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ABSTRACT

Neural network pruning is a fruitful area of research with surging interest in high
sparsity regimes. Benchmarking in this domain heavily relies on faithful repre-
sentation of the sparsity of subnetworks, which has been traditionally computed
as the fraction of removed connections (direct sparsity). This definition, however,
fails to recognize unpruned parameters that detached from input or output layers of
underlying subnetworks, potentially underestimating actual effective sparsity: the
fraction of inactivated connections. While this effect might be negligible for mod-
erately pruned networks (up to 10×–100× compression rates), we find that it plays
an increasing role for thinner subnetworks, greatly distorting comparison between
different pruning algorithms. For example, we show that effective compression
of a randomly pruned LeNet-300-100 can be orders of magnitude larger than its
direct counterpart, while no discrepancy is ever observed when using SynFlow for
pruning (Tanaka et al., 2020). In this work, we adopt the lens of effective sparsity
to reevaluate several recent pruning algorithms on common benchmark architec-
tures (e.g., LeNet-300-100, VGG-19, ResNet-18) and discover that their absolute
and relative performance changes dramatically in this new, and as we argue, more
appropriate framework. To aim for effective, rather than direct, sparsity, we de-
velop a low-cost extension to most pruning algorithms. Further, equipped with
effective sparsity as a reference frame, we partially reconfirm that random prun-
ing with appropriate sparsity allocation across layers performs as well or better
than more sophisticated algorithms for pruning at initialization (Su et al., 2020).
In response to this observation, using a simple analogy of pressure distribution
in coupled cylinders from thermodynamics, we design novel layerwise sparsity
quotas that outperform all existing baselines in the context of random pruning.

1 INTRODUCTION

Recent successful advances of Deep Neural Networks are commonly attributed to their high archi-
tectural complexity and excessive size (over-parametrization) (Denton et al., 2014; Neyshabur et al.,
2019; Arora et al., 2018). Modern state-of-the-art architectures exhibit enormous parameter over-
head, requiring prohibitive amounts of resources during both training and inference and leaving a
significant environmental footprint (Shoeybi et al., 2019). In response to these challenges, much
attention has turned to compression of neural networks and, in particular, parameter pruning. While
initial approaches mostly focused on pruning models after training (LeCun et al., 1990; Hassibi
et al., 1993), contemporary algorithms optimize the sparsity structure of a network while training its
parameters (Mocanu et al., 2018; Evci et al., 2020) or even remove connections before any training
whatsoever (Lee et al., 2019; Wang et al., 2020).

Compression rates usually considered in the pruning literature usually fall between 10× and 100×
of the size of the original model. However, as contemporary model sizes grow into the billions of
parameters, studying higher compression regimes becomes increasingly important. Recently, a new
bold sparsity benchmark was set by Tanaka et al. (2020) with Iterative Synaptic Flow (SynFlow),
a data-agnostic algorithm for pruning at initialization. Reportedly, it is capable of removing all
but only a few hundreds of parameters (a 100, 000× compression for VGG-16) and still produce
trainable subnetworks, while other pruning methods disconnect networks at much lower sparsity
levels (Tanaka et al., 2020). Related work by de Jorge et al. (2021) proposes an iterative version of

1



Under review as a conference paper at ICLR 2022

one-shot pruning algorithm, Single-shot Network Pruning (SNIP) (Lee et al., 2019), and evaluates
it in a similar high sparsity regime, reaching more than 10, 000× compression ratio.

Effective sparsity. This increased focus on extreme sparsity leads us to consider what sparsity is
meant to represent in neural networks and computational graphs at large. In the context of neural
network pruning, sparsity to date is computed straightforwardly as the fraction of removed con-
nections (direct sparsity)—and compression as the inverse fraction of unpruned connections (direct
compression). We observe that this definition does not distinguish between connections that have
actually been pruned, and those that have become effectively pruned because they have disconnected
from the computational flow. In this work, we propose to instead focus on effective sparsity—the
fraction of inactivated connections, be it through direct pruning or through otherwise disconnecting
from either input or output of a network (see Figure 1 for an illustration).

Figure 1: Pruning 11 edges from a
fully-connected 21-edge network.
Top: direct sparsity (11/21) does
not account for disconnected edges
(compression 21/10 = 2.1). Bot-
tom: effective sparsity (16/21) ac-
counts for the 5 dashed connec-
tions incident to inactivated neu-
rons (yielding twice as large effec-
tive compression 21/5 = 4.2).

