in blue) are highlighted in bold for each setting.
There are 3 local epochs before every aggregation round. Higher is better for all metrics.

(3) FedEx-LoRA aggregates Ai and Bi using the aggregation method in FedIT (FedAvg), providing
the best low-rank approximation to the aggregated update with the residual ∆Wres stored in W0.
We present results for RoBERTa-base on the GLUE benchmark in Table 5. FedEx-LoRA outperforms
the other strategies, leading us to adopt Bi ← 1

k

∑k
i=1 Bi and Ai ← 1

k

∑k
i=1 Ai across all clients.
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Method CoLA RTE MRPC SST-2 QNLI STS-B All
Mcc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Corr ↑ Avg ↑

Reinitialize Ai and Bi 0.00 61.37 75.74 76.26 53.98 53.38 53.46
Ai ← Ai and Bi ← Bi 55.54 59.93 84.80 92.77 88.98 88.41 78.41
FedEx-LoRA 62.82 75.09 89.95 94.84 92.66 90.95 84.39

Table 5: Results with RoBERTa-base (r = 4) on the GLUE benchmark datasets, comparing various
assignment strategies for Ai and Bi. We report Matthew’s correlation for CoLA, Pearson correlation
for STS-B, and accuracy for other datasets. Best results for each dataset are highlighted in bold.

To extend our method to rank-heterogeneous settings, the assignments for Ai and Bi must also
accommodate rank heterogeneity. Further investigation is required to develop an optimal assignment
strategy that supports this.

Scaled Frobenius Norm of Divergence/Deviation. We now study the deviations in updates from
federated averaging (FedAvg) relative to ideal updates and analyze the findings. To quantify this
deviation, we measure the scaled Frobenius norm of the divergence between the updates produced
by FedAvg and the ideal LoRA updates, revealing several notable patterns. In Figure 2, we plot this
divergence for the query (Q) and value (V) matrices across model layers, computed after the first
aggregation step for local epochs = {3, 10}. We observe that (1) the deviations decrease as the model
depth increases, (2) the deviation grows with a higher number of local epochs, and (3) the deviation
is more pronounced in the query (Q) matrices compared to the value (V) matrices. These trends hold
consistently across various datasets and settings, as shown by additional plots in Appendix F.1 (see
Figures 4 and 5).

Next, we examine how this deviation evolves across multiple rounds of federated aggregation. We
plot the scaled Frobenius norm of the deviation between FedAvg and ideal LoRA updates over several
aggregation rounds for different datasets, focusing on (a) the query matrices of the first layer, and (b)
the average of the query and value matrices across all layers, as presented in Figure 3. We observe
that the deviation consistently decreases as the number of aggregation rounds increases, both for the
first-layer query matrix and for the average of the query and value matrices across all layers. These
findings are further supported by detailed plots across multiple datasets and settings, as shown in
Appendix F.2 (see Figures 6, 7, 8, and 9).

Figure 2: Scaled Frobenius norm of divergence/deviation of updates with conventional federated
aggregation (FedAvg) versus ideal LoRA updates, computed after the first aggregation step. We
plot for query (Q) and value (V) matrices across model layers. Results are shown for local epochs
= {3, 10}. (Dataset: MRPC, model: RoBERTa-large, r = 1).

Communication Costs. As discussed in Section 4, FedEx-LoRA transmits a higher-rank update
matrix (rank = k · r) along with the low-rank adapters, which raises concerns about potential
communication overhead. Table 6 compares the communication costs of FFA-LoRA, FedIT, and
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(a) Query matrices of first layer (b) Avg. of query and value matrices across all layers

Figure 3: Scaled Frobenius norm of divergence/deviation of updates with conventional federated
aggregation (FedAvg) versus ideal LoRA updates, computed across multiple aggregation rounds for
various datasets. We present results for (a) query matrices from the first layer, and (b) the average of
query and value matrices across all layers. (Model: RoBERTa-large, r = 1, local epochs = 10).

full federated fine-tuning (FT), compared to FedEx-LoRA, for RoBERTa-base, RoBERTa-large,
and GPT-2 models with rank r = 4 over 5 communication rounds. FedEx-LoRA incurs only a
marginal increase in communication overhead relative to FedIT and FFA-LoRA, while FFA-LoRA
has the lowest cost due to its reduced number of trainable parameters. FedEx-LoRA still maintains a
substantially lower communication cost compared to federated full FT.

