
Published as a conference paper at ICLR 2025

MASTERING MASSIVE MULTI-TASK
REINFORCEMENT LEARNING VIA
MIXTURE-OF-EXPERT DECISION TRANSFORMER

Yilun Kong1, Guozheng Ma2, Qi Zhao1, Haoyu Wang1,
Li Shen3∗, Xueqian Wang1∗, Dacheng Tao2

1Tsinghua University; 2Nanyang Technological University; 3Sun Yat-sen University
{kyl22,zhaoqi24,haoyu-wa22}@mails.tsinghua.edu.cn;
GUOZHENG001@e.ntu.edu.sg; mathshenli@gmail.com;
wang.xq@sz.tsinghua.edu.cn; dacheng.tao@ntu.edu.sg

ABSTRACT

Despite recent advancements in offline multi-task reinforcement learning (MTRL)
have harnessed the powerful capabilities of the Transformer architecture, most
approaches focus on a limited number of tasks, with scaling to extremely massive
tasks remaining a formidable challenge. In this paper, we first revisit the key impact
of task numbers on current MTRL method, and further reveal that naively expanding
the parameters proves insufficient to counteract the performance degradation as
the number of tasks escalates. Building upon these insights, we propose M3DT, a
novel mixture-of-experts (MoE) framework that tackles task scalability by further
unlocking the model’s parameter scalability. Specifically, we enhance both the
architecture and the optimization of the agent, where we strengthen the Decision
Transformer (DT) backbone with MoE to reduce task load on parameter subsets,
and introduce a three-stage training mechanism to facilitate efficient training with
optimal performance. Experimental results show that, by increasing the number of
experts, M3DT not only consistently enhances its performance as model expansion
on the fixed task numbers, but also exhibits remarkable task scalability, successfully
extending to 160 tasks with superior performance.

1 INTRODUCTION

Recent developments, such as Decision Transformer (Chen et al., 2021) and Trajectory Trans-
former (Janner et al., 2021), have reframed offline reinforcement learning (RL) as a sequence model-
ing problem, showcasing their ability to transform large-scale datasets into potent decision-making
agents. These models also prove valuable for multi-task RL (MTRL), offering a high-capacity frame-
work capable of accommodating task variances and assimilating knowledge from diverse datasets.
Additionally, they pave the way for incorporating innovations from language modeling (Brown et al.,
2020) into MTRL methodologies, unlocking new potential for cross-disciplinary advancements.

Drawing inspiration from large language models (LLM), where models harness a remarkable general-
ization capability to address a wide range of tasks, there’s a growing interest in the potential of training
RL agent to master increasingly diverse tasks. However, the application of these high-capacity sequen-
tial models to massive multi-task RL presents considerable challenges. Firstly, existing approaches
exhibit limited scalability with respect to task numbers. With most studies confined to dozens of
tasks in Atari or Meta-World (Lee et al., 2022; He et al., 2023; Hu et al., 2024), when scaled to a
larger number of tasks, their performance degrades significantly; while Gato te preed2022generalist
extends the research to over 600 tasks, its performance on simulation control tasks remains subopti-
mal. Secondly, current research either overlooks the impact of parameter scaling, with most studies
confined to very small models (Xu et al., 2022), or overly relies on the inherent parameter scalability
of the Transformer architecture. Although Gato (Reed et al., 2022) and Multi-Game DT (Lee et al.,
2022) have experimentally demonstrated the performance enhancements with expanded model size, a
comparison between the increase in model size and the corresponding performance gains suggests
that these approaches cannot be considered an efficient method of parameter scaling.

∗Corresponding Author

1

Published as a conference paper at ICLR 2025

To address the above challenges, we extend the research scenario to encompass 160 simulation
control tasks. We begin by investigating the pivotal role of task quantity on model performance
and gradient conflicts, followed by an exploration of the impact of model expansion on MTRL.
With the evident phenomenon that model performance and gradient conflicts deteriorate as the task
scales, our findings indicate that these declines are most pronounced when the task number remains
relatively low; once the number of tasks reaches sufficiently large, the performance degradation tends
to become gradual and steady. Therefore, one of our key insights emerged when viewed from a
reverse perspective: reducing the learning task numbers to a sufficiently small scale can significantly
enhance the performance. In our study on model scaling, the results surprisingly reveal that simply
increasing the model size rapidly hits the performance ceiling. Thus, naively expanding shared
parameters to offset the performance degradation from an increasing task numbers proves ineffective.
In contrast, expanding parameters while reducing the task numbers results in the most pronounced
performance gains. So how can we really minimize the number of tasks to be learned while efficiently
scaling model parameters, thereby maximizing performance?

