Published as a conference paper at ICLR 2023

LEARNING WITH AUXILIARY ACTIVATION FOR
MEMORY-EFFICIENT TRAINING

Sunghyeon Woo, Dongsuk Jeon
Seoul National University, Seoul, Korea
{wsh0917,djeonl}@snu.ac.kr

ABSTRACT

While deep learning has achieved great success in various fields, a large amount
of memory is necessary to train deep neural networks, which hinders the develop-
ment of massive state-of-the-art models. The reason is the conventional learning
rule, backpropagation, should temporarily store input activations of all the lay-
ers in the network. To overcome this, recent studies suggested various memory-
efficient implementations of backpropagation. However, those approaches incur
computational overhead due to the recomputation of activations, slowing down
neural network training. In this work, we propose a new learning rule which sig-
nificantly reduces memory requirements while closely matching the performance
of backpropagation. The algorithm combines auxiliary activation with output ac-
tivation during forward propagation, while only auxiliary activation is used during
backward propagation instead of actual input activation to reduce the amount of
data to be temporarily stored. We mathematically show that our learning rule can
reliably train the networks if the auxiliary activation satisfies certain conditions.
Based on this observation, we suggest candidates of auxiliary activation that sat-
isfy those conditions. Experimental results confirm that the proposed learning
rule achieves competitive performance compared to backpropagation in various
models such as ResNet, Transformer, BERT, ViT, and MLP-Mixer.

1 INTRODUCTION

Backpropagation (1) is an essential learning rule to train deep neural networks and has proven its out-
standing performance in diverse models and tasks. In general, the wider and deeper the deep learning
model, the better the training performance (2). However, increasing model size unavoidably requires
larger memory in training hardware such as GPU (3} |4). This is because backpropagation needs to
temporarily store input activations of all the layers in the network generated in forward propagation
as they are later used to update weights in backward propagation. Consequently, state-of-the-art
deep learning models require substantial memory resources due to the large amount of input activa-
tion to store. In order to train very deep models with limited hardware resources, the batch size may
be reduced (3; 14) or many GPUs can be used in parallel (55 165 7} 185 195 [10; [11). However, reducing
the batch size causes a long training time, and the advantage of batch normalization (12)) disappears.
Also, training huge models such as GPT-3 (13)) still requires expensive GPU clusters with thousands
of GPUs and incurs high I/O costs even with parallelism.

Recently, a wide range of algorithms have been proposed to alleviate this memory requirement. For
instance, a new optimizer (14;[15) or neural network architectures (165175185 119; 205 21) have been
suggested to reduce the memory requirements. Gradient checkpointing (225 235 245 1255 126) reduces
memory space by only storing some of the input activation during forward propagation. Then, it
restores the unsaved input activations through recomputation in backward propagation. In-place ac-
tivated batch normalization (27) merges a batch normalization layer and a leaky ReLU layer and
stores the output activation of the merged layer in forward propagation. In backward propagation,
the layer input can be reconstructed for training because the leaky ReLU function is reversible. Sim-
ilarly, RevNet (28), Momentum ResNet (29), and Reformer (30) employ reversible neural network
architectures, which allow for calculating input activation from output activation in backward prop-
agation. Gradient checkpointing and reversible network structures reduce training memory space
because they partially store input activations (e.g., input activations of selected layers). However,

Published as a conference paper at ICLR 2023

these methods incur additional computational overhead because the unstored input activations must
be recomputed during backward propagation. Alternatively, algorithms to approximate activation
have been suggested (315 [32; 1335 134 135 1365 137 138)), but they suffer from performance degrada-
tion or slow down training due to additional computations to quantize and dequantize activations.
TinyTL (39) entirely avoids saving activations by updating only bias parameters while fixing weight
parameters. However, it is only applicable to fine-tuning of a pre-trained model.

In this study, we propose a new learning rule, Auxiliary Activation Learning, which can significantly
reduce memory requirements for training deep neural networks without sacrificing training speed.
We first introduce the concept of auxiliary activation in the training process. Auxiliary activations are
combined with output activations and become the input activation of the next layer when processing
forward propagation, but only the auxiliary activations are temporarily stored instead of actual input
activation for updating weights in backward propagation. To justify our algorithm, we prove that an
alternate type of input activation could reliably train neural networks if auxiliary activation satisfies
certain conditions. Then, we propose multiple candidates of auxiliary activations which meet this
criterion. Experimental results demonstrate that the proposed algorithm not only succeeds in training
ResNet models (40) on ImageNet (41) with similar performance to backpropagation, but is also
suitable for training other neural network architectures such as Transformer (42), BERT (43), ViT
(44), and MLP-Mixer (45).

2 AUXILIARY ACTIVATION LEARNING

[] compression [] Reconstruction i@, | Auxiliary Activation
Memory Wisy Memory
Wis t S »AW;,5) h1+2 N /AWH-SL
hi w (o [Ty 812 = Otz +iary o) wb | ay, Suv2
Wiz I
Wi, (‘AWHZ[AWHZ[
_ , hiyy N
hi,, wp (= |k 8141 = Orp1 Ty wmp | @)y 8141
Wi I
Wi » AW, AW 4
| P
hl ‘_‘ hl 61 = 0 +§_‘:l_l_‘i — a, 6[
t } f |
(a) Conventional memory-saving algorithms (b) Auxiliary Activation Learning

Figure 1: Conventional memory-efficient training algorithms and Auxiliary Activation Learning.

2.1 MEMORY REQUIREMENTS OF BACKPROPAGATION

To understand why backpropagation uses a large memory space for training, we describe how it
trains a deep neural network. The training process of backpropagation can be expressed by the
equations below.

hiy1 = ¢(Wipihy 4+ bii1) (1
& =Wi61106 (w) ()
AWiy = —ndi1 hi 3)

Here h;, W1, and b;; denote the input activation, weight, and bias of the hidden layer [+ 1,
respectively. ¢, d, and 7 represent the nonlinear function, backpropagated error, and learning rate,
respectively. y; is the output of a linear or convolutional layer (i.e., y; = W;h;_1 + b;), which
becomes the input of the nonlinear function ¢. In forward propagation, the input propagates through
the network following equation (T)). During this process, the generated input activations are stored
in memory. In backward propagation, the error is backpropagated through the network based on

Published as a conference paper at ICLR 2023

equation (). The weights are updated using the backpropagated errors and the activations stored
in memory (equation (3)). Due to the time gap between forward and backward computations, all
activations obtained in forward propagation must be temporarily stored in memory as they are later
used for backward propagation. Therefore, as the model size increases, the amount of activation
to be stored in memory increases accordingly. To alleviate this issue, gradient checkpointing (22
23 124; 25 [26)) stores only some of the activations in memory during forward propagation, and the
rest of the activations are restored during backpropagation by recomputing equation (I). Similarly,
activation compression methods (315|325 |33; (355 1365 137) quantize activations before saving them in
memory to reduce memory requirements, and they are dequantized during backward propagation.
However, these methods incur computational overhead and increase training time due to additional
processes during forward and backward propagation as depicted in Fig.

2.2 AUXILIARY ACTIVATION LEARNING: STORE AUXILIARY ACTIVATION INSTEAD OF
EXACT ACTIVATION

For memory-efficient training with minimal overhead, here we propose a new learning rule, Aux-
iliary Activation Learning. First, we introduce the concept of auxiliary activation in the training
process. Then, the algorithm trains the model following the equations below.

h; =0, + a; 4)
o141 = ¢(Wig1 hi +biy1) (5)
& =W 06 (w) (6)
AWy = —néiy1 af - (7)

Here a; represents the newly introduced auxiliary activation of layer [. In forward propagation, each
layer takes the sum of auxiliary activation a; and the previous layer’s output activation o; as input
activation h; (equation (#)). The generated input activation propagates through the layer following
equation (5). In backward propagation, the error d;1 is backpropagated by equation (6). Finally,
the weights are updated only using auxiliary activation a; instead of the actual input activation h;
following equation (7). The learning process of our algorithm is depicted in Fig. Now the
memory needs to store the auxiliary activations a;, not real activations h;. Consequently, if the
auxiliary activation is reused (e.g., a; = a;1) or the amount by auxiliary activation itself is small,
the required memory space can be reduced accordingly. Furthermore, it does not require additional
computations, avoiding training time increases.

