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ABSTRACT

Dynamic rendering methods often prioritize photometric fidelity while lacking ex-
plicit semantic representations, which constrains their ability to perform semanti-
cally guided rendering. To this end, we introduce Language-Guided 4D Gaussian
Splatting (L4DGS), a lightweight framework for real-time dynamic scene ren-
dering that integrates natural language into semantically structured 4D Gaussian
representations. Central to L4DGS is a Sparse Multi-Scale Attention (SMSA)
mechanism that enables fine-grained, language-driven control by emphasizing se-
mantically relevant regions across space and time. To enforce semantic fidelity
and spatial coherence, we propose a static regularization that aligns language-
guided features with rendered outputs and ensures consistent depth. To further
ensure temporal consistency, A dynamic regularization penalizes abnormal varia-
tions in semantics and depth over consecutive unit time intervals. L4DGS achieves
a 16.1% improvement in PSNR, reduces perceptual error by 58.8%, and increases
rendering speed by over 50%. Experimental results demonstrate the superiority of
our approach in both visual quality and computational efficiency.

1 INTRODUCTION

Recent advances in neural rendering have enabled high-fidelity scene synthesis with remarkable
visual realism Mildenhall et al. (2020); Pumarola et al. (2021); Park et al. (2021b); Li et al. (2022b);
Gao et al. (2021). However, most existing approaches are designed for static settings and lack
explicit semantic representations. This absence of semantic structure constrains their applicability
in interactive, semantically guided, and dynamic environments Knapitsch et al. (2017); Hedman
et al. (2018); Barron et al. (2022). Bridging the gap between human intent and real-time visual
content creation is increasingly critical in computer graphics, impacting applications from semantic
scene editing to immersive VR/AR, interactive media, and human-robot interaction. Addressing
this challenge requires joint reasoning over space, time, and semantics, posing intensive demands
on representation learning, cross-modal alignment, and temporally coherent rendering.

Recent advances in 3D Gaussian Splatting (3DGS) Kerbl et al. (2023) have demonstrated the ef-
fectiveness of point-based volumetric representations for real-time, photorealistic scene rendering.
These approaches offer efficient rendering pipelines and high visual fidelity, making them well-
suited for interactive graphics applications. In parallel, efforts to incorporate semantic understand-
ing into 3D scene representations, through language, vision models, or segmentation-guided super-
vision, have enabled controllable generation and semantic editing. However, existing methods for
dynamic scene rendering remain largely semantically agnostic, limiting their ability to align visual
outputs with user intent or language-based descriptions. Moreover, current techniques fall short in
addressing the challenge of maintaining semantic consistency over time, which is critical for ren-
dering dynamic environments that evolve coherently. These limitations underscore the need for a
unified framework that integrates language guidance into temporally consistent 4D representations,
enabling semantically grounded, real-time rendering in dynamic and interactive scenarios.

Addressing language-guided rendering in dynamic scenes presents a set of fundamental research
challenges. First, it requires learning a joint representation that aligns visual and linguistic modal-
ities across both spatial and temporal dimensions, despite their inherently different structures and
granularities. Achieving effective cross-modal alignment is challenging due to the semantic am-
biguity of natural language and the limited spatial precision of pretrained vision-language models.
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Second, incorporating language guidance into the rendering pipeline demands attention mechanisms
that are both expressive and computationally efficient. These mechanisms should modulate scene
content selectively and responsively, enabling real-time control without incurring excessive over-
head. Third, the absence of explicit supervision for dynamic semantics complicates training and
generalization, making it difficult to learn robust semantic representations over time. Furthermore,
ensuring temporal coherence in dynamic scenes requires consistent modeling of object semantics
across time. Separate-time-step supervision often leads to semantic drift, identity instability, or
temporal artifacts such as flickering, especially under motion blur or sparse observations.

