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Abstract

Deep Neural Networks (DNNs) are highly sensitive to imperceptible malicious1

perturbations, known as adversarial attacks. Following the discovery of this vulner-2

ability in real-world imaging and vision applications, the associated safety concerns3

have attracted vast research attention, and many defense techniques have been de-4

veloped. Most of these defense methods rely on adversarial training (AT) – training5

the classification network on images perturbed according to a specific threat model,6

which defines the magnitude of the allowed modification. Although AT leads to7

promising results, training on a specific threat model fails to generalize to other8

types of perturbations. A different approach utilizes a preprocessing step to remove9

the adversarial perturbation from the attacked image. In this work, we follow the10

latter path and aim to develop a technique that leads to robust classifiers across11

various realizations of threat models. To this end, we harness the recent advances12

in stochastic generative modeling, and means to leverage these for sampling from13

conditional distributions. Our defense relies on an addition of Gaussian i.i.d noise14

to the attacked image, followed by a pretrained diffusion process – an architecture15

that performs a stochastic iterative process over a denoising network, yielding16

a high perceptual quality denoised outcome. The obtained robustness with this17

stochastic preprocessing step is validated through extensive experiments on the18

CIFAR-10 and CIFAR-10-C datasets, showing that our method outperforms the19

leading defense methods under various threat models.20

A Introduction21

Deep neural network (DNN) image-classifiers are highly sensitive to malicious perturbations in which22

the input image is slightly modified so as to change the classification prediction to a wrong class.23

Amazingly, such attacks can be effective even with imperceptible changes to the input images. These24

perturbations are known as adversarial attacks [10, 23, 37]. With the introduction of these DNN25

classifiers to real-world applications, such as autonomous driving, this vulnerability has attracted vast26

research attention, leading to the development of many attacks and robustification techniques.27

Amongst the many types of adversarial attacks, the most common ones are norm-bounded to some28

radius ϵ, where the norm Lp and the radius ϵ define a threat model. The attack is posed as an29

optimization task in which one seeks the most effective deviation to the input image, δ, in terms of30

modifying the classification output, while constraining this deviation to satisfy ∥δ∥p ≤ ϵ. One way31

to robustify a network against such attacks is by training it to correctly-classify attacked examples32

from a specific threat model [25, 45, 11]. These methods, known as Adversarial Training (AT),33

lead to state-of-the-art performance when trained and tested on the same threat model. However,34

a well-known limitation of such methods is their poor generalization to unseen attacks, which is35

discussed in length in [13, 2] as one of the unsolved problems of adversarial defense.36
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Figure 1: Our method flow. In the “Adversarial Attack” block, an attacker calculates the attack
“Additive perturbation” and adds it to the “Original image” in order to create the “Attacked image”.
As a preparation for the diffusion process, in the “Add Noise” block, we add an i.i.d Gaussian noise
to the attacked image according to Equation 1. We proceed by feeding it into the “Diffusion” block,
consisting of diffusion steps that include a denoising and an addition of a Gaussian noise. This
effectively samples a new image from the diffusion model initialized by y, the noisy attacked image.
Lastly, we feed the preprocessed obtained image to a classifier.

A different type of robustification techniques proposes a preprocessing step before feeding the image37

into the classifier [36, 30, 42, 12, 7, 15, 43]. Since an adversarial example can be seen as a summation38

of an image and an adversarial perturbation δ, using such a procedure to remove or even attenuate39

this second term is reasonable. The authors of [36, 30, 12, 7, 15, 43] use a generative model in the40

preprocessing phase in various ways. They either use the pretrained classifier directly or re-train a41

classifier on the generative model’s outputs. In general, these kind of methods are very appealing42

since they are capable of robustifying any publicly-available non-robust classifier and do not require43

a computational expensive specialized adversarial training. Furthermore, such methods are oblivious44

of the threat model being used.45

In this work we introduce a novel and highly effective preprocessing robustification method for image46

classifiers. We choose a preprocessing-based approach based on a generative model since we aim to47

remove or weaken the adversarial perturbation while effectively projecting it onto the learned image48

manifold, where the classifier’s accuracy is likely to be high. While a generative model is typically49

used to sample from p(x), the probability of images in general, our approach initializes this process50

with y at the appropriate diffusion step, where y is the noisy attacked image. This process effectively51

denoises the attacked image while targeting perfect perceptual quality [21, 28]. More specifically, we52

use a diffusion model - an iterative process that uses a pretrained MMSE (Minimum Mean Squared53

