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Local Stability of Wasserstein GANs With Abstract
Gradient Penalty

Cheolhyeong Kim™', Seungtae Park™, and Hyung Ju Hwang

Abstract— The convergence of generative adversarial networks
(GANs) has been studied substantially in various aspects to
achieve successful generative tasks. Ever since it is first proposed,
the idea has achieved many theoretical improvements by injecting
an instance noise, choosing different divergences, penalizing
the discriminator, and so on. In essence, these efforts are to
approximate a real-world measure with an idle measure through
a learning procedure. In this article, we provide an analysis of
GANs in the most general setting to reveal what, in essence,
should be satisfied to achieve successful convergence. This work
is not trivial since handling a converging sequence of an abstract
measure requires a lot more sophisticated concepts. In doing so,
we find an interesting fact that the discriminator can be penalized
in a more general setting than what has been implemented.
Furthermore, our experiment results substantiate our theoretical
argument on various generative tasks.

Index Terms— Abstract measure, gradient penalty, local sta-
bility, measure-valued differentiation (MVD), Wasserstein gener-
ative adversarial network (WGAN).

I. INTRODUCTION

enerative adversarial networks (GANs) have achieved
Gremarkable improvements in both practical and theo-
retical fields ever since it is first proposed. It has been able
to sample from not only real-like images [1] but also from
meaningful joint distributions, such as text-to-image genera-
tion, image-to-text generation, and low-quality-to-high-quality
image generation [2]-[5].
However, although GANs can generate real-like data, it is
not sufficient to argue that GANs can generate any samples
we can expect from a real-world distribution. Therefore, many
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theoretical studies have attempted to fix such anomalies by
injecting an instance noise [6] and selecting different diver-
gences [7], [8]. In addition, an equivalence between the two
aforementioned approaches is revealed [9], [10].

The Wasserstein GAN (WGAN) is well-known to resolve
the problems of generic GANs by selecting the Wasserstein
distance as the divergence [7]. However, WGAN often fails
with simple examples because the Lipschitz constraint on dis-
criminator is rarely achieved during the optimization process
and weight clipping. Thus, mimicking the Lipschitz constraint
on the discriminator by using a gradient penalty was proposed
by Gulrajani et al. [11]. Also, a noise injection and regularizing
with a gradient penalty appear to be equivalent. The addition
of instance noise in f-GAN can be approximated to adding
a zero centered gradient penalty [10]. Thus, regularizing
GAN with a simple gradient penalty term was suggested by
Mescheder et al. [9] who provided proof of its stability.

Based on a theoretical analysis of the dynamic system,
Nagarajan and Kolter [12] first proved local exponential sta-
bility of the gradient-based optimization dynamics in GANs
by treating the simultaneous gradient descent algorithm with a
dynamic system approach. These previous studies were useful
because they showed that the local behavior of GANs can
be explained using dynamic system tools and the related
Jacobian’s eigenvalues.

From the gradient penalty terms [9], [11] and the scope
of dynamic system viewpoint [12], various methods of regu-
larizing WGAN have been proposed. These studies lead to a
simple but essential question: What sort of abstract properties
of penalizing methods should be required to ensure the local
stability of dynamics of WGAN with a simple gradient penalty
term? This is certainly not a trivial question since analyzing a
converging sequence of an abstract measure requires a lot more
sophisticated notions and methods. In this article, we provide
an analysis of GANSs in the most general setting to disclose
what, in essence, should be satisfied to achieve successful
convergence. Our contributions are the following.

1) We propose an abstract property of the gradient penalty
measure to ensure a convergence of the model near
an equilibrium. We generalize the common property of
gradient penalty measures as an abstract form and give
this as an additional assumption. We provide rigorous
proof for the local stability of the dynamic system with
general penalty measures under suitable assumptions.

2) We exploit the measure-valued differentiation (MVD),
which makes it possible to deal with abstract terms,
which cannot be written in an integral form with
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probability density functions. The concept of MVD gives
a theoretical and technical foundation for dealing with
an integral over abstract measure in the stability analysis.
This also makes it possible to deal with an abstract
measure’s derivative with respect to finite-dimensional
parameters while proving the local stability of the
system.

3) We explain a reason for the success of previous penalty
measures based on the proof of the local stability.
We claim that the support of a penalty measure will
be strongly related.

4) We experimentally examine general convergence results
by applying three test penalty measures to several exam-
ples. The proposed test measures are unintuitive, but two
of them still satisfy the assumptions, which also achieve
the successful convergence results.

II. PRELIMINARIES

We interpret the updating procedure of GANs as a con-
tinuous dynamic system. The continuous dynamic system
approach, which is so-called the ODE method, analyzes the
GAN optimization problem with a simultaneous gradient
descent algorithm, as described by Nagarajan and Kolter [12].

Furthermore, the analysis of GANs requires a concept of
a converging sequence of a probability measure. Rigorously
speaking, this requires a firm definition of a converging
sequence of an abstract measure. Second, we need a concept
of a derivative of an expectation with respect to a related
probability measure. This concept is required since we will
investigate a smooth behavior of an expectation of a penalty
term in a continuous dynamic system.

In Section II-A, we will introduce the aforementioned
measure-theoretic concepts. In Section II-B, we provide our
formulation of GANs with a gradient penalty as a continuous
dynamic system.

A. Notations and Preliminaries Regarding Measure Theory

D(x; y) : X — R is a discriminator function with its
parameter y, and G(z;60) : Z — X is a generator function
with its parameter 8. p, is the distribution of real data, and
Dg = Dpo is the distribution of the generated samples in X,
which is induced from the generator function G(z; #) and
a known initial distribution pjaen(z) in the latent space Z.
||| denotes the L? Euclidean norm if no special subscript is
present.