Building upon these insights, we propose M3DT, a MoE-based DT for handling Massive Multi-task
RL. The overall framework is shown in Figure 2. We make improvements in both the architecture
and optimization of the RL agent. Specifically, we introduce a mixture-of-experts (MoE) in the DT
backbone to achieve parameter separation, allowing the backbone to learn shared knowledge across
all tasks, while each expert specializes in learning task-specific knowledge from a distinct small task
subset, which greatly simplifies the training of parameters in experts. This also unlocks effective
parameter expansion, as the number of experts is the most efficient way to scale models (Fedus
et al., 2022). By increasing the number of experts, we can not only introducing a large number of
parameters, but reduce the task load on each parameter subset, which mutually reinforce the model
performance. Furthermore, M3DT introduces a three-stage training mechanism, sequentially optimize
the DT backbone, each expert, and the router, respectively, which allows each module to explicitly
learn specialized knowledge without interference, mitigating the severe gradient conflicts encountered
when scaling to massive tasks, meanwhile reducing the difficulty of MoE training. Experimental
results show that, by increasing the number of experts, on one hand, M3DT can consistently enhance
its performance as model expansion on the fixed task scale; on the other hand, it exhibits remarkable
task scalability, successfully extending to 160 tasks with superior performance. In summary, our
research makes three significant contributions to the field of MTRL:

1. We rethink the challenges of sequence modeling in MTRL from the perspective of task
numbers and model size, analyze the performance degradation and gradient conflicts with
increasing task numbers, and identify the limited effectiveness of naively parameter scaling
in handling massive multi-task scenarios. (Section 2)

2. Based on the above insights, we propose M3DT, a novel framework that enhances the DT
architecture with MoE, explicitly assign the grouped task subsets to each expert through task
grouping, and introduce a three-stage training mechanism for training each module without
interference. By increasing the number of experts, we unlock the parameter scalability for
mastering massive tasks. (Section 3)

3. We demonstrate the superior performance of M3DT through rigorous testing on a broad
spectrum of task scales, analyze its functionality through extensive ablation studies, and
verify its task scalability and parameter scalability. (Section 4)

2 RETHINKING DT WITH MTRL

In this section, we delineate two primary challenges of employing DT in MTRL: the inability to scale
with task number and model size, laying the groundwork for the motivation behind our method.

2.1 LIMITED SCALABILITY OF TASK NUMBERS

The complexity of MTRL is significantly amplified with increasing task numbers, largely attributed
to escalating gradient conflicts. These conflicts stem from optimizing a shared set of parameters
across tasks with differing objectives, leading to compromises in task-specific optimization. To better
understand the impact of task numbers, we use Prompt-DT (Xu et al., 2022) and construct an offline
dataset containing 160 tasks based on Meta-World (Yu et al., 2020b), DM Control (Tassa et al., 2018),
and Mujoco Locomotion (Todorov et al., 2012), investigating the performance trends as the task
number scales from 10 to 160. We measure the model’s performance across three benchmarks using
normalized scores. The gradient conflict is assessed by the average cosine similarity between the
aggregate gradient and the gradients of each task, where a lower similarity indicates a higher degree
of gradient conflict. The implementation details are described in Appendix B.

2

Published as a conference paper at ICLR 2025

10 20 40 80 120 160
Number of Tasks

60

65

70

75

80

85

No
rm

al
ize

d
Sc

or
e

1.47M 5.29M 20.02M 77.78M 173.30M
Model Parameters

160

120

80

40

20

10

Ta
sk

 N
um

be
rs

61.46 67.19 71.61 71.68 71.65

63.09 70.33 72.49 72.88 73.14

65.11 72.22 73.94 75.66 75.70

70.22 74.74 78.17 79.19 78.51

75.65 81.12 83.57 84.63 83.95

82.41 86.01 87.12 88.46 88.17
0.16

0.18

0.20

0.22

0.24

0.26

0.28

Gradient Sim
ilarity

Normalized Score
Gradient Similarity

65

70

75

80

85

Figure 1: (left) With the number of tasks increases from 10 to 160, both model performance and gradient
similarity experience a noticeable decline. (right) As the model size increases, model performance rapidly
reaches its ceiling and ceases to improve thereafter.

During the expansion of the training tasks, we observe a divergent trend in the performance across
different task scales. The results presented in Figure 1 (left) highlight three distinct phenomena: •
Normalized Score: In the clear trend where the performance degrades with increasing task numbers,
the decline is pronounced when task number is relatively low (below 40 tasks), while it becomes much
more gradual once the tasks reach a sufficiently large number (above 80 tasks). • Gradient Conflicts:
The decrease of gradient similarity generally aligns with that of model performance, while it drops
more rapidly when the task number is low, and, counterintuitively, levels off and shows minimal
decline after exceeding 40 tasks. • Performance Variance: For each run, we test on different task
sets with the same number of tasks, thus the standard deviation of normalized scores reflects the
model’s robustness to variations in task combinations. For a massive number of tasks (120 to 160),
the standard deviation is small, as the variations in task subsets from the total 160 tasks are minimal.
For a moderate number of tasks (20 to 80), the standard deviation is large, indicating that different
task combinations significantly impact performance, as similar tasks are easier for learning. For few
tasks (10), despite greater variability in sampled task subsets, the standard deviation is much smaller
than that in moderate tasks, which underscores that when task number is sufficiently low, the learning
process is simple enough to be affected by the inter-task relationships.