Error) denoiser and Langevin dynamics. The later involves an injection of Gaussian noise, which54

helps to robustify our samplers against attacks, even if they are aware of our defense strategy. Our55

method relies on a preprocessing model and a classification one, where both are trained independently56

on clean images. Hence, our architecture is inherently threat model agnostic, achieving robustness for57

unseen attacks. In our experiments we propose a way to evaluate the threat model-agnostic robustness58

by presenting two measurements. The first is the average on a wide range of attacks, and the second59

is the average across the unseen attacks. We consider the following threat models: (L∞, ϵ = 8/255),60

(L∞, ϵ = 16/255), (L2, ϵ = 1), (L2, ϵ = 2). In summary, our main contributions are:61

• A novel stochastic diffusion-based preprocessing robustification is proposed, aiming to be a model-62

agnostic adversarial defense.63

• The effectivnes of the proposed defense strategy is demonstrated in extensive experiments, showing64

state-of-the-art results.65

B Our method66

In this section we present our adversarial defense method, depicted in Figure 1. We start by adding67

noise to the attacked image, and then proceed by preprocessing the obtained image using a generative68

diffusion model, effectively projecting it onto the learned image manifold. The outcome of this69

diffusion is fed into a vanilla classifier, which is trained on the same image distribution that the70

diffusion model attempts to sample from. Thus, our framework is comprised of two main components71

– a denoiser that drives the diffusion model and a classifier.72
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Intuitively, we would like to sample images that are semantically close to an input image x by starting73

the diffusion process from some intermediate time step (T ∗ < T ) rather than the beginning (T ∗ = T ).74

Recall that xT stands for a pure Gaussian noise, whereas xT∗ would be the noisy image we embark75

from. To this end, we modify the image to fit the diffusion model at this time step by applying76

Equation 1 – simply multiplying x by a scalar and adding an appropriate Gaussian noise, resulting77

in xT∗ . We feed this processed image into the diffusion model at time step T ∗ and complete the78

diffusion process, running with t = T ∗, T ∗ − 1, . . . , 0, and outputting x0. Such a partial diffusion79

is similar to the image editing process presented in [26], and close in spirit to the posterior sampler80

that is discussed in [17]. We provide a comprehensive description of our method in Algorithm "Our81

preprocessing defense method" in the supplementary material.82

xt =
√
αtx0 +

√
1− αtϵ; ϵ ∼ N (0, I). (1)

An important hyperparameter for the success of our method is the initial diffusion depth T ∗, since83

different values of it yield significant changes in x0. To better understand the importance of a careful84

choice of T ∗, we intuitively analyze its effect. On the one hand, when starting from T ∗ = T ,85

we sample a random image from the generative diffusion model, which obviously eliminates the86

adversarial perturbation. However, as the resulting image is independent of x, this will necessarily87

change class-related semantics of the image, which in turn would lead to misclassification. On88

the other hand, choosing T ∗ = 0 results in the same input image x, which does not remove the89

perturbation from the image, hence probably leading to misclassification as well. In other words, we90

need to choose T ∗ that balances the trade-off between cleaning the adversarial noise, and keeping91

the semantic properties of the input image x. Choosing such T ∗ that successfully balances these92

properties is crucial to the success of our adversarial defense algorithm.93

We utilize the above described sampling algorithm with one goal in mind – sampling an image that is94

not contaminated with an adversarial attack while keeping it semantically similar to the original input95

image x. We believe that our algorithm is suited for this task because the Gaussian noise injections are96

much larger than the adversarial perturbation. Hence, the noise overshadows the adversarial attack,97

reducing its effect. This leads to a sampling process that answers both of our demands, removal of98

the contamination while remaining semantically close to x.99

As mentioned previously, our method is comprised of a diffusion model denoiser and a classifier,100

both trained on clean images. This framework is very useful from a practical point of view, since we101

can utilize publicly available pretrained models to a completely different task than they were trained102

on – adversarial defense. The fact that these models were trained without adversarial attacks in mind103

gives our method a significant advantage – it is inherently threat model-agnostic. This essentially104

avoids the challenged generalization to unseen attacks problem [13, 2], according to which classifiers105

trained on a specific adversarial threat model are vulnerable to attacks under a different threat regime.106