To address these challenges, we propose Language-Guided 4D Gaussian Splatting (L4DGS), a
lightweight framework that integrates natural language understanding into real-time dynamic scene
synthesis via semantically aware 4D Gaussian representations. Our design is motivated by a key
observation: existing rendering pipelines lack the capacity to incorporate language guidance in a
manner that is both spatially and temporally consistent. These methods largely render static scenes
and are unable to capture the continuous evolution of semantics over time. L4DGS is built upon
a sparse, multi-scale cross-modal attention mechanism that dynamically fuses language and visual
features, guiding both the spatial placement and temporal progression of 4D Gaussian primitives.
This core mechanism is complemented by a hierarchical regularization strategy, wherein both static
and dynamic constraints are modulated by language-conditioned attention maps. These compo-
nents enforce semantic consistency, geometric fidelity, and temporal coherence, enabling L4DGS to
generate renderings that are not only photorealistic but also semantically aligned with user intent.
This unified framework integrates high-level language-guided control with low-level dynamic scene
rendering, ensuring real-time performance with scalability and computational efficiency.

To enable semantically guided rendering, we integrate natural language understanding with seman-
tically aware 4D Gaussian representations. Leveraging a hierarchical semantic representation, our
language-guided attention mechanism constrains the Gaussian primitives using object-aware fea-
tures, ensuring that the rendered scene accurately reflects the semantics specified by the language
input. In contrast to existing methods that depend on segmentation masks or external generators,
our approach directly extracts fine-grained visual semantics from the input image using a center-
differenced convolutional network. This network is enhanced with dilated convolutions to expand
the receptive field without additional computational overhead, allowing for efficient context aggre-
gation in high-resolution scenes. Building on these hierarchical semantics, we introduce a Sparse
Multi-Scale Attention (SMSA) mechanism that adaptively aligns language with semantically and
structurally salient visual regions. Rather than relying on dense attention across all tokens, SMSA
incorporates a top-k sparse attention strategy to focus the model’s capacity on the most relevant
spatial features, substantially improving both efficiency and interpretability.

To ensure spatial consistency, we further introduce a static regularization scheme that aligns
language-guided visual features with rendered scene features in both magnitude and direction. This
facilitates accurate correspondence between semantic features, such as object descriptions or ac-
tion references, and the visual output. Furthermore, we introduce a static depth regularization term,
modulated by language-conditioned attention, to preserve occlusion relationships, relative object
positions, and the overall 3D scene geometry. To address temporal coherence, we further incorpo-
rate a dynamic regularization strategy tailored for dynamic scene rendering. Unlike static settings,
dynamic scenes demand feature continuity over time to prevent artifacts such as flickering, motion
blur, and semantic drift. Our approach extends both semantic and depth consistency across unit time
intervals, rather than separate time steps, enabling robust alignment of features under fast motion,
occlusions, and sparsely observed regions. This design ensures temporally stable and semantically
meaningful rendering in complex, real-time dynamic environments. In summary, our contributions
are as follows:

• The introduction of a novel framework that integrates language-guided semantics into dy-
namic scene rendering, addressing the gap between visual features and high-level seman-
tics. To our knowledge, L4DGS is the first language-embedded real-time 4D rendering
algorithm.

• A sparse multi-scale attention mechanism, leveraging language-guided attention to dynam-
ically align language and visual features across multiple granularities, prioritizing seman-
tically salient regions of the scene.
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𝛿𝑡: the Unit Time Interval;           : Operation Flow;           : Gradient Flow
𝛿𝑑𝑒pth: Depth Variations of Gaussian Distributions within a Unit Time Interval; 
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Figure 1: Framework Overview. F4DGS leverages a Sparse Multi-Scale Attention (SMSA) mech-
anism that integrates hierarchical visual features with language embeddings to produce language-
guided features and attention weights. Complementary static and dynamic regularization with the
attention weights adaptively modulate supervision strength to prioritize semantically salient regions.

• A dynamic regularization that addresses temporal inconsistencies, effectively ensuring
smooth transitions of semantic features and depth information across consecutive unit time
intervals.

• A static regularization that integrates language-guided semantic and depth features into
4D Gaussians, ensuring efficient optimization while preserving semantic consistency and
representational accuracy.

2 RELATED WORK

In this section, we provide an overview of optimization-driven methods for novel view synthesis
(NVS), including approaches applicable to both dynamic and static scenes.