Thus, a reverse perspective reveals: reducing the learning task number, particularly to a sufficiently
small scale, can significantly enhance model performance. When the task number is small enough,
challenges such as gradient conflicts and inter-task relationships become effortlessly manageable.

2.2 LIMITED SCALABILITY OF MODEL SIZE IN MTRL

Since existing models struggle with large-scale tasks in MTRL, a straightforward approach is to scale
up the model size to enhance its capacity. The supervised learning community has convincingly
demonstrated larger networks lead to improved performance, in particular for language models (Ka-
plan et al., 2020). To investigate whether this trend holds for the DT model in MTRL, we conduct
experiments with Prompt-DT, a language model-based method trained in supervised learning for
MTRL, of varying sizes across different task scales. Detailed implementation can be found in Ap-
pendix B.4. Results in Figure 1 (right) highlight some of the surprising phenomena, which contradict
the behaviors typically observed in previous research (Lee et al., 2022; Reed et al., 2022):

In MTRL, increasing the model size of DT swiftly hits the performance ceiling, preventing
sustained improvements. The horizontal comparison in Figure 1 (right) shows that expanding the
model parameters is effective within a limited range across all task scales; once the model exceeds
20M parameters, further scaling yields no meaningful improvements. This is clearly inefficient, as
scalability is a key advantage of the Transformer architecture, and the performance of approaches
relying solely on small models becomes increasingly constrained as the number of tasks scales. This
leads to another limitation: Scaling up the model size can not effectively mitigate the performance
degradation caused by the increase in task numbers. As shown by the clear decline from bottom-
left to top-right in Figure 1 (right) , larger task numbers prevent the model from achieving the strong
performance seen with fewer tasks, even with increased parameters.

Despite these discouraging phenomena, the heatmap reveals the most pronounced performance
increase from the top-left to the bottom-right. Building on the insights from the previous section, a
natural question arises:

Key Insight: How can we effectively minimize the number of tasks to be learned, while
efficiently scaling model parameters, thereby maximizing performance?

3

Published as a conference paper at ICLR 2025

Multi-Head Attention

Layer Norm

FFN

Layer Norm

Embedding

Predict Head

All Tasks

Multi-Head Attention

Layer Norm

FFN

Layer Norm

Embedding

Predict Head

Expert 1 Expert 𝑛…

… …

…

Small Subset 1

Grouping

Multi-Head Attention

Layer Norm

FFN

Layer Norm

Embedding

Predict Head

Expert 1 Expert 𝑛… ...
Router

All Tasks

…

Transformer Block ×	𝐿

Stage 1.
Backbone Training

Stage 2. Additionally introduce Expert module
Task Grouping & Expert Training

Stage 3. Additionally introduce Router module
Router Training

Small Subset 𝑛

Expert 2

Small Subset 2

…

Figure 2: Overview of M3DT. Stage 1: We train the PromptDT on all tasks as the backbone. Stage 2: We
propose task grouping to obtain various small task subsets, and introduce expert module into every transformer
block, with each expert handling a specific task subset. Only the experts are optimized in this stage. Stage 3:
We introduce the router to dynamically assign weights to all experts for training across all tasks. Only the router
is optimized in this phase.

3 METHODOLOGY: M3DT
From the previous observations and discussions, our key insight is that through task grouping
and parameter separation, we can assign much fewer tasks to each parameter subset, leading to
exceptional performance. And by expanding the number of parameter subsets while preserving their
individual sizes, and simultaneously increasing the number of task groups, we can both reduce the
task load on each parameter subset and enhance the model’s capacity with more parameters, which
enables a scalable solution to handle an increasing number of tasks by expanding model size without
compromising performance.

Based on this insight, we introduce M3DT, which includes two key enhancements in both the
architecture and optimization of the agent to improve the task and parameter scalability in MTRL.
The first enhancement enables efficient parameter separation and expansion to reduce task load,
achieved by incorporating an MoE architecture alongside the FFN in Prompt-DT, as detailed in
Section 3.1. The second enhancement includes a task grouping process and three distinct training
stages that optimize the agent’s learning process, especially for ensuring each parameter subset can
effectively handle a specific task subset without interference, as outlined in Section 3.2. The overall
framework of our method is illustrated in Figure 2.

3.1 ARCHITECTURE: MOE FOR REDUCING TASK LOAD

We propose to use an MoE architecture with scalable experts for massive tasks. The MoE structure is
characterized by its composition of N modular experts and a router, θMoE = {θ1, ..., θN , θr}, where
each expert θi is responsible for a distinct task subset and the router θr dynamically assigns weights
for these experts. Accordingly, the parameters of a given expert are updated only by gradients from its
corresponding small task subset, fully leveraging the remarkable learning capability for fewer tasks.
Meanwhile, by increasing the number of experts, we can further decrease the task load assigned to
each expert, thereby effectively alleviating the severe gradient conflicts caused by the overwhelming
task numbers and enhancing the performance.

