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Abstract

Understanding the evolution of cellular microen-
vironments is essential for deciphering tissue de-
velopment and disease progression. While spa-
tial transcriptomics now enables high-resolution
mapping of tissue organization across space and
time, current techniques that analyze cellular evo-
lution operate at the single-cell level, overlook-
ing critical spatial relationships. We introduce
NicheFlow, a flow-based generative model that
infers the temporal trajectory of cellular microen-
vironments across sequential spatial slides. By
representing local cell neighborhoods as point
clouds, NicheFlow jointly models the evolution of
cell states and coordinates using optimal transport
and Variational Flow Matching. Our approach
successfully recovers both global spatial archi-
tecture and local microenvironment composition
across diverse spatiotemporal datasets, from em-
bryonic to brain development.

1. Introduction

Uncovering the principles governing tissue organization
across space and time remains one of the most fundamen-
tal challenges in biology, with profound implications for
evolutionary and developmental biology (Mayr et al., 2019;
Zinner et al., 2020). While individual cells form the basic
units of biological systems, they operate not in isolation but
as integral parts of spatially organized microenvironments,
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Figure 1. Overview of NicheFlow. At time ¢:, we generate a tar-
get microenvironment M* by transforming Gaussian noise M?
using a Variational Flow Matching model with a posterior ;¢ con-
ditioned on a source microenvironment M? at to. Source-target
pairs are identified via entropic OT over pooled microenvironment
coordinates and gene expression profiles.

functionally distinct neighborhoods, or niches, shaped by
cell-to-cell interactions and extracellular components (Ren
et al., 2023b; Schaar et al., 2024; Liu et al., 2025). These
spatial microenvironments influence crucial biological pro-
cesses, from tumor progression to immune infiltration and
tissue regeneration (Moncada et al., 2020; Larsson et al.,
2021; Chen et al., 2022).

Spatial transcriptomics (ST) has transformed our ability to
investigate these tissue architectures by providing single-
cell resolution mapping of gene expression while preserving
spatial context (Stahl et al., 2016; Rodriques et al., 2019;
Eng et al., 2019; Moses & Pachter, 2022). This techno-
logical breakthrough has enabled researchers to examine
the molecular underpinnings of tissue organization with
unprecedented detail. However, ST provides only static
snapshots of inherently dynamic biological systems. Time-
resolved spatial transcriptomics extends ST by capturing
how gene expression patterns and cellular arrangements
evolve across developmental stages or experimental time
(Briggs et al., 2018; Wagner et al., 2018; Ren et al., 2023a).
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This temporal dimension offers critical insights into the
development of tissue organization that cannot be inferred
from static observations alone.

Despite these technological advances, current computational
methods fall short in modeling the evolution of tissue orga-
nization at the level of cellular microenvironments. Most
approaches infer trajectories by modeling single-cell dy-
namics using velocity-based models (Abdelaal et al., 2024;
Long et al., 2025; Shen et al., 2025) or optimal transport
between individual cells (Klein et al., 2025; Bryan et al.,
2025). While effective at capturing cell evolution, these
cell-centric methods fundamentally miss the coordinated
evolution of structured niches within tissues.

This limitation presents a critical research gap that we ad-
dress with the following question:

How can we model the spatiotemporal evolution of cellular
microenvironments while preserving both local
neighborhood relationships and global tissue architecture?

To address this question, we directly model the dynamics of
cellular neighborhoods as cohesive units rather than focus-
ing on isolated cell trajectories. This approach aligns natu-
rally with tissue-scale biological processes and enables prin-
cipled learning of dynamics in structured, high-dimensional,
and variably sized spatial domains.

We introduce Niche Flow Matching (NicheFlow) (Figure 1),
a generative model for learning spatiotemporal dynamics of
cellular niches from time-resolved spatial transcriptomics
data. NicheFlow builds on recent advances in Flow Match-
ing (FM) and Optimal Transport (OT) to operate over distri-
butions of microenvironments, which we represent as point
clouds. NicheFlow enables accurate modeling of global spa-
tial architecture and local microenvironment composition
within evolving tissues.

Our contributions include:

* A microenvironment-centered trajectory inference
paradigm that shifts from modeling individual cells in
time to modeling niches as point clouds, enabling simul-
taneous prediction of spatial coordinates and gene expres-
sion profiles while preserving local tissue context.

* A factorized Variational Flow Matching (VFM) ap-
proach with distributional families (Laplace for spatial
coordinates, Gaussian for gene expression) that indepen-
dently optimizes spatial and cell state dynamics, effec-
tively modeling both spatial reconstruction and biological
fidelity in time.

* A spatially-aware sampling strategy using OT between
niche representations, enabling scalable training on large
tissue sections while ensuring comprehensive coverage of
heterogeneous regions.

Our approach consistently outperforms baselines in recover-
ing cell-type organization and spatial structure across em-
bryonic, brain development, and aging datasets. NicheFlow
enables principled learning of dynamics in structured, high-
dimensional, and variably sized spatial domains, a challenge
with parallels in other spatiotemporal modeling domains be-
yond biology.

2. Related Work

NicheFlow is at the interface between generative models
and spatiotemporal transcriptomic data.

FM and single-cell transcriptomics. We propose a model
based on FM, a framework introduced by several semi-
nal works (Liu et al., 2023; Lipman et al., 2023; Albergo
& Vanden-Eijnden, 2023). Specifically, we adopt a varia-
tional view of the FM objective, following Eijkelboom et al.
(2024), but extend it to mixed-factorized distributions for
point cloud generation. Our method, NicheFlow, combines
FM with OT, a pairing that has proven effective in model-
ing cellular data (Tong et al., 2024a;b; Atanackovic et al.,
2025; Klein et al., 2024). Unlike these models, however, we
focus on point clouds of spatially-resolved transcriptomic
profiles. Closest to our approach is Wasserstein FM for
point cloud generation (Haviv et al., 2024), applied to re-
construct cellular niches. Yet, that work does not address
joint generation of spatial coordinates and cellular states,
nor OT-based temporal trajectory prediction, both central to
our contribution.

Generative models for spatial transcriptomics. Genera-
tive models have been key to spatial tasks such as gene
expression prediction from histology slides (Zhu et al.,
2025; Wan et al., 2023), integration with dissociated single-
cell data (Wan et al., 2023), and spatial imputation (Haviv
et al., 2025; Li et al., 2024). More recently, LUNA (Yu
et al., 2025a) demonstrated strong performance in predict-
ing single-cell spatial coordinates using diffusion models
(Ho et al., 2020) conditioned on transcription data. While
related, our model addresses the distinct task of inferring
niche trajectories, enabling the simultaneous generation of
coordinates and cellular states.

Trajectory inference for spatial transcriptomics. Pre-
vious work has explored learning trajectories from spatial
slides. Pham et al. (2023) proposed a graph-based spa-
tiotemporal algorithm for pseudotime inference, while oth-
ers leveraged tissue-resolved transcriptomics to estimate
cell velocity (Abdelaal et al., 2024; Long et al., 2025; Shen
et al., 2025). Closer to our approach, Klein et al. (2025)
and Bryan et al. (2025) apply discrete OT to identify likely
descendants of individual cells in spatially-resolved gene
expression. However, unlike our mini-batch deep learning
model, these methods do not operate on entire microenviron-
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ments and rely on exact OT at the single-cell level, leading
to scalability limitations on larger slides.

3. Background
3.1. Optimal Transport with FM

FM (Lipman et al., 2023) is a generative model that trans-
forms a source density pg into a target density p;. It op-
erates by learning a time-dependent velocity field wu;(x)
for ¢t € [0, 1], which generates a probability path {p; }+co,1]-
This path is constructed such that the marginals at time t = 0
and ¢ = 1 match the source and target distributions, i.e., pg
and p1, respectively. The velocity field induces an Ordinary
Differential Equation (ODE), whose solution ¢, () defines
a flow map that transports samples from the source to the
target distribution.

In practice, FM approximates u; () with a time-conditioned
neural network v? (). While the exact marginal velocity
field u; () is intractable, it can be expressed in terms of data-
conditioned velocity fields and a joint distribution 7(xq, 1)
over the source and target samples o ~ pg and &1 ~ p;:

u(x) = /ut(a: | o, 1)

. pe(x | o, 1) (X0, T1)
pe(x)

where pi(x | xo, 1) is a pre-defined interpolating prob-
ability path. Here, we consider the tractable probabil-
ity path pi(x | xo,z1) = 6(x — g:(xo, 1)), where
gt(xo, x1) = (1 —t)xp + ta; is a linear interpolation and &
denotes a Dirac delta function, representing a deterministic
conditional path.

ey
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Lipman et al. (2023) show that regressing the conditional
field u;(x | @o, x1) is equivalent to learning the marginal
field u.(x) in expectation. Hence, the FM objective be-
comes the task of learning the velocity along the conditional
probability path between any pair of source and target data
points. For a linear conditional probability path, the velocity
ut(x | xo, x1) has a closed form, and the FM loss is:

0
Lem(0) = E |vf (g¢(0, 1)) —7; (20, 1)
t~U[0,1] ot
(o, @1 )~T

2
In practice, the coupling 7(xg, 1) is instantiated using
sample pairs drawn from a mini-batch estimate. When one
chooses 7* as the OT coupling under a squared Euclidean
cost between samples from py and p;, FM approximates
the dynamic OT map between source and target densities
(Pooladian et al., 2023; Tong et al., 2024a). Thus, given the
solution samples (x, 1) ~ 7 from the joint distribution
approximately follow:

Ty ~ po, 1 ~ 6 (@1 — ¢ (x0)) 3

|

where ¢¢ is the solution of the ODE with velocity field v?.