In this section, we define: 1) measures that we are interested
in; 2) convergence of such measures; and 3) a derivative of
an expectation with respect to the measure. Throughout this
study, we assume that the measures over the sample space are
all finite and bounded.

Definition 1: For a set of finite measures {x;};c7 in (R", d)
with the Euclidean distance d, {u;}icr is referred to as
bounded if there exists some M > 0 such that for all i € 7

wi(R") < M. (1)
Now, we introduce the convergence of measures that sat-
isfy Definition 1. Roughly speaking, we say a sequence of
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measures in Definition 1 weakly converges when its expec-
tation over every continuous bounded function converges
accordingly.

Definition 2 (Weak Convergence of a Finite Measure): For a
bounded sequence of finite measures {,},<n on the Euclidean
space R" with a o-field of Borel subsets B(R"), u, converges
weakly to u if and only if, for every continuous bounded
function ¢ on R”, its integrals with respect to u, converge to

[ ¢dp, that is

o= = [ g, [ du. @

Taking the derivative of an expectation with respect to its
measure is challenging. In the most general setting, measures
are not necessarily absolutely continuous. That is, we can-
not always differentiate an expectation with respect to its
parametric probability measure in a closed form as usual.
We claim that such generalization is not only theoretical
but also realistic since it is widely observed that real-world
data are distributed over lower dimensional supports. Hence,
we introduce the weak derivatives of a probability measure
[13] as the following.

Definition 3 (Weak Derivatives of a Probability Measure):
Consider the Euclidean space and its o-field of Borel subsets
(R?, B(R%)). Let Py be a probability measure on R¢, which
depends on its 1-D parameter 8. The probability measure Py
is called weakly differentiable at 6 if a signed finite measure
P, exists where

d o1
2 [oar = A [z~ [ocar|
= [pwoar; )
is satisfied for every continuous bounded function
¢ on R" For the multidimensional parameter
0 = (0,,60,,...,0,), this can be defined similarly as

(0/(061) Py, 0/(062) Py, . .., 0/(06,) Py)

It is also possible to extend the concept of weak derivatives
of a probability measure to a general finite measure Qgy. Note
that the product rule for differentiating can also be applied in
a similar manner to calculus

dd—g/¢(x;6)dPe Z/V9¢(x§9)dpg +/¢>(x;9)dPg. 4)

Therefore, for the general finite measure Qyp = M (0) Py, its
derivative Qj can be represented as below by introducing a
normalizing coefficient M (0) = [1dQp < 00

Qy =M ©)Py+ M(©O)P,. (5)

B. Problem Setting as a Dynamic System

The optimization process of the discriminator and the gen-
erator can be expressed as a system of ODEs [12]. Basically,
the generator (or discriminator) minimizes (or maximizes)
the Wasserstein distance through the Kantorovich—Rubinstein
duality. Differentiation of each objective by respective para-
meters results in a system of ODE:s.
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In addition, the discriminator needs to be regularized to
satisfy the Lipschitz condition of the Kantorovich—Rubinstein
duality. The proper choice of the regularization term has been
discussed. As discussed in [9], regularizing the discriminator
through the Euclidean norm ||-| is problematic since its deriv-
ative T is not defined at the origin. Likewise, the penalty term
Eue[(IViD| = 1)?] of WGAN-GP can trigger a discontinuity
in its dynamic system. Therefore, we choose a squared, simple
gradient penalty (SGP) term E,, [|IV.D||?] as our regularization
term. As discussed in [9], this regularization term makes the
resulting dynamic system differentiable. Note that this can
be viewed as a soft regularization based on the size of the
discriminator’s gradient [10].

As a result, let a quadruple (D(x; w), pa, po, 1) denote our
resulting formulation defined as follows.

Definition 4: The SGP u-WGAN optimization problem
with a simple gradient penalty term ||V, D||?, penalty measure
1 = Wy which that on the discriminator’s parameter y and
the generator’s parameter ¢, and penalty weight hyperparame-
ter p > 0 is given as follows, where the penalty term is only
introduced to update the discriminator:

max : B, [D(x: y)| =By, [D(x: 1= SE[IV: DG )]

main CEp (DG w)] —E,, [D(x; w)l. 6)

According to [12] and many other optimization problem
studies, the simultaneous gradient descent algorithm for GAN
updating can be viewed as an autonomous dynamic system of
discriminator parameters and generator parameters, which we
denote as y and 6. As a result, the corresponding dynamic
system is given as follows:

y = E,,[V,D] —E,,[V,D] - ngE,‘[VxTDVxD]
0 = V4E,,[D]. (7

Note that the penalty measure u determines the information
provided to the discriminator during the optimization process.
This raises an interesting question: what sort of information
should be provided to the discriminator to ensure convergence
to the equilibrium point? As we will discuss in Section IV-A,
our work is, therefore, the equilibrium point is still achiev-
able with a general condition (see Assumption 5). This also
provides a theoretical ground for existing penalty measures.

III. Toy EXAMPLES

We investigate two examples considered in previous studies
by Mescheder er al. [9] and Nagarajan and Kolter [12].
We then generalize the results to a finite measure case. The first
example is the univariate Dirac GAN, which was introduced
by Mescheder et al. [9].

Definition 5 (Dirac GAN): The Dirac GAN comprises a
linear discriminator D(x; y) = wx, data distribution p; = do,
and sample distribution py = dy.