The complete architecture of M3DT is illustrated in the right of Figure 2. We employ the complete
Prompt-DT (Xu et al., 2022) as the backbone. As previous works have investigated the crucial role of
the feed-forward network (FFN) in transformer module in multi-task settings (Tang et al., 2024), we
incorporate the MoE architecture by augmenting each Transformer block with additional experts and
the router alongside the preserved FFN, which can maintain the learned shared knowledge from all
tasks in the backbone model. We use networks identical to the FFN module as experts and employ
an MLP as the router. By this, the MoE and the backbone work in tandem, enabling the agent to
dynamically adjust the utilization of different experts for handling diverse types of tasks.

3.2 OPTIMIZATION: THREE-STAGE TRAINING MECHANISM

Considering our unique training purpose, namely the explicit task assignment and independent
training for each expert, as well as the inherent challenges of training MoE, we propose a three-stage

4

Published as a conference paper at ICLR 2025

training mechanism, with distinct training processes designed for the backbone, experts, and router,
each trained separately. The overall training process is illustrated in Figure 2.

Backbone training with minimal gradient conflicts. We first train Prompt-DT on all tasks to capture
shared knowledge, enabling it to embed information and predict actions across tasks, which serves as
the backbone architecture for M3DT. This training process results in intense gradient conflicts, as
illustrated in Figure 1 (left). To gain deeper insight into the progression of gradient conflicts during
training, we conduct experiments that illustrate how performance and gradient conflicts develop
across training iterations in Figure 5 (left). Initially, the model’s performance improves rapidly with
gradient conflicts escalate from a low initial value, enabling fast knowledge acquisition. However, as
training progresses, gradient conflicts rapidly reach the peak, leading to diminishing performance
gain. Based on this, we restrict training of the backbone to the early stage before gradient conflicts
reach their peak. This strategy allows the model to efficiently learn shared knowledge, ensuring the
shared parameters align with the solution space while preventing excessive updates on dominant
tasks, thereby minimizing negative interference with conflicting tasks. More discussion is detailed in
Section C. This approach provides a solid foundation for the subsequent expert training.

Task grouping and experts individually training. We employ task grouping and then train the
experts on smaller task subsets, which not only reduces the task load to achieve better performance,
but also mitigates the severe gradient conflicts that arise in shared parameters after a certain stage
of training. We begin by proposing two task grouping methods: (1) random grouping: based on
the satisfactory results on few tasks as illustrated in Figure 1 (left), we randomly divide all tasks
into equally sized subsets for naively reducing the task number to a lower value; (2) gradient-based
grouping: we first calculate the agreement vectors (Hu et al., 2024) (as detailed in Appendix D) for
each task in the current backbone as a measure of task similarity, and then apply K-means to group
these vectors and the corresponding tasks. After obtaining the task subsets, we introduce a dedicated
expert for each subset. The expert module is trained on its specific task subset with the backbone
parameters frozen, preserving the shared knowledge while allowing the expert to focus on learning
task-specific information. By limiting the size of each task subset, we can ensure effective learning
on these parameter subsets. Additionally, training each expert independently helps mitigate the issue
of imbalanced updates among experts in MoE. Consequently, when dealing with large-scale tasks,
we can expand the number of experts and task groups to mitigate the severe performance drop.

Router training. Finally, we train the router on all tasks, enabling it to dynamically assign weights
to different experts for various tasks. In this stage, we freeze the parameters of both the backbone and
all experts, allowing only the router to be optimized. This strategy significantly simplifies the training
of the MoE while preserving the knowledge already acquired by the model.

4 EXPERIMENTS AND ANALYSIS

In this section, we conduct extensive experiments to answer the following questions: (1) How does
M3DT compare to other baselines in the massive multi-task regime? (2) Does M3DT exhibit task
scalability and parameter scalability? (3) What makes M3DT effective? The detailed implementations
are illustrated in Appendix B, and further analysis is illustrated in Appendix C due to page limitation.

4.1 M3DT HELPS TASK AND PARAMETER SCALABILITY

In this study, we benchmark M3DT and its variants against baselines on different task scales. We
compare the performance of the baselines at their default size and an expanded size. The variants of
M3DT include M3DT-Random, which employ random grouping to obtain task subsets and train
experts; M3DT-Gradient, which utilizes gradient information for grouping.

As shown in Table 1, M3DT-Random surpasses all other methods at all task scales, achieving a 0.1%,
4.3% and 5.4% improvement in 10, 80 and 160 tasks, respectively, compared to the best baseline. The
advantages of our method become more pronounced as the number of tasks increases. By employing
random grouping, M3DT-Random already effectively competes with the current state-of-the-art
techniques, highlighting the significant effectiveness of introducing parameter subsets and reducing
corresponding task load. Furthermore, M3DT-Gradient enhances the performance by identifying
better task groups to mitigate learning complexity, resulting in substantial gains of 6.6% and 7.5% in
80 tasks and 160 tasks, respectively. M3DT also effectively alleviates the performance degradation
with increasing task numbers. Compared to the severe performance drop of around 20% observed
in other baselines when scaling tasks numbers from 10 to 160, our approach only experienced a
12.3% decline. And M3DT achieves a higher score on 160 tasks than other baselines do on 80 tasks,
demonstrating remarkable scalability across task numbers.