3.2. Generative OT on incomparable source and target
spaces

Klein et al. (2024) generalize the OT FM formulation
to settings where the source and target distributions are
defined on incomparable spaces and propose an approach to
generative entropic OT using FM. Given a standard normal
noise distribution with samples z ~ A (0,Ip), the authors
show that the following sampling procedure:

Ty ~ po, T1 ~ 0 (z1 — ¢ (2 | 0)) , )

defines a generative model that implicitly samples from
an Entropic OT (EOT) coupling, where ¢f(z | xo) is a
FM model that maps noise to target samples, conditioned
on source points. To achieve this, ¢¢ is trained using
source-target pairs (xg, 1) drawn from the EOT coupling
7%, with € denoting the entropic regularization parameter,
which the model aims to approximate.

Crucially, this formulation enables OT between distinct
source and target spaces, as &g does not flow directly into
a1, but instead conditions the generation of target samples
from noise.

3.3. Source-conditioned VFM

Consider the source-conditioned FM formulation in Sec-
tion 3.2. Given a conditioning source xy and noise-based
generation, the marginal field in Equation (1) can be written
as:

ui(z | o) = E [us(x | ®1)] , ©)

pi(z1|z,z0)
where we drop the conditioning on x in the velocity field,
as uy is entirely determined by the target «; when generating
from noise under linear probability paths (see the derivation
in Equation (5)).

Since ui(x | 1) is tractable (Lipman et al., 2023),
one can recast FM as a variational inference problem,
following Eijkelboom et al. (2024), by introducing a
parameterized approximation ¢/ (x, | x,xg) to the true
posterior p;(x1 | &, x). Integrating the expected velocity
in Equation (5) over ¢ € [0, 1] enables the generation of
target points ; from noise, conditioned on x.

During training, the source-conditioned Variational Flow
Matching (VFEM) loss is:

Lscvim(®) =— E  [loggl(z1 |z, z0)] . (6)

t~U[0,1]
(zo,®1)~7}
x~py (x|e1)

where 7 is an entropic OT coupling modeling the joint
distribution over source and target samples, and p:(x |
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@1) interpolates between target samples and noise. In the
generation phase, one samples ©y ~ pg and noise z ~
N(0,1Ip), then simulates the marginal field in Equation (5)
starting from ¢ (x) = z to generate a target sample .

Crucially, under the assumption that u; (2 | 1) is linear
in 1, which holds when using straight-line interpolation
paths, the marginal field in Equation (5) only depends on
the posterior’s first moment on a:

ut(w) = U (:E | EPt(ml\mvwo) [:L'ﬂ) )

This implies that the VFM objective reduces to matching the
first moment of the approximate posterior ¢/ (x1 | =, xo)
to that of the true posterior p:(x1 | @, xp). As a result,
the approximate posterior can be chosen fully factorized
under a mean field assumption, since each dimension can be
matched independently if the mean of the true posterior is
preserved; see Appendix C.2 for more details.

4. NicheFlow

We introduce a flow-based generative OT model to infer the
temporal evolution of spatially resolved cellular microenvi-
ronments. More specifically, given a spatial microenviron-
ment represented as a point cloud of cell states with their
coordinates, NicheFlow predicts the corresponding tissue
structure at a later time point. To delineate our approach,
we define a list of desiderata.

Generative model on structured data. Similar to prior
work (Yu et al., 2025b; Haviv et al., 2024), we consider a
generative model over structured point cloud data represent-
ing cellular microenvironments. This approach implicitly
accounts for spatial correlations between cells, in contrast
to models that study the evolution of spatial trajectories at
the single-cell level (Klein et al., 2025).

Sub-regions and variable location. Crucially, for better
memory efficiency, we do not consider an entire spatial slide
for trajectory inference, but instead learn the dynamics of
variably located sub-regions. This design choice enables
scalability and flexibility in modeling functional regions
across different parts of the screened tissue.

Changes in the number of nodes. To model the temporal
evolution and densification of microenvironments, we allow
the source and target regions to differ in the number of nodes.
We adopt a formulation similar to Section 3.2, implementing
OT FM between non-comparable spaces.

Flexible generative models for features and coordinates.
We allow flexibility in the choice of generative models for
the features and coordinates. To this end, we implement the
approach described in Section 3.3, factorizing features and
coordinates into separate posteriors from different families.

4.1. Data description and problem statement

We are given a sequence of time-resolved spatial transcrip-
tomic measurements across biological processes such as
development or aging. For simplicity, we formulate our
problem in terms of two consecutive time points indexed by
s, such that s € {0, 1}, though the model can be extended
to collections of more consecutive discrete temporal mea-
surements. Each dataset at a time point is a full tissue slide
that can be represented as an attributed point cloud:

Ps={(ci,2i) |i=1,..., N}, (®)

where ¢ € R? denotes the 2D spatial coordinate of cell i at
time s, and =5 € R denotes its associated feature vector,
typically corresponding to its gene expression profile or a
low-dimensional representation thereof. Thus, each dataset
is an attributed point set in two-dimensional space.

To capture spatial context beyond individual cells, we de-
fine local microenvironments as fixed-radius neighborhoods.
Specifically, for each cell (cf, x{) at time s, we construct a
neighborhood M consisting of all neighboring cells within
a spatial radius r:

M; = {(cj, %) | llej — il <} ©)

Let {MY} and {M! };V:ll be collections of source and
target microenvironments at consecutive time points. Our
goal is to train a parameterized flow model ¢!, with ¢ €
[0, 1], that generates target microenvironments conditioned
on source point clouds. Specifically, to sample a target
microenvironment with & cells conditioned on a variably
sized source MY, we define sampling as:

MZ = {(cf’zi) | Cf NN(07I2)7
z; ~N(0,Ip), Vi=1,...,k}, (10)
M = (M* | M), (11)

where M? is a point cloud composed of noisy coordinates
and features, and M is a generated prediction for the evo-
lution of MY at the next time point. As explained in Sec-
tion 3.1 and Section 3.2, we want our generative model to
parameterize some notion of optimal entropic coupling 7
between microenvironments across slides (see Section 4.2).

4.2. OT formulation

To train the flow map ¢? to perform conditional EOT, we
define a cost function that induces an optimal entropic cou-
pling ¥ between source and target point clouds. This cou-
pling is used to sample pairs of source and target microen-
vironment mini-batches during training. While there is no
established notion of optimal cost in this setting, we propose
to compute OT using source and target microenvironment
representations based on the weighted average of features
and coordinates.
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Specifically, we compute a pooled representation for each
microenvironment in the source and target slides by av-
eraging spatial coordinates and gene expression features,
weighted by a tunable hyperparameter A € [0, 1] that bal-
ances spatial versus cellular state information:

ﬁ%f:[l—/\ Z < H/élﬂ(z w;l’

M| xs)EMS x2)EMS
J i

12)
where || denotes concatenation, m$ € R**P and s €
{0,1}. We then apply EOT on the sets {m?}o, and
{ml} !, using a squared Euclidean cost and regular1zat10n
parameter e, yielding the coupling 77 . During training, we
sample matched pairs (M°, M') ~ 7%, computed over
mini-batches, and use them as supervision for learning the
conditional generative model. A higher value of A priori-
tizes feature similarity, while lower values favor proximity
in coordinates (see Figure 7).

4.3. Mixed-factorized VFM

Once we have established a strategy for performing mini-
batch OT, we proceed to describe our approach for learning
the flow model cZ)f and simulating Equation (11). To this
end, we adopt a variant of the VFM (Section 3.3), originally
developed for graph generation, and adapt it to our point
cloud setting.

In line with Section 3.2 and 3.3, we delineate an objective
to train a parameterized, source-conditioned posterior over
target point clouds ¢f (M! | M, M°), where M? and M
represent source and target niches, and M denotes a noisy
point cloud at interpolation time ¢. Importantly, our posterior
comes with the following characteristics: (i) the posterior is
factorized across the single points in a point cloud; (ii) the
posterior is factorized across cellular features and coordinate
dimensions; and (iii) the family of posteriors can be chosen
differently between cellular features and coordinates.

Following (i), we model the variational distribution over M*
by factorizing it across individual points (c;,z;) € M1,
Moreover, we tackle (ii) and (iii) using the mean-field VFM
assumption, modeling cellular state and positions separately
(see Appendix C.1 and C.2 for theoretical justifications):

2 D
(Cl,wl)e./\/llk 1d=1
FE(E | M MO) - (2] | Mo M)

gf (M | M, M") =
(13)

Here, f{ and r{ denote distinct approximate poster1or
families for cellular states (331) and spatial pos1t10ns (cl)
respectively. We use a Laplace distribution for ft due
to its concentration around the mean, which supports
precise modeling of coordinate features, while a Gaussian
distribution is used for r?.

As explained in Section 3.3, if one uses FM with straight
probability paths, only the first moment of ¢¢ is required
to simulate the generative field in Equation (5). Therefore,
the posterior is replaced by a time- dependent predictor
(f2,79) = pnf (M, MP) of the mean features #/ and coor-
dinates ft of the target point clouds, learned minimizing
the following loss:

Lnicheriow (0) =

(MO MYymm® | (c1,m1)eM?
, b
Mepy(MIMY)

_ 1 _
(ler = 720 + 3lles — 7212)

(14)

We derive the objective in Appendix C.4 and provide al-
gorithms in Appendix E. Here, 1{ inputs a noisy point
cloud M and a source M" and provides a mean prediction
vector for coordinates and feature dimension, respectively
indicated as f{ and #¢. We implement it as a point cloud
transformer (see Section 4.4).

We highlight a crucial aspect about Equation (14). While
the single dimensions are fully factorized in the predictions
from p¢, every feature’s mean is a function of the whole
noisy point cloud M as well as the target microenvironment
M?O. In other words, the predictions exploit structural infor-
mation in the point cloud to predict the individual posterior
mean of each dimension. Like most approaches, our method
has modeling limitations that we outline in Appendix B.