In this work, we advocate that effective sparsity (effective
compression) be used universally in place of its direct counter-
part since it more accurately depicts what one would reason-
ably consider the network’s sparsity state. Using the lens of ef-
fective compression for benchmarking allows for a fairer com-
parison between different unstructured pruning algorithms.
Note that effective compression is lower bounded by direct
compression, which means that some pruning algorithms will
give improved sparsity-accuracy trade-offs in this new frame-
work. In Section 3, we critically reexamine a plethora of recent
pruning algorithms for a variety of architectures to find that, in
this refined framework, conclusions drawn in previous works
appear overstated or incorrect. Figure 2 gives a sneak-preview
of this effect for three ab-initio pruning algorithms: SynFlow
(Tanaka et al., 2020), SNIP (Lee et al., 2019) and plain random
pruning for LeNet-300-100 on MNIST. While SynFlow ap-
pears superior to other methods when evaluated against direct
compression, it loses its advantage in the effective framework.
Such radical performance changes are partly explained by dif-
fering gaps between effective and direct compression inherent
to different pruning algorithms (Figure 2). We can see that
significant departure between direct and effective compression
kicks in at relatively low rates below 100×, making our work
relevant even in these moderate regimes. For example, using
random pruning to compress LeNet-300-100 by 100× (spar-
sity 99%) results in ∼ 1, 000× effective compression; yet, re-
moving the same number of parameters with SynFlow yields
an unchanged 100× effective compression. What makes cer-
tain iterative algorithms like SynFlow less likely to amass dis-
connected edges? In Section 3, we show that they are fortuitously designed to achieve a close con-
vergence of direct and effective sparsity, hinting that preserving connectivity is an important aspect
in the strong performance of high-compression pruning algorithms (Tanaka et al., 2020; de Jorge
et al., 2021). Moreover, the lens of effective compression gives access to more extreme compression
regimes for some pruning algorithms, which appear to disconnect much earlier when not accounting
for inactive connections. For these high effective compression ratios all three pruning methods from
Figure 2 perform surprisingly similar, even though they use varying degrees of information on data
and parameter values.

Layerwise Sparsity Quotas (LSQ) and Ideal Gas Quotas (IGQ). A recent thread of research
by Frankle et al. (2021) and Su et al. (2020) shows that performance of trained subnetworks pro-
duced by algorithms for pruning at initialization is robust to randomly reshuffling unpruned edges
within layers before training. This observation led to the conjecture that these algorithms essentially
generate successful distributions of sparsity across layers, while the exact connectivity patterns are
unimportant. In Section 4, we reexamine this conjecture through the lens of effective sparsity, con-
firm it for moderate compression regimes (10×–100×) studied by Frankle et al. (2021) and Su et al.
(2020), but find the truth to be more nuanced at higher compression rates. Nonetheless, this re-
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sult highlights the importance of algorithms that carefully engineer layerwise sparsity quotas (LSQ)
to obtain very simple and adequately performing pruning algorithms that are data- and parameter-
agnostic. Another important motivation to search for good LSQ is that global pruning algorithms
frequently remove entire layers prematurely (Lee et al., 2020) (cf. layer-collapse (Tanaka et al.,
2020)), even before any significant differences between direct and effective sparsity emerge. Well-
engineered LSQ could avoid this and enforce proper redistribution of compression across layers
(see (Gale et al., 2019; Mocanu et al., 2018; Evci et al., 2020) for existing baselines). In Section
4, we propose a novel LSQ coined Ideal Gas Quotas (IGQ) by drawing intuitive analogies from
physics. Effortlessly computable for any network-sparsity combination, IGQ performs similarly or
better than any other baseline in the context of random pruning at initialization and of magnitude
pruning after training.

Figure 2: LeNet-300-100 trained on MNIST after pruning with SNIP, SynFlow and layerwise uni-
form random pruning. Left: gaps between direct and effective compression. Right: SynFlow has a
better sparsity-accuracy trade-off than SNIP when plotted against direct compression (dashed), but
not against effective compression (solid curves fitted to dots that represent inidvidual experiments).
Dashed and solid curves coincide for SynFlow.

Effective pruning. Pruning to any desired direct sparsity is straightforward: one simply needs to
mask out the corresponding number of parameters from a network. Effective sparsity, unfortunately,
is more unpredictable and difficult to control. In particular, several known pruning algorithms suffer
from layer-collapse once reaching a certain sparsity level, leading to unstable effective sparsity just
before the disconnection. As a result, most pruning methods are unable to deliver certain values
of effective sparsity regardless of how many connections are pruned. When possible, however,
one needs to carefully tune the number of pruned parameters so that effective sparsity lands near a
desired value. In Section 5, we suggest a simple extension to algorithms for pruning at initialization
or after training that helps bring effective sparsity close to any predefined achievable value while
incurring costs that are at most logarithmic in model size.

Our contributions. In this study, we (i) clearly formulate and illustrate the importance of effective
sparsity by reevaluating several recent pruning strategies; (ii) provide algorithms to prune according
to and compute effective sparsity; (iii) reconfirm the hypothesis from (Frankle et al., 2021) in the
new framework and design efficient layerwise sparsity quotas IGQ that perform consistently well
across all sparsity regimes.