The Dirac GAN with a gradient penalty with an arbitrary
probability measure is known to be globally convergent [9].
We argue that this result can be generalized to a finite penalty
measure case.
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Lemma 1: Consider the Dirac GAN problem with the
quadruple form (D(x; w) = wx, dy, g, ty.,0). Suppose that
some small # > 0 exists such that its finite penalty measure
Wy.0 with mass M(y,0) = [1du, s > 0 satisfies either of
the following.

1) M(y,0) > 0 for (v, 0) € B,((0,0)).

2) M(0,0) = 0 and yV,M(y,0) > 0 for (y,0) €

B,((0, 0)).

Then, the SGP u-WGAN optimization dynamics with
(D(x; w) = wx,00, 0y, type) are locally stable at the origin,
and the basin of attraction B = Bg((0,0)) is an open ball
with radius R. Its radius is given as follows:

R =max{n = 0|2M(y,0) + yV,M(y,0) = 0

for all (y,#) such that y? 4 62 < r]z}. ®)

Proof: The related dynamic system of the SGP u-

WGAN optimization problem for Dirac GAN can be written
as follows:

vo=—0— gvl,,E,,w[wz]
0= y.s. )

First, the only equilibrium point is given by (w*, 8*) = (0, 0),
from
0=—0—-2yM(y,0) — y*V,M(y,0)
0=vy. (10)

The corresponding Jacobian matrix of the dynamic system at
the equilibrium point (0, 0) is written as follows:

=1 ]

p
Z = _EVWWE/"//,() [V/z]

(1)

where

(12)
y=0,0=0
Since V, D(x; w) = w does not depend on x, this can be
rewritten as follows:

Z= _ngw(‘/’zEuw.ﬂ[l])
w=0,6=0
_ PV 2
) (//(//(1// M(y, 0))
w=0,0=0
p
= —E(2M(z//, O)+4y M, (v, 0) + > M, (v, 0))
y=0,0=0
— —pM(0,0). (13)

Therefore, if M(0,0) > 0, then the given system is locally
stable since its linearlized system’s eigenvalues have negative
real parts. If M(0,0) = 0, then the stability of the system
cannot be proved by the linearlization theorem. In this case,
consider the Lyapunov function

L(y(1),0(1) = w(1)* +6(1).
Differentiating with ¢, we get
L=2(yy +00)
= —pyV, (v’ M(y.0))
= —py (2uM(y,0) + y>V, M(y,0))
= —py’(2M(y,0) + yV, M(y.0)) < 0.

(14)

5)
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It is clear that L(y, ) > 0 and equality holds iff w =8 = 0.
Also, L < 0 since M(y,0) = 0 and wV, M(y, ) > 0 from
the assumption. Furthermore, it is clear that if (w(0), 6(0)) €
B,((0,0)), then (y(z),0(r)) € B,((0,0)) for all = > 0
since the Lyapunov function (square of the distance between
the origin and (y(7),60(r))) always decreases as 7 — ©oo.
Therefore, the given system is stable from the Lyapunov
stability theorem.

It can be checked again that if x,, ¢ is a probability measure,
then the system is globally stable as pointed by Mescheder
et al. [9]. Basin of attraction is given by whole R? plane since
M(y,0) =1, so

L=—py’(2M + yV,M) = -2py* <0 (16)

for every (y, 0) € R2. O

Motivated by this example, we can extend this idea to
another toy example given by Nagarajan and Kolter [12],
where WGAN fails to converge to the equilibrium points
(y*,0%) = (0, £1).

Lemma 2: Consider the toy example (D(x;w) =
wx?, U(—1,1),U(—|0],101), tt,.0) where U(0,0) = & and
the ideal equilibrium points are given by (y*, 8*) = (0, £1).
For a finite measure u, 9 = t9 on R, which does not depend
on y, suppose that ug — u* as 8 — 6* with u* # CJy for
C > 0. The dynamic system is locally stable near the desired
equilibrium (0, £1), where the spectrum of the Jacobian at
(0,£1) is given by 2 = —2pE,[x*] £ 4p’°E,:[x*]* —
(4/9))'2.

Proof: From the general setup of the SGP u-WGAN
optimization problem

p

l/./ =Ep, [Dl//] —Ep [Dl//] - EVWE#W [Dazc]
0 = VyE,,[D] (17)
the corresponding dynamic system can be written as follows:
.1 62
V= § - ? - 4pV/Eﬂw,I} [XZ]
. 2yl
0= (18)

Let E,:[x?] = A2 and then, the Jacobian matrix at the
equilibrium (0, 1) is given by

J= [_4/)‘42 #}

+2 0 (19)

Therefore, the given system is locally stable unless A = 0. [J

IV. MAIN CONVERGENCE THEOREM

In this section, we propose assumptions to guarantee the
local stability around the equilibrium point of our system
of ODEs. We assume the existence of an equilibrium point
6 = 0* since a large capacity of the generator will be able
to achieve or almost achieve p; = py+. In Section IV-A,
we provide the necessary assumptions for the local stability.
In Section IV-B, we propose our main convergence theorem
with a sketch of the proof. More detailed proofs are provided
in the Appendix.
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A. Assumptions

Our main goal of this section is to introduce an ideal behav-
ior of gradient penalty near an ideal equilibrium. Assumptions
1-4 state the conditions of an ideal equilibrium, which were
previously studied in [9] and [12], whereas Assumption 5
states the behavior of gradient penalty near the equilibrium,
which are first discussed in our work.

The first assumption is made regarding a realizable case of
equilibrium conditions for GANs, where we state ideal condi-
tions for the discriminator parameter and generator parameter.
As the parameters converge to the ideal equilibrium, the sam-
ple distribution (py) converges to the real data distribution
(p4) and the discriminator cannot distinguish the generated
sample and the real data.