4.4. Backbone architecture: Microenvironment
transformer

To parameterize the conditional posterior mean ¢ from
Section 4.3, we use a permutation-invariant transformer
architecture for variable-size point clouds in an encoder-
decoder layout. The condition encoder processes the source
microenvironment M, while the decoder predicts the pos-
terior mean from a noisy target M ~ p;(- | M!), condi-
tioned on the output of the condition encoder. Each target
point is represented by features * € RP and spatial co-
ordinates ¢ € R2, embedded separately and concatenated,
while the time ¢ is encoded via sinusoidal embeddings and
broadcast across points. The condition encoder embeds
the source via self-attention, and the decoder applies self-
attention on the target, followed by cross-attention to the
encoded source, allowing each target point to attend to all
source points. Decoder outputs are linearly projected to
posterior mean estimates (f?, 77).

5. Experiments

We propose quantitative and qualitative evaluations of our al-
gorithm. Quantitatively, we test whether source-conditioned
samples generated by our model preserve the biological
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Table 1. Performance comparison across three biological datasets. Models are trained using Conditional Flow Matching (CFM), Gaussian
VFM (GVFM), or Gaussian-Laplacian VFM (GLVFM). Results are reported as mean + standard deviation over five evaluation runs on
mouse embryonic development (MED), axolotl brain development (ABD), and mouse brain aging (MBA). For all experiments, we use a

fixed value of A = 0.1.

MED ABD MBA
Model Ob;. INN-F1 1+ PSD | (10%) SPD/(10%) INN-F1{ PSD/(10%) SPD/|(10%>) INN-F11+ PSD] (10%) SPD | (10%)
LUNA — 0.540 +0.004 — — 0.331 +0.003 — — 0.222 +0.000 — —
SPFlow CFM 0.272 0001 1.693 0007  1.173 0006  0.190 x0.001  2.489 0004 1.715+0009 0.205x0000 1.835x0000 0.726 +0.001
GVFM 0.259 x0002  2.401 0008  1.137 0002 0.175 x0001  3.345:0005  1.657 0013  0.181 x0000 2.575 0003  0.735 +0.001
GLVFM  0.251 0001 2.236 +0.004  1.150 £0.003  0.174 £0.001  2.869 0011 1.659 0014 0.194 £0000 2.319 0004  0.760 = 0.001
RPCFlow CFM 0.546 0002 0.978 x0.004  1.110+0002 0.524 0001  2.049 0004 1.538 0007 0.271 +0000 1.544 0001  0.717 +0.001
GVFM 0.502 +0001  1.158 0005  1.143 x0.002 0.478 +0002 2.252 0002  1.553 0005 0.249 x0000 1.752 x0.001  0.695 +0.001
GLVFM  0.587 0001 0.978 x0.003  1.149 +0002 0.553 0001  2.053 0006  1.546 0006 0.265 +0000 1.722 x0001  0.691 = 0.001
NicheFlow CFM 0.608 0004 0.992 0037  0.954 +0019 0.604 0001 2.082 0014  1.252+0013 0.282 +0001  1.558 x0.003  0.733 +0.004
GVFM 0.595 0005  0.992 +0038  0.987 +0029 0.573 x0002 2.218 0003  1.253 x0.006  0.268 +0.000 1.662 0003  0.705 +0.003
GLVFM  0.663 =0.002  0.897 0021  0.824 :0.013  0.629 z0.001  2.074 x0006  1.235 0006 0.285 +0.001 1.556 0001  0.694 +0.002

structure and shape of future tissue states. Qualitatively, we
demonstrate that our approach accurately captures composi-
tional shifts in substructural components and developmental
trajectories across time.

5.1. Quantitative evaluation

Our first research question is to assess the impact of two
core modeling choices in NicheFlow: (i) learning trajecto-
ries over spatial microenvironments, rather than indepen-
dently for each cell and (ii) restricting source and target
point clouds to spatially co-localized neighborhoods of cells,
instead of sampling them randomly across the slide.

We use NicheFlow and baseline FM approaches that do
not incorporate (i) and (ii) to simulate spatial trajectories
conditioned on early time point observations. Assuming that
spatial arrangements and the biological composition at later
stages evolve from earlier slides, the global correspondence
between predicted and true slides indicates the quality of
the generative trajectory.

5.1.1. TRAINING SETUP

Datasets. We assess model performance across three spa-
tiotemporal datasets: (i) Mouse embryogenesis (Klein et al.,
2025; Chen et al., 2022) and (ii) the axolotl brain develop-
ment (Wei et al., 2022), two Stereo-seq datasets profiling
the spatially-resolved cellular development of a mouse em-
bryo and axolotl brain across three (E9.5, E10.5 and E11.5)
and five time points, respectively. We also consider the (iii)
mouse brain aging dataset (Sun et al., 2025), profiled with
MERFISH (Chen et al., 2015) across twenty time points
(see Appendices F.1 and F.2).

Dataset construction. For each dataset and time point
s € S, we construct a set of cellular microenvironments
by applying the fixed-radius neighborhood definition
introduced in Section 4.1. Each microenvironment M3 is

centered at cell 7 and contains all cells within a fixed radius
r. This results in:

M= (M |i=1,...,N,},

where N, is the number of cells in the tissue at time s,
and each M7 is an attributed point cloud encoding both
spatial and gene expression information. We standardize
coordinates for cross-time comparability and reduce
the normalized gene expression to its top 50 Principal
Components (PC).

Batching. We train NicheFlow with mini-batches of source
and target cellular point clouds. To ensure spatial diversity
during training, we sample individual batches uniformly
from within discrete regions of the slides computed with K-
Means clustering over the 2D coordinates (see Figure 8 for
a visualization with different K values). From these regions,
we collect M source and target microenvironments and
resample N < M matching pairs from the entropic OT cou-
pling (M°, M) ~ 7* , as described in Section 3.1, where
M and M denote the sampled sets (see Section 4.2 for
details on our OT coupling).

Evaluation data. For consistent and reproducible evalu-
ation, we discretize each tissue into a fixed 2D grid and
define evaluation microenvironments as fixed-radius neigh-
borhoods around the nearest cells to each grid point. This
guarantees full spatial coverage and ensures deterministic
comparison across methods. See Appendix F.5 for details.

Multiple time-point. NicheFlow predicts piecewise trajec-
tories between subsequent time points. Instead of learning
one flow for each couple of subsequent slides, we train a
single model with additional conditioning on source and
target labels (see Appendix F.6).
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Figure 2. Qualitative comparison of generated samples on the embryonic development dataset (9.5-11.5 days). We show source and target
samples alongside predictions from SPFlow and NicheFlow with different objectives.

5.1.2. QUANTITATIVE EVALUATION METRICS

Spatial structure. We quantify coordinate generation ac-
curacy using two asymmetric distance metrics. The point-
to-shape distance (PSD) measures how far predicted coordi-
nates deviate from the true structure by computing the mean
squared distance from each generated point to its nearest
ground truth counterpart. In contrast, the shape-to-point
distance (SPD) evaluates how well the generated points
cover the target region by averaging the squared distance
from each ground truth point to its nearest generated point
(see Appendix F.3 for a mathematical formulation of the
metrics).

Cell-type organization. To assess how well the model re-
constructs the spatial organization of different cell types, we
use a /-nearest-neighbor (INN) classification setup. Since
the model generates only gene expression profiles and spa-
tial coordinates, we assign cell type labels to generated cells
using a classifier trained on ground truth gene expression
data (see Appendix F.4). Each predicted cell is then matched
to its nearest real cell, and we report the weighted F1 score
(INN-F1).

5.1.3. MODELS AND RESULTS

Baselines. We compare against SPFlow, a standard FM-
based model that predicts temporal trajectories across slides
at a single-cell level using an MLP-based velocity field.
We also consider RPCFlow, which has the same backbone
as NicheFlow, but conditions on randomly sampled point
clouds instead of radius neighborhoods. We also include
LUNA (Yu et al., 2025a), a diffusion model for spatial re-
construction from dissociated cells. Note that LUNA does
not model temporal dynamics and only generates coordi-
nates from noise with their respective biological annotations.
Therefore, we use it as a reference for spatial generation ac-
curacy via the INN-F1 metric rather than a proper baseline.

Ablations. We assess different training objectives by com-
paring standard Conditional Flow Matching (CFM) from
(Tong et al., 2024a) with two variational formulations mod-

eling posteriors over coordinates and features: Gaussian-
only (GVFM) and Gaussian-Laplace (GLVFM). The former
uses Gaussian posteriors for coordinates and features. The
latter uses the factorized formulation in Section 4.3. For
NicheFlow, we use a fixed A = 0.1 and 64 batch sampling
regions chosen from the ablations in Appendix D.3 and D.4.

Results. Our quantitative evaluation (Table 1) demonstrates
that NicheFlow trained with the GLVFM objective consis-
tently achieves strong performance across both spatial and
semantic metrics. It outperforms all baselines in reconstruct-
ing spatial structure (PSD, SPD) and cell-type organization
(INN-F1) on developmental datasets, while remaining com-
petitive on aging data. These results highlight the impor-
tance of structured microenvironment modeling for captur-
ing the spatiotemporal dynamics of complex tissues. We
complement our quantitative results visually in Figure 2 and
Figure 4 and 5 in the Appendix, where we show that SPFlow
fails to capture tissue-level organization, producing blurry
and spatially incoherent samples. In contrast, NicheFlow
generates predictions that preserve spatial structure and cell-
type organization, despite learning only from local microen-
vironments. In Appendix D.2 and Appendix D.5, we ad-
ditionally demonstrate that, unlike RPCFlow, NicheFlow
produces conditionally consistent outputs with the source.

5.2. Qualitative evaluation and biological analysis

We explore the capabilities of NicheFlow on the spatial
trajectory inference task through qualitative and biological
assessments. Specifically, we focus on validating whether
our model captures compositional changes within fixed spa-
tial structures and developmental trajectories.

Experimental setup. We train the model as described in
Section 5.1.1. Using the mouse embryonic dataset (Chen
et al., 2022), we select specific microenvironments as source
niches for which we want to study the trajectory over time.
Specifically, we propose two scenarios for the application
of NicheFlow depending on the choice of the OT parameter
A (see Section 4.2):
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Figure 3. Left and right panels show the mapping of spinal cord (E10.5 to E11.5) and head neural crest cells (E9.5 to E10.5). In each panel,
the left column shows source cells and expected targets, and the right column shows density contours of the most likely mapped regions.
Bar plots display transition probabilities to the most likely descendant cell types. For NicheFlow, contours represent the proportion of
samples in generated point clouds assigned to real cell coordinates across 10 samples.