5

Published as a conference paper at ICLR 2025

Table 1: Comparison of M3DT with baselines of varying sizes across three task scales. M3DT
consistently outperforms other baselines and achieves remarkable task scalability, which is attributed
to its parameter scalability, as shown in Figure 3.

Task Scale 10 Tasks 80 Tasks 160 Tasks

Method Score Parameters Score Parameters Score Parameters

MTDT-Small 82.75± 2.29 1.47M 66.65± 0.43 1.47M 59.19± 1.77 1.47M
MTDT-Large 88.92± 0.98 173.30M 74.38± 1.33 173.30M 70.65± 1.67 173.30M
PromptDT-Small 82.41± 1.47 1.47M 65.11± 2.65 1.47M 61.46± 1.78 1.47M
PromptDT-Large 88.17± 1.41 173.30M 75.70± 1.62 173.30M 71.65± 1.13 173.30M
HarmoDT-Small 79.75± 1.32 1.47M 60.71± 3.91 1.47M 57.27± 0.84 1.47M
HarmoDT-Large 86.63± 1.28 173.30M 75.56± 1.69 173.30M 72.80± 2.89 173.30M

M3DT-Random (Ours) 89.09± 1.20 47.87M 78.92± 1.21 98.37M 76.74± 0.94 174.12M
M3DT-Gradient (Ours) 89.23 ± 1.12 47.87M 80.66 ± 0.97 98.37M 78.21 ± 0.47 174.12M

47.87M (8)
73.12M (16)

98.37M (24)
123.62M (32)

Model Size (Expert Num)

73

74

75

76

77

78

79

80

81

N
or

m
al

iz
ed

 S
co

re

PromptDT-L on 40 tasks

PromptDT-L on 80 tasks

Parameter scalability on 80 tasks

mt80-gradient
mt80-random
mt160-gradient
mt160-random

47.87M (8)
73.12M (16)

98.37M (24)
123.62M (32)

148.87M (40)
174.12M (48)

Model Size (Expert Num)

71

72

73

74

75

76

77

78

79

PromptDT-L on 80 tasks

PromptDT-L on 160 tasks

Parameter scalability on 160 tasks

Figure 3: By increasing the number of experts, M3DT
effectively unlocks the parameter scalability, further
helping to tackle task scalability.

The scalability of M3DT in handling massive
tasks is attributed to its parameter scalability,
which can meanwhile reduce the task load on
each parameter subset by increasing the num-
ber of experts, thereby enhancing overall perfor-
mance. We conduct experiments on the num-
ber of experts across 80 tasks and 160 tasks, as
shown in Figure 3. For 10 tasks, 8 experts al-
ready yield excellent results, achieving scores
of 89.09 and 89.23 with 47.87M parameters.
In 80 and 160 tasks, expanding the parameter
size within a certain range through increasing
the number of experts can significantly improve
model performance, achieving a 11.2% and 11.7% improvement, separately. Since both M3DT-
Random and M3DT-Gradient show diminishing performance gains after reaching 40 experts on
160 tasks, we use 40 experts in subsequent experiments unless stated otherwise. Additionally, we
analyze the reasons why increasing the number of experts cannot continually improve performance
and eventually reaches a performance ceiling in Appendix C.

5 RELATED WORK

Multi-Task RL Multi-task RL aims to learn a shared policy for a diverse set of tasks. One of the
most straightforward approaches to MTRL is to formulate the multi-task model as task-conditional
sequence modeling Xu et al. (2022); Reed et al. (2022); Lee et al. (2022); He et al. (2023); Hu
et al. (2024). Some methods also focus on handling gradient conflicts among different tasks Yu et al.
(2020a); Chen et al. (2020); Liu et al. (2021). On the other hand, some methods employed a dedicated
shared structure to leverage the shared knowledge D’Eramo et al. (2024); Yang et al. (2020); Sun
et al. (2022). While most of these methods address tens or even less tasks, we focus on scaling to a
significantly larger number of tasks, achieving task scalability.

Mixture-of-Experts MoEs have recently helped scaling language models up to trillions of parameters
thanks to their modular nature Lepikhin et al. (2020); Fedus et al. (2022). MoEs also help performance
in multi-task settings Fan et al. (2022); Ye & Xu (2023); Dou et al. (2024). There have been few works
exploring MoEs in RL for single Akrour et al. (2021); Obando-Ceron et al. (2024) and multi-task
learning Hendawy et al. (2023); Huang et al. (2024). While M3DT explicitly assign tasks to specific
experts and train each expert independently to handle multi-task problems.