Assumption 1: pg — pg weakly as § — 6% and
D(x; w*) =0 on supp(py) and its small open neighborhood,
i.e., there exists some ¢ = €(x’) > 0, which depends
on the data point so that x € Uyequpp(p,)Be, (x') implies
D(x; y*) = 0. For simplicity, we denote Uy csupp(p,)Be, (x")
as B(supp(pa)).

The second assumption ensures that the higher order terms
cannot affect the stability of the SGP u-WGAN. Compared
with the previous study by Nagarajan and Kolter [12], condi-
tions for the discriminator parameter are generalized to deal
with the abstract penalty measure.

Assumption 2:

g(0) = |E,, [V, D(x: y*)] = E,, [V, D(x: w?)]|°
h(y) = Eu, . [IVeD(x; w)I7]

are locally constant along the nullspace of the Hessian matrix
of g(0) at & = 0* and h(y) at w = y*, respectively. That
is, there exists some small r,,7; > 0 so that, for any vector
u in the nullspace of the Hessian matrix of g with [ju|| < r,,
2(0*) = g(0* 4+ u). Respectively, for any v in the nullspace of
the Hessian matrix of & with ||o| < ry, h(y™) = h(y™* + v).

The third assumption allows us to extend our results
to discrete probability distribution cases, as described by
Mescheder et al. [9]. Ideal discriminators are robust and flat
under a small enough perturbation on the generator parameter.

Assumption 3: There exists €, > 0 such that D(x; y*) =0
on Ujg—g+|<¢, Supp(pe)-

The fourth assumption indicates that there are no other
equilibriums that do not satisfy the given assumptions near
(y*, 0*), which justifies the projection along the axis perpen-
dicular to the null space.

Assumption 4: Either (y*,0*) is an isolated equilib-
rium, or there exist dq, d; > 0 such that all equilibrium points
in By, (y*) x Bs,(0%) satisfy the other assumptions.

The proposed assumption (Assumption 5) is related to suf-
ficient conditions for the penalty measure. A calculation of the
gradient penalty based on samples from the data manifold and
generator manifold or the interpolation of both was introduced
in recent studies [9]-[11]. Therefore, it is plausible to assume
that the penalty measure depends on discriminator’s parameter
w and generator’s parameter 6.

Assumption 5: The finite penalty measure y = i, ¢ satis-
fies the following.

(20)
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Fig. 1. Discriminator loss plots of 2-D examples. Except for s, anc With the red dotted line, which fluctuates wildly outside of the given discriminator loss

range, the others converge and generate the target distributions. (a) Eight Gaussians. (b) 25 Gaussians. (c¢) Swissroll.

, ~
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(2) (b) (©

Fig. 2. 2-D examples generated with gmid, g anc, and fp anc. Mmia and
g anc succeeded to generate the target distributions, whereas /i, anc failed to
generate the samples near (2, —1). (@) mid- (b) fig anc. (€) Lm,anc-

) pyo — py9- = u*, where supp(s,,0) only depends
on 0. (We will denote supp(u,,p) = supp(ug) since
its support only depends on #.) Near the equilibrium,
lyo can be weakly differentiated twice with respect
to . In addition, its mass M(y,0) = [ldu,q is a
twice-differentiable function of y and bounded near the
equilibrium.
2) supp(pa) C supp(u™).
3) There exists €, > 0 such that supp(uy) C V for |0 —
0% < €u, where V = {x|V,D(x; y*) = 0}.
Assumption 5(a)! is technically required to take the deriv-
ative of the integral K, ,[||VyD(x; w)|I?] with respect to .

The Assumption 5 can be described in detail as follows: (5a)
the penalty measure’s support approaches to a data manifold
and its weight changes smoothly with respect to w and 6;
(5b) at the equilibrium, the penalty measure’s support con-
tains the data manifold; and (5c¢) the ideal discriminator will
remain flat near supp(x*) and its small open neighborhood.
This is an extension of Assumption 3 and a quite plausible
situation that we can expect from the gradient penalty of the

This condition is technically required to handle the derivative of the
measure in a convenient manner using the general formulation. Even if the
measure is not differentiable, it may be possible to differentiate the integral.
For instance, J,, is continuous, but it does not have its weak derivative.
However, it is still possible to differentiate Es, [@(x)] = o (y) if the function
o is differentiable at y.

ideal discriminator on supp(ux™) and the flatness of the ideal
discriminator on the data manifold.

In summary, the gradient penalty regularization term
with any penalty measure where the support approaches
B(supp(py)) in a smooth manner works well, and this main
result can explain the regularization effect of previously
proposed penalty measures, such as ugp, p4, ps, and their
mixtures.

B. Main Convergence Theorem

According to the modified assumptions given above,
we prove that the related dynamic system is locally stable near
the equilibrium. The tools used for analyzing the stability are
mainly based on those described by Nagarajan and Kolter [12].
Our main contributions comprise proposing the ideal behavior
of the penalty measure and proving the local stability for all
penalty measures that satisfy Assumption 5.

Theorem 1: Suppose that our SGP u-WGAN optimization
problem (D, py, pog, tty,0) Wwith equilibrium point (y*, 0%)
satisfies the Assumptions above. Then, the related dynamic
system is locally stable at the equilibrium.