The intuition behind only using auxiliary activation for weight updates is that the direction of a
weight update obtained using auxiliary activation could be similar to that of backpropagation if we
carefully choose auxiliary activation. More specifically, we use the sum of the auxiliary activation
a; and the previous layer’s output activation o; as the input activation h; (equation (@)). If we take
an existing value (e.g., activation from a different layer) as the auxiliary activation, this can be seen
as making an additional connection to the layer. If we update weights using backpropagation as
in equation (3, the input activation h; generated in forward propagation will be used for updating
weights: AWEY = —né 1 h] = —ndii1 (01 + a))” = —ndi110 — ndi1a . Consequently,
the weight gradient obtained by using our algorithm can be expressed by A W44l = AWEY +
ndi+10] . Therefore, it is expected that the weight update direction of our algorithm can be similar
to that of backpropagation if the effect of the second term is ignorable, which will result in proper
training of the neural network. In the next section, we prove that this assumption can be realized if
we choose the auxiliary activation appropriately.

3 ANALYSIS OF AUXILIARY ACTIVATION LEARNING

3.1 HOW AND WHEN USING ALTERNATIVE ACTIVATION CAN TRAIN DEEP NEURAL
NETWORKS

This section shows how learning with an alternative form of activation can make the loss of nonlinear
networks converge to a minimum value if a specific condition is satisfied. For mathematical analysis,
we consider a loss function f(2) whose gradient is Lipschitz continuous. h and r are column vectors
representing real activations and random alternative activations, respectively. 4 is a column vector

Published as a conference paper at ICLR 2023

of backpropagated errors, and W is a flattened vector of weights. When weights are updated by
backpropagation using exact activations h,

AW = V(W) = Vec(6:hl,...,6,RT) ®)

where ¢ denotes the current epoch. Contrarily, now we assume that the weights are updated using
alternative activations 7; as below, which represents a generalization of our algorithm.

AW = Vec(d17 ..., 0171 _1) # V(W) ®)
Wt+1 _ Wt . nAWt (10)

Theorem 1. IfrlT(2hl — 1) > 0in all layers, the step size 1) satisfies 0 < n < % and the gradient
of the loss function f(W) is Lipschitz continuous, then f(W') converges to a minimum value.

Theorem] can be proven by applying equations (9)-(I0) to the quadratic upper bound. A detailed
proof is provided in Appendix Because condition 0 < i < % can be easily satisfied if we use
a small step size, rlT(th — ;) > 0 is the most important condition for successful learning that
alternative activations should satisfy. We name this condition Learning Criterion. Furthermore,
the larger the value of 7] (2h; — 7;), the better the network converges because the amount of loss
reduction in each epoch (K" in Appendix|A)) increases. One interesting observation is that rlT (2h;—
r;) = 27 - hy—||r]|?= —||h; — 7>+ ||h;]|? reaches its maximum when r; = h;, which translates
to a conventional backpropagation algorithm. For convenience, we normalize the learning criterion
inequality with respect to its maximum value ||h;||? and define a learning indicator as below.

T‘IT (2hl — ’I"l)

ik (an

Learning Indicator =
In summary, alternative activation can train the network if the learning indicator in equation (TI) is
positive. Moreover, the larger the learning indicator, the better the training performance. Finally, the
training performance is maximized when the learning indicator is 1 (r; = h;, backpropagation).

3.2 CONSTRUCTING AUXILIARY ACTIVATIONS

(o] e
i hy i Auxiliary Residual Activation i 51 1 Auxiliary Sign Activation

Residual t Memory t Memory
Conmeeten hyy, AW, 3} by, 1 bit AW 45}
= Ouz + O Hy 8142 = Otz HSiyz w1, 8142
B, AWy, ‘ hyyy 1 bt AWy, [
R R— = s
=014 +[’_’Ll_.i Sl+1 - (I)Hl +:.:9.l:_1..:- St+1 8l+1
T AW1+11 R, 1bit AWy ‘
— h ——) h; 5, = 0 —I-i_:S_l“i— s / 5,
f ' f i
(a) Auxiliary Residual Activation (b) Auxiliary Sign Activation

Figure 2: Two candidates of auxiliary activation.

Theorem [T] suggests that using an alternate type of activation in calculating weight gradient could
still reliably train the neural network. However, in reality, it is cambersome to meet the learning
criterion if we use an arbitrary value as the alternate activation r; (see Appendix [C). To address this,
we modify the forward propagation path by adding auxiliary activation to the input activation as in
equation (4) in the proposed Auxiliary Activation Learning. Then, the input activation h; = o; + a;
and the alternate activation r; = a; share a common term a;, making it easier to meet the learning
criterion. Also, if we employ some values already existing in the network as auxiliary activation a;,

Published as a conference paper at ICLR 2023

this modification can be regarded as introducing an additional connection in the layer. The learning
indicator of Auxiliary Activation Learning is expressed by
T T
)) ri (2h;—7;) ai (20,4 a;)
Learning Indicator = —. = -t (12)
[P | [Pz}

by applying equation (@) to equation (IT)). For successful learning, the value of the learning indicator
in equation (I2)) should be positive. To satisfy this learning criterion, we suggest two candidates of
auxiliary activation as below.

Aucxiliary Residual Activation First, we can use the previous layer’s input activations as auxil-
iary activations and combine them with output activations, which is identical to having a residual
connection. Then, the learning process is expressed by

0111 = ¢(Wig1 (0141 + hy) + biy1) (13)
AVVH_Q = —7]6[+2 th (14)

Using auxiliary residual activations can save training memory if we only store h; and use it for
updating Wi, using backpropagation as well as for updating W5 and Wi, 3 using Auxiliary
Activation Learning as depicted in Fig. [2a]and equation (I4). Contrarily, backpropagation needs to
store h;, h;11, and h; o for updating these three layers.

Auxiliary Sign Activations Another option is using the sign of the output activation as auxiliary
activations. Then, the weight update process is represented by the equations below.

0111 = ¢(Wig1 (o + esign(oy)) + bi41) (15)
AW, 41 = —nbi11 esign(o;)” (16)
The auxiliary sign activation (s; = esign(0;)) can be guaranteed to satisfy the learning criterion.
Because 2a] 0, = 2esign(o;)To; > 0, the learning indicator in equation is always positive.

Using auxiliary sign activation can enable memory-efficient training by storing only a 1-bit sign of
activation instead of actual input activation in high precision as shown in Fig. [2b] In equations
(T5) and (16), we multiply the auxiliary activation by a hyperparameter e to make the two types of
activation comparable in magnitude since the output of the sign function is -1 or 1.

4 EXPERIMENTAL RESULTS

In experiments, we trained various deep neural networks using the proposed learning rule and com-
pared its training performance to that of backpropagation. We observed if the selected auxiliary
activations satisfied the learning criterion during training and also measured the amount of memory
savings and training time. Our algorithm was used to train ResNet (40) as well as transformer and its
variants (425435 /44;/45)), which are widely used architectures in vision and NLP-related applications.

4.1 TRAINING RESNET

We applied the proposed Auxiliary Activation Learning to ResNet training using two types of auxil-
iary activation as discussed above: Auxiliary Residual Activation (ARA) and Auxiliary Sign Activa-
tion (ASA). For ARA, we replaced the first convolutional layer, which receives a residual connection
from the previous block, with an ARA-Conv layer which performs weight updates using auxiliary
residual activations instead of actual activations (Fig. [3a). Hence, memory overhead can be reduced
for these ARA-Conv layers. The blocks in ResNet (40) can be categorized into different sets based
on their dimension. For example, ResNet-50 consists of blocks with an input channel dimension of
256, 512, 1024, or 2048 as displayed in Fig. In experiments with Auxiliary Activation Learn-
ing, the blocks are replaced with ARA blocks with different strides (’sharing stride”) in each set
of blocks as shown in Fig. and @} For instance, ARA(3,4,4,2) has a sharing stride of 3, 4, 4,
and 2 in the sets with a dimension of 256, 512, 1024, and 2048, respectively (Fig. . There-
fore, the larger the sharing stride, the more blocks that are replaced by ARA blocks and the larger
the amount of memory savings. Similarly, for experiments with auxiliary sign activation, the first
convolutional layer was replaced by an ASA-Conv layer, which employs auxiliary sign activation

Published as a conference paper at ICLR 2023

Input Input Input
Conv, Pool | 64 Conv, Pool L 64 Conv, Pool | 64
Block0 Blocko Block0
1 256 256 256
| Block 1-1 Block 1-1 Block 1-1
| ReLU i Block 1-2 L ARA Block 1-2 E ARA Block 1-2
Replaces | | Convax3 | | Block Block 13 Block 1-3 ARA Block 1-3
actual | B ‘ |512 | 512 |s12
activations B]
ReLU | Block 2-1 —{ Block2-1 Block 2-1
Convixl || Block 2-2 L ARA Block 2-2 ARA Block 2-2
BN ‘ Block 2-3 Block 23 ARA Block 2-3
i Block 2-4 | ARA Block 2-4 ARA Block 2-4
| 1024 [1024 | 1024
i i Block 3-1 Block 3-1 Block 3-1
Numberof [=% B . ; Block 3-2 L ARA Block 3-2 ARA Block 3-2
channels BN Block 3-3 Block 3-3 ARA Block 3-3
| ReLU | Block 3-4 L ARA Block 3-4 ARA Block 3-4
Conv3x3 | | ARA Block 3.5 Block 35 Block 3-5
D | Block Block 3-6 [ARA Block 36 [ARA Block 3:6
R‘Z['U ! 2048
oD |
BN |
Output Output Output
(a) ARA Block (b) BP (c) ARA(2,2,2,2) (d) ARA(3,4,4,2)

Figure 3: Training ResNet-50 using Auxiliary Residual Activation (ARA).