1. Compositional changes in fixed structures across time.
We choose the evolution of the spinal cord of the embryo
from E10.5 to E11.5 as an example and set a high value
of A to prioritize the preservation of the spatial location
in the trajectory.

2. Spatial and cellular development of immature cells. De-
veloping cells may displace to different areas of the em-
bryo, requiring a higher value of A to account for gene
expression. As a case study, we inspect how neural crest
cells in the head evolve into mesenchymal and cranial
structures.

Baseline. We compare NicheFlow with the spatiotemporal
framework in moscot (Klein et al., 2025), which models
spatial trajectories at the single-cell level. In contrast to
NicheFlow, moscot integrates spatial coordinates directly
into the OT formulation using a Fused Gromov-Wasserstein
cost (Titouan et al., 2019), where the hyperparameter «
controls the trade-off between spatial and feature-based dis-
tances (see Appendix D.6). A high « increases the influence
of spatial distances, whereas in our framework this role is
played by the hyperparameter A (see Section 4.2). Notably,
moscot relies on exact OT and learns a transition matrix
between source and target samples. As such, it is not a
generative model over point clouds like NicheFlow. How-
ever, given the overlap in downstream tasks, we consider
the comparison relevant.

Evaluation and results. For both scenarios (1) and (2), we
have prior knowledge of the ground truth regions that the
source microenvironments are expected to occupy at later
developmental stages, as well as their corresponding bio-
logical compositions. For both moscot and NicheFlow, we

assess whether the transported mass of source samples con-
centrates within the correct anatomical region at the target
time point, and whether the predicted descendant cell types
are biologically consistent (see Appendix D.6). Results are
summarized in Figure 3. When modeling the evolution of
the spinal cord, moscot assigns considerable mass to un-
related regions such as the urogenital ridge and branchial
arches, whereas NicheFlow correctly maps source niches to
the maturing spinal cord. Similarly, NicheFlow captures the
differentiation of neural crest cells into mesenchymal and
cranial tissues within the head region, while moscot exhibits
substantial off-target leakage towards lower regions.

6. Conclusions

We introduce NicheFlow, a point-cloud-based generative
model designed to capture the spatiotemporal dynamics of
cellular niches in time-resolved spatial transcriptomics data.
Unlike methods that model single-cell trajectories indepen-
dently, NicheFlow implicitly captures spatial correlations
between cells by learning trajectories on variably sized local
neighborhoods. To this end, we combine OT with a new
version of VFM that factorizes features and coordinates
into distinct posteriors from different distribution families.
We showed that NicheFlow outperforms standard FM ap-
proaches at reconstructing spatial context from previous
time points and improves the mapping of biological struc-
tures in time over established exact OT approaches. We
envision that NicheFlow will also enable future extensions
to perturbation modeling and multi-modal measurements.
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A. Broader impacts

This work addresses fundamental challenges in spatial transcriptomics by modeling complex spatial and compositional
changes in developing tissues. We demonstrate how efficient representations of high-dimensional spatial cellular data
can advance the understanding of developmental trajectories and microenvironment dynamics. We anticipate releasing
NicheFlow as an open-source, user-friendly tool to enable broad application in spatial biology studies. Given its use with
biological data, NicheFlow may also be applied in sensitive contexts involving clinical or patient information.

B. Limitations

Our approach relies on fixed Optimal Transport (OT) feature weighting by a parameter A during training (see Section 4.2),
limiting flexibility at inference and potentially constraining certain biological analyses. Moreover, radius-based niche
definitions may also be sub-optimal for small or irregularly shaped microenvironments, where the radius captures excessive
spatial context and does not allow fine-grained modeling of the functional region’s evolution. Additionally, the model
assumes that spatial slides can be aligned with respect to each other in time, and requires normalization-based pre-processing.
Future work will be directed towards rotational and translational invariant spatial constraints. Finally, while the learned flow
models cell population dynamics, it does not explicitly capture biological events such as division or death.

C. Mixed-Factorized Variational Flow Matching
C.1. Theoretical aspects of Variational Flow Matching

Variational Flow Matching (VFEM) (Eijkelboom et al., 2024) relies on the observation that one can write the time-resolved
marginal vector field u;(x) in FM as the expected conditional field u,(x | x1) under the posterior p;(x; | ) as:

up(x) = Ep, (2, |2) [ue(x | 1)] - (15)

Since u¢(x | x1) has a closed form and u. () is all that we need to generate the probability path p; from noise to data, this
opens the door to a new interpretation of the objective as a variational inference problem, where we approximate p;(x; | )
with a variational posterior ¢¢ (x; | «). In other words, one can optimize the following objective:

Ly (0) = —Etnri(0.1] @1 ~ps (1) 2ope (wlar) 10867 (21 | @)]

where p; () is the data distribution and p;(x | &) a straight probability path that maps data to noise. When u;(x | 1) is
linear in 1, this model formulation acquires convenient properties listed below.

Mean parameterization. The expected conditional field under the posterior only depends on the posterior mean:
Ept(ml\m) [ut(w ‘ ml)] = ut(a3 | Ept(wl\m) [3:1]) )

suggesting that it is sufficient to parameterize the posterior mean to simulate data under the marginal flow. The posterior
mean can be regressed against real samples x; during training, acting as a denoiser.

Equivalence between posterior and approximate posterior formulation. From the previous point, it follows that the
expectation of the conditional field is the same under the true and approximate posterior, as long as their first moments
match.

Efficient simulation. Given a parameterized posterior mean 1¢, simulating the generative field in Equation (15) is efficient
under the linearity condition. For example, in the standard FM setting with straight paths (Lipman et al., 2023), the marginal
generative field becomes:

Ut(SC) = qu(m1|w) [ut(m | ml)} (16)
= (:c | Eyo (ar ) [m1]> (17)
0
My (x) —=x
== (18)

which can be easily simulated in the range ¢ € [0, 1].
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C.2. Factorized posterior

Similar to Eijkelboom et al. (2024), in our work we use a fully factorized posterior, where individual dimensions can follow
different families of distributions with finite moments (see Section 4.3). Notably, a factorized approximate posterior over x;
is allowed as a choice for ¢?, since the only requirement to simulate u;(x) is for ¢! (x; | =) to match the expectation of
pt(x1 | @) over xy, irrespectively of higher moments or correlations between factors.

In this regard, it is useful to consider the following proposition.

Proposition C.1. Let ©; € RP be a D-dimensional target data point, p;(x, | ) the posterior probability path conditioned
on a noisy point  ~ p(x), and u(x | 1) the conditional velocity field. Assume that us(x | x1) is linear in 1. Then, for
any dimension d € {1, ..., D}, the following holds:

Epr(mﬂw)[xﬁ = }Epf(m‘li\m) [Iil] (19)
up(a?) = uy (xd | Ep, (24]2) [xij]) ) (20)

where x% refers to the d™ scalar dimension of the vector .

Proof. We begin by proving Equation (19) using marginalization:

Ep, (oo l24] = / 2 py(y | @) day

= [t ([ miar 1) da)) ast

- / 24 pi(at | @) dad = By, g [29] 1)

In the vector formulation, the notation E,, (z, |2) [z{] implicitly omits the multiple integrals over all components of ;. The
step-by-step derivation below makes these integrals explicit for clarity.

Next, we prove Equation (20). Under the assumption that the conditional velocity field u;(x | x1) is linear in &1, we have:

ut(xd) = Ept(wl\m) [ut(md | 331)]

@)
= Ep, (a1]2) [“t(xd | zil)]

:Eﬁl — SUd
= Ept(wl\w) 1—¢

_ Ep, (@1]a) [24] — a?
1-1¢
Equaté)n @2)) ]Ept (zd|x) [If] -
1-1¢

. (md By, ote) [x‘f}) . (22)

d

In other words, the expected value under the posterior at an individual feature d does not depend on the other features
and has an influence only on the d-th dimension of the conditional vector field. This flexibility allows each dimension’s
approximate posterior to be chosen from a potentially different distributional family, as long as the first moment exists and is
correctly parameterized.

C.3. Marginal field derivation in source-conditioned VFM
When applying source conditioning to VFEM, the marginal conditional vector field given a source x is:

pi(x | z1) (@1 | 20)

d 23
pt(m | 5130) T (23)

u(x | o) = /ut(a: | 1)
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where the p;(x | x1) is a probability path interpolating observations @1 with noise. Note that we omit o from the
probability path and conditional velocity as they are fully determined by a; under linear conditional probability paths.
Hence, x( controls the field biasing the choice of x; under the conditional OT coupling 7.

Furthermore, we can rewrite the marginal as an expectation:

e 10 BE R s = By e 1) @

where we used that p;(x | 1) = pi(x | o, 7).

C.4. Gaussian and Laplacian Mixed-Factorized VFM

We define a hybrid Variational Flow Matching (VFM) model using a fully factorized variational distribution over individual
points in the target microenvironment M?. Following the mean-field assumption, the variational distribution factorizes over
spatial and feature dimensions:

@M MM = ]  ¢ler,m | M, M) (25)
(e1,@1)EM?
2 D
1 (H £ | M) T[ et MMO)) 26)
(e1,x1)EMT \k=1 d=1

In line with Eijkelboom et al. (2024), using FM with straight paths enables us to efficiently simulate the marginal generating
field using the first moment of the posterior distribution. In other words, for a fully factorized posterior, we only need to
parameterize a mean predictor. In our setting, the mean prediction is a neural network ;¢ as a time-condition function of a
noisy microenvironment M and a source M with outputs:

(ff,7) = py (M, M)

where ft “and rt ¢ are predictions for the expected values for the k™ coordinate and d™ cell feature. Then, we choose a
parameterization for the variational factors at time ¢ € [0, 1] as follows:

2 ~ N (), 27)
& ~ Laplace(f*,1), (28)

Substituting into the negative log-likelihood yields:

- IOg(th(Ml | MvMO)) (29)
D
= —log H (Hft 61|MM Hr xl./\/l./\/l)> (30)
(e1,@1)eM! \k=1 =1
(1 1 0,d\>
_ 4 -0,
= Z (Z(logZ—Hcl t ) Z<2log (2m) Q(xl—rt ) >>
(e1,x1)EM? k=1 d=1
= Z <||C1 — o+ §Hw1 - Ff”%) + const w.r.t. 6 31)
(e1,1)EM?