A detailed proof of the main convergence theorem is given
in the Appendix. A sketch of the proof is given in three steps.
First, it is enough to check that all nonzero eigenvalues of
the Jacobian of the dynamic system have negative real parts.
For the zero-eigenvalues and corresponding eigenvectors, it is
enough to show that the system is still locally stable along
these eigenvectors. Therefore, it is enough to observe the
Jacobian of the dynamic system at the equilibrium point. Next,
after removing some zero terms, the Jacobian matrix at the
equilibrium is given by

-p0 —R
RT 0

where Q = IE,,*[V.,,XDV;XD] and R = VIE, [V, Dllg—p-.
The system is locally stable when both Q and RTR are
positive definite. We can complete the proof by dealing with
zero eigenvalues by showing that N(QT) < N(RT), and
the projected system’s stability implies the original system’s
stability. Our analysis mainly focuses on WGAN, which is
the simplest case of the following general GAN minimax

21
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Fig. 3.

Generated CIFAR-10 examples with DCGAN (first row) and ResNet (second row) architectures. Note that the penalty measure u,,; anc and WGAN

with ResNet failed to generate images, which can be found in (g), (h), and (n). (a) WGAN. (b) p,. (¢) paq. (d) pcp. (€) pimid- () tganc- (&) Lm,anc-

(h) WGAN. (i) Pg- () pa- &) ugp. () fmig. (m) Hg.anc- (n) fm,anc-
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Fig. 4. Plots for the discriminator loss, inception score, and FID score of the generated CIFAR-10 images with DCGAN (first row) and ResNet (second

row) architectures. Note that WGAN with ResNet (denoted as van, with black dashed line) failed to generate target images and the discriminator loss plot of
the penalty measure f,, anc (With red dotted line) fluctuates wildly outside of the given discriminator loss range, whereas the others perform well.

optimization:
max : Ep Lf (D(xs w1+ Ep, [f(=D(x: y))]

- gEﬂ[nvxD(x; 7]

min : Ep, [f (DO y)]+ By Lf (=D y))] - (22)
with f(x) = x. A similar approach is still valid for general
GANSs with a function f with f”(x) <0 and f’(0) # 0.

V. EXPERIMENTAL RESULTS

We claim that every penalty measure that satisfies the
assumptions can regularize the WGAN and generate similar
results to recently proposed gradient penalty methods with a
simple gradient penalty term. Six penalty measures were tested
on 2-D problems [11] (mixture of eight Gaussians, mixture
of 25 Gaussians, and swissroll) and image generation tasks
(CIFAR-10 and CelebA-HQ data sets with resolution 128 x

128) using a simple gradient penalty term. The penalty mea-
sures and its detailed sampling methods are listed in Table I,
where x; ~ pg,xs ~ pp, and a ~ U(0,1). A indicates a
fixed anchor point in X. Throughout this section, we will only
discuss on WGAN with a simple gradient penalty term since
WGAN-GP is already known to perform well on 2-D examples
and image generation tasks [11].

SGP u-WGAN was examined with various penalty mea-
sures comprising three recently proposed measures and three
artificially generated measures. py and p; were proposed
by Mescheder et al. [9], and ugp was introduced from the
WGAN-GP. We proposed and analyzed the artificial penalty
Measures [mid, Hganc, and f, anc as test penalty measures.
Note that five penalty measures pg, pg, {GP, fmid> and fg anc
satisfy the assumptions, whereas £, anc does not.

The experiments were conducted based on the imple-
mentation of [11]. The loss function was modified from a
nonzero centered gradient penalty to a simple gradient penalty.
Throughout this section, the number of discriminator updates
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Generated CelebA-HQ 128 x 128 examples with the DCGAN architecture. Note that the penalty measures i, anc and WGAN failed to generate

350 van
300 ap
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Plots for discriminator loss and FID score of generated CelebA-HQ 128 x 128 images with DCGAN architecture. Note that WGAN (denoted as

van, with black dashed line) and s, anc (With red dotted line) do not converge, whereas the others perform well. Discriminator loss is reported for every

500 iterations, and FID score is reported for every 4000 iterations.

per generator update was chosen as five [7], and the Adam
optimizer [14] with its learning rate 10™* was used as a
discriminator/generator’s optimizer.

A. 2-D Examples

We checked the convergence of py on the 2-D examples
(eight Gaussians, swissroll data, and 25 Gaussians) for the
SGP-WGANSs with six penalty measures. Each data set was
trained over 20000 iterations. The anchor A for fig anc Was
set as (2, —1) for the 2-D examples. Overall, five penalty
measures (4Gp, Mmids Pd> Pg»> aNd g anc) sSucceeded to generate
the target distributions, whereas i, . failed. Plots of the
discriminator loss for 2-D examples were reported for every

200 iterations, which can be found in Fig. 1. We present
generated results with fimiq, fg anc, and fLy anc in Fig. 2.

B. CIFAR-10

We trained WGAN and the SGP-WGANSs with six penalty
measures for the CIFAR-10 data set. DCGAN [1] and ResNet
[15] were used to construct discriminators and generators in
this section, which are previously constructed in [11]. The
models were trained for 100000 iterations. The anchor A for
Uganc and iy ane during CIFAR-10 generation was set as a
black monochrome image. The images generated with WGAN
and six penalty measures with DCGAN [1] and ResNet [15]
architectures are shown in Fig. 3. We can observe that WGAN
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TABLE I

LisT OF BENCHMARK WGANS (WGAN AND SiX PENALTY MEASURES
WITH A SIMPLE GRADIENT PENALTY TERM)

Penalty Penalty term Sampling method
WGAN  None (Weight Clipping)  None
T i =,

Pd IIVzDH2 E=uaq

HGP VD z=azq+ (1—a)zg
Lomid IV.DJ? # = 0.5z4 + 0.524
Hg,anc ”VzDH2 z=aA+ (1 — a):rg
pmane  |VaD]? =054+ 0.5z,