6 CONCLUSION

In this study, we first delve into the challenges of sequence modeling in MTRL, analyze the per-
formance degradation and gradient conflicts with increasing task numbers, and identify the limited
effectiveness of naively scaling parameter in MTRL. Based on these insights, we introduce M3DT, a
novel approach designed to unlock the parameter scalability for handling massive tasks. By employ-
ing task grouping and MoE, M3DT significantly reduces the task load assigned to each parameter
subset while enhancing the overall performance through the expansion of experts. We propose a
three-stage training mechanism that allows explicit task assignment to each expert, enabling sequen-
tial training of different modules without interference. Our empirical evaluations across diverse task
scales underscore M3DT’s superior performance compared to existing baselines, establishing its
state-of-the-art effectiveness in MTRL scenarios.

6

Published as a conference paper at ICLR 2025

REFERENCES

Riad Akrour, Davide Tateo, and Jan Peters. Continuous action reinforcement learning from a mixture
of interpretable experts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(10):
6795–6806, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. Advances in Neural Information Processing Systems, 33:2039–2050, 2020.

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Sharing knowledge
in multi-task deep reinforcement learning. arXiv preprint arXiv:2401.09561, 2024.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Wei Shen, Limao Xiong, Yuhao Zhou, Xiao
Wang, Zhiheng Xi, Xiaoran Fan, et al. Loramoe: Alleviating world knowledge forgetting in
large language models via moe-style plugin. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 1932–1945, 2024.

Zhiwen Fan, Rishov Sarkar, Ziyu Jiang, Tianlong Chen, Kai Zou, Yu Cheng, Cong Hao, Zhangyang
Wang, et al. M3vit: Mixture-of-experts vision transformer for efficient multi-task learning with
model-accelerator co-design. Advances in Neural Information Processing Systems, 35:28441–
28457, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous
control. arXiv preprint arXiv:2310.16828, 2023.

Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xue-
long Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
learning. Advances in neural information processing systems, 36:64896–64917, 2023.

Ahmed Hendawy, Jan Peters, and Carlo D’Eramo. Multi-task reinforcement learning with mixture of
orthogonal experts. arXiv preprint arXiv:2311.11385, 2023.

Shengchao Hu, Ziqing Fan, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng Tao. Harmodt:
Harmony multi-task decision transformer for offline reinforcement learning. arXiv preprint
arXiv:2405.18080, 2024.

Suning Huang, Zheyu Zhang, Tianhai Liang, Yihan Xu, Zhehao Kou, Chenhao Lu, Guowei Xu, Zhen-
grong Xue, and Huazhe Xu. Mentor: Mixture-of-experts network with task-oriented perturbation
for visual reinforcement learning. arXiv preprint arXiv:2410.14972, 2024.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

7

Published as a conference paper at ICLR 2025

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadar-
rama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision
transformers. Advances in Neural Information Processing Systems, 35:27921–27936, 2022.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for
multi-task learning. Advances in Neural Information Processing Systems, 34:18878–18890, 2021.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Computing Surveys, 55(9):1–35, 2023.

Basil Mustafa, Carlos Riquelme, Joan Puigcerver, Rodolphe Jenatton, and Neil Houlsby. Multimodal
contrastive learning with limoe: the language-image mixture of experts. Advances in Neural
Information Processing Systems, 35:9564–9576, 2022.

Johan Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Foerster,
Gintare Karolina Dziugaite, Doina Precup, and Pablo Samuel Castro. Mixtures of experts unlock
parameter scaling for deep rl. arXiv preprint arXiv:2402.08609, 2024.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist
agent. arXiv preprint arXiv:2205.06175, 2022.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Lingfeng Sun, Haichao Zhang, Wei Xu, and Masayoshi Tomizuka. Paco: Parameter-compositional
multi-task reinforcement learning. Advances in Neural Information Processing Systems, 35:
21495–21507, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Anke Tang, Li Shen, Yong Luo, Nan Yin, Lefei Zhang, and Dacheng Tao. Merging multi-task models
via weight-ensembling mixture of experts. arXiv preprint arXiv:2402.00433, 2024.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang Gan.
Prompting decision transformer for few-shot policy generalization. In international conference on
machine learning, pp. 24631–24645. PMLR, 2022.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. Advances in Neural Information Processing Systems, 33:4767–4777, 2020.

Hanrong Ye and Dan Xu. Taskexpert: Dynamically assembling multi-task representations with
memorial mixture-of-experts. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 21828–21837, 2023.

8

Published as a conference paper at ICLR 2025

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems, 33:
5824–5836, 2020a.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020b.