The practical impact of communication overhead is reduced by two factors: (1) the initial transmission
of full model weights dominates communication costs, and (2) in NLU tasks, most communicated
parameters come from the classification head, which requires training regardless of the aggregation
method. Therefore, communication cost differences between FedEx-LoRA, FedIT, and FFA-LoRA
are minimal in practice. Despite this marginal overhead, FedEx-LoRA consistently outperforms other
federated LoRA approaches, making it an effective choice for federated fine-tuning.

Model Federated Full FT FedEx-LoRA FedIT FFA-LoRA

RoBERTa-base 7.032 1 0.979 0.972
RoBERTa-large 10.396 1 0.984 0.979
GPT-2 9.475 1 0.917 0.886

Table 6: Ratio of # of parameters communicated in federated LoRA variants and federated full FT to
FedEx-LoRA. All results are reported with rank r = 4 and across 5 communication rounds.

7 CONCLUSION

In our work, we identified limitations in state-of-the-art federated fine-tuning methods that struggle
with inexact aggregation. We proposed a novel method, FedEx-LoRA, which appends the residual
error matrix to the frozen pretrained matrix, while maintaining minimal communication and computa-
tional overhead. The strength of our approach lies in its simplicity and broad applicability. Extensive
experiments demonstrate that FedEx-LoRA consistently outperforms other federated LoRA methods
across various datasets and settings. Our analyses reveal that deviations in updates from federated
averaging compared to the ideal solution are significant and exhibit notable patterns.

Testing in privacy-preserving scenarios is a natural extension of our work. FFA-LoRA (Sun et al.,
2024) demonstrated that noise in differential privacy leads to greater deviations from ideal updates.
Given that our method achieves exact aggregation and outperforms FFA-LoRA in non-private settings,
we anticipate similar success in privacy-sensitive applications. Our approach can be readily adapted
for fine-tuning other models like Vision Transformers (ViTs) and Vision-Language models (VLMs).
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A DATASET DETAILS

COMMONSENSE170K is a dataset combining eight commonsense reasoning datasets (Hu et al.,
2023), as detailed below:

1. WinoGrande (Sakaguchi et al., 2021) involves filling in blanks with binary choices based
on sentences that demand commonsense reasoning.

2. HellaSwag (Zellers et al., 2019) asks the model to predict the most plausible continuation
of a given context by selecting the correct ending from several options.

3. ARC Challenge or ARC-c (Clark et al., 2018) consists of multiple-choice science questions
designed to challenge models with more complex reasoning, making them harder for
methods that rely solely on co-occurrence patterns.

4. PIQA (Bisk et al., 2020) tests physical commonsense reasoning, where the task is to choose
the best action from a set of options in a hypothetical situation.

5. BoolQ (Clark et al., 2019) focuses on yes/no question answering from naturally occurring
queries.

6. ARC Easy or ARC-e (Clark et al., 2018) consists of grade-school-level multiple-choice
science questions, providing a simpler set of tasks for testing models’ basic reasoning
abilities.

7. OBQA (Mihaylov et al., 2018) contains open-book, knowledge-intensive QA tasks requiring
multi-hop reasoning to answer questions that involve integrating information from multiple
sources.

8. SIQA (Sap et al., 2019) focuses on understanding human actions and predicting their social
consequences, evaluating models’ social commonsense reasoning.

MetaMathQA dataset (Yu et al., 2024) generates mathematical questions by rephrasing them from
various perspectives without introducing additional knowledge. We evaluate this dataset on two
benchmarks: GSM8K (Cobbe et al., 2021), which includes grade-school math word problems
that require multi-step reasoning, and MATH (Hendrycks et al., 2021), which features challenging
competition-level mathematics problems.