TABLE II

BENCHMARK SCORE RESULTS ON THE GENERATED SAMPLES UNDER
DCGAN AND RESNET ARCHITECTURES

CIFAR-10 DCGAN CIFAR-10 ResNet

Penalty Inception FID Inception FID
WGAN  5.15+0.08 569 2.38+£0.01 1854
Pg 6.49 +0.07 40.7 7.74+£0.07 18.9
Pd 6.23 £ 0.05 39.8  7.78 £0.09 19.0
KGP 6.47 £ 0.04 373  7.83+0.06 17.6
Kmid 6.45 + 0.05 379 7.80£0.10 17.7
Hg,anc 6.25 +0.07 37.8  7.5240.05 19.3
Mm,ane  2.99+£0.03  159.6  4.04 £0.05 78.1

failed to generate images under the ResNet architecture and
Um.anc failed to converge.

Results from WGAN and six penalty measures were eval-
vated based on the inception score [16] and the FID score
[17], as shown in Table II, which are useful tools for scoring
the quality of generated images. For the CIFAR-10 image
generation task, the inception score [16], [18] and FID score
[17] were used as benchmark scores to evaluate the generated
images. The higher inception score and lower FID score indi-
cate the good quality of the generated images. We generated
50000 samples in total. The number of samples for evaluating
an inception score is 100. Compared with WGAN, generated
images and benchmark scores of five penalty measures with
a simple gradient penalty show similar regularization perfor-
mances from the results in Table II, whereas i, anc failed to
generate the original images. Plots for the discriminator loss,
inception score, and FID score can be found in Fig. 4. Dis-
criminator loss is reported for every 500 iterations. Inception
score and FID score are reported for every 4000 iterations.

C. CelebA-HQ 128

We ran the CelebA-HQ image generation task for WGAN
and the SGP-WGANSs with six penalty measures. A resolution
of CelebA-HQ images was resized to 128 x 128. DCGAN
[1] was used to build a generator and a discriminator. Their
detailed architectures can be found in the Appendix. The
models were trained for 100000 iterations. The anchor A for
Uganc and f1,, anc Was set as a black monochrome image as on
the CIFAR-10 tasks. The batch size was set to 64. Verified our
main convergence theorem. Observing the results of WGAN
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TABLE III

FID SCORE OF 50000 SAMPLES GENERATED FROM WGAN AND SiIX
PENALTY MEASURES

Penalty
FID

WGAN Py Pd
2523 482 490

rGP
48.1

HKmid
40.2

Hm,anc

311.6

Hg,anc
47.7

and 4,y anc, their discriminator losses fluctuate, and their FID
scores do not decrease. Generated images in Fig. 5 also show
that the assumptions discussed in Section IV-A are indeed
necessary. For the CelebA-HQ image generation task, the FID
score [17] was used as a benchmark score to evaluate the
trained WGANSs. As on the CIFAR-10 tasks, we generated
50000 samples in total. Table III shows FID scores after
100000 iterations. Plots of the discriminator loss and FID
score in Fig. 6 empirically.

VI. CONCLUSION

In this study, we proposed an additional assumption on an
abstract property of the gradient penalty measure to ensure
the local stability, and then, we proved the local stability of a
simple gradient penalty «-WGAN optimization problem with
the MVD tool. This proof provides insights into the good
behavior of gradient penalty and the success of regularization
with previously proposed penalty measures. Furthermore, our
theoretical approach was supported by relevant experiments
with the previously proposed penalty measure and our unin-
tuitive penalty measures. In future research, our works can
be extended to an alternative gradient descent algorithm and
its related optimal hyperparameters. Stability at nonrealizable
equilibrium points is one of the important topics on the
stability of GANs. Optimal penalty measures for achieving
the best convergence speed can be also investigated using a
spectral theory, which provides a mathematical analysis on the
stability of GAN with precise information on the convergence.

APPENDIX A
PROOF OF THE MAIN CONVERGENCE THEOREM

Proof: Let us consider the Jacobian matrix

KDG:|

Koo (23)

at the equilibrium (y*, *),> where the each block matrix can
be represented as follows:

Kpp = Epd [VWV/D] - Epr;[vwwD] - ngwEuw,ﬂ[”VxDHZ]

p
Kpc = —Vy, Ep [D] — §V6WEH.//,0[”VXD”2]

KGD = VV/HEpg [D]

Kcc = VegE,,[D]. (24)

2In standard notation, V, g is the dim(range of g) x dim(y) matrix. For a
real-valued function f, we consider the first derivative as the column vector
instead of the row vector. V,, f is considered to be the dim(y) x 1 matrix
(column vector) of the total derivative. For the second derivative, Vg f =
(V) (Vg f) is the dim(0) x dim(y) matrix. The transpose notation is used in
a similar manner to the matrix.
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First, Assumption 1 implies

E [Vyy D] = Ep,. [Vyy D] =0 (25)

since pg — pg as @ — 0*. From Assumption 3, D(x; y*) is
zero on the supp(pg) with |0 — 0*| < €,, which implies that
Kee = VooEp,[D(x; y*)] =0.