2 RELATED WORK

Neural network compression encompasses a number of orthogonal approaches such as parameter
regularization (Lebedev & Lempitsky, 2016; Louizos et al., 2018), variational dropout (Molchanov
et al., 2017), vector quantization and parameter sharing (Gong et al., 2014; Chen et al., 2015; Han
et al., 2016), low-rank matrix decomposition (Denton et al., 2014; Jaderberg et al., 2014), and knowl-
edge distillation (Buciluǎ et al., 2006; Hinton et al., 2015). Network pruning, however, is by far the
most common technique for model compression, and can be partitioned into structured (at the level
of entire neurons/units) and unstructured (at the level of individual connections). While the former
offers resource efficiency unconditioned on use of specialized hardware (Liu et al., 2019) and consti-
tutes a fruitful research area (Li et al., 2017; Liu et al., 2017), we focus on the more actively studied
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unstructured pruning, which is where differences between effective and direct sparsity emerge. In
what follows we give a quick overview, naturally grouping pruning methods by the time they are
applied relative to training (see (Frankle & Carbin, 2019) and (Wang et al., 2020) for a similar
taxonomy).

Pruning after training. These earliest pruning techniques were designed to remove the least
“salient” learned connections without sacrificing predictive performance. Optimal Brain Damage
(LeCun et al., 1990) and its sequel Optimal Brain Surgeon (Hassibi et al., 1993) use the Hessian of
the loss to estimate sensitivity to removal of individual parameters. Han et al. (2015) popularized
magnitude as a simple and effective pruning criterion. It proved to be especially successful when
applied alternately with several finetuning cycles, which is commonly referred to as Iterative Mag-
nitude Pruning (IMP), a modification of which was used by Frankle & Carbin (2019) to discover
lottery tickets. Later, Dong et al. (2017) showed that magnitude-based pruning minimizes `2 distor-
tion of each layer’s output incurred by parameter removal. Recently, Lee et al. (2021) extend this
idea and propose Layer-Adaptive Magnitude-Based Pruning (LAMP), which approximately mini-
mizes the upper bound of the `2 distortion of the entire network. While equivalent to magnitude
pruning within individual layers, LAMP automatically discovers state-of-the-art layerwise sparsity
quotas (see Section 4) that yield better performance (as a function of direct compression) than ex-
isting alternatives in the context of IMP.

Pruning during training. Algorithms in this category learn sparsity structures together with pa-
rameter values, hoping that continued training will correct for damage incurred by pruning. To avoid
inefficient prune-retrain cycles inherent to IMP, Narang et al. (2017) introduce gradual magnitude
pruning over a single training round. Subsequently, Zhu & Gupta (2018) modify this algorithm by
introducing a simpler pruning schedule and keeping layerwise sparsities uniform throughout train-
ing. Sparse Evolutionary Training (SET) (Mocanu et al., 2018) starts with an already sparse subnet-
work and restructures it during training by pruning and randomly reviving connections. Unlike SET,
Mostafa & Wang (2019) allow redistribution of sparsity across layers, while Dettmers & Zettle-
moyer (2019) use gradient momentum as the criterion for parameter regrowth. Evci et al. (2020)
rely on the instantaneous gradient to revive weights but follow SET to maintain the initial layerwise
sparsity distribution during training. A different body of works tackle the general optimization prob-
lem with an intractable `0 parameter sparsity constraint by designing and solving related continuous
problems (Zhou et al., 2021; Savarese et al., 2020; Kusupati et al., 2020). For example, Continuous
Sparsification (CS) by Savarese et al. (2020) uses a sigmoid of learnable continuous variables as
mask values and applies `1 regularization, effectively forcing them to either 0 or 1 in training.

Pruning before training. Pruning at initialization is especially alluring to deep learning practi-
tioners as it promises lower costs of both optimization and inference. While this may seem too am-
bitious, the Lottery Ticket Hypothesis (LTH) postulates that randomly initialized dense networks do
indeed contain highly trainable and equally well-performing sparse subnetworks (Frankle & Carbin,
2019). Inspired by the LTH, Lee et al. (2019) design SNIP, which uses connection sensitivity as
a parameter saliency score. Wang et al. (2020) notice that SNIP creates bottlenecks or even re-
moves entire layers and propose Gradient Signal Preservation (GraSP) as an alternative that aims to
maximize gradient flow in a pruned network. de Jorge et al. (2021) improve SNIP by applying it
iteratively, allowing for reassessment of saliency scores during pruning and helping networks stay
connected at higher compression rates. A truly new compression benchmark was set by Tanaka
et al. (2020); their algorithm, SynFlow, iteratively prunes subsets of parameters according to their `1
path norm and helps networks reach maximum compression without disconnecting. For example,
SynFlow achieves non-random test accuracy on CIFAR-10 with a 100, 000× compressed VGG-16,
while SNIP and GraSP fail already at 100× and 1, 000×, respectively. An extensive ablation study
by Frankle et al. (2021) examines SNIP, GraSP and SynFlow within moderate compression rates (up
to 100×) and reveals that performance of subnetworks produced by these methods is stable under
layerwise rearrange prior to training. Later, this result was independently confirmed by Su et al.
(2020) for SNIP and GraSP only. This observation suggests that these algorithms perform as well as
random pruning with corresponding layerwise quotas, putting the spotlight on designing competitive
LSQ (Mocanu et al., 2018; Gale et al., 2019; Lee et al., 2021).
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3 EFFECTIVE SPARSITY