GLUE Benchmark is a diverse suite of tasks for evaluating natural language understanding capa-
bilities. It includes datasets such as SST-2 for sentiment analysis (Socher et al., 2013), MRPC for
paraphrase detection (Dolan & Brockett, 2005), CoLA for linguistic acceptability (Warstadt et al.,
2019), QNLI for inference (Rajpurkar et al., 2018), RTE for inference, and STS-B for semantic
textual similarity (Cer et al., 2017). Due to its comprehensive coverage of NLU tasks, GLUE is
widely used to assess models like RoBERTa. Each dataset is released under its own license.

The E2E NLG Challenge (Novikova et al., 2017) dataset is widely used to evaluate systems for
natural language generation, particularly for data-to-text tasks. It contains around 42,000 training
examples, with an additional 4,600 each for validation and testing, all from the restaurant domain.
Each input table has multiple reference outputs, where each data point (x, y) includes a sequence
of slot-value pairs and its corresponding reference text in natural language. The dataset is made
available under the Creative Commons BY-NC-SA 4.0 license.

B HYPERPARAMETER DETAILS

We conduct experiments on a single NVIDIA A100/A6000 GPU and report the average results from
three independent runs. All models are trained using the AdamW optimizer (Loshchilov & Hutter,
2019). For the instruction tuning experiments, the hyperparameters and configurations for Mistral-7B,
Gemma-2 9B, and Llama-3.2 3B are provided in Table 7, following most of the settings from previous
works (Hu et al., 2023). The hyperparameter configurations for GPT-2 and RoBERTa-base/large are
detailed in Table 8, with most settings following the original LoRA paper (Hu et al., 2021), except
for a learning rate sweep.
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Mistral-7B / Gemma-2 9B Llama-3.2 3B
Optimizer AdamW AdamW
Batch size 1 6
Max. Seq. Len 512 256
Grad Acc. Steps 32 24
Local Epochs 1 1
Rounds 1 1
Dropout 0 0
Learning Rate 5e− 4 5e− 4
LR Scheduler Cosine Linear
Warmup Ratio 0.02 0.02
LoRA α 16 16

Table 7: Hyperparameter settings for Mistral-7B, Gemma-2 9B & Llama-3.2 3B.

GPT-2 RoBERTa-base/large
Training

Optimizer AdamW AdamW
Weight Decay 0.01 0.01
Dropout Prob 0.1 0.1
Batch Size 8 128
Warmup Steps 500 -
Warmup Ratio - 0.6
Label Smooth 0.1 -
Max Seq. Len 128 512
Learning Rate 2 · 10−3 1 · 10−3

LoRA α 32 8

Inference

Beam Size 10 -
Length Penalty 0.9 -
no repeat ngram size 4 -

Table 8: Hyperparameter settings for GPT-2 and RoBERTa-base/large.

C EFFECT OF VARYING RANK

We evaluate FedEx-LoRA against other federated fine-tuning methods on the CoLA dataset using
RoBERTa-base, by varying the rank of the low-rank adapters across r = {1, 2, 4, 8, 16, 32}, as pre-
sented in Table 9. Across all rank configurations, FedEx-LoRA consistently outperforms competing
federated LoRA variants. In agreement with prior studies (Hu et al., 2021; Zhang et al., 2023b),
increasing the rank does not always result in performance gains. For this task, we find that the optimal
performance is achieved at r = 8, beyond which further increases in rank yield diminishing returns.