This results in a loss consisting of an ¢; error on spatial coordinates and a mean squared error on gene expression features,
consistent with the hybrid variational design.
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D. Additional results

D.1. Qualitative results

We provide additional qualitative results to support our experimental evaluation. Specifically, our Appendix contains the
following additional evidence:

 Qualitative generation of the axolotl brain development and mouse brain aging trajectories.

* Evidence on the correct modeling of anatomical structures and cell type composition on the axolotl brain development
dataset.

* Visual depiction of the discrete coupling used for mini-batch OT using different values of .

* Ablation studies on the number of discretized regions used for the uniform microenvironment sampling and the
hyperparameter A\, which controls the importance of the feature versus the coordinate component in the static OT
matching between mini-batches.

» Comparison between microenvironment-based and random sampling strategies.
* Comparisons with moscot on previously unconsidered structures on the mouse embryonic data.

» Evidence of the effectiveness of source conditioning on the moscot dataset.

D.1.1. SLIDE RECONSTRUCTION IN THE AXOLOTL BRAIN DEVELOPMENT AND MOUSE BRAIN AGING DATASETS

We provide additional visualizations of the generated samples on the axolotl brain development dataset, presented in Figure 4,
and on the mouse brain aging dataset, presented in Figure 5.

Source (St. 44) SPFlow CFM SPFlow GVFM SPFlow GLVFM NicheFlow CFM  NicheFlow GVFM NicheFlow GLVFM  Target (St. 54)

Source (St. 54) SPFlow CFM SPFlow GVFM SPFlow GLVFM NicheFlow CFM  NicheFlow GVFM NicheFlow GLVFM  Target (St. 57)

¢ g

Source (St. 57) SPFlow CFM SPFlow GVFM SPFlow GLVFM NicheFlow CFM  NicheFlow GVFM NicheFlow GLVFM Target (Juv.)

Source (Juv.) SPFlow CFM SPFlow GVFM SPFlow GLVFM NicheFlow CFM  NicheFlow GVFM NicheFlow GLVFM  Target (Adult)

Source (Adult) SPFlow CFM SPFlow GVFM SPFlow GLVFM NicheFlow CFM  NicheFlow GVFM NicheFlow GLVFM Target (Meta)

e CMPN ©  Immature cckIN * MCG e VLMC e dNBL2 e dpEX ®  npyIN o sfrpEGC
e CP ®  Immature dpEX e MSN ® cckIN e dNBL3 e mpEX ® ntng1IN o sstiN

©  Immature CMPN ©  Immature mpEX e Oligo e dEGC o dNBL4 o  mpIN o TribEGC o tINBL

® Immature DMIN ®  Immature nptxEX ®  Unknown e dNBL1 e dNBLS ®  nptxEX o scgnIN ® wntEGC
®  Immature MSN

Figure 4. Qualitative comparison of generated samples on the axolotl brain development dataset (Stage 44, 54, 57, Juvenile, Adult, Meta).
‘We show source and target samples alongside predictions from SPFlow and NicheFlow with different objectives. NicheFlow captures the
spatial structure and cell-type organization more faithfully across developmental stages.
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Source (3.4m.) SPFlow CFM SPFlow GVFM SPFlow GLVFM NicheFlow CFM  NicheFlow GVFM NicheFlow GLVFM  Target (3.8m.)
Source (3.8m.) SPFlow CFM SPFlow GVFM SPFlow GLVFM NicheFlow CFM  NicheFlow GVFM NicheFlow GLVFM

Source (4.3m.) SPFlow CFM SPFlow GVFM SPFlow GLVFM NicheFlow CFM  NicheFlow GVFM NicheFlow GLVFM  Target (5.4m.)

Source (5.4m..) SPFlow CFM SPFlow GVFM SPFlow GLVFM NicheFlow CFM  NicheFlow GVFM NicheFlow GLVFM  Target (6.6m.)

Source (6.6m.) SPFlow CFM SPFlow GVFM SPFlow GLVFM NicheFlow CFM  NicheFlow GVFM NicheFlow GLVFM  Target (9.8m.)

®  Astrocyte ®  Ependymal e NSC ©  Neuron-Inhibitory e OPC

e Tecell
e Beell ® Macrophage ®  Neuroblast ®  Neuron-MSN o Oligodendrocyte e VLMC
®  Endothelial ®  Microglia ®  Neuron-Excitatory ©  Neutrophil ®  Pericyte e VSMC

Figure 5. Qualitative comparison of generated samples on the mouse brain aging dataset (3.4, 3.8, 4.3, 5.4, 6.6, 9.8 months). We show
source and target samples alongside predictions from SPFlow and NicheFlow with different objectives. NicheFlow captures the spatial
structure and cell-type organization more faithfully across developmental stages.

Similar to Figure 2, in Figure 4 and Figure 5, we qualitatively show that NicheFlow with microenvironment sampling
strategy and mixed-factorized VFM is the best approach for reconstructing mouse brain trajectories in time.
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D.2. Conditional generation
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Figure 6. Qualitative evaluation of conditional generation with NicheFlow on the embryonic development dataset. Each row corresponds
to a different source microenvironment at time ¢1 (blue), shown alongside the ground truth target microenvironment at time ¢» (green).
The third column displays 50 samples (orange) generated conditionally by the model, while the fourth column visualizes a kernel density
estimate of the sample likelihood over the spatial domain. We use A = 0.1 to prioritize coordinate preservation, as it provides better
interpretable evidence of actual source conditioning.

To assess whether the model accurately conditions on input microenvironments, we visualize the spatial distribution of
generated samples given a fixed source microenvironment. Figure 6 illustrates such cases on the embryonic development
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dataset for A = 0.1, showing the input region at time ¢1, the corresponding target at time ¢5, and 50 independently generated
samples from NicheFlow. Directly computing the likelihood of ground truth cell coordinates under our generative model is
intractable, as it would require evaluating the density of an implicitly defined distribution over point clouds. Instead, we
approximate the spatial likelihood using kernel density estimation (KDE) over Monte Carlo samples drawn from the model.
Given a set of generated coordinates {¢;}¥ |, we estimate the likelihood at a ground truth location ¢ as:

[§

) 1 e — &
ple) = N ZQXP (—T‘Q> ; (32)
i=1

where o is a fixed bandwidth parameter. The resulting KDE heatmap visualizes the spatial concentration of source-
conditioned generated samples, allowing us to qualitatively assess whether the model produces consistent predictions
conditioned on the source microenvironment.

D.3. OT Ablation Study

A =10.00 A=0.10 A=025

Figure 7. Visualization of OT couplings computed under varying values of the pooling parameter A in eq. (12), which balances spatial
coordinates and gene expression in microenvironment matching. Lower A values prioritize spatial proximity, resulting in more dispersed
and less structured alignments, while intermediate values yield tighter, biologically consistent mappings. Very high A settings ignore
spatial context and may lead to implausible long-range matches.

We begin by emphasizing that the optimal choice of the OT feature-weighting parameter A in Equation (12) depends on
the downstream application. This parameter determines the relative importance assigned to gene expression versus spatial
coordinates during optimal transport. For developmental processes such as organogenesis or regeneration, higher values of
A prioritize transcriptional similarity, facilitating the reconstruction of continuous differentiation trajectories and capturing
fate-driven transitions, which may span large spatial distances. In contrast, for applications that aim to monitor changes
within a fixed spatial region, such as shifts in cell-type composition over time, a lower )\ is more appropriate. In such cases,
emphasizing spatial locality helps avoid spurious long-range transport assignments based on transcriptomic similarity.
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Table 2. Ablation study of the feature weighting factor A in eq. (12). We evaluate NicheFlow with the GLVFM objective across three
datasets: mouse embryonic development (MED), axolotl brain development (ABD), and mouse brain aging (MBA). Results are reported
as mean =+ standard deviation over five evaluation runs.

A MED ABD MBA

INN-FI+ PSD/(102) SPDJ(102) INN-FI{+ PSD|(102) SPD|(102) INN-FI1 PSDJ(102) SPD ] (102)

1.0 0.589 £0.003 0.916+0021 0.991 £0030  0.605 £0002 2.086 0009 1.461 +0020 0.287 x0.000 1.563 x0.003  0.818 +0.005
0.9 0.596 +0.006 0.928 +0.024  1.044 0054 0.591 £0.002  2.149 +0.006 1.412 x0020 0.282 x0000 1.577 z0005  0.825 x0.010
0.75 0.588 £0.006 0.881+0009 1.101 £0.028 0.602 £0.002 2.108 0009  1.372 0013  0.281 0000 1.575+0003  0.792 +0.009
0.5 0.611 £0.004 0912 0007 0.982 0023 0.608 £0.002  2.147 +0.007 1.315 x0011  0.282 +0000 1.602 0002  0.726 +0.005
0.25 0.628 £0.003  0.923 x0007  0.862 £0.027 0.617 £0.003  2.106 +0.003 1.300 £0.021  0.283 0000 1.600 0002  0.728 +0.002
0.1 0.663 =0.002 0.897 0021  0.824 z0.013  0.629 x0.001 2.074 0006  1.235 0006 0.285 £0.001  1.556 x0.001  0.694 = 0.002
0.0 0.649 0002  0.880 0011  0.836 £0008 0.617 0001 2.127 0003  1.202 £0.008 0.284 x0000 1.552 0002 0.746 +0.008

Here, however, our goal is not to tailor ) to a specific biological use case, but rather to quantitatively assess which setting
yields the best performance under our chosen evaluation metrics. To this end, we systematically evaluate NicheFlow using
the GLVFM objective across all datasets (see Table 2).