Static Novel View Synthesis. Traditional rendering methods, including rasterization, ray tracing,
path tracing, and photon mapping, simulate light-object interactions based on physical principles Li
et al. (2012); Collet et al. (2015); Kanade et al. (1997); Zitnick et al. (2004). These approaches rely
on geometric modelings Riegler & Koltun (2020); Zhou et al. (2018); Flynn et al. (2019); Milden-
hall et al. (2019); Srinivasan et al. (2019); Thies et al. (2019); Wood et al. (2023); Kutulakos &
Seitz (2000); Penner & Zhang (2017). In contrast, Neural Radiance Field (NeRF) learns a volu-
metric scene representation through neural networks, eliminating the need for explicit geometric
models Du et al. (2021); Gao et al. (2021); Park et al. (2021a;b); Tretschk et al. (2021); Pumarola
et al. (2021); Fang et al. (2022); Song et al. (2023). This enables NeRF to efficiently capture com-
plex geometry Li et al. (2022b; 2021); Guo et al. (2023); Tian et al. (2023); Shao et al. (2023).
However, NeRFs depend on volumetric rendering integration and repeated forward passes through
neural networks Li et al. (2022a); Attal et al. (2023); Fridovich-Keil et al. (2023); Cao & Johnson
(2023); Wang et al. (2023b); Gan et al. (2023), resulting in high training cost. 3D Gaussian Splatting
(3DGS) Kerbl et al. (2023) improves efficiency by leveraging existing GPU accelerations and 3D
Gaussian representations. However, these methods primarily depends on visual features for render-
ing and lacks direct control over semantic content Luiten et al. (2024); Li et al. (2023). L4DGS
addresses this limitation by introducing a language-guided attention mechanism.

Dynamic Novel View Synthesis. Traditional rendering methods convert 3D scenes into 2D images
by calculating the interaction between objects and light to achieve realistic visual effects Levoy
& Hanrahan (1996); Debevec et al. (1996); Gortler et al. (1996); Seitz & Dyer (1999); Buehler
et al. (2001); Waechter et al. (2014). NeRF, in contrast, learns a volumetric scene representation
through neural network training Mildenhall et al. (2020); Barron et al. (2021); Verbin et al. (2022);
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Kopanas et al. (2022); Bemana et al. (2022), eliminating the need for complex modeling. However,
NeRF’s training process is time-consuming Müller et al. (2022); Yan et al. (2023); Fridovich-Keil
et al. (2022); Chen et al. (2022), especially in dynamic scenes, requiring hours to days training.
3DGS Kerbl et al. (2023) improves rendering efficiency by using efficient GPU optimizations for
real-time performance. However, its extensions struggle with motion blur and scene drift due to its
inability to maintain temporal consistency Yang et al. (2023); Huang et al. (2024); Wu et al. (2023).
L4DGS addresses these limitations by introducing dynamic and static regularization mechanisms,
ensuring geometric consistency.

3 METHOD

We introduce Language-Guided 4D Gaussian Splatting (L4DGS), a lightweight framework that in-
tegrates natural language understanding for real-time dynamic scene synthesis using semantically-
aware 4D Gaussian representations. Central to our method is a language-guided attention module
that combines multi-scale CLIP-based visual features with language inputs to guide the spatial and
temporal evolution of 4D Gaussians, incorporating both semantic and depth information.

3.1 LANGUAGE-GUIDED 4D GAUSSIAN SPLATTING

As illustrated in Fig. 1, L4DGS centers on a language-guided attention mechanism that directs the
model’s focus toward semantically relevant regions of the scene. To enhance visual coherence in
dynamic scene rendering, we first introduce a hierarchical semantic representation that constrains
4D Gaussian distributions using object-aware features. Unlike existing approaches that rely on
segmentation-based masks (e.g., subpart, part, whole) Qin et al. (2024) or external generators such
as SAM Ravi et al. (2024), our method avoids explicit mask supervision. Instead, we adopt a center-
differenced convolutional network Yu et al. (2020) to extract multi-scale CLIP features directly
from the image, capturing fine-grained and illumination-robust semantics. To expand contextual
awareness without incurring additional computational cost, we employ dilated convolutions, which
increase the receptive field and support the processing of high-resolution inputs at varying feature
granularities. This enriched semantic hierarchy informs the placement and refinement of 4D Gaus-
sians, improving both the consistency and fidelity of the rendered output.