Method r = 1 r = 2 r = 4 r = 8 r = 16 r = 32

Centralized LoRA 62.13 62.11 64.31 64.44 64.32 63.98
FedIT 60.05 60.32 60.82 62.09 62.15 61.98
FFA-LoRA 57.73 57.78 59.34 57.82 57.78 58.24
FedEx-LoRA 62.07 61.38 62.82 63.57 63.56 63.35

Table 9: Matthew’s correlation on CoLA across different ranks for various federated LoRA methods.
Centralized LoRA (in grey) sets the benchmark skyline for its federated versions. Best results
among federated methods (in blue) are highlighted in bold for each rank. (Model: RoBERTa-base,
local epochs = 3).
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D ADDITIONAL EXPERIMENTS FOR NLU

We present additonal results with the RoBERTa-base and RoBERTa-large models in Table 10,
evaluated at ranks r = {4, 1}, with local epochs set to 10.

Method CoLA RTE MRPC SST-2 QNLI STS-B All
Mcc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Corr ↑ Avg ↑

Centralized LoRAr=4 64.31 75.45 87.99 94.61 92.75 90.73 84.31
FedITr=4 58.55 70.75 87.50 94.36 92.09 90.58 82.31
FFA-LoRAr=4 57.52 71.84 86.76 94.24 91.27 90.04 81.95
FedEx-LoRAr=4 61.32 75.81 87.75 94.57 92.64 90.62 83.79

Centralized LoRAr=1 62.13 74.67 87.75 94.61 92.31 90.83 83.72
FedITr=1 60.05 71.84 88.79 94.62 92.23 90.54 83.01
FFA-LoRAr=1 57.73 71.18 87.74 93.69 91.41 90.18 81.99
FedEx-LoRAr=1 61.31 73.12 89.21 94.73 92.40 90.67 83.57

(a) Results with RoBERTa-base on the GLUE benchmark datasets

Method CoLA RTE MRPC SST-2 QNLI STS-B All
Mcc ↑ Acc ↑ F1 ↑ Acc ↑ Acc ↑ Corr ↑ Avg ↑

Centralized LoRAr=4 66.03 82.67 88.84 96.21 94.58 91.92 86.71
FedITr=4 61.80 77.83 85.54 95.83 94.32 91.70 84.50
FFA-LoRAr=4 60.16 74.67 84.31 95.64 94.29 90.28 83.23
FedEx-LoRAr=4 62.60 79.19 86.03 96.10 94.74 91.91 85.10

Centralized LoRAr=1 65.21 83.39 89.21 96.10 94.42 92.12 86.74
FedITr=1 61.06 78.33 88.48 95.86 94.25 91.17 84.85
FFA-LoRAr=1 60.32 72.45 85.78 95.52 93.94 91.25 83.21
FedEx-LoRAr=1 63.56 79.07 89.71 96.22 94.56 91.77 85.82

(b) Results with RoBERTa-large on the GLUE benchmark datasets

Table 10: Results with RoBERTa-base and Roberta-large on the GLUE benchmark datasets, compar-
ing various federated LoRA methods at ranks r = {4, 1}. There are 10 local epochs before every
aggregation round.

E ADDITIONAL EXPERIMENTS FOR NLG

Table 11 presents additional experiments of GPT-2 fine-tuned with ranks r = {4, 1}, with local
epochs set to 5. FedEx-LoRA consistently outperforms leading federated fine-tuning methods across
all metrics and settings, consistent with the results presented in Table 4.

Method E2E NLG Challenge
BLEU ↑ NIST ↑ MET ↑ ROUGE-L ↑ CIDEr ↑

Centralized LoRAr=4 68.91 8.73 46.78 71.29 2.47
FedITr=4 67.61 8.62 46.45 70.28 2.43
FFA-LoRAr=4 67.21 8.57 46.05 69.98 2.41
Exact-FedITr=4 68.49 8.72 46.76 70.71 2.48

Centralized LoRAr=1 67.41 8.68 46.01 69.51 2.41
FedITr=1 66.16 8.56 45.54 68.25 2.29
FFA-LoRAr=1 65.78 8.49 45.01 67.82 2.26
Exact-FedITr=1 66.54 8.57 46.07 69.11 2.37

Table 11: Results with GPT-2 on the E2E NLG Challenge, comparing various federated LoRA
methods at ranks r = {4, 1}. There are 5 local epochs before every aggregation round.
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F MORE DIVERGENCE/DEVIATION PLOTS