=
o
S

10*

=
o
W
[ury
o
W

Distribution
=
<
Distribution
=
<

10t 10t
10° , , , , 10°
-1 -0.5 0 0.5 1 -0.1 -0.05 0 0.05 0.1
Learning Indicator Learning Indicator
(a) ARA(2,2,2,2) (b) ASA(2,2,2,2)

Figure 4: Distributions of learning indicator values in ResNet-18 trained on CIFAR-10.

for weight updates. Other details of the experiments including hyperparameters can be found in
Appendix [H]

We first trained ResNet-18 on CIFAR-10, CIFAR-100 (46), and Tiny-ImageNet (47) by using BP,
ARA, and ASA to confirm the effectiveness of Auxiliary Activation Learning and the correlation
between training performance and the value of the learning indicator. Fig. ffa] shows that ARA not
only satisfies the learning criterion (i.e., keeps learning indicator values positive), but also results in
relatively large learning indicator values close to 1. This is consistent with the training performance
displayed in Table[T} ARA achieves high accuracy and even outperforms backpropagation in some
cases. Fig. [Ab|shows that ASA satisfies the learning criterion, but the values of the indicator are much
lower than that of ARA. Accordingly, ASA achieves slightly lower accuracy than BP and ARA.
More detailed comparisons between ARA and ASA can be found in Appendix [B] In addition, the
experiments in Appendix [C] show that the performance is significantly degraded when the learning
criterion is not satisfied due to using modifications of auxiliary activation. These results suggest that
the proposed learning indicator has a strong correlation with training performance.

In the next experiment, we applied ARA to training ResNet-50 and ResNet-152 on ImageNet with
various sharing stride values. Experimental results are summarized in Table 2] ARA achieved
competitive performance close to BP in all cases, and ARA(3,4,2,2) even achieved slightly higher
performance than BP in ResNet-152. Since the mechanism of our algorithm is entirely different

Published as a conference paper at ICLR 2023

Table 1: Test accuracy of ResNet-18 trained on CIFAR-10, CIFAR-100 and Tiny ImageNet.

Dataset BP ARA(2,2,2,2) ASA(2,2,2,2)
CIFAR-10 94.77 94.81 94.76
Accuracy (%) CIFAR-100 75.81 75.49 75.31
Tiny ImageNet 58.43 58.46 57.01

from other memory-saving techniques, our algorithm can be employed in addition to those conven-
tional approaches for even larger memory savings. For experiments, we trained the same networks
using gradient checkpointing (GCP) (24)) and ActNN (34) which is per-group activation compression
training. Then, we additionally applied our ARA to these learning rules. More specifically, GCP was
applied to the layers that did not employ ARA, whereas ActNN was applied to all layers including
ARA _Conv layers (see Appendices and for details). Experimental results clearly show that
our algorithm allows for larger memory savings with a very small increase in training time. This is
in contrast with GCP and ActNN, which noticeably slows down training due to additional compu-
tations for reconstructing activations during backward propagation. For instance, applying ActNN
alone to ResNet-50 reduces memory space by 11.8x while increasing training time from 18m to 49m
compared to BP. Contrarily, additionally applying ARA(3,4,6,2) increases the compression rate to
15.01x without impacting training speed. We observed a similar trend in experiments under iden-
tical compression rates (see Appendix [D). Furthermore, we additionally compared our ARA with
Momentum ResNet (29), which is reversible network for saving training memory in Appendix [E]

Table 2: Test accuracy, training memory with compression rate (bracketed), and training time (italic)
of one epoch in ResNet training on ImageNet with 512 batch size and six RTX-3090 GPUs.

Models Baseline - ARA ARA ARA ARA
2,2,2,2) (3,4,2,2) (3,4,4,2) (3,4,6,2)
76.01 75.97 75.89 75.62 75.23
BP 44.6 GB (1.12x) (1.2x) (1.21x) (1.22x)
17m 35s 17m 59s 17m 54s 17m 55s 18m 3s
76.01 75.97 75.89 75.62 75.23
ResNet-50 GCP (2.2x) (2.88x) (3.44x) (3.54x) (3.66x)
36m 42s 37m 2s 37m 9s 36m 58s 37m 14s
75.96 75.93 75.67 75.51 75.12
ActNN (11.8x) (14x) (14.6x) (14.8x) (15.01x)
48m 48s 48m 48s 48m 10s 47m 58s 47m 08s
77.38 77.14 77.41 76.84 76.64
BP 90.2 GB (1.16x) (1.21x) (1.27x) (1.29x)
ResNet-152 35m 37s 36m 17s 36m 24s 36m 11s 36m 30s
77.38 77.14 77.41 76.84 76.64
GCP (2.1x) (2.92x) (3.26x) (3.75x) (3.95x)
1h 18m 1h 19m 1h 19m 1h 19m 1h 20m

4.2 TRAINING TRANSFORMER, VIT, AND MLP-MIXER

Transformer (42)) achieved state-of-the-art performance in NLP, and the models inspired by Trans-
former such as BERT (43)), ViT (44)), and MLP-Mixer (45) are producing promising results in com-
puter vision. The structure of these models is quite distinct from ResNet models (40;48). Hence, we
applied our Auxiliary Activation Learning to Transformer and its variants to verify the scalability of
our algorithm. We trained Transformer on IWSLT (49) and BERT-Large on MRPC (50) and MNLI
(51) datasets. For ViT-Large and MLP-Mixer-Large, we used CIFAR-100 (46). Note that ARA was
not used in this experiment since residual connections are connected to layer normalization layers
(52)) rather than to fully-connected layers, whereas ARA requires residual connections to directly
connect to fully-connected layers to realize equation (I3). Instead, we applied ASA to linear layers
in multi-head attention and feedforward network. Fig. [5|depicts how ASA is applied to those lay-
ers. Since ASA-Linear layers store only 1-bit auxiliary sign activation instead of exact activation,
memory overhead can be mitigated. We trained networks with BP and Mesa (36) which is activa-
tion compression training for Transformer-like models. Then, we additionally applied ASA to these
algorithms (see Appendix for details). Mesa stores 8-bit quantized activation for linear layers;

Published as a conference paper at ICLR 2023

1 ! 1 1

—~ Add & Norm —~ Add & Norm —~ Add & Norm —~ Add & Norm

Replaced by _|
auxiliary sign
(1-bit)

Number of __|
channels

1
[ASAiinear)

5 ;

(a) ASA1 (b) ASA2 (c) ASA3 (d) ASA4

Figure 5: Transformer-like networks trained using Auxiliary Sign Activations (ASA). MHA and
FFN represent multihead attention and feedforward network, respectively.

hence, applying ASA to these linear layers can further reduce memory space as ASA-Linear layers
only store 1-bit sign activations. Because Mesa is designed for the networks with self-attention, it is
not applied to MLP-Mixer which does not employ self-attention layers.

Experimental results are displayed in Table 3] When we apply ASA only, it closely matches or
even outperforms BP while using smaller memory space. Since ASA needs to extract 1-bit sign
from actual activation to construct auxiliary activation, training time is slightly increased. However,
it is negligible compared to Mesa which requires quantization and dequantization during training.
For example, when training BERT-Large on MNLI, BP and ASA consumed 2h 37m and 2h 41m,

Table 3: Test/validation scores, compression rate (bracketed), and training time (italic) of one epoch
of Transformer, BERT, ViT, and MLP-Mixer training with 4096, 32, 512, and 256 batch sizes,
respectively.