A PRELIMINARY

Offline Reinforcement Learning. The goal of RL is to learn a policy πθ(a|s) maximizing the
expected return E[

∑∞
t=0 γ

tR(st, at)] in a Markov Decision Process (MDP) (S,A,P,R, γ, d0), with
state space S, action space A, environment dynamics P(s′|s, a) : S × S × A → [0, 1], reward
function R : S ×A → R, discount factor γ ∈ [0, 1), and initial state distribution d0 (Sutton & Barto,
2018). In the offline setting (Levine et al., 2020), a static dataset D = {(s, a, s′, r)}, collected by a
behavior policy πβ , is provided. Offline RL algorithms learn a policy entirely from this static offline
dataset, without any online interactions with the environment.

Multi-Task RL. In multi-task RL, different tasks can have different reward functuions, state spaces,
and transition functions. Given a specific task T ∼ p(T), a task-specified MDP can be defined as
(ST ,AT ,PT ,RT , γ, dT0). Instead of solving a single MDP, the goal is to find an optimal policy
that maximizes expected return over all tasks: π∗ = argmaxπ ET ∼p(T)Eat∼π[

∑∞
t=0 γ

trTt]. The
static dataset D is correspondingly partitioned into per-task sub-sets as D = ∪N

i=1Di, where N is the
number of tasks.

Prompt Decision Transformer. The integration of Transforme (Vaswani, 2017) in offline RL for
sequence modeling has gained prominence in recent years, such as Decision Transformer (Chen
et al., 2021). Prompt-DT (Xu et al., 2022) extends DT by using task-specific prompts to enhance
multi-task learning and few-shot generalization. Unlike text-based prompt in NLP (Liu et al., 2023),
Prompt-DT employs short trajectories as prompts, which consist of state, action, and return-to-go
tuples (s∗, a∗, r̂∗), providing directed guidance to RL agents with few-shot demonstrations. Each
element marked with the superscript ·∗ is relevant to the trajectory prompt. These trajectory prompts
are much shorter than the task’s horizon, encompassing essential information to only identify task, yet
inadequate for task imitation. During training with offline data, Prompt-DT utilizes τ inputi,t = (τ∗i , τi,t)
as input for each task Ti, combining a K∗-step trajectory prompt τ∗i with a normal K-step trajectory
τi,t. The prompt trajectory is formulated as:

τ inputi,t = (r̂∗i,1, s
∗
i,1, a

∗
i,1, ..., r̂

∗
i,K∗ , s∗i,K∗ , a∗i,K∗ ,

r̂i,t−K+1, si,t−K+1, ai,t−K+1, ..., r̂i,t, si,t, ai,t).
(1)

The action a is predicted through a prediction head linked to the state token. The training objective
aims to minimize the mean-squared loss:

LDT =E
τ
input
i,t ∼Di

[
1

K

t∑
m=t−K+1

(ai,m − π(τ∗
i , τi,m))

2

]
. (2)

Prompt-DT has become a widely used backbone in recent research on MTRL.

B EXPERIMENTAL DETAILS

B.1 DETAILED ENVIRONMENTS

We consider a total of 160 continuous control tasks from 3 task domains: Meta-World Yu et al.
(2020b), DMControl Tassa et al. (2018), Mujoco Locomotion Todorov et al. (2012). This section
provides an exhaustive introduction of the tasks considered, including their observation and action
dimensions, and the calculation of normalized score. Our goal is not to propose a new benchmark
with 160 tasks, but rather to use a sufficiently large number of tasks to explore the impact of task
quantity.

9

Published as a conference paper at ICLR 2025

B.1.1 META-WORLD

The Meta-World benchmark encompasses a diverse array of 50 distinct manipulation tasks, unified
by shared dynamics. These tasks involve a Sawyer robot engaging with a variety of objects, each
distinguished by unique shapes, joints, and connective properties. The complexity of this benchmark
lies in the heterogeneity of the state spaces and reward functions across tasks, as the robot is required
to manipulate different objects towards varying objectives. The robot operates with a 4-dimensional
fine-grained action input at each timestep, which controls the 3D positional movements of its end
effector and modulates the gripper’s openness. The state space is unified into 39 dimension. In its
original configuration, the Meta-World environment is set with fixed goals, a format that somewhat
limits the scope and realism of robotic learning applications. To address this and align with recent
advancements in the field, as noted in works by Yang et al. (2020); Sun et al. (2022); He et al. (2023);
Hu et al. (2024), we have modified all tasks to incorporate a random-goal setting. For the offline
dataset, we follow the works He et al. (2023); Hu et al. (2024) and utilize their dataset with the
near-optimal trajectories, which consists of the experience from random to expert (convergence) in
SAC-Replay Haarnoja et al. (2018). The primary metric for evaluating performance in this benchmark
is the average success rate across all tasks, providing a comprehensive measure of the robotic system’s
adaptability and proficiency in varied task environments. We directly use the success rate on each
task as its normalized score.