F.1 DEVIATION/DIVERGENCE PLOTS ACROSS LAYERS

As discussed in Section 6, we further quantify the deviation of conventional federated aggregation
(FedAvg) from ideal updates by measuring the scaled Frobenius norm of the divergence the updates
produced by FedAvg and the ideal LoRA updates. We present additional plots of this divergence for
the query (Q) and value (V) matrices across model layers, computed after the first aggregation step
for local epochs = {3, 10} across multiple datasets, in Figures 4 and 5. Figure 4 shows results for
rank r = 1, while Figure 5 presents results for rank r = 4.

(a) QNLI, r = 1 (b) SST-2, r = 1

(c) CoLA, r = 1 (d) STS-B, r = 1

(e) MRPC, r = 1 (f) RTE, r = 1

Figure 4: Scaled Frobenius norm of divergence/deviation of updates with conventional federated
aggregation (FedAvg) versus ideal LoRA updates, computed after the first aggregation step. We plot
for query (Q) and value (V) matrices across model layers, for multiple datasets. Results are shown
for local epochs = {3, 10}. (Model: RoBERTa-large, r = 1).
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(a) QNLI, r = 4 (b) SST-2, r = 4

(c) CoLA, r = 4 (d) STS-B, r = 4

(e) MRPC, r = 4 (f) RTE, r = 4

Figure 5: Scaled Frobenius norm of divergence/deviation of updates with conventional federated
aggregation (FedAvg) versus ideal LoRA updates, computed after the first aggregation step. We plot
for query (Q) and value (V) matrices across model layers, for multiple datasets. Results are shown
for local epochs = {3, 10}. (Model: RoBERTa-large, r = 4).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

F.2 DEVIATION/DIVERGENCE PLOTS ACROSS ROUNDS

We now examine how the deviation evolves across multiple rounds of federated aggregation. We plot
the scaled Frobenius norm of the deviation between FedAvg and ideal LoRA updates over several
aggregation rounds for different datasets, focusing on (a) the query matrices of the first layer and (b)
the average of the query and value matrices across all layers. This is presented in Figures 6, 7, 8, and
9. We include results for ranks r = {1, 4} and local epochs = {3, 10}.

(a) Query matrices of first layer (b) Avg. of query and value matrices across all layers

Figure 6: Scaled Frobenius norm of divergence/deviation of updates with conventional federated
aggregation (FedAvg) versus ideal LoRA updates, computed across multiple aggregation rounds for
various datasets. We present results for (a) query matrices from the first layer, and (b) the average of
query and value matrices across all layers. (Model: RoBERTa-large, r = 1, local epochs = 3)

(a) Query matrices of first layer (b) Avg. of query and value matrices across all layers

Figure 7: Scaled Frobenius norm of divergence/deviation of updates with conventional federated
aggregation (FedAvg) versus ideal LoRA updates, computed across multiple aggregation rounds for
various datasets. We present results for (a) query matrices from the first layer, and (b) the average of
query and value matrices across all layers. (Model: RoBERTa-large, r = 1, local epochs = 10)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

(a) Query matrices of first layer (b) Avg. of query and value matrices across all layers

Figure 8: Scaled Frobenius norm of divergence/deviation of updates with conventional federated
aggregation (FedAvg) versus ideal LoRA updates, computed across multiple aggregation rounds for
various datasets. We present results for (a) query matrices from the first layer, and (b) the average of
query and value matrices across all layers. (Model: RoBERTa-large, r = 4, local epochs = 3)

(a) Query matrices of first layer (b) Avg. of query and value matrices across all layers

Figure 9: Scaled Frobenius norm of divergence/deviation of updates with conventional federated
aggregation (FedAvg) versus ideal LoRA updates, computed across multiple aggregation rounds for
various datasets. We present results for (a) query matrices from the first layer, and (b) the average of
query and value matrices across all layers. (Model: RoBERTa-large, r = 4, local epochs = 10)
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