Models Dataset Baseline - ASAL ASA2 ASA3 ASA4
35.23 35.44 34.87 349 35.02

BP 3.6 GB (1.1x) (1.1x) (1.2%) (1.3x)

Trans- IWSLT 3m 15s 3m2ls 3m 23s 3m 26s 3m 38s
former 3545 34.74 35.19 35.11 34.84
Mesa (1.6x) (1.7x) (1.7x) (1.7x) (1.8x)

5m 52s Sm47s Sm 44s 5m 36s S5m 8s

88.56 88.69 88.23 88.97 88.32

BP 10.9 GB (1.1x) (1.2%) (1.3%) (1.3x)

Im 28s 1m 29s 1m 30s 1m 30s Im 31s

MRPC 883 §8.35 8851 8825 §8.23

Mesa (2.1x) (2.3x) (2.4x) (2.4x) (2.5x)

BERT- 2m 8s 2m 5s 2m 3s 2m Is Im 55s
Large 86.52 86.65 86.49 86.42 86.39
BP 10.9 GB (1.1x) (1.2x) (1.3x) (1.3x)
MNLI 2h 37m 2h 40m 2h 40m 2h41m 2h4Im

86.32 86.37 86.29 86.54 86.17

Mesa (2.1x) (2.3x) (2.4x) (2.4x) (2.5x%)
3h5Im 3h 39m 3h 35m 3h 32m 3h 24m

92.93 92.81 92.84 92.97 92.65

BP 48 GB (1.3x) (1.5x) (1.5x) (1.6x)
ViT- 2m 46s 2m 48s 2m 50s 2m51s 2m 52s
Large CIFAR-100 92.89 9275 9272 92,95 9284
Mesa (3.0x) (3.5x) (3.6x) (3.7x) (4.3x)
4m 46s 4m 15s 3m 57s 3m 49s 3m 33s

Mixer- 91.62 91.45 91.72 91.66 91.91
Large CIFAR-100 BP 86.8 GB (1.3x) (1.4x) (1.7x) (2.0x)
3m 39s 3m47s 3m 50s 3m 57s 4m 1s

Published as a conference paper at ICLR 2023

respectively, while Mesa takes 3h 51m. We can maximize memory savings by applying Mesa and
our algorithm (ASA) simultaneously. If we train ViT-Large on CIFAR-100 using Mesa only, we can
obtain a 3.0x compression rate. On the other hand, applying both Mesa and ASA4 simultaneously
results in the compression rate of 4.3x. Furthermore, the training time is reduced by 1m 13s because
linear layers are replaced with ASA-Linear layers, avoiding costly quantization and dequantization
processes for these layers. Experimental results under identical compression rates can be found
in Appendix [D] which confirm that ASA enables faster training than Mesa with identical memory
savings.

4.3 USAGE CASE OF AUXILIARY ACTIVATION LEARNING

The proposed Auxiliary Activation Learning algorithm allows for training deep neural networks
on the systems with limited hardware resources by alleviating memory overheads with minimal
computational cost. For example, one may increase the width or depth of a neural network to
improve its accuracy. In experiments, we scaled ResNet-152 and BERT-Large using the same batch
size to confirm the effectiveness of our algorithm. For ResNet-152, we fixed other parameters and
increased the number of layers or the width of the bottleneck block following the scheme suggested
by Chen et al. (34). We also scaled BERT-Large by increasing the number of transformer blocks
or the hidden size following the scheme proposed by Liu et al. (38). The results are summarized in
Table[d]

Table 4: Largest models that can be trained using a single GPU with 24GB memory. (ResNet: depth
= number of layers, width = width of the first bottleneck block. BERT-Large: depth = number of
transformer blocks, width = hidden size.)

Models ResNet BERT-Large

Learningrule | BP ARA ActNN ARA+ACctNN BP ASA4 Mesa Mesa+ActNN
Depth 146 165 622 718 50 60 64 70
Width 62 76 214 238 1600 1728 1792 1856

Using ARA, we can train 13% deeper or 22% wider models compared to using BP only. Similarly,
additionally applying ARA allows for using 15% deeper or 11% wider models compared to using
ActNN only. For BERT-Large, we can train 20% deeper or 8% wider models by using ASA. Ad-
ditionally applying ASA allows for using 9% deeper or 4% wider model compared to using Mesa
only. Our algorithm may be used to increase the batch size for faster training using identical GPU
resources, and experimental results are provided in Appendix [F

5 DISCUSSION

In this work, we proposed a new learning rule, Auxiliary Activation Learning, which effectively
alleviates memory overhead in deep neural network training. The algorithm employs an alternate
form of activations for weight updates, and hence reduces the amount of data to be stored in memory
without additional computations. We proved that the algorithm can train neural networks if an
alternative form of activations satisfies a certain condition and also provided a performance indicator
that can anticipate the training performance of the selected auxiliary activation type. Experimental
results confirmed that the proposed algorithm successfully trains various deep neural networks for
vision and NLP tasks with smaller memory without training speed reduction. Furthermore, since
our algorithm is orthogonal to existing memory saving algorithms, it is possible to increase the
compression rate further without reduction in training speed by applying existing algorithms and
our algorithm simultaneously.

Since our study aims to save training memory in linear and convolutional layers, it currently cannot
be applied to layers that perform other types of operations such as normalization and activation
functions. In future work, we will try to address those issues to realize a more memory-efficient
learning algorithm and expand its applicability.

Published as a conference paper at ICLR 2023

REPRODUCIBILITY

We presented the rationale for our algorithm in Section 3] And it was proven through the ex-
perimental results in Section @] We have detailed various points for experimental reproduction
in Section] and Appendix [Hl Furthermore, we support code to reproduce our results as follows:
https://github.com/WooSunghyeon/Auxiliary_Activation_Learning.

ACKNOWLEDGMENT

This work was supported by the National Research Foundation of Korea (Grant NRF-
2022R1C1C1006880) and the Institute of Information & Communications Technology Planning
& Evaluation (Grant 2021-0-01343).

REFERENCES

[1] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal represen-
tations by error propagation. Technical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

[2] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. CoRR, abs/2001.08361, 2020.

[3] Zifeng Wu, Chunhua Shen, and Anton van den Hengel. High-performance semantic segmen-
tation using very deep fully convolutional networks. CoRR, abs/1604.04339, 2016.

[4] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In IEEE, pages 2242-2251, 2017.

[5] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alexander J. Smola, Alexander L.
Strehl, and Vishy Vishwanathan. Hash kernels. In AISTATS, volume 5 of JMLR Proceedings,
pages 496-503, 2009.

[6] Gideon Mann, Ryan T. McDonald, Mehryar Mohri, Nathan Silberman, and Dan Walker. Effi-
cient large-scale distributed training of conditional maximum entropy models. In NIPS, pages
1231-1239, 2009.

[7] Jeftrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z.
Mao, Marc’ Aurelio Ranzato, Andrew W. Senior, Paul A. Tucker, Ke Yang, and Andrew Y. Ng.
Large scale distributed deep networks. In NIPS, pages 1232-1240, 2012.

[8] Ryan T. McDonald, Keith B. Hall, and Gideon Mann. Distributed training strategies for the
structured perceptron. In Human Language Technologies: Conference of the North American
Chapter of the Association of Computational Linguistics, pages 456464, 2010.

[9] Martin Zinkevich, Markus Weimer, Alexander J. Smola, and Lihong Li. Parallelized stochastic
gradient descent. In NIPS, pages 2595-2603, 2010.

[10] Alekh Agarwal and John C. Duchi. Distributed delayed stochastic optimization. In NIPS,
pages 873-881, 2011.

[11] Alekh Agarwal, Olivier Chapelle, Miroslav Dudik, and John Langford. A reliable effective
terascale linear learning system. J. Mach. Learn. Res., 15(1):1111-1133, 2014.

[12] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In /JCML, volume 37 of JMLR Workshop and Conference
Proceedings, pages 448-456. JMLR.org, 2015.

[13] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

10

https://github.com/WooSunghyeon/Auxiliary_Activation_Learning
https://github.com/WooSunghyeon/Auxiliary_Activation_Learning

Published as a conference paper at ICLR 2023

Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learn-
ers. In Neurips, 2020.

[14] Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive opti-
mization. Advances in Neural Information Processing Systems, 32, 2019.

[15] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor
optimization. In International Conference on Machine Learning, pages 1842—1850. PMLR,
2018.

[16] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.
ACM Computing Surveys (CSUR), 2020.

[17] Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, Chloe Hillier, and Timothy P. Lil-
licrap. Compressive transformers for long-range sequence modelling. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020.

[18] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set transformer: A framework for attention-based permutation-invariant neural networks. In
International conference on machine learning, pages 3744-3753. PMLR, 2019.

[19] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao,
Zheng Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12009-12019, 2022.

[20] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document trans-
former. arXiv preprint arXiv:2004.05150, 2020.

[21] Hang Zhang, Yeyun Gong, Yelong Shen, Weisheng Li, Jiancheng Lv, Nan Duan, and Weizhu
Chen. Poolingformer: Long document modeling with pooling attention. In International
Conference on Machine Learning, pages 12437-12446. PMLR, 2021.