Building on this semantic foundation, L4DGS incorporates a Sparse Multi-Scale Attention (SMSA)
module to adaptively fuse language input (e.g., object references or actions) with visual context (e.g.,
scene layout and object locations). This enables precise localization of user-referenced entities and
allows for fine-grained semantic modulation during rendering. To ensure alignment between seman-
tics and spatial structure, we introduce two complementary static regularization strategies. Static
regularization enforces consistency between language-guided visual features and the rendered scene
content. To further enhance the realism of spatial relationships, we leverage depth features to capture
relative object positions and geometric context, especially in challenging cases involving occlusion
or motion blur. Furthermore, we apply dynamic regularization to enforce temporal coherence. This
term promotes smooth transitions of semantic and depth features across consecutive unit time inter-
vals, addressing issues such as semantic drift and temporal flickering. These two mechanisms ensure
that both spatial and temporal representations evolve coherently, enhancing the realism, stability, and
responsiveness of dynamic scene rendering.

3.2 OPTIMIZATION SCHEME

Sparse Multi-Scale Attention To address the challenge that dynamic rendering methods lack the
ability to semantically interpret or interact with the content being rendered, Sparse Multi-Scale At-
tention (SMSA) facilitates the interaction between language and vision, ensuring that the rendered
output reflects the user’s intent. To further enhance both efficiency and relevance, we introduce a
top-k sparse attention mechanism within SMSA that filters out irrelevant tokens and emphasizes
semantically salient content. The primary function of SMSA in L4DGS is to associate language
features with visual representations, directing L4DGS’s focus toward spatial regions that are seman-
tically important. By leveraging multi-scale attention mechanisms, SMSA dynamically adapts to
different levels of granularity in both the language and visual inputs. This allows L4DGS to pri-
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oritize regions that are contextually important, such as objects mentioned in a user’s command or
visually salient areas that require attention.

Furthermore, while CLIP encodes images into global semantic features, it lacks fine-grained details
and struggles to accurately represent the same object across continuous time intervals. Features ex-
tracted from CLIP provide only rough boundaries for different semantic regions, leading to ambigu-
ity and inaccuracies in 4D scene language embeddings. To learn comprehensive semantic features,
we begin by extracting the language and vision features into multiple scales, then employ SMSA to
compute attention at multiple levels, effectively learning the precise static scene representations. At
time t, SMSA selects a subset of salient tokens by computing language and vision modality sparse
attention. Given per-head sparse attention for modality m ∈ {v, t}, head h ∈ {1, . . . , H}, the at-

tention scores can be represented as A(h,t)
m =

Q(h,t)
m K(h,t)⊤

m√
dh

∈ RLq×Lk , where Qm and Km are the
query and key matrices for modality m, respectively. To introduce sparsity, we retain only the top-k
key positions for each query token based on the attention scores:

I(h,t)
i = TopKIndices

(
A(h,t)

m [i, :]
)
, (1)

Ã(h,t)
m [i, j] =

{
A

(h,t)
m [i, j], if j ∈ I(h,t)

i

−∞, otherwise
. (2)

The sparse attention matrix Ã
(h,t)
m is normalized via softmax as Ā(h,t)

m = softmax(Ã(h,t)
m ) and then

multiplied with V
(h,t)
m to yield H

(h,t)
m = Ā

(h,t)
m V

(h,t)
m . We then concatenate and project back to

obtain a visual modality feature SMSA
(t)
v =

[
H

(1,t)
v ∥ · · · ∥H(H,t)

v

]
WO, where SMSA

(t)
v ∈

RLf×df be the rendered features from L4DGS. By incorporating top-k sparsity, SMSA dynamically
attends to only the most relevant tokens across multiple spatial scales and modalities, enabling pre-
cise localization of language entities, such as the red chair. This approach not only improves the
interpretability of attention but also reduces computational overhead, allowing L4DGS to operate
efficiently in real-time scenarios.