In this section, we present our comparisons of a variety of pruning algorithms under the lens of
effective compression. To illustrate the striking difference between direct and effective sparsity and
expose the often radical change in relative performance of pruning algorithms when switching from
the former to the latter, we evaluate several recent methods (SNIP, GraSP, SynFlow, LAMP1, CS2,
and SNIP-iterative) and random pruning with uniform sparsity distribution across layers in both
frameworks. Our experiments encompass modern architectures on commonly used computer vision
benchmark datasets: LeNet-300-100 (Lecun et al., 1998) on MNIST, LeNet-5 (Lecun et al., 1998)
on CIFAR-10, VGG-19 (Simonyan & Zisserman, 2015) on CIFAR-100 , and ResNet-18 (He et al.,
2016) on TinyImageNet. We place results of VGG-16 (Simonyan & Zisserman, 2015) on CIFAR-
10 in Appendix B, as they closely resemble those of VGG-19. Further experimental details are
presented in Appendix A.

Notation. Consider an L-layer neural network f(Θ;x) with weight tensors Θ = {Θ`}L`=1 for
` ∈ [L]. A subnetwork is specified by a set of binary masks that indicate unpruned parameters
M` ∈ {0, 1}|Θ`|. With M = {M`}L`=1, it is given by f(Θ �M;x) where � indicates pointwise
multiplication. Note that biases and batch normalization parameters (Ioffe & Szegedy, 2015) are
normally considered unprunable. Direct sparsity, the fraction of pruned weights, is given by s(M) =
1−

∑
`‖M`‖0

/∑
` |M`| and direct compression rate is defined as (1− s(M))−1.

Figure 3 reveals that different algorithms tend to develop varying amounts of inactive connections.
For example, effective compression of subnetworks pruned by LAMP consistently reaches 10×
of their direct compression across all architectures, at which point at least nine in ten unpruned
connections are effectively inactivated. Other methods (e.g., SNIP on VGG-19) remove entire layers
early on, before any substantial differences between effective and direct compression emerge. SNIP-
iterative and especially SynFlow, however, demonstrate a truly unique property: subnetworks pruned
by these two algorithms exhibit practically equal effective and direct compressions, and, in the case
of SynFlow, disconnect only at very high compression rates. What makes them special? Both
SynFlow and SNIP-iterative are multi-shot pruning algorithms that remove parameters over 100 and
300 iterations, respectively. SynFlow ranks connections by their `1 path norm (sum of weighted
paths passing through the edge, where the weight of a path is the product of magnitudes of weights
of its edges). SNIP uses connection sensitivity scores from Lee et al. (2019)

∣∣∂L
∂θ θ
∣∣ as a saliency

measure, where L is the loss function. Both these pruning criteria assign the lowest possible score
of zero to inactive connections, scheduling them for immediate removal in the subsequent pruning
iteration. Thus, by virtue of their iterative design, these two methods produce subnetworks with
little to no difference between effective and direct compression. They are fortuitously designed to
prune inactivated edges, which might explain their high-compression performance.

Figure 3: Effective versus direct compression across different pruning methods and architectures
(curves and bands represent min/average/max across 3 seeds where subnetworks disconnect last
among a total of 5 seeds).

1as a state-of-the-art representative of magnitude pruning after training and, in particular, lottery tickets
(Frankle & Carbin, 2019).

2as a representative of methods concerned with learnable sparsity
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Tanaka et al. (2020) compare SynFlow to SNIP and GraSP using direct sparsity, claiming it vastly
superior in high compression regimes. However, pruning methods that generate large amounts of
inactivated connections are clearly at a significant disadvantage in the original direct framework.
Figure 4 shows that the performance gap between SynFlow and other methods shrinks on all tested
architectures under effective compression. The most dramatic changes are perhaps evident with
LeNet-300-100 where SynFlow significantly dominates both SNIP and GraSP in direct comparison,
but becomes strictly inferior when taken to the more telling effective compression. On the other
hand, differences are not as pronounced on purely convolutional architectures such as VGG-19, and
ResNet-18. Feature maps in convolutional layers are connected via groups of several parameters
(kernels), making them more robust to inactivation compared to neurons in fully-connected layers.

Computing effective sparsity: In advocating the use of effective sparsity, we must make sure that it
can be calculated efficiently. We propose an easily computable approach leveraging SynFlow. Note
that a connection is inactive if and only if it is not part of any path from input to output. Assuming
that unpruned weights are non-zero, this is equivalent to having zero `1 path norm. Tanaka et al.
(2020) observe that path norms can be efficiently computed with one pass on the all-ones input as∣∣∂R
∂θ θ

∣∣, whereR = 1>f ′(|Θ|�M,1) and f ′ is the linearized version of the original network f . For
deep models, rescaling of weights is required to avoid numerical instability (Tanaka et al., 2020).

Figure 4: Test accuracy (min/average/max) of subnetworks trained from scratch after being pruned
by different algorithms plotted against direct (dashed) and effective (solid) compression. Dashed
and solid curves overlap for SynFlow and SNIP-iterative. Solid curves are fitted to scatter data (not
shown for clarity of the presentation) as in Figure 2.