[22] Andreas Griewank and Andrea Walther. Algorithm 799: revolve: an implementation of check-
pointing for the reverse or adjoint mode of computational differentiation. ACM Trans. Math.
Softw., 26(1):19-45, 2000.

[23] James Martens and Ilya Sutskever. Training deep and recurrent networks with hessian-free
optimization. In Neural Networks: Tricks of the Trade - Second Edition, volume 7700 of
Lecture Notes in Computer Science, pages 479-535. Springer, 2012.

[24] Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. CoRR, abs/1604.06174, 2016.

[25] Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-
efficient backpropagation through time. In NIPS, pages 4125-4133, 2016.

[26] Jianwei Feng and Dong Huang. Optimal gradient checkpoint search for arbitrary computation
graphs. In IEEE, pages 11433-11442, 2021.

[27] Samuel Rota Bulo, Lorenzo Porzi, and Peter Kontschieder. In-place activated batchnorm for
memory-optimized training of dnns. In CVPR, pages 5639-5647, 2018.

[28] Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and Roger B. Grosse. The reversible residual
network: Backpropagation without storing activations. In NIPS, pages 2214-2224, 2017.

[29] Michael E Sander, Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. Momentum residual
neural networks. In International Conference on Machine Learning, pages 9276-9287. PMLR,
2021.

11

Published as a conference paper at ICLR 2023

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
ICLR, 2020.

Ayan Chakrabarti and Benjamin Moseley. Backprop with approximate activations for memory-
efficient network training. In NIPS, pages 24262435, 2019.

R. David Evans, Lufei Liu, and Tor M. Aamodt. JPEG-ACT: accelerating deep learning via
transform-based lossy compression. In 47th ACM/IEEE Annual International Symposium on
Computer Architecture, ISCA 2020, Valencia, Spain, May 30 - June 3, 2020, pages 860-873.
IEEE, 2020.

Fangcheng Fu, Yuzheng Hu, Yihan He, Jiawei Jiang, Yingxia Shao, Ce Zhang, and Bin
Cui. Don’t waste your bits! squeeze activations and gradients for deep neural networks via
tinyscript. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Re-
search, pages 3304-3314. PMLR, 2020.

Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael W. Mahoney,
and Joseph Gonzalez. Actnn: Reducing training memory footprint via 2-bit activation com-
pressed training. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume
139 of Proceedings of Machine Learning Research, pages 1803—1813. PMLR, 2021.

R. David Evans and Tor M. Aamodt. AC-GC: lossy activation compression with guaranteed
convergence. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, De-
cember 6-14, 2021, virtual, pages 27434-27448, 2021.

Zizheng Pan, Peng Chen, Haoyu He, Jing Liu, Jianfei Cai, and Bohan Zhuang. Mesa: A
memory-saving training framework for transformers. CoRR, abs/2111.11124, 2021.

Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. Exact: Scalable graph
neural networks training via extreme activation compression. In International Conference on
Learning Representations, 2021.

Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen, Xu Han, Jianfei Chen,
Zhiyuan Liu, Jie Tang, Joey Gonzalez, Michael Mahoney, and Alvin Cheung. GACT: activa-
tion compressed training for generic network architectures. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, International Con-
ference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, vol-
ume 162 of Proceedings of Machine Learning Research, pages 14139-14152. PMLR, 2022.

Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce memory, not parameters
for efficient on-device learning. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE, pages 770-778, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis., 115(3):211-252,
2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pages 5998-6008,
2017.

12

Published as a conference paper at ICLR 2023

[43] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In Jill Burstein, Christy Do-
ran, and Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume I (Long and Short Pa-
pers), pages 4171-4186. Association for Computational Linguistics, 2019.

[44] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In /ICLR, 2021.

[45] Tlya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic,
and Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In Neurips, pages
24261-24272, 2021.

[46] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report 0, University of Toronto, Toronto, Ontario, 2009.

[47] YaLe and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.
[48] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

[49] Mauro Cettolo, Jan Niehues, Sebastian Stiiker, Luisa Bentivogli, Roldano Cattoni, and Mar-
cello Federico. The IWSLT 2016 evaluation campaign. In IWSLT, 2016.

[50] Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing (IWP2005), 2005.

[51] Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Marilyn A. Walker, Heng Ji, and Amanda
Stent, editors, Proceedings of the 2018 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018,
New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pages 1112-1122.
Association for Computational Linguistics, 2018.

[52] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016.

[53] Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747, 2016.

[54] Tlya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In
ICLR, 2017.

[55] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

[56] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from ovetfitting. J. Mach. Learn.
Res., 15(1):1929-1958, 2014.

[57] Rafael Miiller, Simon Kornblith, and Geoffrey E. Hinton. When does label smoothing help?
In NeurlPS, pages 46964705, 2019.

[58] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations
by watching movies and reading books. In The IEEE International Conference on Computer
Vision (ICCV), December 2015.

[59] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random
synaptic feedback weights support error backpropagation for deep learning. Nature communi-
cations, 7(1):1-10, 2016.

13

Published as a conference paper at ICLR 2023

[60] Arild Ngkland. Direct feedback alignment provides learning in deep neural networks. In

[61]

Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 29: Annual Conference on Neural

Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 1037—
1045, 2016.

Qianli Liao, Joel Z. Leibo, and Tomaso A. Poggio. How important is weight symmetry in
backpropagation? In Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona,
USA, pages 1837-1844. AAAI Press, 2016.

14

Published as a conference paper at ICLR 2023

APPENDICES

A PROOF OF THEOREMS

Theorem 1. IfrlT(th — 1) > 0 in all layers, the step size 1 satisfies 0 < n < +, and the gradient
of the loss function f(W) is Lipschitz continuous, then f(W') converges to a minimum value.

Proof. Since a gradient of f(x) Lipschitz continuous (i.e. ||V f(y) — Vf(z)|l2 < L|ly — z||2), it

satisfies f(y) < f(x) + Vf(2)" (y — x) + 3 L||ly — x||>. By substituting W for z and W™ for
Y, we obtain

FOWS) < FW) + VA WOT (W - W) 4 LW - WP

)~V FWHT AW — L AW
) — K"

(
(

f
FOW) 4 VF(WT (-nAW') + Ll -nAW"
fw?!
s
where

K' = VfW)TAW' — gL AW’

> VAWHTAW! — AW

because we assumed that the step size is 0 < 7 < % By applying equations (8) and @), we obtain

K!'>ViWHTAW! — || AW?|?

1
5!
=viwHraw! — %(Awt)TAWt
= LAWY — (AW AW

1
= 5V€C(251hg — 51’!’(7;, ceey 25Lh€_1 — (SLTJT—:_l)TVeC((Sﬂ"gW, . ,6[/!’%_1)
L—-1

1
=5 Z Vec(8141(2hy — 1)) Vee(81117])
=0

We can show that Vec(ABT)TVec(ACT) = ||A||?CT B when A, B, and C are column vectors,
and B and C have the same dimension as below.

Vec(ABT)T'Vec(ACT) = Vec([abjli;)T Vec([aic)li;)
= [a1by, agby, -+, ambyl[arc, azct, -+ amen]”
=(af +---+a2)bicr + (@l + - +aZ)bacag + -+ (a + -+ +a)bncn
= (ai + -+ ap,)(bier + -+ bncy)
= |A|*CTB
Consequently, by applying this equality to the inequality above,
L—1

1
Kt = 5 Z Vec(61+1 (th — rl)T)TVec((slelT)
=0
1 L-1
25 > NS lPrl 2k — 1)
=0
>0

15

Published as a conference paper at ICLR 2023

because v/ (2h; — 7;) > 0 in all layers by the assumption above. Therefore, 0 < f(Witl) <
FWH—nK! < f(W1) —pK*=1—pK* < f(W°)—n 3! _, K™, which suggests that the value
of f(W') becomes smaller as the number of epochs ¢ increases because K™ > 0. Consequently,
because f(W) decreases and is bounded below by 0, f(W) converges to zero during training
even when using alternative activations for updating weights by the monotone convergence theorem.
Furthermore, if the values of rlT(2hl — 1) increases, K", which is the amount of loss reduction in
each epoch, also increases and therefore the network converges well. O

B COMPARISONS BETWEEN AUXILIARY RESIDUAL ACTIVATION AND
AUXILIARY SIGN ACTIVATION

Train loss on Tiny-imagenet Validation loss on Tiny-imagenet
— BP — BP
3500 1 ARA [2,2,2,2] 804 ARA [2,2,2,2]
— ASA[2,2,2,2] — ASA[2,2,2,2]

3000
2500
w 2000 A
1500

1000

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epoch Epoch

(a) Train loss (b) Validation loss

Figure 6: Train and Validation losses in ResNet-18 training on Tiny ImageNet

Table[5]shows that the training memory of ASA is slightly larger than that of ARA since ASA has to
obtain and store 1-bit auxiliary sign activation, while ARA does not need to store actual activation
and just reuses auxiliary activation. We also measured the mean values of the learning indicator. The
mean values of the learning indicator of ARA are significantly higher than those of ASA. Therefore,
from Theorem [I] we can expect that the loss of the network would converge better by using ARA
compared to ASA. This is consistent with the experimental results in Table[5) ARA achieves higher
accuracy than ASA in all experiments. In addition, both train and validation losses converge better
when using ARA, as shown in Fig. [6] The processing time for one epoch of ASA is slightly larger
than that of ARA since ASA needs to pack 1-bit auxiliary sign activation, whereas ARA employs
auxiliary residual activation as is.