Attention-Salient Static Regularization Central to L4DGS framework is the use of language-
modulated attention weights, derived from the vision branch of the SMSA mechanism. These
weights are designed to selectively emphasize spatial regions that are both semantically and struc-
turally important, enabling L4DGS to align features in a targeted and content-aware manner. Unlike
uniform regularization strategies, our method utilizes attention scores computed within SMSA to de-
termine which visual regions warrant stronger supervision. At time t, we compute attention weights
w

(t)
q ∈ [0, 1] by first aggregating attention scores across all SMSA heads in the vision modality:

Ā
(t)
v = 1

H

∑H
h=1 Ā

(h,t)
v . We then compute the semantic importance score of each visual token q

by measuring the average attention it receives across all queries: w(t)
q = 1

Lf

∑Lf

i=1 Ā
(t)
v [i, q]. These

weights reflect how strongly the visual region q is attended to under language guidance and are fur-

ther normalized across valid positions: w(t)
q =

w(t)
q∑Lf

j=1 M
(t)
j ·w(t)

j

. These language-modulated attention

weights naturally highlight semantically meaningful structures within the scene, which are then used
to modulate the static semantic regularization. To ensure that supervision is concentrated where it
matters most for perception or interaction, language-guided static semantic regularization is defined
as:

L∗
StaticSem =

Lf∑
q=1

M (t)
q · w(t)

q

[
∥SMSA(t)

v,q − F
(t)
rendered,q∥

2
2 + λ

(
1− cos

(
SMSA(t)

v,q, F
(t)
rendered,q

))]
. (3)

This regularization enables supervision is concentrated on regions that are semantically salient
under language intent, such as object boundaries, interactable elements, and foreground structures.

Furthermore, we extend this attention mechanism to the depth domain by introducing an attention-
weighted static depth regularization. The attention weights w

(t)
q , derived from the language-

conditioned SMSA vision stream, are used to emphasize structurally important regions during depth
supervision:

L∗
StaticDepth =

Lf∑
q=1

M (t)
q · w(t)

q

[
∥D(t)

rendered,q −D
(t)
GT,q∥

2
2 + λ

(
1− cos

(
D

(t)
rendered,q, D

(t)
GT,q

)) ]
. (4)
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Figure 2: Qualitative Comparison on Plenoptic Video Dataset. L4DGS outperforms leading
methods in rendering hierarchical visual details, e.g., the letters on a bottle inside a distant cabinet,
the frequently moving faces, and the kitchenware.

This formulation enables the model to better resolve spatial relationships and occlusion patterns,
focusing depth alignment on regions with higher semantic and structural relevance.

The final attention-salient static regularization is given by:

L∗
Static = L∗

StaticSem + λStaticL∗
StaticDepth. (5)

This language-guided regularization allows L4DGS to perform semantic and geometric supervision
in a spatially selective and content-aware manner.

Delete the human Delete the car

Promptable

Segment 

Promptable

Segment 

Figure 3: Language-guided editing and
promptable segmentation.

Lifting Representations into the 4D Space
Ensuring temporal consistency is critical for
dynamic scene rendering, especially when
modeling deformable or moving objects using
4D Gaussian representations. Unlike 3D Gaus-
sians, which capture spatial structure at a sin-
gle time step, 4D Gaussians encode both spatial
and temporal information. This added tempo-
ral dimension introduces challenges: semantic
features associated with the same object may
drift or become inconsistent across time, espe-
cially in cases of rapid motion, occlusion, or
limited visual evidence. Separate-time-step su-
pervision alone is insufficient to address these
issues, as it does not constrain inter-frame co-
herence.

To overcome this limitation, we introduce dy-
namic regularization, a temporal consistency
constraint that operates over continuous unit
time intervals rather than isolated time steps.
Specifically, we enforce smoothness in the evo-
lution of semantic features associated with each
Gaussian primitives within unit time intervals.
This regularization penalizes abrupt temporal deviations, encouraging stable and coherent semantic
trajectories in both spatial and temporal dimensions. It is applied directly to the learned feature
embeddings, promoting continuity in appearance without modifying point cloud density.
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This temporal smoothing is especially beneficial in challenging regions, such as those affected by
motion blur, sparse observations, or disocclusions, where supervision from individual time steps
is noisy or unreliable. By preserving the consistency of semantic distributions across unit time
intervals, dynamic regularization maintains accurate object identity and geometry, reduces temporal
flickering, and enhances the realism of dynamic appearance modeling. Furthermore, as this approach
operates over existing Gaussian distributions, it ensures visual fidelity without increasing point cloud
density.