0=0+
We still need to evaluate VWWIEM,O[HVXDHZ] and
VoyEu,,[IViD|*] at the equilibrium. According to
Assumption 5a, finite signed measures u) , and u ,
exist,? so they are the first and second weak derivatives of
Uy, With respect to the parameter y at (y*, 6*). Therefore,

the expectations given above can be rewritten as follows:

I VW/ IV.DIPds 0
supp(y.0)

(26)

y=y*,0=0*

= / (2V, DV, D +2Ko)d .0
supp (/l w})

+ [ 2(vi.0v.D)aw,
supp (4.0

+ / IV, DI, @7)
supp(y.0) "
I = Vé’z/// ”VxD”zdﬂz//,H
supp (4.0 y=y*,0=0*
=V, / 2(V,), . DV.D)du 0
supp(4y.0)
+ / IV DI, 28)
supp(tty.0) y=y*,0=0%
where
Koles p) = | S = DG )2 D )| - 29)
Xy = T D y)— D .
0 v k@l//ial//jaxk v axk v ..

ij

From Assumption 5c, the fact that the weak derivative of
ly.e vanishes outside of supp(uy.6), ViD(x; y*) =0 on V
that includes supp(u, ) for all 8 with |0 — 0*| < €,, and
Wyy = i, 9 = 0 on the outside of supp(u,,¢), which leads
to the desired results

I :/ Z(V;XD(X; Y )V D(x; y*))du*
supp(u*)
11 =0. (30)

After canceling the undesired terms, the Jacobian matrix at
the equilibrium (y*, 8*) is given as

_|—rQ -—R
where
Q =E,[V,,DV,.D]
R = VyE,, [V, D] (32)
0=0*

3/1;//’0 and ,u/y’/ﬂ will be considered as row vector(l x dim(y) matrix) and
dim(y) x dim(y) matrix of finite signed measures, respectively. //M =

- iy0 L,Ué}amd”—L
oy Y OWdim(y) V> 'u!l/,()_ 5’Wi5’!1/j’uw’0 ij.
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From the definition of Q, it is easy to check that Q is at least
positive semidefinite. It is known that, for a negative definite
matrix A and full column rank matrix B, the block matrix

)

is Hurwitz, i.e., all eigenvalues of the matrix have a negative
real part. Therefore, if Q is positive definite and R is full
column rank, the proof is complete. We consider the comple-
mentary case.

Suppose that Q or RT R has some zero eigenvalues. Let
Q = UpApU}; and R"R = UgAgU{ with Up = [Tp Sp]
and Ug = [T Sc|, where Tp and Tg are the eigenvectors of
0 and RTR that correspond to nonzero eigenvalues. First,
we assume that 7p and 7 are not empty. We can show
that (y* + &v,0* + vw) is also an equilibrium point for a
sufficiently small &,v and v € N(Q), w € N(RT R) by using
the techniques given by [12]. If the system does not update
at the equilibrium point (y*, 8*) and its small neighborhood
(y* + &0, 0% + vw) is perturbed along N(Q) and N(R' R),
then it is reasonable to project the system orthogonal to N(Q)
and N(RTR).

First, we assume that v € N(Q) for a unit vector v.
By Assumption 2, A(y* + ¢v) = h(y™) = 0 for |&]| <
&4, which implies that V.D(x; w* + ¢v) = 0 for x €
supp(p y+¢,6+) = supp(u™) and |&| < &. Thus, we obtain

Eppererar [V D(x: w* +E0)ViD(xs y* +E0)| =0 (33)
and
/ [ VoD (x: w* +¢0)|*dp)ye iz =0. (34
supp(u*)
From Assumption 4

E,, [V.,,D(x; w* —i—fv)] —E,,. [V.,,D(x; w* —i—fv)] =0.

(35
By adding (33), (34), and (35), we obtain 1// = 0. In addition
6 = % ; D(x; y* + &v)dpy o
= / Vi G(z:0°)V.iD(G(z; 0%); w* + &0) praen(2)dz
= O.Z (36)
Therefore, the point (y* + ¢v,0%) with |£] < & is an

equilibrium point. According to Assumption 4, D(x; w*+&v)
is an equilibrium discriminator for |[£| < J4, and thus,
D(x; w* + &v) is already an optimal discriminator for |£| <
min(&y, dq)-

Suppose that w € N(RT R) for a unit vector w. By Assump-
tion 2, g(0*) = g(0* +vw) = 0 for |v| < v,, and thus

Ep [VyD(x: w*)] = Eppe.n [V D (x5 w*)] = 0 for |v] < v,.
(37

Furthermore, Assumption 3 gives E,,[D(x; y*)] = 0 for a

sufficiently close 6 with |0 — 0*| < €,, which implies that

0= VoE,, [D(x; 1//*)] =0
6=0*+vw

(38)
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TABLE IV

DETAILED NETWORK ARCHITECTURES OF THE GENERATOR AND THE DIS-
CRIMINATOR ON CELEBA-HQ GENERATION TASK. LRELU DENOTES
LEAKYRELU WITH o = 0.2

Layer output size filter activations
Fully Connected 1024-4-4 256 — 1024 -4 -4
ConvTranspose2D 512 X 8 X 8 1024 — 512 ReLU
ConvTranspose2D 256 x 16 x 16 512 — 256 ReLU
ConvTranspose2D 128 X 32 x 32 256 — 128 ReLU
ConvTranspose2D 64 X 64 X 64 128 — 64 ReLU
ConvTranspose2D 3 x 128 x 128 64 — 3 Tanh
Conv2D 64 X 64 x 64 3—64 LReLU
Conv2D 128 X 32 x 32 64 — 128 LReLU
Conv2D 256 x 16 x 16 128 — 256 LReLU
Conv2D 512 x 8 x 8 256 — 512 LReLU
Conv2D 1024 x 4 x 4 512 — 1024 LReLU
Conv2D 1x1x1 1024 — 1 -

for |v| < €,. Finally

/ ZVVT/XD(X; V/*)VXD(-X; l//*)d,u w* 0 vw
supp(,u,‘,*ﬁ*ﬂ,w)