C Experiments107

We proceed by empirically demonstrating the improved performance attained by our proposed108

adversarial defense method. We compare our method to various state-of-the-art (SoTA) methods on109

white box attacks. Additional experiments are reported in the supplementary material.110

Throughout our experiments, we use the pretrained diffusion model from [34] and a vanilla111

classifier, both trained on clean images from CIFAR-10 [22] train set (50,000 examples). More112

specifically, we set the diffusion model maximal depth to T ∗ = 140 and the sub-sequence of113

the time steps to τ = {T ∗, T ∗ − 10, . . . , 10, 0}. In addition, we use a WideResNet-28-10 [44]114

architecture as our classifier and evaluate the performance on the CIFAR-10 test set (10,000 examples).115

116

In order to evaluate our defense in the best way, we must use white-box attacks. This allows us117

to estimate the worst examples for our defense. But, conducting white box experiments requires118

differentiating through all of the diffusion time steps and also through the classifier. Since it requires119

infeasible computation power we use a standard PGD attack - identical to the algorithm presented in120

[25]1. Moreover, in order to have a fair comparison, we use the exact same attack to evaluate all of121

the different defenses.122

1https://github.com/MadryLab/robustness
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Table 1: CIFAR-10 robust accuracies under white + EOT attacks. For every compared method, we
state the threat model that was used in training in the first column Trained Threat Model (TTM)
column. The next four columns are the four different threat models used for evaluation. The next
two columns are the two averages that we use for evaluation, Average without Training (AwT), and
Average of All (AoA). In the last column we state the classifier architecture that is used.

Method TTM
Attack

AwT AoA ArchitectureL∞ L2

8/255 16/255 1 2

AT [25] L∞, ϵ = 8/255 54.23 19.20 32.34 04.99 18.84 27.69 rn-50
L2, ϵ = 0.5 34.25 02.99 41.55 05.72 21.13 21.13 rn-50

Trades [45] L∞, ϵ = 8/255 55.79 23.18 32.51 05.01 20.23 29.12 wrn-34-10

Gowal et al. [11] L∞, ϵ = 8/255 66.35 34.81 41.87 09.62 28.77 38.16 wrn-28-10
L2, ϵ = 0.5 47.08 13.12 52.71 14.85 31.94 31.94 wrn-70-16

PAT - [24] 44.07 22.33 46.65 23.33 34.01 34.01 rn-50

Ours 51.05 37.76 50.75 19.23 39.70 39.70 wrn-28-10

C.1 CIFAR-10 experimets123

Next, we compare our method to baseline state-of-the-art (SoTA) methods, under PGD attacks using124

four different threat models – (L2, ϵ = 1), (L2, ϵ = 2), (L∞, ϵ = 8/255), (L∞, ϵ = 16/255)- more125

details are given in supplementary material. To assess the generalization ability to unseen attacks,126

we average the results in two ways: (i) Average of All: accuracy average of all the attacks; and (ii)127

Average of Unseen Attack: accuracy average of the attacks not seen at training time (if applicable).128

While the first is a simple average that also considers the performance on the attack used in training129

time, the second showcases the generalization capabilities to unseen attacks. Note that because our130

method is not trained on any threat model, (i) and (ii) are the same. As can be seen in Table 1,131

adversarial training methods excel on the specific threat model that they trained on. However, they132

generalize poorly, as discussed in [2, 13], while our method achieves SoTA performance in both of133

the examined metrics.134

D Conclusion135

This work presents a novel preprocessing defense mechanism against adversarial attacks, based on a136

generative diffusion model. Since this generative model relies on pretraining on clean images, it has137

the capability to generalize to unseen attacks. We evaluate our method across different attacks and138

demonstrate its superior performance. Our method can be used to defend against any attack, and does139

not require retraining the vanilla classifier.140
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Figure 2: Our method incorporates a diffusion model and a classifier. In every diffusion step, we add
Gaussian noise multiplied by the corresponding σt, which is a user-controlled hyperparameter. The
variables xT∗ , ..., x1 constitute the MCMC, and the last step’s output of the diffusion model x0, is
the final output, to be sent to the classifier.