Table 5: Test accuracy, training memory, training time of one epoch, and mean values of learning
indicator in ResNet-18 training.

Dataset metric BP ARA (2,2,2,2) ASA (2,2,2,2)
Accuracy 94.77 94.81 94.76
Training memor 605 MB 546 MB 549 MB
CIFAR-10 Training time 20.83s 21.30s 21.465
Learning Indicator - 0.69 0.03
Accuracy 75.81 75.49 75.31
Training memor 605 MB 546 MB 549 MB
CIFAR-100 Trainigng ime 20.865 21.32s 21.52s
Learning Indicator - 0.71 0.03
Accuracy 58.43 58.46 57.01
Tiny TmageNet Training memory 1211 MB 1091 MB 1097 MB
Training time 36.82s 37.54s 37.94s
Learning Indicator - 0.7 0.03

16

Published as a conference paper at ICLR 2023

C DOES ADDING AUXILIARY ACTIVATION REALLY HELP?

Theorem|I] suggests that an alternative type of activation can replace actual input activation in back-
ward propagation, as long as it satisfies the learning criterion. However, it is difficult to meet this
condition using arbitrary values, so we proposed to add the alternate activation to real activation
in forward propagation. Then, the input activation h; = o; + a; in forward propagation and the
alternate activation a; in backward propagation share a common term, which is expected to help sat-
isfy the learning criterion. In this section, we experimentally verify this claim by comparing ARA
and ASA to baselines where the alternate activations are not added to real activation in forward
propagation.

In baselines, we replace real activation with the previous layer’s activation and 1-bit sign of original
activation in backward propagation, while they are not added to real activation in forward propaga-
tion. They are denoted by Residual Activation (RA) and Sign Activation (SA), respectively. SA is
identical to simply quantizing activation into 1 bit in conventional backpropagation.

-
Qo
=

10* 104
c 10 c 10 c 10
o] 2
- - -
310 310 310
3 g i
8 10 B8 10! B8 10!
10° 1009 | \‘u‘\m] 10°9 u\‘m 1
-1 0.5 0 0.5 1 0.5 0 0.5 1 -0. 0 0.5
Learning Indicator Learning Indicator Learning Indicator
(a) RA on CIFAR-10 (b) RA on CIFAR-100 (c) RA on Tiny ImageNet
104 104 10¢
c 10° c 10° c 103
] -] o
5., = g
210 2 10? 102
g 10 8 10t o 10t
10° ”|| 10° 10° | l
-1 -0.5 0 0.5 1 1 05 0 0.5 1 1 0.5 0 0.5 1
Learning Indicator Learning Indicator Learning Indicator
(d) ARA on CIFAR-10 (e) ARA on CIFAR-100 (f) ARA on Tiny ImageNet

Figure 7: Distributions of learning indicator values of RA and ARA in ResNet-18

Figs. [7] and [8] display learning indicator values of ResNet-18 trained on CIFAR-10, CIFAR-100,
and Tiny ImageNet. These results show that adding auxiliary activation to real activation in for-
ward propagation significantly improves the distributions of learning indicator values by positively
skewing them toward 1. This is consistent with training performance comparisons provided in Table
[6l ARA and ASA noticeably outperform RA and SA in all experiments, and the performance im-
provement is more significant for larger datasets. Therefore, we can conclude that adding auxiliary
activation to real activation in forward propagation does help neural network training.

Table 6: Test accuracy of ResNet-18 trained on CIFAR-10, CIFAR-100, and Tiny ImageNet.

Learning Rule CIFAR-10 CIFAR-100 Tiny ImageNet
BP 94.77 75.81 58.43
RA(2,2,2,2) 94.1 72.23 53.91
Accuracy (%) ARA (2,2,2,2) 94.81 75.49 58.46
SA(2,2,2,2) 94.36 74.58 55.76
ASA (2,2,2,2) 94.76 75.31 57.01

17

Published as a conference paper at ICLR 2023

—
=
>

104 10¢
3 3 3
c 10 c 10 c 10
] 2]
- - -
310 210 310
= T =
o o o
o 10 8 10! a 10!
100 100 100
1 -0.5 0 0.5 1 1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Learning Indicator Learning Indicator

(b) SA on CIFAR-100

Learning Indicator

(a) SA on CIFAR-10 (c) SA on Tiny ImageNet

10*

-
o
2

10°

"
i

10°

Distribution
=
)
Distribution
—
i
Distribution
=
L)

-
<

10°
-0.1

0.05
Learning Indicator

(d) ASA on CIFAR-10

-0.05 0 -0.05 0 0.05 0.1

Learning Indicator

(f) ASA on Tiny ImageNet

-0.05 0 0.05
Learning Indicator

(e) ASA on CIFAR-100

Figure 8: Distributions of learning indicator values of SA and ASA in ResNet-18

D COMPARISONS BETWEEN AUXILIARY ACTIVATION LEARNING AND
OTHER MEMORY SAVING ALGORITHMS UNDER IDENTICAL COMPRESSION
RATES

In this section, we compare our Auxiliary Activation Learning with other memory saving algorithms
under identical compression rates. We apply GCP to the last Conv-BN layer of residual blocks in Fig.
[3a] because the dimension of input activation in the last batch normalization layer is equal to that of
the ARA-Conv layer, which is not stored in memory during ARA. The input activation of the batch
normalization layer is not stored in Conv-BN layers, but it is recomputed from the input activation of
the convolutional layer during backward propagation. Through this, an identical amount of memory
saving can be achieved by using GCP. For ActNN, we applied it to first convolutional layer of
residual blocks as we did for ARA in Fig. [3a] which resulted in an identical compression rate. While
our ASA stores 1-bit auxiliary sign activation, Mesa stores 8-bit compressed activation. Therefore,
we cannot achieve the same memory saving by applying Mesa in the same way as ASA. To overcome
this issue, we additionally apply Mesa to the batch normalization and layer normalization layers to
obtain the same compression rate to ASA. Tables[7and[8|show that ARA and ASA train the networks
faster than other memory-saving algorithms with identical compression rates as they do not require
additional costly computations.

Table 7: Test accuracy, training memory, compression rate (bracketed), and training time of one
epoch in ResNet-152 training on ImageNet with 512 batch sizes.

BP ARA (3,4,2,2) GCP ActNN
Accuracy 77.38 77.41 77.38 77.35
Training memory 90.2 GB 74.5 GB (x1.21) 74.4 GB (x1.21) 74.5 GB (x1.21)
Training time 35m 37s 36m 24s 45m 21s 47m 39s

18

Published as a conference paper at ICLR 2023

Table 8: Test accuracy, training memory, and training time of one epoch in ViT-Large training on

CIFAR-100.
BP ASA3 Mesa
Accuracy 92.93 92.97 9291
Training memory 48 GB 33.1 GB (x1.5) 31.8 GB (x1.5)
Training time 2m 46s 2m 51s 3m 12s

E COMPARISONS BETWEEN AUXILIARY RESIDUAL ACTIVATION AND
MOMENTUM RESNET.

In this section, we compare ARA with Momentum ResNet (MResNet) (29), which is a reversible
network that can be applied to diverse networks with residual connections. For comparisons, we
trained ResNet-50 on CIFAR-100 with a 5e-2 learning rate for 100 epochs with 10 warm-up steps
and cosine annealing. The results are displayed in Table [9] First, ARA closely matches BP in
accuracy, but MResNet exhibits a small accuracy degradation. While ARA requires larger training
memory than MResNet, ARA is significantly faster since MResNet needs to recalculate the input of
residual blocks along with additional forward propagation during backward propagation.

Table 9: Test Accuracy, training memory, and training time of one epoch in ResNet-50 with 128
batch sizes.

Dataset BP MResNet ARA (3,4,2,2)
Accuracy 76.83 76.27 76.78
Training memory 3.30GB 2.54 GB 2.71 GB
Training time 51.54s 2m 21s 53.49s

F MAXIMUM BATCH SIZE AND TRAINING TIME WITH AUXILIARY
ACTIVATION LEARNING.