4 LAYERWISE SPARSITY QUOTAS (LSQ) AND A NOVEL ALLOCATION
METHOD (IGQ)

Inspired by Frankle et al. (2021) and Su et al. (2020), we wish to confirm that SNIP, GraSP, and
SynFlow work no better than random pruning with corresponding layerwise sparsity allocation.
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While Frankle et al. (2021) and Su et al. (2020) only considered moderate compression rates up to
100× and used direct sparsity as a reference frame, we reconfirm their conjecture in the effective
framework and test it across the entire compression spectrum. We generate and train two sets of
subnetworks: (i) pruned by either SNIP, GraSP, and SynFlow (original), and (ii) randomly pruned
while preserving layerwise sparsity quotas provided by each of these three methods (random).

Our results in Figure 5 agree with observations made by Frankle et al. (2021) and Su et al. (2020): in
the 10×–100× compression range, all three random pruning algorithms perform similarly (LeNet-
300-100, VGG-19) or better (ResNet-18) than their original counterparts. Effective sparsity allows
us to faithfully examine higher compression, where the evidence is more equivocal. Similar pat-
terns are still seen on ResNet-18; however, the original SNIP and GraSP beat random pruning with
corresponding layerwise sparsities by a wide margin starting at 100× compression on LeNet-300-
100. Random pruning associated with SynFlow matches original SynFlow on the same network for
longer, up to 1, 000× compression. On VGG-19, SynFlow bests the corresponding random pruning
from about 500×compression onward, while the original SNIP suffers from disconnection early on
together with its random variant. Despite these nuances in the high compression regime, random
pruning with specific layerwise sparsity quotas fares extremely well in the moderate sparsity regime
(up to 99%) and is even competitive to full-fledged SynFlow (see Figure 6). Therefore, random
pruning can be a cheap and competitive alternative to more sophisticated and resource-consuming
algorithms. Random methods from Figure 5, however, still require running SNIP, GraSP, or Syn-
Flow to identify appropriate sparsity quotas and thus are just as expensive. Furthermore, sparsity
distributions inherited from global pruning methods frequently suffer from premature removal of
entire layers (e.g., SNIP on VGG-19), which is undesired. Can we engineer readily computable and
consistently well-performing sparsity quotas?

Figure 5: Original methods for pruning at initialization (solid) and random pruning with correspond-
ing layerwise sparsity quotas (dashdot). Test accuracy of the unpruned network is shown in grey.

To our knowledge, there are only a few ab-initio approaches in the literature to allocate sparsity in
a principled fashion. Uniform is the simplest solution that keeps sparsity constant across all layers.
Gale et al. (2019) give a modification (denoted Uniform+ following Lee et al. (2021)) that retains all
parameters in the first convolutional layer and caps sparsity of the last fully-connected layer at 80%.
A more sophisticated approach, Erdös-Renyi-Kernel (ERK), sets the density of a convolutional layer
with kernel sizew×h, fan-in nin and fan-out nout proportional to (w+h+nin+nout)/(w·h·nin ·nout).
Although originally used as a sparsity distribution schema for methods with dynamic sparse structres
(SET by (Mocanu et al., 2018) and RigL by Evci et al. (2020)), we follow (Lee et al., 2021) and
use ERK as a baseline sparsity distribution for sparse-to-sparse training with a fixed subnetwork
topology. The last two approaches are unable to support the entire range of sparsities: Uniform+ can
only achieve moderate direct compression because of the prunability constraints on its first and last
layer, while both direct and effective sparsity levels achievable with ERK are often lower bounded.
For example, the density of certain layers of VGG-16 set by ERK exceeds 1 when cutting less than
99% of parameters, unless excessive density is redistributed. We suggest a formal definition for
layerwise sparsity quotas to guide future research into sparsity allocation and avoid problems that
riddle Uniform+ and ERK.

Definition 1 (Layerwise Sparsity Quotas). A function Q : [0, 1] → [0, 1]L mapping a target
sparsity s to layerwise sparsities {s`}L`=1 is called Layerwise Sparsity Quotas (LSQ) if it satisfies
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the following properties: (i) total sparsity: for any s ∈ [0, 1], s
∑
` |Θ`| =

∑
` s`|Θ`|, and (ii)

monotonicity: [Q(s1)]` ≤ [Q(s2)]` for any ` ∈ [L] whenever s1 ≤ s2.

We now present Ideal Gas Quotas (IGQ), our formula for sparsity allocation that satisfies Definition
1 and outperforms the above mentioned baselines, while faring very well (over effective sparsity)
compared to the allocation quotas derived from sophisticated pruning methods such as SynFlow. To
develop an intuition on what constitutes a good LSQ construction, we study the layerwise sparsities
induced by contemporary pruning algorithms such as LAMP and SynFlow. As a rule, they (i) prune
larger layers more aggressively than smaller layers, i.e., [Q(s)]` ≤ [Q(s)]`′ whenever |Θ`| ≤ |Θ`′ |
for any s ∈ [0, 1], and (ii) avoid premature removal of entire layers, i.e., [Q(s)]` = 1 if and only if
s = 1 (see Appendix C for illustration).