E Background240

E.1 Adversarial robustness241

Since the discovery of the phenomenon of adversarial examples in neural networks [10, 23, 37],242

classifiers’ robustness has been extensively studied. Numerous works have been focusing on new243

methods for constructing adversarial examples and/or defending from them. In the following we bring244

the very fundamental results referring to adversarial defense and attack methods, as a background to245

our work.246

Let us start with how adversarial attacks are created. Given an image x and a classifier f(·), an247

adversarial attack is a small norm-bounded perturbation δ, added to the input image x, that leads to248

its misclassification. There exist several mainstream settings for crafting adversarial examples that249

differ from each other in their assumptions regarding the defense method’s characteristics and the250

access to the model and its gradients. We describe below such key attack configurations.251

White-Box Attacks are applied when the attacker has full access to the full system architecture252

(including both the classifier and the defense mechanism), which is assumed to be differentiable.253

This is a rich and a widely used group of attacks that contains some of the most common ones, such254

as Fast Gradient Signed Method (FGSM) [10], Projected Gradient Decent (PGD)[25] and CW [4].255

While there exist numerous white-box attack strategies, PGD is the cornerstone of their most modern256

embodiments. It is an iterative gradient-based algorithm that increases the classifier’s loss in each257

step by perturbing the input data. We describe PGD in Algorithm 1 below.258

Algorithm 1 L∞-based Projected Gradient Descent
Input classifier f(·), input x, target label y, norm radius ϵ, step size α, number of steps N

1: procedure PGD
2: δ ← 0
3: for i in 1 : N do
4: δ ← Πϵ(δ + α · sign(∇xLoss(f(x+ δ), y)))
5: end for
6: end procedure

The operator Πϵ is a projection onto the Lp norm of radius ϵ. In the L∞ case, Πϵ is just the clamp259

operation into [−ϵ, ϵ].260

Since white-box attacks have assumptions that do not always hold, they can not be used in every setup.261

For example, such a setup can be a defense method that relies on a non-differentiable preprocessing.262

Since white-box attacks are gradient-based, they are likely to fail in this case. Another example is263

stochastic preprocessing, which poses a challenging configuration for white-box attacks. This stems264

from the fact that the ideal crafted attack might not be optimal during inference due to randomness.265

In order to better adjust gradient-based adversarial attacks to such scenarios, alternative approaches266

were developed, as we describe hereafter.267

Grey-Box Attack is used when the attacker has access to the classifier but not to the preprocessing268

model defending it, g(·). This approach is limited due to the fact that the attack in such a case269
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is constructed upon f(·) while being evaluated with f(g(·)). As a consequence, the malicious270

perturbation created is necessarily sub-optimal and thus less effective.271

Backward Pass Differentiable Approximation (BPDA) Attack [1] is an attack method for cases in272

which the preprocessing function g(·) is non-differentiable or impractical to differentiate, implying273

that f(g(·)) is not differentiable as well. In many cases we can invoke the assumption that g(x) ≈ x,274

reflecting the fact that preprocessing methods do not perform significant modifications to the input275

images, but rather try to remove the already small malicious perturbations. In order to attack such276

architecture we use the forward pass of the preprocessing g(·) and approximate its derivative with277

I , producing ∇xf(g(x)) ≈ ∇g(x)f(g(x)). With this in place, the attacker can perform white-box278

attacks without completely disregarding the preprocessing steps.279

Expectation-Over-Transformation (EOT) Attack [1] is used when the preprocessing step g(·) is280

stochastic. Attacking such a method is harder for gradient-based methods, since the crafted deviation281

vector δ might not remain optimal during inference due to the randomness. EOT calculates the282

attack’s gradients by ∇x E[f(g(x))] = E[∇xf(g(x))], differentiating through both the classifier and283

preprocessing with an expectation. In practice, EOT empirically approximates the expectation with a284

fixed number of drawn samples from g(x).285

We move now to discuss adversarial defense approaches. In the past few years, numerous such286

methods were proposed to improve the robustness of classifiers to adversarial attacks. While there287

are many types of robustification algorithms, we focus below on two such families.288