Dynamic Regularization To operationalize temporal consistency across 4D Gaussians, we intro-
duce a dynamic regularization objective that directly penalizes inconsistent feature trajectories over
time. Specifically, we compute the temporal variations of both the language-guided vision features
SMSA

(t)
v,q and the rendered fused features F (t)

rendered,q across unit time intervals δt. For each visual
token q, the temporal variations are defined as:

δSMSA(δt)
v,q = SMSA(t+δt)

v,q − SMSA(t)
v,q,

δF
(δt)
rendered,q = F

(t+δt)
rendered,q − F

(t)
rendered,q,

δDirection = 1− cos(δSMSA(δt)
v,q , δF

(δt)
rendered,q). (6)

To promote semantic stability, we penalize abnormal deviations in temporal gradients through a
weighted combination of feature magnitude differences and their directional misalignment:

L∗
DynamicSem =

1

Lf

∑
δt

Lf∑
q=1

M (t)
q w(t)

q

(
λD · δDirection+ ∥δSMSA(δt)

v,q ∥22 + ∥δF (δt)
rendered,q∥

2
2

)
. (7)

where M
(t)
q ∈ {0, 1} masks out invalid tokens and w

(t)
q are the attention-salient weights described

previously. This loss encourages Gaussian primitives’ temporal coherence in appearance, enabling
smooth semantic transitions even in the presence of fast object motion, partial occlusion, or sparse
frame sampling. By focusing on temporal feature gradients rather than static states, the regular-
ization captures transferable appearance evolution, which is crucial for rendering high-frequency
textures and temporally consistent reflections on dynamic surfaces.

To further ensure physically plausible motion and accurate structural evolution, we extend our for-
mulation with a depth-based regularization that constrains temporal changes in the predicted geom-
etry. We penalize excessive depth fluctuations in Gaussian primitives across consecutive unit time
intervals:

L∗
DynamicDepth =

1

Lf

∑
δt

Lf∑
q=1

M (t)
q w(t)

q

∥∥δD(δt)
rendered,q

∥∥2

2
. (8)

where δD(δt)
rendered,q = D

(t+δt)
rendered,q−D

(t)
rendered,q represents the temporal change in rendered depth.

The full dynamic regularization objective integrates both semantic and geometric components:

L∗
Dynamic = L∗

DynamicSem + λDynamic · L∗
DynamicDepth. (9)

This dynamic regularization enhances the stability and responsiveness of L4DGS in time-varying
scenes. It guides the deformation of Gaussians in a physically consistent manner, enabling the model
to track non-rigid motions, handle occlusions, and interpolate missing frames in low-frame-rate or
sparse input scenarios. By capturing coherent motion trajectories without increasing point cloud
density, our method enables high-quality real-time rendering with reduced computational overhead.

Semantic Consistency Finally, to ensure consistent and semantically accurate rendering across
both spatial and temporal domains, we define the comprehensive semantic consistency regularization
that integrates both static and dynamic regularization components:

L∗
4DSemantic = L∗

Dynamic + λL∗
Static. (10)

where λO is the learnable hyperparameter. Our approach encourages consistent representation of
object semantics and depth throughout the 4D Gaussian field, effectively addressing semantic drift,
flickering, and identity instability.
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4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

Ground Truth L4DGS w/o SMSA

w/o Semantic Consistencyw/o Dynamic Consistencyw/o Static Consistency

Figure 4: Qualitative Ablation Study of Different Com-
ponents in L4DGS.

We assess our method using two
widely recognized datasets, each
presenting distinct challenges in
dynamic scene modeling. Plenoptic
Video Dataset Li et al. (2022b)
includes six real-world scenes, with
17 to 20 views per scene for training,
and one central view reserved for
evaluation. All images have a resolu-
tion of 1352×1014 Li et al. (2022b).
D-NeRF Dataset Pumarola et al.
(2021) consists of monocular video
sequences from eight different
scenes. Each scene contains between
50 and 200 training images, 10 to
20 validation images, and 20 test
images, all resized to a resolution of
800×800 Pumarola et al. (2021). Experiments are run on a single RTX 3090 GPU. The optimization
parameters are fine-tuned using the configuration settings from 3DGS Kerbl et al. (2023).

4.2 RESULTS

Table 1: Quantitative Comparison on Plenoptic
Video Dataset. We compare L4DGS against lead-
ing methods. L4DGS obtains the highest PSNR
while boosting training efficiency. *: trained on 8
GPUs and tested only on the Flame Salmon scene.