Our approach is to interpret compression of layers within a network as compression of stacked
cylinders of unit volume filled with gas, where the height of the cylinder is proportional to the
number of parameters in that layer. We then use the Ideal Gas Law to derive the compres-
sion of each of the stacked coupled cylinders. More formally, model each layer ` ∈ [L] as a
cylinder of height H` = |Θ`| and cross-section area S` = |Θ`|−1. Further, assume that these
stacked weightless cylinders with frictionless pistons and filled with the same amount of ideal gas
ν are in thermodynamic equilibrium with common pressure P0 = 1 and temperature T . Isother-
mal compression of this system using an external force F is governed by the Ideal Gas Law:
P ′`V

′
` = νRT = P0V0, where P ′` = F

/
S` + P0, V ′` = S`h`, and h` is its new compressed

height. Then, P0H`S` = (F
/
S`+P0)S`h` or, equivalently, H`

/
h` = F

/
(P0S`)+1 = F |Θ`|+1.

InterpretingH`/h` as compression ratio of layer `, we arrive at compression quotas {F |Θ`|+1}L`=1

(or sparsity quotas {1 − (F |Θ`| + 1)−1}L`=1) parameterized by the force F controlling the overall
sparsity of the network. Given a target sparsity s ∈ [0, 1], the needed value of F can simply be found
with binary search to any desired precision. Our IGQ clearly satisfies all conditions of Definition 1
and the other properties identified above.







Figure 6: Test performance of trained subnetworks after random pruning with different layerwise
sparsity distributions. Original SynFlow (black) is shown for reference.

We now evaluate IGQ for random pruning, comparing it against ERK, Uniform, Uniform+, as well
as random pruning with the sparsity quotas induced by SynFlow for reference (Figure 6). Across all
architectures, random pruning with IGQ and SynFlow sparsity quotas are almost indistinguishable
from each other, suggesting that IGQ successfully mimics the quotas produced by SynFlow, which
requires substantial effort to compute. While ERK sometimes exhibits similar (ResNet-18) or even
better (VGG-19 compressed to 1, 000× or higher) performance than IGQ, it yields invalid layerwise
sparsity quotas when removing less than 98% and 99% of parameters from ResNet-18 and VGG-
19, respectively, thus failing to satisfy Definition 1. In the moderate sparsity regime (up to 99%),
subnetworks pruned by IGQ reach unparalleled performance after training. Therefore, judging by a
tripartite criterion of test performance, compliance with Definition 1, and computational efficiency,
IGQ beats all considered baselines.

In Appendix C, we test IGQ in the context of magnitude pruning after training. Here, performance
of IGQ practically coincides with that of LAMP, making it the only known LSQ to consistently
perform best and a competitive method for layerwise sparsity allocation.
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5 EFFECTIVE PRUNING

Unlike pruning to a target direct sparsity, pruning to achieve a particular effective sparsity can be
non-trivial. Here, we present an extension to algorithms for pruning at initialization or after training
that achieves this goal efficiently, when possible (see Figure 7).

Figure 7: Effective compression pro-
duced by regular (dashdot) and our ef-
fective (solid) pruning on ResNet-18 ac-
cording to ranking-based (left) and ran-
dom (right) algorithms. Our procedures
help pruning reach target effective spar-
sity, falling short only when the subnet-
work is on the brink of disconnection.

Ranking-based pruning. Algorithms like GraSP, Syn-
Flow, and LAMP rank parameters by some notion of
importance to guide pruning. When such a ranking
R : Θ → R is available, the naive solution is to iter-
ate through all scores in order, considering each as a po-
tential pruning threshold t and recording effective spar-
sity of the corresponding subnetwork with parameters
{θ ∈ Θ : R[θ] < t} removed. While provably identi-
fying the optimal threshold that yields a subnetwork with
effective sparsity as close to the desired value as possi-
ble, this approach requiresO(|Θ|) prune-evaluate cycles,
which is unreasonable for most contemporary architec-
tures. To achieve an efficient overhead of O(log |Θ|) at
the price of minor inaccuracy, we utilize binary search
for the cut-off threshold instead, leveraging the follow-
ing monotonicity property: given two pruning thresholds
t1, t2 ∈ R and corresponding subnetworks S1, S2, we
have t1 ≤ t2 if and only if S2 ⊆ S1, which implies
EffectiveSparsity(S1) ≤ EffectiveSparsity(S2) (note that
in general Sparsity(S1) ≤ Sparsity(S2) does not imply
the last inequality above). Thus, binary search will branch
in the correct direction. In Appendix D, inspired by the
performance of random pruning as presented in Section 4, we describe a modification of this algo-
rithm to allow for effective random pruning where parameter rankings are not available.