Adversarial Training (AT) Defense proposes to utilize adversarial examples during the training process289

of the classifier. More specifically, the idea is to train the model to classify such examples correctly.290

Several recent works [25, 45, 11] follow this line of reasoning, leading to the current state-of-the-art291

in robustifying classifiers.292

Preprocessing is a substantially different type of robustification method that relies on a preceding293

operation on the classifier’s input as its name suggests. Since adversarial examples contain small294

imperceptible perturbations, using preprocessing steps to “clean” them seems to be an is intuitive295

step. Many works rely on various generative models for such preprocessing [36, 30, 7, 15, 43]. More296

specifically, these models are used to project the attacked image into a valid clean one in its vicinity,297

with the hope that the processed image is more likely to be classified correctly.298

E.2 Diffusion models299

Diffusion models [33, 16, 35] are Markov Chain Monte Carlo (MCMC)-based generative techniques,300

which consist of a chain of images x0, x1, ..., xT of the same size as the given image x. These301

methods are based on two closely related processes. The first is the forward process of gradually302

adding Gaussian noise to the data according to a decaying variance schedule parametrized by303

1 > α0 > α1 > . . . > αT > 0. The following defines this chain of steps, for t = 1, 2, . . . , T where304

x0 is the given clean image x:305

q(xt|xt−1) := N
(√

αt

αt−1
xt−1,

(
1− αt

αt−1

)
I

)
(2)

Posed differently, the forward process can be described as a simple weighting between the image x0306

and a Gaussian noise vector,307

q(xt|x0) = N (
√
αtx0, (1− αt)I), (3)

so we can express xt as308

xt =
√
αtx0 +

√
1− αtϵ; ϵ ∼ N (0, I). (4)

When αt is close to zero, xt is close to a pure standard Gaussian noise, independent of x0. Thus, we309

can set xT ∼ N (0, I) as initialization for the backward process, which is explained next.310

The second and the more intricate process is the backward direction, which gradually removes the311

noise from the image. Intuitively, this stage denoises the image by pealing layers of noise gradually. A312
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key ingredient in this process is a pretrained noise estimator neural network, ϵθ(xt, t). This denoiser313

serves as an approximation to the score function ∇ log p(x) [17], bringing the knowledge about the314

image statistics into this sampling procedure. The noise estimator is conditioned on the time t, trying315

to estimate the noise ϵ of the latent variable xt. Sampling, or generating an image, is performed by316

iteratively applying the following update rule for t = T, T − 1, . . . , 0:317

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt, t)√

αt

)
+

√
1− αt−1 − σ2

t ϵθ(xt, t) + σtϵt (5)

where the first term is a denoising stage – an estimation of x0, while the second term stands for an318

attenuated version of the estimated additive noise in xt. σtϵt is a stochastic addition, where σt is a319

hyperparameter controlling the stochasticity of the process, and ϵt ∼ N (0, I).320

The sampling process posed in Equation (5) tends to be very slow, requiring T (≈ 1000) passes321

through the denoising network. Methods for speeding up this process are discussed in [27, 34, 19].322

There are various use-cases for diffusion models beyond image synthesis. The ones relevant to our323

work are discussed in [26, 21, 20, 19] where inverse problems are being considered. Following [26],324

instead of sampling from the ideal image distribution p(x), the diffusion process we implement is325

initialized with xT∗ , where xT∗2 is the given noisy image. Thus, the outcome x0 can be considered326

as a stochastic high perceptual quality denoising of xT∗ .327

Algorithm 2 Our preprocessing defense method
Input image x, maximum depth T ∗, diffusion model denoiser ϵθ(·, ·),
variance schedule [αT , . . . , α0], stochasticity hyperparameters [σT , . . . , σ1],