Method PSNR↑ SSIM↑ LPIPS↓ Train↓ FPS↑
DyNeRF Li et al. (2022b)* 29.58 - 0.08 1344 h 0.015
StreamRF Li et al. (2022a) 28.16 0.85 0.31 79 min 8.50

HyperReel Attal et al. (2023) 30.36 0.92 0.17 9 h 2.00
NeRFPlayer Song et al. (2023) 30.69 - 0.11 6 h 0.05

K-Planes Fridovich-Keil et al. (2023) 30.73 0.93 0.07 190 min 0.10
MixVoxels Wang et al. (2023b) 30.85 0.96 0.21 91 min 16.70

Deformable4DGS Wu et al. (2023) 28.42 0.92 0.17 72 min 39.93
Ours 34.00 0.95 0.05 30 min 50.00

Evaluation on Plenoptic Video Dataset. We
compare L4DGS with several state-of-the-art
dynamic rendering baselines. As shown in Ta-
ble 1, our method achieves the highest render-
ing quality by a notable margin, with a PSNR
of 34.00 and an LPIPS of 0.05, outperforming
leading methods in both fidelity and perceptual
similarity (see Figure 2). L4DGS also demon-
strates superior efficiency in training and infer-
ence: it completes training in just 30 minutes,
over 3× faster than MixVoxels and more than
60× faster than K-Planes, while enabling real-
time rendering at 50 FPS, exceeding existing
baselines. Experimental results highlight that L4DGS not only achieves state-of-the-art visual qual-
ity but also enables substantial gains in computational efficiency, ensuring high-fidelity, real-time
dynamic scene rendering with language-guided control. Figure 3 further confirms the key advan-
tages of L4DGS. It enables language-driven control for accurate and localized scene editing.

Table 2: Quantitative Comparison on D-NeRF
Dataset. We compare our approach with lead-
ing dynamic scene rendering methods. L4DGS
effectively balances visual quality and training ef-
ficiency in dynamic scene rendering.

Method PSNR↑ SSIM↑ LPIPS↓ Train↓ FPS↑
D-NeRF Pumarola et al. (2021) 29.17 0.95 0.07 24 h 0.13

TiNeuVox Fang et al. (2022) 32.87 0.97 0.04 28 min 1.60
K-Planes Fridovich-Keil et al. (2023) 31.07 0.97 0.02 54 min 1.20

FFDNeRF Guo et al. (2023) 31.70 0.96 0.05 - <1.20
MSTH Wang et al. (2023a) 30.40 0.97 0.05 9.80 min -

V4D Gan et al. (2023) 32.67 0.97 0.05 10.21 h 2.64
Deformable4DGS Wu et al. (2023) 32.99 0.97 0.05 13 min 104.00

Ours 37.00 0.98 0.02 5 min 150.00

Evaluation on D-NeRF Dataset We evalu-
ate L4DGS against existing dynamic render-
ing methods. As shown in Table 2, L4DGS
achieves the highest overall rendering quality,
with a PSNR of 37.00, SSIM of 0.98, and
LPIPS of 0.02. These results represent a sub-
stantial improvement over all baselines, ex-
ceeding the next-best method by over 4 dB
in PSNR. Beyond accuracy, L4DGS demon-
strates exceptional efficiency, requiring only 5
minutes of training, substantially faster than
other real-time-capable methods such as De-
formable4DGS and TiNeuVox, and enables
real-time rendering at 150 FPS. These findings confirm the effectiveness of L4DGS in jointly ensur-
ing high visual fidelity, rapid training, and real-time performance.
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Table 3: Ablation Study with Quantitative Comparison on D-NeRF Dataset. We validate differ-
ent components in L4DGS on rendering quality PSNR.

ID Dyn. Sem. Stat. Sem. Dyn. Depth Stat. Depth Attn. Focus Jumping Jacks Mutant Stand Up
a 34.33 35.87 35.91
b ✓ 35.85 37.76 38.03
c ✓ 35.47 37.29 37.50
d ✓ 35.09 36.81 36.97
e ✓ 34.71 36.34 36.44
f ✓ ✓ ✓ ✓ 37.96 40.36 41.14

Full ✓ ✓ ✓ ✓ ✓ 38.44 40.89 41.50

4.3 ABLATION STUDIES

w/o Dyn. Sem. w/ Dyn. Sem. Ground Truth 

Figure 5: Optical Flow Visualization.