6 DISCUSSION

In our work, we argue that effective sparsity (effective compression) is the correct benchmarking
measure for pruning algorithms since it discards effectively inactive connections and represents the
true remaining connectivity pattern. Moreover, effective sparsity allows us to study extreme com-
pression regimes for subnetworks that otherwise appear disconnected at much lower direct sparsi-
ties. We initiate the study of current pruning algorithms in this refined frame of reference and rectify
previous benchmarks. To facilitate the use of effective sparsity in future research, we describe low-
cost procedures to both compute and achieve desired effective sparsity when pruning. Lastly, with
effective sparsity allowing us to fairly zoom into higher compression regimes than previously possi-
ble, we examine random pruning with prescribed layerwise sparsities and propose our own readily
computable quotas (IGQ) after establishing conditions reasonable LSQ should fulfill. We show
that IGQ, while allowing for any level of sparsity, is more advantageous than all existing similar
baselines (Uniform, ERK) and gives comparable performance to sparsity quotas derived from more
sophisticated and computationally expensive algorithms like SynFlow.

Limitations and Broader Impacts: We hope that the lens of effective compression will spur more
research in high compression regimes. One possible limitation is that it is harder to control effective
compression exactly. In particular using different seeds might lead to slightly different effective
compression rates. However, these perturbations are minor. Another small limitation is that our ef-
fective pruning strategies are not immediately applicable to some algorithms that prune while train-
ing (e.g., RigL (Evci et al., 2020)). However, in most cases our approach can be adapted. Lastly,
one might argue that for some architectures accuracy drops precipitously with higher compression
thus making very sparse subnetworks less practical. We hope that opening the study of high com-
pressions will allow to explore how to use sparse networks as building blocks, for instance using the
power of ensembling. Our framework allows a principled study of this regime.
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A EXPERIMENTAL DETAILS

Our experimental work encompasses five different architecture-dataset combinations: LeNet-300-
100 (Lecun et al., 1998) on MNIST (Creative Commons Attribution-Share Alike 3.0 license), LeNet-
5 (Lecun et al., 1998) and VGG-16 (Simonyan & Zisserman, 2015) on CIFAR-10 (MIT license),
VGG-19 (Simonyan & Zisserman, 2015) on CIFAR-100 (MIT license), and ResNet-18 (He et al.,
2016) on TinyImageNet (MIT license). Following Frankle et al. (2021), we do not reinitialize sub-
networks after pruning (we revert back to the original initialization when pruning a pretrained model
by LAMP). We use our own implementation of all pruning algorithms in TensorFlow except for
GraSP, for which we use the original code in PyTorch published by Wang et al. (2020). All runs
were repeated 3 times for stability of results. Training was performed on an internal cluster equipped
with NVIDIA RTX-8000, NVIDIA V-100, and AMD MI50 GPUs. Hyperparameters and training
schedules used in our experiments are adopted from related works and are listed in Table 1. We apply
standard augmentations to images during training. In particular, we normalize examples per-channel
for all datasets and randomly apply: (i) shifts by at most 4 pixels in any direction and horizontal
flips (CIFAR-10, CIFAR-100, and TinyImageNet), or (ii) rotations by up to 4 degrees (MNIST).

Table 1: Summary of experimental work. All architectures include batch normalization layers fol-
lowed by ReLU activations. Models are initialized using Kaiming normal scheme (fan-avg) and
optimized by SGD (momentum 0.9) with a stepwise LR schedule (10× drop factor applied on spec-
ified drop epochs). The categorical cross-entropy loss function is used for all models.

Model Epochs Drop epochs Batch LR Decay Source

LeNet-300-100 160 41/83/125 100 0.1 5e-4 Lee et al. (2019)
LeNet-5 307 76/153/230 128 0.1 5e-4 Lee et al. (2019)
VGG-16 160 80/120 128 0.1 1e-4 Frankle et al. (2021)
VGG-19 160 80/120 128 0.1 5e-4 Wang et al. (2020)
ResNet-18 200 100/150 256 0.2 1e-4 Frankle et al. (2021)

B EXPERIMENTS WITH VGG-16

In Figure 8, we display the results of our experiments with VGG-16 on CIFAR-10. As we argued in
Section 3, higher sparsities are required for purely convolutional architectures (such as VGG-16) to
develop inactive connections since feature maps are harder to disconnect. At the same time, several
algorithms (SNIP, SNIP-iterative, GraSP) suffer from layer-collapse at modest sparsities (99.9%
or less) and, hence, fail to develop significant amounts of inactive parameters. For this reason, as
evident from Figures 3, 4, and 8, VGG-16 arguably showcases the least differences between effective
and direct compression among all tested architectures.

Figure 8: Left: effective versus direct compression of VGG-16 when pruned by different algorithms.
Right: test accuracy (min/average/max) of VGG-16 trained from scratch after being pruned by dif-
ferent algorithms plotted against direct (dashed) and effective (solid) compression. Dashed and solid
curves overlap for SynFlow and SNIP-iterative.
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C FURTHER ANALYSIS OF IGQ

To guide the design of new LSQ, we take a closer look at the layerwise compression quotas arrived at
by successful global pruning algorithms such as SynFlow and LAMP. As mentioned in Section 4 and
as evident from Figure 9, these methods prune larger, parameter-heavy layers more aggressively than
smaller layers. Together with the other desired properties discussed in Section 4, this observation
partly motivates the design of Ideal Gas Quotas (IGQ), where the number of parameters in the layer
corresponds to the height of the cylinder. It is surprising how closely the sparsity quotas achieved
by IGQ resemble those of SynFlow considering that they describe a physical process (Figure 9).