1: procedure SAMPLING
2: ϵT∗ ∼ N (0, I)
3: xT∗ ← √αT∗x+

√
1− αT∗ϵT∗

4: for t in [T ∗, T ∗ − 1, ..., 1] do
5: x̃t−1 ← xt−

√
1−αtϵθ(xt,t)√

αt

6: ϵt ∼ N (0, I)

7: xt−1 ←
√
αt−1x̃t−1 +

√
1− αt−1 − σ2

t ϵθ(xt, t) + σtϵt
8: end for
9: return x0

10: end procedure

F Experiments328

F.1 Synthetic Dataset Experimets329

We create a synthetic 2D dataset (see Figure 3) and investigate the effect of a diffusion process on the330

decision boundaries of the classification. The dataset consists of two classes – red and blue points –331

consisting altogether of 10, 000 examples, drawn from two mixtures of Gaussians, each consisting of332

4 concentrated groups. We train a fully connected neural network model to classify this data, having333

10 layers of width 128. The training is done via 5, 000 epochs. As for the diffusion preprocess, we334

use an analytic score-function ∇ log p(x) of the known distribution, following the work of [35]. We335

set T ∗ = 10 and values of α in the range [0.1, 1].336

After training the classifier, we calculate its decision rule and present it in Figure 3a, where the337

background colors represent the predicted label. As can be seen, the classifier achieves perfect338

performance, as all the red points are located in the red zone, and all the blue ones are surounded by a339

blue background. Nevertheless, the classifier decision boundaries are very close to the data, which is340

a well-known phenomenon of vanilla classifiers [32]. This illustrates why small perturbations to the341

data, such as adversarial attacks, can change the classification decision from the correct to the wrong342

ones.343

2More on the relation between T and T ∗ is given below.
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(a) Original classifier (b) Our method

Figure 3: Decision boundary comparison between a vanilla classifier with and without our method on
a 2D synthetic dataset.

Table 2: CIFAR-10 robust accuracies of preprocessing methods under the following attack: grey-box,
BPDA + EOT, white-box PGD. All using the same threat model L∞, ϵ = 8/255.

Defense Attack Base Classifier Preprocessed
Clean Adversarial Clean Adversarial

ADP [43] grey-box 95.60 00.00 86.39 80.49
Ours grey-box 95.60 00.00 86.28 82.33
ADP [43] BPDA+EOT 95.60 00.00 86.39 44.79
Ours BPDA+EOT 95.60 00.00 86.28 77.65
ADP [43] white-box 95.60 00.00 86.39 31.42
Ours white-box 95.60 00.00 86.28 63.40

When applying our preprocessing scheme, our method leads to a larger margin between the data344

points and the decision boundaries, as can be seen in Figure 3b. These results are encouraging345

because in the adversarial attack regime, every data point is allowed to perturbed with an ϵ norm ball346

around it. When the decision boundaries are far enough from the data points, an ϵ-bounded attack347

would necessarily fail.348

F.2 CIFAR-10 experimets349

First, we compare our method to ADP [43], a leading preprocessing method, using the following350

attacks: grey-box, BPDA+EOT, and white-box, where the EOT is approximated over 20 repetitions.351

As can be seen in Table 2, our method outperforms ADP by up to 32.86%. We should note that the352

results are lower than presented in [43], this was also observed in [6].353

When deploying the proposed diffusion defense, two critical parameters should be discussed - the354

choice of T ∗ (referred to as depth) and the time-step skips to use. In this Subsection we discuss the355

effect of both.356

We start by showing the influence of the depth of the diffusion model on the robust accuracy. As we357

change the maximal depth of the diffusion model T ∗, we depict the robust accuracy obtained by our358

method, and present it in Figure 4. As discussed in Section Our Method, the diffusion depth controls359

the trade-off between clearing the attack perturbation and sampling an image that is semantically360

similar to the input image x. We track the diffusion model behavior as we increase the diffusion361

model’s first step. When setting T ∗ to a shallow diffusion step, we effectively sample images that362

are closer to the input image x, and since the image is contaminated by a malicious attack, the363

classification accuracy is low. As we increase the depth we reach a sweet-spot in which we clean the364

malicious perturbation while keeping a small perceptual distance to x, which leads to the highest365

accuracy. When the depth is too big, we clear the attack but lose perceptual similarity to x, and the366

accuracy is reaching 10%, meaning that we sample random images.367
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Figure 4: The obtained robust accuracy under white box attacks as a function of the max depth
T ∗ of the diffusion model. There are two graphs, both are attaked using the same threat model
L∞, ϵ = 8/255, the first is the robust accuracy under white-box attack, and the other refers to a
white-box + EOT.