We observe that reducing A\ from 1.0 generally improves performance, with optimal results typically achieved around
A = 0.1. This value offers a balance between preserving spatial coherence and capturing meaningful gene expression
variation. Notably, setting A = 0.0 corresponds to pure spatial matching. While this minimizes spatial distortion and yields
low PSD, it neglects transcriptional identity, potentially leading to biologically implausible alignments, particularly in
developmental contexts where spatially adjacent cells may follow divergent fates. Conversely, A = 1.0 disregards spatial
structure, often resulting in unrealistic, long-range assignments that obscure local tissue architecture.

Figure 7 visualizes the impact of varying A on the learned OT plans. Intermediate values yield more coherent and biologically
plausible couplings. Based on these observations, we adopt A = 0.1 as the default setting for the comparison with competing
training strategies, as it offers a compromise suitable across multiple datasets and biological contexts.

D.4. K-Means regions ablation study

To ensure diverse and spatially distributed sampling during training, we partition each tissue section into K spatial regions
using K-Means clustering over the 2D cell coordinates (see Section 5.1.1). At each training step, microenvironments are
sampled uniformly from within these regions, encouraging broad spatial coverage and preventing oversampling of densely
populated areas. In this ablation, we investigate how varying the number of spatial regions K affects model performance.

As shown in Figure 8, increasing K leads to increasingly fine-grained spatial partitions. While moderate values of K help
improve spatial resolution, excessively high values (e.g., K = 128 or 256) result in overly small and fragmented regions.
This can cause significant overlap between sampled microenvironments and reduce sampling diversity. Moreover, in sparsely
populated tissue sections, high K values may yield regions with insufficient cells, degrading both representativeness and
stability.

Table 3. Ablation study of the number of spatial regions K defined over the datasets. We evaluate NicheFlow with the GLVFM objective
across three datasets: mouse embryonic development (MED), axolotl brain development (ABD), and mouse brain aging (MBA). Results
are reported as mean + standard deviation over five evaluation runs.

MED ABD MBA
INN-F11+ PSD/(102) SPD|(102) INN-FI1 PSD|(102) SPDJ}(102) INN-F1+ PSDJ(102) SPD J (102)

8 0.640 0005  0.870 0003  0.980 x0.036 0.619 £0003 1.953 0008 1.369 0008 0.283 +0001 1.561 0003  0.766 =0.004
16 0.660 x0003 0.879 0005 0.862 0018 0.633 0001 1.936 0005 1.378 +0031 0.282 +0001 1.566 0003  0.703 = 0.003
32 0.658 0004 0.901 x0009  0.803 x0.018 0.623 0001 1.968 0007  1.339 0012 0.279 +0001  1.599 0002  0.703 z0.004
64  0.663 0002 0.897 0021  0.824 £0.013  0.629 £0.001  2.074 0006  1.235=:0.006 0.285 0001 1.556 x0.001  0.694 = 0.002

K

Conversely, using too few regions (e.g., /' = 4) results in broad spatial partitions that may encompass multiple heterogeneous
tissue compartments. This undermines the locality assumptions of our model and increases intra-region variability, which
can impair the model’s ability to learn.
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T=E95 T=EL05 T=E1L5

K =16

K=32

K=64

K=128

K =256

Figure 8. Visualization of spatial partitions obtained via KMeans clustering with K = {4, 8,16, 32,64, 128,256} on the embryonic
development dataset. For low K, each region covers large heterogeneous areas; for high K, regions become small, dense, and highly
overlapping, potentially degrading the diversity and utility of sampled microenvironments.

Given the trade-offs outlined above, we focus our evaluation on K € {8, 16, 32,64}, which spans a range of granularities
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that preserve both spatial interpretability and sampling robustness. Table 2 summarizes the quantitative results for this
ablation across three datasets: Mouse embryonic development (MED), axolotl brain development (ABD), and mouse brain
aging (MBA). We observe that using K = 64 consistently yields strong performance, achieving the highest INN-F1 scores
on both the MED and MBA datasets, while also performing competitively on ABD. These findings indicate that KX = 64
offers an effective balance between spatial resolution and stability, and we adopt it as the default configuration in our main
experiments.

D.5. Justifying the choice of NicheFlow over RPCFlow

Although RPCFlow achieves competitive performance on spatial metrics such as PSD and SPD, it lacks the essential
capability of meaningful conditional generation. In RPCFlow, conditioning is performed using randomly sampled point
clouds from the spatial regions without explicit microenvironment structure. As shown in Figure 9, when conditioned on
such random sources, RPCFlow tends to reconstruct the entire target tissue, rather than capturing local dynamics driven by
the source input. This undermines its ability to model spatiotemporal evolution in a biologically grounded manner.

Source (t;) Target (t3) Predictions (50x) Sample Likelihood
. 5 0.045
o "B 0 4 o °a5 0.040
oo e o, e %% oa 0.035
.. . . . . o ° o
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Figure 9. RPCFlow fails to perform meaningful conditional generation: the model generates a diffuse reconstruction resembling the entire
target tissue rather than conditioning on the provided source points. Each row shows a different source-target pair.

In contrast, NicheFlow is explicitly designed to push localized microenvironments through time. By conditioning on fixed-
radius neighborhoods centered around specific spatial positions, the model learns how cellular contexts evolve, preserving
both spatial coherence and transcriptional identity. Figure 10 visualizes this distinction: While NicheFlow consistently
generates well-localized predictions aligned with the input microenvironment, RPCFlow fails to retain spatial specificity,
often diffusing the prediction across broader regions.

From a biological perspective, predicting the fate of a local tissue region over time is far more relevant than mapping
random point sets. Microenvironments encode structured cellular contexts, such as signaling interactions or niche-specific
cell states, that are crucial for downstream analysis (e.g., lineage fate prediction, microenvironment-based intervention
simulation). Because RPCFlow lacks this interpretability and fails to enable such downstream tasks, it cannot serve as a
practical generative model in biological settings.

In summary, while RPCFlow may appear performant under some aggregate spatial metrics, only NicheFlow enables
localized, conditionally consistent generation of evolving tissue regions. This makes it not only superior for evaluation but
also for practical use in biological modeling.
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Figure 10. Comparison between NicheFlow and RPCFlow in a fixed-source microenvironment setting. Each row shows input (source),
ground truth target, model prediction, and KDE-estimated likelihood. While NicheFlow (top) produces well-localized samples consistent
with the input, RPCFlow (bottom) generates less structured and spatially inaccurate predictions.

D.6. Description of the biological comparison with moscot

Here, we describe how we conduct the comparisons with moscot, as shown in Figure 3, Figure 12, and Figure 11. For both
NicheFlow and moscot, we select a source microenvironment that we want to track over time. In the case of NicheFlow,
this corresponds to an aggregate of point clouds. For moscot, it refers to a group of single cells spatially located within the
region of interest. The same set of cells is used for both methods.

NicheFlow. To generate contour plots over the spatial slide, we push forward the selected region and assign the generated
points to their nearest real neighbors based on spatial coordinates. We then compute a probability value for each real position
by normalizing the number of assigned generated points. In other words, the more generated points are close to a given real
point, the higher the probability assigned to that location in the contour plot. Cell type proportions are computed as the
aggregated frequencies of the generated cell types across the slide. Each plot considers 10 independent generation runs from
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the same niche.

moscot. This baseline is not a generative model, but rather a standard discrete OT framework using a Fused Gromov-
Wasserstein cost. As such, it does not generate new features or coordinates. Instead, it outputs a transition matrix that
assigns matching probabilities between each source slide cell and each target slide cell. We use these transition probabilities
to compute contour plots over the target slide and to aggregate cell type probabilities for the bar plots. For the latter, moscot
provides a custom method called cell transition ().

For the Appendix figures Figure 12, Figure 13, Figure 14, and Figure 15, we propagate the initial source region across
multiple time steps. In NicheFlow, this is achieved by using the simulated point cloud from step ¢ to predict the next state at
t + 1, and then feeding this output as the input for the following trajectory step from ¢ 4 1 to ¢ 4 2, and so on. Ground truth
points are not used as intermediate sources during this process. For moscot, pushing the source across time points can be
automatically done by setting non-subsequent time points in the cell_transition () function.

D.6.1. ADDITIONAL COMPARISONS WITH MOSCOT ON EMBRYONIC DEVELOPMENT

We propose a similar analysis as presented in Section 5.2. In Figure 12, we compare the ability of NicheFlow to predict
an entire spatial structure trajectory by pushing an initial source cloud through all the developmental stages. To this end,
the trajectory of an initial point cloud is first pushed to the next time point, and the model’s prediction is used as a source
for predicting the subsequent time point. An accurate niche trajectory reconstruction signifies that our model can be used
to sequentially predict microenvironment evolution by treating its intermediate predictions as inputs, corroborating their
accurate reflection of real point clouds.

Specifically, in Figure 12 we show that pushing anterior neural crest cells twice from E9.5 to E11.5 through the flow
generates realistic target point clouds with a cell composition reflecting the expected cranial structure mostly made of cavity
cells, jaw and teeth (arising at E11.5 for the first time) and surface ectoderm. Doing the same with moscot oversamples
regions outside of the cranial structure, thereby incorrectly mapping most of the neural crest density to brain cells.