Figure 9: Layerwise direct compression quotas of LeNet-5 (top) and VGG-16 (bottom) associated
with SynFlow (left), our IGQ (middle), and LAMP (right). Percentages indicate layer sizes relative
to the total number of parameters; colors are assigned accordingly from blue (smaller layers) to red
(larger layers). Curves of LAMP and SynFlow end when the underlying network disconnects.

In addition to the ab-initio pruning experiments in Section 4, we test IGQ in the context of mag-
nitude pruning after training. In this set of experiments, we pretrain fully-dense models and prune
them by magnitude using global methods (Global Magnitude Pruning, LAMP) or layer-by-layer
respecting sparsity allocation quotas (Uniform, Uniform+, ERK, and IGQ). Then, we revert the un-
pruned weights back to their original random values and fully retrain the resulting subnetworks to
convergence. Results are displayed in Figure 10 in the framework of effective compression. Overall,
our method for distributing sparsity in the context of magnitude pruning performs consistently well
across all architectures and favorably compares to other baselines, especially in moderate compres-
sion regimes of 100× or less. Even though Global magnitude pruning can marginally outperform
IGQ, it is completely unreliable on VGG-19. ERK appears slighly better than IGQ on VGG-19 and
ResNet-18 at extreme sparsities, however, it performs much worse on LeNet-300-100 and has other
general deficiencies as we discussed in Section 4. The closest rival of IGQ is LAMP, which performs
very similarly but is still unable to reach IGQ’s performance on VGG-19 and ResNet-18 in moderate
compression regimes. Note, however, that all presented methods require practically equal compute
and time; thus, the evidence in Figure 10 is not meant to advertise IGQ as a cheaper alternative to
LAMP but rather to illustrate the effectiveness of IGQ.
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Figure 10: Test performance of retrained subnetworks after pruning with different magnitude-based
methods. Uniform+ is not shown for LeNet-300-100 since it is designed for convolutional networks.

D EFFECTIVE RANDOM PRUNING

In Section 4, we saw that random pruning with carefully crafted layerwise sparsity quotas
Q : [0, 1] → [0, 1]L fares well (especially in the framework of effective sparsity) with more sophis-
ticated pruning methods, proving to be a cheaper and simpler alternative. Effective random pruning
is not as straightforward as binary search with ranking-based methods (Section 5) because, for any
two subnetworks S1 and S2, Sparsity(S1) ≤ Sparsity(S2) does not imply EffectiveSparsity(S1) ≤
EffectiveSparsity(S2), and random pruning is unlikely to produce a neat chain of embedded subnet-
works like ranking-based pruning in Section 5.

Algorithm 1: Approximate Effective Random Pruning

Input: Desired effective sparsity s; LSQ function Q : [0, 1]→ [0, 1]L.
i← 0; j ← |Θ|; M(1) ← 1; M(2) ← 0; P`, U` ← Θ` for all ` ∈ [L];
while j − i > 1 do

m← b(i+ j)/2c; {s`}L`=1 ← Q(m|Θ|−1);
T` ← RandomSelect(from = U` ∩ P`, size = s`|Θ`| − (1− |U`||Θ`|−1)) for all ` ∈ [L];
M` ← CreateMask(pruned = Θ` \ [U` \ T`], unpruned = U` \ T`) for all ` ∈ [L];
if EffectiveSparsity({M`}) < s then

U` ← U` \ T` for all ` ∈ [L]; M(1) ← {M`}L`=1; i← m;
else

P` ← P` \ T` for all ` ∈ [L]; M(2) ← {M`}L`=1; j ← m;
end

end
Return: Masks M(1) with EffectiveSparsity(M(1)) ∼ s and ‖M (1)

` ‖0 = |Θ`|(1− [Q(s)]`).
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To circumvent this issue, we design an improved algorithm that produces embedded subnetworks
on each iteration, allowing binary search to work (see Algorithm 1). Starting from the extreme
subnetworks S1 (fully-dense, corresponding to masks M(1)) and S2 (fully-sparse, corresponding
to masks M(2)), we narrow the sparsity gap between them while preserving S2 ⊆ S1 so that
EffectiveSparsity(S1) ≤ EffectiveSparsity(S2). For each layer, we keep track of unpruned con-
nections U` of S1 and pruned connections P` of S2, randomly sample parameters T` from U` ∩ P`
according toQ and form another network S by pruning out

⋃
` T` from S1 (or, equivalently, reviving

in S2). Depending on where effective sparsity of S lands relative to target s, we assign S to either S1

or S2 and branch. Since connections to be pruned from S1 (or revived in S2) are chosen randomly
at each step, weights within the same layer have equal probability of being pruned. Once S1 and S2

are only 1 parameter away from each other, the algorithm returns S1, yielding a connected model.
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