Table 3: CIFAR-10 robust accuracies under white + EOT attacks. We persent two samplings of the
diffusion model time steps. The first uses τ = {T ∗, T ∗ − 10, . . . , 10, 0} while the second applies
a full sampling τ = {T ∗, T ∗ − 1, . . . , 1, 0}. We compare the two sampling performance. In the
“Attack” columns we present the accuracy under different threat models. The last two columns are
two averages used for evaluation: Average without Training (AwT), and Average of All (AoA). It
was evaluated on the first 1000 test images of CIFAR10

Method
Attack

AwT AoAL∞ L2

8/255 16/255 1 2

Ours 61.54 43.66 63.64 43.56 53.10 53.10

Ours - full sampling 64.14 44.06 63.74 47.15 54.77 54.77

We now move to explore the influence of the skips to the time-steps in the diffusion process. Attacking368

our preprocessing method necessarily consumes a lot of time and memory, making it hard to break, as369

indeed claimed in [15]. This is due to the fact that an attack process requires keeping a computational370

graph of all the time steps of the diffusion process for computing derivatives. In contrast, our defense371

mechanism is lighter, as no derivatives are required, and only T ∗ forward passes through the denoiser372

are performed.373

When evaluating our defense method under the strongest known attack, white-box + EOT, we must374

lighten further our protection by reducing the number of diffusion steps. This is done by using375

only 1/10 of the DDIM diffusion steps [34], requiring all-together 14 steps. For uniformity of our376

experiments, we use this sub-sequence of steps for all attacks.377

We should note that if the proposed preprocess diffusion is applied in full (no subsampling), this378

would increase both the attack and defense runtime and memory consumptions by a factor of 10.379

Such an approach would not worsen the robust accuracy, and perhaps even improve it, as can be seen380

in Table 3. Both these effects have one clear conclusion – when using our defense in practice, we can381

increase the diffusion model sampling, harming the attacker, while preserving the robust accuracy.382

Attack structure383

Working with adversarial perturbation of images has the advantages of enabling the analysis of384

the attack δ, better understanding it, and getting an intuition about it. When an attack changes the385

classification prediction of an image, one might expect the perceptual structure of the image to change386
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accordingly, just as is accomplished in order to change a human’s prediction. However, this is not387

always the case when fooling a deep-neural-network classifier.388

A geometrical explanation for this phenomenon is given in [32], showing that trained vanilla classifiers389

tend to produce decision boundaries that are nearly parallel to the data manifold. As such, fooling the390

network amounts to a very small step orthogonal to this manifold, thus having no “visual meaning”.391

In contrast, robust classifiers behave differently, exhibiting Perceptual Aligned Gradients (PAG)392

[39, 31, 8, 9].393

White-box attacks of the form we consider in this work are based on computing the gradients of the394

attacked classifier. Therefore, when a classifier exhibits a PAG property in its gradients, this would395

imply a highly desired robustness behavior. Armed with this insight, we consider the following396

question: Given a system comprising of both the vanilla classifier and our diffusion-based defense397

mechanism, does this overall system have PAG?398

We answer the above question and present some empirical evidence of this phenomenon in Figure399

5. In the first row we show several original images from CIFAR-10. In the second row we present400

a white-box attack on a vanilla classifier, an attack lacking perceptual meaning. In the third row401

we present white-box + EOT attack under our method, exhibiting PAG - the obtained gradients402

concentrate on the object, aiming to modify its appearance. When attacking the defended classifier,403

the attacker use white-box + EOT, an attack that was crafted for stochastic defenses. Every attack’s404

step is the expectation over multiple realizations of the defense.405

Original

Clean classifier
white box 

Our method
white box + EOT

Figure 5: The attack δ structure of white-box+EOT attack, L2 norm, radius ϵ = 1. First row: Five
CIFAR-10 images. Second row: The attack δ under a white-box attack, where the attacked classifier
is a vanilla one. Third row: The attack on our method, where we preprocess the image before inputing
into a vanilla classifier.