In Figure 11, we also show that NicheFlow is more accurate than moscot at transporting mass from small organs like the
liver across development. More specifically, while density leaks from the liver to the GI tract in the mapping produced by
moscot, the prediction computed by NicheFlow more accurately retrieves the liver structure at the later time point. Together
with previous evidence, our results underscore the importance of accounting for spatial correlations between cells during
OT-based trajectory inference to buffer out the noise resulting from single-cell-based predictions.
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Figure 11. Comparison between moscot and NicheFlow on mapping the liver structure from E10.5 to E11.5. The liver at time E10.5
is used as a source for trajectory prediction using the different models. The left column shows the source and expected target regions
highlighted on the respective E10.5 and E11.5 embryos. The middle column displays the density of the prediction obtained by transporting
niches from the source to the target slide. On the right, the aggregated cell type proportions according to the density in the middle column
(see Appendix D.6).
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Figure 12. Comparison of NicheFlow and moscot on the prediction of the anterior neural crest cells’ fate. For both models, we take source
facial neural crest cells at E9.5, push them to time point E10.5, and show the compositional and density predictions in the middle panel.
Then, the predictions at 10.5 are used as a source for a second trajectory prediction operation from 10.5 to 11.5, for which we inspect
again the cell density over the target slide and the cell type probabilities.
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D.6.2. EXPERIMENTS ON THE AXOLOTL BRAIN DEVELOPMENT

To further support our result, we propose a more in-depth qualitative analysis of the NicheFlow application on the axolotl
brain development dataset. More specifically, in Figure 13 we demonstrate that our model predicts the formation of
crucial anatomical structures like the left and right lobes both spatially and compositionally. This vouches for flexibility in
NicheFlow’s performance, which extends to non-trivial topology changes and simultaneously accounts for accurate cell state
and coordinate generation in time. Similar results can be observed in Figure 14, where we showcase the correct prediction
of the formation of a left lobe cavity, predicting trajectories from an immature brain region.

Furthermore, in Figure 15 we predict the compositional and structural time evolution of the left dorsal pallium in the axolotl
brain development. Following Wei et al. (Wei et al., 2022), we know that early time points populate the dorsal pallium of
immature cell types like ependymoglial cells (EGC), neuroblasts (NBL), and immature neurons. In the left dorsal pallium,
these disappear at the juvenile stages (the 3™ time point) and lead to differentiation into mature neurons (nptxEX) and later
EGC (WntEGC, sfrpEGC). This fixed structural development is accurately predicted by NicheFlow when pushing left dorsal
pallium cells forward across the trajectory.
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Figure 13. Prediction of hemisphere formation on the axolotl brain development. We evaluate the ability of NicheFlow to generate the
anatomical splitting of central brain structure upon the formation of the right and left brain regions. The top panel shows the reference
source region and cell type composition. For each stage (St.54, St.57, Juvenile, Adult, and Meta), we show: (1) predicted vs. reference
cell type frequencies, (2) the generated niche visualized via 2D embedding colored by cell type, and (3) spatial projection of the generated
region onto the anatomical reference (right). We set A = 0.5.
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Figure 14. Prediction of cavity formation in the left brain lobe during axolotl development. We assess the ability of NicheFlow to model
the emergence of a cavity structure within the left lobe of the axolotl brain. The top panel shows the reference source region and its cell
type composition. For each developmental stage (St.54, St.57, Juvenile, Adult, and Meta), we display: (1) predicted versus reference
cell type frequencies, (2) the generated niche visualized in 2D embedding space, colored by cell type, and (3) spatial projection of the
generated region onto the anatomical brain reference (right). The progression illustrates the model’s ability to recapitulate the asymmetric
cavity formation localized to the left lobe. We set A = 0.5.
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Figure 15. Structural and compositional prediction of the left dorsal pallium during the axolotl brain development. We use the left dorsal
pallium region at the St.44 developmental stadium (highlighted on the left) and predict its trajectory over time. In the top row, we show
the proportion of different cell types in the predicted region, colored as immature (light red) and mature (dark red). At the bottom, we
show the structural prediction for the left dorsal pallium overlaid on the true slide. We set A = 0.5.
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E. Algorithms

Here, we present the algorithmic procedures underlying NicheFlow. To streamline the exposition, we first define compact
notation for representing noisy microenvironments and their interpolations.

We denote a single noisy microenvironment (simplifying Equation (11)) as:
MZ ~ N(O, ID+2)1Xk = {(Cf, Zi) ‘ Cf ~ N(O, Ig), z; ~ N(O7ID), Vi = 1, ey k‘} 5 (33)

where k denotes the number of spatial points per microenvironment, ¢ are 2D cell coordinates, and z; are associated feature
vectors in RP. For a collection of N microenvironments, we define the corresponding set of noisy microenvironments

MZ ~ N(0,Ip0)V % = {M; ~ N(0,Ipy2) " |Vi=1,...,N}. (34)
Given a noisy sample M? and a corresponding ground-truth target microenvironment M, we define their linear interpolation

attime ¢ € [0,1] as: M? = (1 — t)M* + t M*, where the interpolation is performed element-wise across the matrix rows.

For batched data, this generalizes to:
M= (1 - t)M* +tM*. (35)

Algorithm 1 SAMPLEANDINTERPOLATE

Require: Number of samples N, feature dimension D, microenvironment size k, OT plan 7}
Ensure: Source (M), target (M), interpolated (AM"), and noisy (M*) microenvironments

1: (M° M) < Sample from KMeans regions > Initial microenvironment pairs
2: (MO M) 71 (MO, MY > Resample with OT plan
30 M® ~ N(0,Ipy )V <k > Noisy initial states
4: ¢t ~U(0,1) > Random interpolation time
5 M (1—t)M? +tM! > Linearly interpolated states

E.1. OT Conditional Flow Matching

The OT Conditional Flow Matching (OT-CFM) algorithm consists of a training and an inference phase. During training,
the model learns a time-dependent vector field u conditioned on a source microenvironment M, which maps a noisy
microenvironment M?, sampled from Gaussian noise, to its corresponding target microenvironment M!. The supervision
is provided via source-target pairs (MY, M) obtained through entropic OT over pooled microenvironment representations.
At inference time, the learned vector field is integrated starting from M?, conditioned on a given source MY, to generate
the predicted target microenvironment M.

We optimize the following loss:
z 1 12
Lor—crm(M, MY, M, M7 0) = 5 S jJuf (M M) — (M= M, (36)
M%em°
MZeM*
Mtem?
Mrem?!

The full pseudocode for both phases is provided in Algorithms 2 and 3.

Algorithm 2 OT CFM — Training

Require: Number of samples IV, feature dimension D, microenvironment size k, OT plan 7} ,, conditional velocity field uf

Ensure: Trained parameters 6 of u?
1: (M M M M?) < SAMPLEANDINTERPOLATE(N, D, k, ) > Microenvironments (Algorithm 1)

2: 0« VoLor—crm(M®, M M MF;0) > Compute loss (Equation (36)) & update parameters 6

Algorithm 3 OT CFM — Inference

Require: Source microenvironment M?, learned conditional velocity field u?

Ensure: Generated microenvironment AM*
10 M? ~ N(0,Ip0)t %k > Sample noisy sample
20 MY M+ [ uld (M, M) dt > Solve ODE
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E.2. OT Gaussian Variational Flow Matching

The OT Gaussian Variational Flow Matching (OT-GVFM) algorithm adopts a variational perspective on Flow Matching.
Instead of directly learning a time-dependent conditional velocity field, the model learns a factorized variational posterior
@ (M | Mt MP) over target microenvironments M1, conditioned on an interpolated microenvironment M? and a
source microenvironment M. The predicted velocity field is then computed as the difference between the posterior mean
pf (Mt M) and the current state M.

The training objective minimizes the discrepancy between ground-truth targets and the predicted posterior means (7, #9):

1 _
0 1 t 012 2012
Lor-avem(M”, M5 M50) = 5 > > (lev = £F215 + [l —7/13) - (37)
M‘ieM;’ ) (c1,z1)EM!
ﬁ;gﬁl’ (F2 7)) eu] (MP M)
Atinference time, trajectories are generated by integrating the vector field i (M?, M%) — M, starting from a noise-sampled
microenvironment M?# and conditioned on a given source M. To ensure stability near ¢ = 1, the vector field is scaled by a

time-dependent denominator, as in prior VFM formulations.

The pseudocode for both phases is provided in Algorithms 4 and 5.

Algorithm 4 OT-GVFM — Training

Require: Number of samples IV, feature dimension D, microenvironment size k, OT plan 7 ,, source-conditioned posterior mean

predictor ¢
Ensure: Trained parameters 6 of .
I: (M, M M M) «— SAMPLEANDINTERPOLATE(N, D, k, 7} ) > Microenvironments (Algorithm 1)

2: 0+ VoLloT_aVvFM (MO, ./\/117 Mt; 0) > Compute loss (Equation (37)) & update parameters 6

Algorithm 5 OT-GVFM — Inference

Require: Source microenvironment M2, learned source-conditioned posterior mean predictor i
Ensure: Generated microenvironment M*

1: M* ~ N(0,Ipy2) <k > Sample noisy sample
o t 0 t
20 M= ME Wdt > Solve ODE

E.3. NicheFlow: OT Gaussian-Laplace Variational Flow Matching

NicheFlow extends OT-GVFM by modifying the variational posterior: It assumes a Gaussian distribution for gene expression
features and a Laplace distribution for spatial coordinates. This change leads to a hybrid loss that combines an L? loss on
gene expression and an L' loss on spatial locations:

_ 1 B
Lricherion(M®, MY MY 0) = Y > (”cl — Flh+ gl - rfn%) (38)
0 0 1
NIEM® (70 203 et )
Mrem? T ’

At inference time, the model integrates the velocity field defined by the difference between the predicted mean puf (M?, M?)
and the current state M¢, starting from noise and conditioned on the source M©, identical to the OT-GVFM procedure.

The pseudocode for both phases is provided in Algorithms 6 and 7.