We trained various networks using only three RTX-3090 GPUs to confirm the effectiveness of our
algorithm. The experimental results for ResNet-152 and ViT-Large are displayed in Tables [I0]and
Using memory-saving techniques allows for a larger batch size for a given GPU memory space.
Interestingly, although conventional algorithms such as GCP, ActNN, and Mesa enables a larger
batch size, it does not translate to faster training speed due to additional computations. In contrast,
our ARA and ASA algorithms take full advantage of larger batch size and improve training speed.

Table 10: Maximum batch size and training time of ResNet-152 on ImageNet. The sharing stride of
ARA is (3,4,6,2).

BP GCP ActNN ARA GCP + ARA ActNN + ARA
Max batch size 350 700 1950 450 1250 2200
Training time 49m 1h 4m 56m 47m 57m 52m

Table 11: Maximum batch size and training time of ViT-Large on CIFAR-100.

BP Mesa ASA4 Mesa + ASA4
Max batch size 600 1600 900 2100
Training time Im 53s 2m 9s 1m 49s 1m 59s

G COMPARISONS BETWEEN AUXILIARY ACTIVATION LEARNING AND SM3

In this section, we compare ARA with SM3 (14), which is a memory-efficient optimizer. While
our algorithm aims to reduce the amount of input activation to be stored, SM3 aims to reduce the
memory required for storing states generated by accumulating previous gradients of parameters.

19

Published as a conference paper at ICLR 2023

For fair comparisons, we measured the total memory allocated to a GPU instead of the memory
required to store activations. Experimental results are summarized in Table [[2] The results show
that our ASA4 algorithm requires smaller memory space but takes more time to process one epoch
compared to SM3. This is because the SM3 optimizer is faster than the Adam optimizer that we used
for all experiments. Since the theoretical backgrounds behind these two methods are quite different,
they can be combined together to obtain even larger savings. As displayed in Table[T2] if we apply
both methods simultaneously, we can obtain the largest memory savings with minimal impact on
the accuracy.

Table 12: Test Accuracy, training memory, and training time of one epoch in Bert-Large on MRPC
with 32 batch sizes.

Dataset BP SM3 ASA4 SM3 + ARA
Accuracy 88.56 88.23 88.32 88.15
Total memory 22.2GB 199 GB 19.1 GB 16.55GB
Training time 1m 28s 1m 20s 1m 31s Im 22s

H EXPERIMENTAL DETAILS

H.1 HoOw WE APPLY GRADIENT CHECKPOINITING IN EACH EXPERIMENT

Chen et al.(24) suggested that when there is a BN-ReLU-Conv layer in the network, applying gra-
dient checkpointing to those layers can reduce memory requirements without incurring significant
computational overhead. More specifically, only the input activation of the BN layer is stored dur-
ing forward propagation, and the rest is recalculated in backward propagation. Therefore, while
the BN and ReL U layers have to be recomputed during backward propagation to generate the input
activation of the Conv layer, there is no need to recompute the Conv layer itself which may lead
to large computational overhead. We applied this method to BN-ReLU-Conv3x3 layers in Fig. [33]
to reduce memory overhead without a significant amount of recomputation. In addition, we apply
gradient checkpointing to BN-ReLU-Conv1x1-BN layers in Fig. 3a] Although we have to recom-
pute Convl1xl, its computational overhead is relatively small compared to Conv3x3 layers. We also
applied gradient checkpointing to the first Conv-BN-ReLU-MaxPool layers in ResNet. Here only
the input of the first Conv layer is stored during forward propagation, and the input activation of the
other layers is recomputed in backward propagation. Although the first Conv layer has to be recom-
puted, a large amount of training memory can be saved because the amount of the input activation
in the first Conv, BN, and MaxPool layers is large.

H.2 HOW WE APPLY ACTIVATION COMPRESSION TRAINING IN EACH EXPERIMENT

@ Quantization IE‘ Dequantization @ Quantization @ Dequantization
| l | | ey
......... 1 comad 1 comad i T . i coniza | ey | AR] B
[a] [[a] [a]
Memory |} [1 Memory |
I‘Il qi+1 qi+2 9 |
B B B B
L] $ $) 2
i1 1 i T 1
DTN Conv2d | €sesseaen Conv2d | wrererars Conv2d | €wessssens Qs Conv2d | €ererarars Cﬁ:\zd C/::\Zd
(a) ActNN (b) ActNN with ARA

Figure 9: Training process of ActNN with ARA

ActNN (34) stores 2-bit compressed activations instead of actual activations for all layers except for
ReLU and pooling which only needs 1-bit sign activations. We applied ActNN (L3) to all layers,

20

Published as a conference paper at ICLR 2023

which performs per-group quantization with fine-grained mixed precision. The per-group quantiza-
tion partitions the activation into several groups, and then quantization is performed by groups. The
fine-grained mixed precision includes two processes: per-sample allocation and per-layer allocation.
In per-sample allocation, the sensitivity, which is related to gradient variance, is calculated for each
group and then an optimal number of bits for each group is determined using this sensitivity. Then,
per-layer allocation calculates the sensitivity of each layer and then an optimal number of bits for
each layer is obtained. When ARA and ActNN are applied simultaneously, we perform 2-bit group-
wise quantization and per-sample allocation on auxiliary residual activation. However, per-layer
allocation is not applied to auxiliary residual activation because it is not straightforward to calculate
the sensitivity of ARA layers. While ActNN needs to quantize and store activations of all layers, we
can skip this process for ARA_Conv layers when using ActNN with ARA (Fig. [9).

@ Quantization @ Dequantization @ Quantization @ Dequantization
. . Linear- Linear- Linear-
......... > . R . . I SR .
l Linear l Linear 1 Linear e e e
[a] 8bits [a] sbits [@] sbits 1 bit 1 bit 1 bit
Memory | [1 1 Memory
4 4
q qi+1 qi+2 | | S Si+1 Si+2 |
B B B
o o o

Linear-
ASA

Linear-
ASA

Linear-
ASA

(a) Mesa (b) Mesa with ASA

Figure 10: Training process of Mesa with ASA.

Pan et al. (36) pointed out that conventional activation compression algorithms do not consider
heterogeneous activation distributions in a multi-head attention layer and therefore they are not
applicable to Transformer-like models. Therefore, they proposed Mesa which performs head-wise
quantization instead of per-tensor quantization. When we combine Mesa and ASA, we replace linear
layers with ASA-Linear layers as shown in Fig. [10]

H.3 DATASETS

CIFAR-10 and CIFAR-100 The CIFAR-10 dataset (46) consists of 50,000 training images and
10,000 test images which are 32x32 RGB images for 10-class image classification. Likewise, the
CIFAR-100 dataset (46) includes 50,000 training images and 10,000 test images with the same
resolution for 100-class image classification.

Tiny ImageNet The Tiny-ImageNet dataset (47) consists of images of 200 classes and each class
has 500 images for training. It also contains 10,000 test images. All images included in Tiny
ImageNet are selected from ImageNet and downsized to 64x64.

ImageNet The ImageNet dataset (41) is a representative large-scale dataset for image classifica-
tion. It consists of 1,281,167 training images, 50,000 validation images, and 100,000 test images
which are all RGB images. The average image size on ImageNet is 469x387, but they are randomly
cropped to 224x224 for image classification.

IWSLT 2016 The IWSLT 2016 dataset (49) is constructed for spoken language translation task.
We choose IWSLT2016 De-En dataset which is used for German-to-English translation. It has 1,611
talks, 197K sentences, and 3.96M tokens as a training set while the validation set consists of 13 talks,
1.1K sentences, and 21K tokens.

MRPC The Microsoft Research Paraphrase Corpus (MRPC) dataset (50) consists of 5081 sen-

tence pairs from newswire articles. In this dataset, the training set contains 4076 sentence pairs with
2753 paraphrases and the test set contains 1725 pairs with 1147 paraphrases.

21

Published as a conference paper at ICLR 2023

MNLI The Multi-Genre Natural Language Inference (MultiNLI) dataset (51) consists of 433k
sentence pairs for ten genres (Face-to-Face, Telephone, etc.). The dataset is divided into 392702 train
sets, 9815 validation_matched sets which are subsets of train sets, and 9832 validation_mismatched
sets which are included in train sets.