Language-Guided Semantics Consistency.
To evaluate the impact of language-guided se-
mantic consistency, we conduct an ablation
study that retains only the static semantic regu-
larization module. As shown in Table 3 (c), this
configuration consistently outperforms the non-
regularized baseline (Table 3 (a)), highlight-
ing the importance of aligning rendered content
with language-conditioned visual features. The
results demonstrate that language-guided spa-
tial attention serves as strong supervision for
rendering salient structures and object bound-
aries, which is a crucial foundation for achiev-
ing spatiotemporal consistency.

Furthermore, to evaluate the effect of attention-salient weighting on regularization, we compare
the full model (Table 3 Full) with its ablated variant (Table 3 (f )). The inclusion of the attention-
salient module yields consistent improvements across all scenes, with especially pronounced gains in
detail-rich scenes such as Mutant. These results indicate that attention-aware weighting enhances the
effectiveness and spatial selectivity of supervision, improving cross-modal alignment and rendering
quality in structurally complex regions.

Dynamic Consistency. To isolate the impact of temporal semantic consistency, we evaluate a
model variant (Table 3 (b)), which shows a notable performance gain over the baseline (Table 3 (a)).
This demonstrates the effectiveness of enforcing temporal coherence in semantic space. Among all
components, dynamic semantic supervision yields the highest average PSNR improvement across
scenes, underscoring its central role in addressing temporal flickering and semantic drift. In Figure 4,
qualitative results further reveal that omitting dynamic regularization introduces artifacts such as
motion blur. These findings confirm that temporal feature alignment is essential for robust, high-
fidelity dynamic scene rendering.

5 CONCLUSION

We have presented L4DGS, a language-guided framework for real-time dynamic scene rendering
based on semantically enriched 4D Gaussian representations. By integrating natural language un-
derstanding with hierarchical visual features through a Sparse Multi-Scale Attention (SMSA) mech-
anism, our approach enables language-guided, fine-grained rendering in complex dynamic environ-
ments. To ensure spatial and temporal consistency, we introduce static and dynamic regularization
strategies that align semantic and depth features across both space and time, effectively addressing
temporal semantic drift and inconsistency. Extensive experiments demonstrate that incorporating
language semantics into the rendering pipeline substantially ensures realistic rendering and enhances
scene interpretability, while maintaining comparable training efficiency.
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Rusinkiewicz. Temporally coherent completion of dynamic shapes. ACM Transactions on Graph-
ics (TOG), 31(1):1–11, 2012.

Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Ping Tan. Streaming radiance fields for 3d
video synthesis. Advances in Neural Information Processing Systems, 35:13485–13498, 2022a.

Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph Lassner, Changil Kim,
Tanner Schmidt, Steven Lovegrove, Michael Goesele, Richard Newcombe, et al. Neural 3d video
synthesis from multi-view video. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5521–5531, 2022b.

Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time
dynamic view synthesis. arXiv preprint arXiv:2312.16812, 2023.

Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-
time view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6498–6508, 2021.

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis. In 2024 International Conference on 3D Vision
3DV, 2024.

B Mildenhall, PP Srinivasan, M Tancik, JT Barron, R Ramamoorthi, and R Ng. Nerf: Representing
scenes as neural radiance fields for view synthesis. In European conference on computer vision,
2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ra-
mamoorthi, Ren Ng, and Abhishek Kar. Local light field fusion: Practical view synthesis with
prescriptive sampling guidelines. ACM Transactions on Graphics (TOG), 38(4):1–14, 2019.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Transactions on Graphics (TOG), 41(4):1–15,
2022.

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M
Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 5865–5874, 2021a.

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman,
Ricardo Martin-Brualla, and Steven M Seitz. Hypernerf: A higher-dimensional representation for
topologically varying neural radiance fields. ACM Transactions on Graphics (TOG), 40(6):1–12,
2021b.

Eric Penner and Li Zhang. Soft 3d reconstruction for view synthesis. ACM Transactions on Graphics
(TOG), 36(6):1–11, 2017.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10318–10327, 2021.

Minghan Qin, Wanhua Li, Jiawei Zhou, Haoqian Wang, and Hanspeter Pfister. Langsplat: 3d lan-
guage gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 20051–20060, 2024.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
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