Algorithm 6 NicheFlow — Training

Require: Number of samples N, feature dimension D, microenvironment size k, OT plan 7 ,, source-conditioned posterior mean

predictor p1f
Ensure: Trained parameters 6 of .
1: (M2 M M MP) < SAMPLEANDINTERPOLATE(N, D, k, ) > Microenvironments (Algorithm 1)

2: 0 < VoLnicheriow (M, M M 0) > Compute loss (Equation (38)) & update parameters ¢
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Algorithm 7 NicheFlow — Inference

Require: Source microenvironment M, learned source-conditioned posterior mean predictor i
Ensure: Generated microenvironment M*
1: M* ~ N(0,Ipy2)t <k > Sample noisy microenvironment

2] t 0 t
20 M — M7+ fol Wdt > Solve ODE
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F. Experimental setup
F.1. Dataset description

We evaluate our model on three publicly available, time-resolved spatial transcriptomics datasets spanning development
and aging processes. Each dataset provides single-cell resolution profiles with matched spatial coordinates and curated cell
type annotations. A detailed summary of the organism, tissue, number of time points, cell types, total number of cells, and
acquisition technology for each dataset is provided in Table 4.

Table 4. Overview of the time-resolved spatial transcriptomics datasets used in our experiments. MED: Mouse Embryonic Development,
ABD: Axolotl Brain Development, MBA: Mouse Brain Aging. Each dataset varies in organism, tissue type, number of timepoints, cell
types, total number of cells, and spatial transcriptomics technology.

Dataset  Organism Tissue Timepoints Cell Types Cells Technology
MED Mouse =~ Whole embryo 3 24 54k  Stereo-seq
ABD Axolotl Brain 6 33 36k  Stereo-seq
MBA Mouse Brain 20 18 1.5M  MERFISH

F.2. Dataset and microenvironments preprocessing

Dataset preprocessing. All datasets used in our study underwent a preprocessing procedure appropriate for spatial
transcriptomic analysis, involving total count normalization, logarithmic transformation, and principal component analysis
(PCA). For the mouse embryonic development (Klein et al., 2025) and axolotl brain development (Wei et al., 2022) datasets,
total count normalization, and logarithmic transformation had already been applied; we, therefore, performed PCA ourselves
on the transformed data. For the mouse brain aging dataset (Sun et al., 2025), we applied all three steps: We first normalized
raw count matrices so that each cell had the same total expression, followed by a natural logarithm transformation of the form
log(x + 1) to stabilize variance and mitigate the influence of large values. We then computed PCA on the log-transformed
data. To reduce computational overhead due to high cell counts in the aging dataset, we subsampled the data by a factor of
0.2.

Finally, we standardized PCA components across all cells to ensure consistent scaling across time points. Spatial coordinates
were standardized independently for each time point by subtracting the per-time-point mean and dividing by the standard
deviation. This standardization preserves the relative spatial configuration while accounting for scale and position differences
over developmental time.

Microenvironments preprocessing. To facilitate efficient training and enable consistent microenvironment construction,
we precompute all fixed-radius neighborhoods for each dataset using a radius r chosen based on spatial resolution. To reduce
variability in the number of neighbors and improve batching efficiency, we fix the number of nodes per microenvironment to
the most frequent neighbor count observed within each slide. This standardization ensures structural comparability across
microenvironments while significantly reducing computational overhead during training, as costly radius or nearest-neighbor
queries are avoided at runtime.

F.3. PSD and SPD metrics

We assess spatial fidelity using two complementary asymmetric distance measures. The point-to-shape distance (PSD)
captures how much predicted cell positions diverge from the actual tissue layout, computed as the average squared distance
from each simulated point to its nearest neighbor in the ground truth. Conversely, the shape-to-point distance (SPD)
quantifies how comprehensively the predicted distribution spans the target structure by averaging the squared distance from
each ground truth point to its closest generated counterpart.

Let G* denote the set of generated coordinates and R* the set of ground truth coordinates at time ¢. Define NN ;(c;) as the

ref
nearest neighbor of ¢; € G* in RY, and NNf;en(ci) as the nearest neighbor of ¢; € R? in G*. Then, the two metrics are given
by:
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1
PSD = - > > [le; = NNig(e:)lf3, (39)
|g| gteg e, egt
1
SPD = =7 > > llei — NNE (e)3- (40)
RtER c; R

where G := U;erGt and R := Uyc7RE.

F.4. Cell-type classification for evaluation

To evaluate cell-type fidelity of generated microenvironments, we train a supervised classifier to assign cell type labels based
on the gene expression profiles. We apply the same preprocessing steps used for training our generative models: Total count
normalization, log-transformation, and PCA reduction (see Appendix F.2). The resulting low-dimensional embeddings are
used as input features for a simple multilayer perceptron (MLP), trained to predict discrete cell type labels.

The classifier consists of a two-layer feedforward network with ReLU activations and a final linear projection to the number
of cell types. It is trained using cross-entropy loss and optimized with the AdamW optimizer. We report performance using
the weighted F1-score.

We obtain strong classification results across all datasets. On the mouse embryonic development dataset, the classifier
achieves a weighted F1-score of 0.85; on axolotl brain development, 0.80; and on the aging dataset, 0.97. These results
correlate with the number of input genes and the variance retained in the PCA-reduced space. The aging dataset contains
only 300 genes, and 50 principal components explain sufficient variance to accurately distinguish most cell types. In contrast,
the embryonic development dataset contains approximately 2,000 genes, and the axolotl brain development dataset includes
over 12,700 genes, making classification more challenging due to higher gene expression variability.

F.5. Discretized microenvironments

To ensure consistent and reproducible evaluation across methods and datasets, we construct a fixed set of evaluation
microenvironments by discretizing the spatial domain of each tissue section. For each time point, we define a regular 2D
grid over the tissue and select the closest cell to each grid point as the centroid of a microenvironment. Each centroid is then
used to construct a fixed-radius neighborhood, following the microenvironment definition in Section 4.1. This procedure
ensures full spatial coverage by verifying that every cell belongs to at least one microenvironment.

E9.5 E10.5 E11.5

Figure 16. Discretized grid of microenvironments for the mouse embryonic development dataset. Each blue point denotes a centroid
around which a microenvironment is constructed. To ensure consistent coverage across tissue sections, additional centroids are randomly
sampled such that each slide contains the same number of microenvironments.

Figure 16 illustrates this discretization for the mouse embryonic development dataset. Each blue dot corresponds to a
selected centroid. In cases where the number of grid-based centroids falls below a target threshold, additional centroids are
randomly sampled to match a fixed total count per slide. This augmentation ensures that all slides contribute equally to the
evaluation and prevents bias from sparse regions.
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We apply the same discretization procedure to all three datasets used in our experiments: Mouse embryogenesis, axolotl
brain development, and mouse brain aging. By standardizing the evaluation regions spatially and deterministically, we
eliminate the need for stochastic region sampling during evaluation, which would otherwise lead to nondeterministic and
irreproducible results.

F.6. Microenvironment Transformer

To model the spatiotemporal evolution of local cellular neighborhoods, we design a permutation invariant transformer-based
architecture tailored to structured point cloud data. Our Microenvironment Transformer processes local microenvironments,
sets of cells with gene expression features and spatial coordinates, and predicts time-dependent outputs such as velocity
fields or future states.

The model operates on a source M and noisy M microenvironments with per-cell features z; € R” and 2D coordinates
c¢; € R2. The architecture consists of the following components:

1. Input Embeddings:

(a) Feature Embedding: A linear transformation is applied to the input features x; of each cell.
(b) Coordinate Embedding: Spatial coordinates c; are linearly projected and concatenated to the feature embedding.

(c) Time Embedding: For the noisy microenvironment only, time ¢ € [0, 1] is encoded using sinusoidal functions
cos(wt) and sin(wt), followed by a linear projection and concatenation with the input embedding.

2. Transformer Encoder (Source Microenvironment):

(a) Self-Attention: A stack of transformer encoder blocks with multi-head self-attention processes the embedded
source microenvironment.

(b) No Time Embedding: Time information is not provided to the encoder, as it encodes the source M?.

(c) Residual Feedforward: Each block contains a feedforward subnetwork with LeakyReL.U activation and residual
connection.

(d) Layer Normalization: Applied after both the attention and feedforward layers.
(e) Masking: Binary masks are used to ignore padding in variable-length microenvironments.

3. Transformer Decoder (Noisy Microenvironment):

(a) Time Embedding: Temporal context is injected into the decoder by embedding the time ¢ and concatenating it to
the noisy point embedding.

(b) Cross-Attention: Decoder layers apply cross-attention between the noisy microenvironment and the encoded
source microenvironment.

(c) Self-Attention and Feedforward: Each decoder block includes standard self-attention and residual feedforward
layers.

(d) Layer Normalization and Masking: As with the encoder, normalization, and masking are applied throughout.

4. Final Output Projection:

(a) Prediction Head: A linear layer maps the decoder outputs to the desired dimensionality.

This architecture allows for flexible and expressive modeling of temporal dynamics in cellular point clouds. By encoding
only the source and decoding the temporally conditioned target, the model supports variational and flow-based training
objectives with explicit temporal conditioning.

F.7. Hyperparameters and Computational Costs

Model hyperparameters. For all experiments, we use the same configuration for the Microenvironment Transformer

architecture. The full set of hyperparameters is as follows:

¢ Input feature dimension: 50 PCA features concatenated with a one-hot encoding of the time-point, resulting in a total
dimensionality of 50 + |S|, where |S] is the number of slides (timepoints) in the dataset.
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* Input coordinate dimension: 2
* Embedding dimension: 128

¢ MLP hidden dimension: 256

* Number of attention heads: 4
* Number of encoder layers: 2

¢ Number of decoder layers: 2

* Dropout rate: 0.1

¢ Output dimension: 52 (gene expressions PC features + coordinates)

OT and mini-batching. To ensure spatial diversity and computational tractability, we uniformly sample 256 source—target
microenvironment pairs from the K spatial clusters obtained via KMeans. We then compute the entropic OT plan between
these sampled pairs and resample 64 source-target pairs from this plan to define a single training instance. During training,
we process 16 such instances per batch.

Optimization. All models are trained using the AdamW optimizer with a learning rate of 2 - 10~* and a weight decay of
1-1075. We train each model until convergence.

Computational cost. All models were trained on a single NVIDIA GeForce GTX 1080 Ti GPU with 11GB of memory.
Depending on the dataset and training objective (e.g., CFM or VFM)), training takes approximately 12—16 hours per model.
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