+ /Supp(ﬂ . )H V.D(x; y*) szﬂ;/*ﬁ*ww =0 (39)

since supp(u y+g+4vw) C V and V,D(x; y*) =0 on V for a
sufficiently small [v] < €, (Assumption 5c). By adding (37)
and (39), we obtain

l/./ = El’d [V‘//D(X; V/*)] - EP/}*+vw[Vl//D(X; V/*)]
p

— —/ ZV;-XD()C; V/*)VXD(X; W*)dﬂw*,€*+vw
2 Supp(ﬂu/*ﬂ“rvw)

- 2/ V. D(x; v*) | Pdu
4 Moy o
2 Supp(/’w*ﬂ*ww)” ) ( )” y*,0%+vw

= 0. (40)

Therefore, the point (y*,0* 4+ vw) with |v] <
min(e,, €, Vg, dg) is an equilibrium point, which implies that
Po*+vw = pa according to Assumption 4.

If we consider the projected system (a, 8) = (TS y, T£6),

then the projected dynamic system’s Jacobian at
(T} w*, TX0*) is given as follows:
J_ —pTHOTp —TIRTs
TER"Tp 0
_[-pAp) -ToRTG), (41)
TIRTTp 0

Therefore, we only need to prove that Tg RT; is of full column
rank. Suppose that u € N(QT) = N(Q) for a unit vector u.
According to Assumption 2, h(y) is locally constant at y*
along the direction u. Therefore, for a sufficiently small scalar
¢ with |{] < &,

h(y™ +¢u) =h(y™) =0
where the second equality comes from Assumption 5. This
implies that V. D(x; y* +&u) =0 on x € supp(u y»+cu60) =
supp(u*) for a small value of |£| < ¢,. By taking directional
derivative with respect to y along the direction u#, we obtain

(42)

u' VI D(x; y*) = 0,x € supp(u-1zu0-) = supp(u*) (43)
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and thus

u' VI D(x; y*) =u’" Ve, D(x; y*) =0

WX

(44)

for all x € supp(pp:) = supp(pys) by Assumption Sb.
By calculating u” R directly, we obtain

0
u'R = uT—/ V.,,D(x; y/*)dpg
00 X 0=0*

9
— uT_/ VY, D(G(z: 0); y*) praen(2)dz
20 J+

0=0*

:/ u' Vi, D(G(2:0%); w*) VoG (z: 07) pratemt(2)dz
X
. 45)

Thus, we obtain u € N(R”), which implies that N(QT) C
N(RT) and C(R) C C(Q). Now, we can check that RT;
is of full column rank since TZR” RT¢ = AY" is positive
definite. Therefore

RTgw =0= w =0. (46)

We note that the projection matrix on C(Q) is given
by Tp(TETp)~'TE = TpTE. In addition, we know that
C(RTs) C C(R) C C(Q). Therefore

Ty RTgw = 0
= TpTh RTow =0
= Projection of w'’
= RTgw € C(RTg) onto C(Q) is zero
= w =RTgw =0

= w=0 (47)

which completes the proof that 7 R is a full column rank
matrix.

Now, we only need to obtain proofs for the trivial cases
where either one of Tp or T is empty. First, suppose that
T is empty. Similar to the analysis given above, we can find
that the point (y*,0) with |0 — 0*| < min(e,, €4, J,, V) is
an equilibrium point, where g(0*) = g(@) for a sufficiently
small |0 — 6*| < v. We conclude that py = p, for |0 —
0*| < min(e,, €4, dg, v). Under the generator initialization that
is sufficiently close according to 8%, we can only observe the
discriminator update

v ==59,E,, IV D6 p)I?] (48)

since E,,[D(x; w)] — E,,[D(x; w)] = 0 for any y and |6 —
0*| < min(e,, €4, 0y, v). The discriminator update described
above is a stable system near the equilibrium w = y™* since
the Jacobian of the update on y is given as —pQ and the
zero eigenvalues can be ignored in a similar manner to the
previous step. Therefore, the given system is stable near
the equilibrium.

Suppose that Tp is empty. Given that N(Q7) c N(R"),
R = 0, and then, the results are similar to those presented
above, but our goal is to show that (y, ) is an equilibrium
point, where (y, 0) is sufficiently close to the original equilib-
rium point. We note that (y*, #) is also an equilibrium point
that satisfies the assumptions.
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By Assumption 2, h(y) = h(y*) = 0 for |y — y*| < ¢,
which implies that V,D(x; y) = 0 for x € supp(u,,0-) =
supp(u*) and |y — w*| < £. Thus, we obtain

Eyy e [V, D5 p)ViD(x; p)] = 0 (49)
L / IV, D|2d,, g.dx = 0. (50)
2 supp(u*)

By Assumption 4, E,, [V, D(x; y)] — E,.[V, D(x; w)] =0
since pg = py-. In addition

d
— [ D(x; w)dpe

9’ =
06 X 0=0*
_ / VI G(2:0°) V. D(G (21 0%): ) praent(2)dz
Z
= 0. (5D

Therefore, the point (y, %) with |y — w*| < min(&, dy) is an
equilibrium point. From Assumption 4, D(x; ) is an equilib-
rium discriminator, and thus, D(x; y) is already an optimal
discriminator for |y — w*| < min(&, d,) and py coincides with
the data distribution py for |6 — 0*| < min(e,, €4, J,), wWhich
indicates that every discriminator and generator near (y*, 0*)
is an equilibrium point, and this completes the proof of the
main theorem. O

APPENDIX B
MODEL ARCHITECTURE FOR CELEBA-HQ GENERATION

See Table IV.
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