H.4 HYPERPARAMETES

ResNet For training ResNet-18 from scratch on CIFAR-10, CIFAR-100, and Tiny ImageNet, we
set the batch size and the total number of epochs to 128 and 200, respectively. We applied stochastic
gradient descent with momentum (53) along with weight decaying (46)) to our experiments. The
momentum and weight decay rate was set to 0.9 and le-4, respectively. The learning rate of the
layers except for ASA layers was scheduled by cosine annealing (54) with a 0.1 initial learning rate
during 200 epochs. In comparison, we used a 100x higher learning rate for ASA layers to make
the magnitude of weight updates comparable to those of other layers. We also set € in equations
(T5) and (T6) to 0.01. We used a nearly identical set of hyperparameters for ImageNet experiments.
However, we set the batch size and the initial learning rate to 512 and Se-2, respectively, and the
number of epochs is 90 with 4 warm-up steps.

Transformer In Transformer, the batch size and the number of epochs are set to 4096 and 20,
respectively. We trained Transformer from scratch on IWSLT and used the Adam optimizer (55) by
setting 31 t0 0.9, 32 t0 0.98, and € to 1e-9. In addition, the learning rate was updated by the warm-up
learning rate scheduler (54), and the number of warm-up steps was set to 4,000. We applied a 100x
higher learning rate to ASA layers as in ResNet experiments. ¢ in equations (I3) and (I6) for ASA
was set to 0.01. The model dimension was 512, the hidden layer dimension was 2048, the number
of heads was 8, and the dropout rate (56) was 0.2. Furthermore, we applied label smoothing with a
0.1 label smoothing rate (57) to all experiments in Transformer.

BERT-Large We used Bert-Large (uncased) pretrained on BookCorpus (58) and English
Wikipedia for fine-tuning on MRPC and MNLI. The batch size was set to 32, and we trained BERT-
Large for three epochs. The Adam optimizer (55) was used with 0.9 31, 0.999 35, le-6 ¢, and 0.01
weight decay rate. We also employed warm-up in the learning rate up to 10% of the total step, and
cosine annealing is used for the remaining epochs (54). The learning rate of cosine annealing was
set to 1.5e-5. These learning rate was increased by 100x for ASA layers in ViT experiments. € in
equations and was set to 0.01. The other hyperparameters were selected according to the
original BERT paper (43).

ViT-Large We fine-tuned a ViT-Large model pretrained on ImageNet-21k. The model was fine-
tuned using 32 batch size on CIFAR-100. We set the training batch size to 512 and experimented
with different learning rates of 3e-2, le-1, and 3e-1 to achieve the highest performance. For training,
learning rate was adjusted by stochastic gradient descent with momentum (53) and a warm-up cosine
scheduler (54)) was applied. The model was trained for 1000 steps with 100 warm-up steps. For
Linear-ASA layers, 100x larger learning rate was used. We also set € in equations (I5) and (I6) to
0.01. The remaining hyperparameters were set according to the original ViT paper (44).

MLP-Mixer-Large The MLP-Mixer-Large model was fine-tuned from a pretrained model on
ImageNet-21k with 16 patch size. We trained the model on CIFAR-10 for 2000 steps with 56
batch size. Like ViT, the SGD optimizer (53) was applied to these experiments. We set the weight
decay rate and momentum to 0 and 0.9, respectively. During the first 200 steps, the learning rate
warmed up and cosine annealing (54) was employed in the remaining epochs. We set the learning
rate to 3e-2, le-1, and 3e-1. In the ASA layers, however, the learning rate was increased by 100x
like Transformer and ViT-Large. € of ASA layers in equations (I3) and (I6) was set to 0.01.The
other hyperparameters followed the original MLP-Mixer paper (43).

H.5 DEVICES AND MEMORY MEASUREMENTS

In all experiments, we used Nvidia GeForce RTX 3090 GPUs. While one GPU was utilized to
perform most of the experiments, we used six GPUs to train ResNet on ImageNet to reduce training
time. We calculated the amount of training memory using forch.cuda.memory_allocated function

22

Published as a conference paper at ICLR 2023

in PyTorch instead of nvidia-smi because nvidia-smi includes unused memory space handled by the
memory allocator in the repor{’}

I MEMORY AND COMPUTE COMPLEXITY OF AUXILIARY ACTIVATION
LEARNING

Table 13: The compute and memory complexity analysis.

BP GCP AAL only AAL with GCP
Compute complexity 3N 4N 3N AN
Memory complexity N 2V N N-A 2VN - A

In this section, we compare the compute and memory complexity of different learning algorithms.
For the sake of simplicity, we assume that the computational cost of forward propagation and back-
ward propagation of a single layer is 1. The amount of activations of a single layer is also assumed
to be 1. Then we calculate the computational cost and memory space required for training a neural
network with /V identical layers. BP would need N computations for forward propagation, N com-
putations for error propagation, and N computations for calculating weight updates, which results
in 3N computations in total. For memory space, BP has to store N activations generated during
forward propagation. On the other hand, GCP requires N additional computations for the recom-
putation of activations. However, it can reduce the memory complexity to 2¢/N when the network

is divided into v/N blocks as suggested in (24). In our Auxiliary Activation Learning (AAL), we
have to store auxiliary activations instead of actual activations. We assume that our algorithm is
applied to A layers in the network. Then, we have to store actual activation for the rest of the layers,
which translates to a memory complexity of N — A. For the layers employing our algorithm, we
only have to store auxiliary activations and its amount is negligible compared to real activations.
For example, Auxiliary Residual Activation (ARA) uses the previous layer’s activation as auxiliary
activation, and hence there is no need to store this auxiliary activation since it is already stored in
memory during forward propagation of the previous layer. Auxiliary Sign Activation (ASA) has to
store a 1-bit sign of actual activations, respectively, but they are also significantly smaller than real
activations. Therefore, our algorithm has N — A memory complexity and 3N compute complexity.
To further reduce memory complexity, we can apply gradient checkpointing to the layers where we
do not apply our AAL algorithm. Thus, the memory complexity of those layers would decrease to
24y/N — A and the compute complexity becomes 4N due to recomputation.

J COMPARISONS TO ALGORITHMS TO APPROXIMATE BACKPROPAGATION

Previous studies have suggested various algorithms to approximate backpropagation (59; 60; [61)).
Our algorithm may be considered in line with such approaches as it replaces actual input activation
with auxiliary activation. Furthermore, Uniform Sign-Concordant Feedback (61), which uses the
sign of forward weights as feedback weights, looks similar to the concept of ASA which uses the
sign of activation as auxiliary activation. However, the motivation is quite different. In prior works
on approximate backpropagation, the authors aim to remove the need for symmetric feedforward
and feedback weights (“weight transport problem”) by approximating the feedback path for better
bio-plausibility. Contrarily, our algorithm reduces memory requirements by using an alternate form
of activations, but it does not necessarily improve bio-plausibility as we still need symmetric forward
and backward paths.

"https://pytorch.org/docs/stable/notes/cuda.html ?highlight=buffer#memory-management

23

Published as a conference paper at ICLR 2023

K CONVERGENCE SPEED OF AUXILIARY ACTIVATION LEARNING

Accuracy (%)

ResNet152 on ImageNet
100

— 8P
—— ARA(2,2,2,2)
— ARA(3,4,2,2)
—— ARA_(3,4,4,2)
—— ARA_(3,4,6,2)

80

60

20 A

Bleu score

0 10 20 30 40 50 60 70 80
Epoch

(a) ARA on ResNet-152

90

w© Transformer on IWSLT

35 e —

30 A

25 A

N
=]
L

-
o
L

— 8P

=
5]
L

—— ASAl
—— ASA2
51 —— ASA3
— ASA4
0 T T T T
0 4 8 12 16
Epoch
(b) ASA on Transformer

Figure 11: Learning curves of BP and Auxiliary Activation Learning.

24

	Introduction
	Auxiliary Activation Learning
	Memory requirements of backpropagation
	Auxiliary Activation Learning: store auxiliary activation instead of exact activation

	Analysis of Auxiliary Activation Learning
	How and when using alternative activation can train deep neural networks
	Constructing auxiliary activations

	Experimental Results
	Training ResNet
	Training Transformer, ViT, and MLP-Mixer
	Usage case of Auxiliary Activation Learning

	Discussion
	Proof of theorems
	Comparisons between auxiliary residual activation and auxiliary sign activation
	Does adding auxiliary activation really help?
	Comparisons between Auxiliary Activation Learning and other memory saving algorithms under identical compression rates
	Comparisons between Auxiliary Residual Activation and Momentum ResNet.
	Maximum Batch size and training time with Auxiliary Activation Learning.
	Comparisons between Auxiliary Activation Learning and SM3
	Experimental details
	How we apply gradient checkpoiniting in each experiment
	How we apply activation compression training in each experiment
	Datasets
	Hyperparametes
	Devices and memory measurements

	Memory and compute complexity of Auxiliary Activation Learning
	Comparisons to algorithms to approximate backpropagation
	Convergence speed of Auxiliary Activation Learning