Robustness to CIFAR-10-C perturbations406

In most of our discussion we focused on a robustness to norm- bounded attacks. We turn now407

to introduce a robust classification under attacks that are based on augmentation. These refer to408

modifications of the image in various ways such as motion blur, zoom blur, snow, JPEG compression,409

contrast variation, etc. CIFAR-10-C [14] is such a corrupted images dataset that was created by410

performing numerous augmentations on CIFAR-10 [22] dataset. CIFAR-10-C is commonly used for411

evaluating the robustness performance under broad attacks.412

As our method is inherently attack agnostic, it is natural to evaluate it on this class of attacks.413

We compare our method versus other leading techniques, achieving state-of-the-art results. This414

experiment requires adjustment of the diffusion model maximal depth parameter T ∗. When we set415

T ∗ ∈ [30, 90], we outperform the other methods, as depicted in Figure 6.416

Computational resources417

Our proposed defense method relies on an application of a diffusion model as a preprocessing stage for418

purifying adversarial perturbations. To perform a gradient-based attack, one needs to backpropagate419
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Figure 6: Robustness accuracy under CIFAR-10-C as a function of the diffusion model maximal
depth T ∗. We compare our method with the results reported in [11, 45, 25, 24].

the gradients through the classifier and the diffusion model. This process is very expensive, both in420

terms of memory and computations, since the attacker needs to keep the entire computational graph421

in memory and backpropagate from the classifier through all of the diffusion time steps.422

When evaluating our defense method under our most challenging attack, white-box + EOT, we must423

further lighten our approach by reducing the number of diffusion steps. We do so by using only 1/10424

of the diffusion steps, i.e., 14 times instead of 140. This reduction decreases the computational needs425

and enables us to perform such an attack, using 8 NVIDIA A4000 GPUs. As shown in Table 3 the426

robust accuracy of our method is slightly reduced, while significantly improving the computational427

cost and achieving state-of-the-art performance.428

G Related work429

The goal of preprocessing methods is to clean the adversarial attacks from the input images, leading to430

correct prediction by deep neural network classifier. Preliminary work on preprocessing defense meth-431

ods include rescaling [40], thermometer encoding [3], feature squeezing [41], GAN for reconstruction432

[30], ensemble of transformations [29], addition of Gaussian noise [5] and mask and reconstruction433

[42]. It was shown by [1, 38] that such preprocessing, even if it includes stochasticity and non-434

diferentiability, can be broken when evaluated properly by adjusting the projected-gradient-descent435

attack, using backward-pass-differentiable-approximation and expectation-over-transformation algo-436

rithms. A new preprocessing group of work has recently emerged, trying to utilize Energy-Based-437

Model (EBM) to the task of cleaning adversarial pertubation from images. The intuition is that438

generative models are capable of sampling images from the image manifold, hopefully projecting439

attacked images that were deviated from the image manifold, back onto it. To this end, some EBM440

preprocessing methods were developed: purification by pixelCNN [36], restore corrupt image with441

EBM [7] and density aware classifier [12]. Most recent methods includes: long-run Langevin sam-442

pling [15] and gradient ascent score based-model [43]. In contrast to many of these methods that443

require retraining the classifier, our method does not have this requirement, the diffusion model and444

classifier are both pretrained on clean images.445

Defense to unseen attacks methods: Recently, an attention for defense to unseen attacks has emerged.446

Previouse methods that include Adversarial Training (AT) do not generalize well to unseen attacks,447

as shown in [13, 2]. For this end, a new robustness evaluation metric to unseen attacks was suggested448

[18]. Moreover, the authors of [24] suggested perceptual-adversarial-training, which takes into449

account the perceptual similarity, leading to a new method that generalizes to unseen attacks.450
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