B.1.2 DMCONTROL

The tasks in DMControl involve significantly more diverse embodiments, state spaces, action spaces,
and reward functions, which greatly increases their complexity. We consider a total of 30 continuous
control tasks in the DMControl domain, including 19 original DMControl tasks and 11 new (custom)
tasks created specifically for M3DT benchmarking, following the work Hansen et al. (2023). We
directly use the dataset collected by Hansen et al. (2023), and we only use the first 2,000 trajectories
for each task to ensure consistency in dataset size with other tasks. We list all used DMControl tasks
in Table 2. For evaluation, we linearly scale the original reward range of [0,1000] to [0,100], using it
as our normalized score.

B.1.3 MUJOCO LOCOMOTION

In this paper, we also employ a diverse array of meta-RL control tasks to construct a dataset with
a sufficient number of tasks for exploring the challenges of MTRL when confronted with a large
number of tasks. We directly utilize the datasets proposed by Xu et al. (2022). The tasks are detailed
as follows:

• Cheetah-vel: It defines 40 unique tasks, each associated with a specific goal velocity,
uniformly distributed between 0 and 3 m/s. The agent’s performance is assessed based on
the l2 error relative to the target velocity, with a penalty for deviations. These 40 tasks
share a unified state space of 20 and an action space of 6. Based on the reward ranges of
these environments, we linearly map the return values within the interval [-100, -30] to the
normalized range of [0, 100] as our normalized scores, while returns outside this range are
directly capped at 0 or 100, respectively.

• Ant-dir: We also use 40 tasks in this domain, each with a goal direction uniformly sampled
in a two-dimensional plane. The agent, an 8-jointed ant, is incentivized to attain high
velocity in the designated direction. The state space for these tasks has a dimensionality of
27, and the action space consists of 8 dimensions. We linearly map the return values within
the interval [0, 500] to the normalized range of [0, 100], while returns outside this range are
directly capped at 0 or 100, respectively, to calculate our normalized scores.

By using normalized scores, we can align tasks with initially inconsistent evaluation metrics, enabling
us to assess the model’s ability to simultaneously tackle multiple tasks. To address the inconsistency
in state and action spaces across tasks, we zero-pad all states and actions to their largest respective
dimensions (i.e. 39 and 8, respectively), and mask out invalid action dimensions in predictions made
by the policy during both training and inference.

B.2 BASELINES

We compare our proposed M3DT with the following DT-based baselines.

10

Published as a conference paper at ICLR 2025

Table 2: DMControl tasks used in this paper.
Task Observation dim Action dim New?
Acrobot Swingup 6 1 N
Cartpole Balance 5 1 N
Cartpole Balance Sparse 5 1 N
Cartpole Swingup 5 1 N
Cartpole Swingup Sparse 5 1 N
Cheetah Jump 17 6 Y
Cheetah Run 17 6 N
Cheetah Run Back 17 6 Y
Cheetah Run Backwards 17 6 Y
Cheetah Run Front 17 6 Y
Cup Catch 8 2 N
Cup Spin 8 2 Y
Finger Spin 9 2 N
Finger Turn Easy 12 2 N
Finger Turn Hard 12 2 N
Fish Swim 24 5 N
Hopper Hop 15 4 N
Hopper Hop Backwards 15 4 Y
Hopper Stand 15 4 N
Pendulum Spin 3 1 Y
Pendulum Swingup 3 1 N
Reacher Easy 6 2 N
Reacher Hard 6 2 N
Reacher Three Easy 8 3 Y
Reacher Three Hard 8 3 Y
Walker Run 24 6 N
Walker Run Backwards 24 6 Y
Walker Stand 24 6 N
Walker Walk 24 6 N
Walker Walk Backwards 24 6 Y

• MTDT: We extend the DT architecture Chen et al. (2021) to learn from multitask data.
Specifically, MTDT concatenates an embedding z and a state s as the input tokens, where
z is the encoding of task ID. In evaluation, the reward-to-go and task ID are fed into
the Transformer to provide task-specific information. Leveraging the scalability of the
Transformer architecture, we compare the performance of this method at both its default
size (1.47M) and expanded size (173.30M).

• PromptDT Xu et al. (2022): PromptDT built on DT aims to learn from multi-task data
and generalize the policy to unseen tasks. It leverages short task trajectories as prompts to
guide the model in identifying the current task. PromptDT generates actions based on the
trajectory prompts and reward-to-go. We compare the performance of this method at both
its default size (1.47M) and expanded size (173.30M).

• HarmoDT Hu et al. (2024): HarmoDT built on PromptDT aims to lean a specific mask
for each task, effectively shielding the model’s parameters that conflict most with the task,
thereby mitigating the severe gradient conflicts in MTRL. During evaluation, HarmoDT
also generates actions based on the trajectory prompts and reward-to-go. We compare the
performance of this method at both its default size (1.47M) and expanded size (173.30M).

B.3 TASK SELECTION

To mitigate the impact of task selection and combination on performance, we use different task
combinations for each run seed in scenarios involving 10, 20, 40, 80, and 120 tasks. To fairly analyze
the effects solely caused by task quantity, we maintain consistent average task difficulty across various
task scales and seeds. Specifically, we train 160 separate PromptDT models for each of the 160 tasks
and compute the score for each task, which serves as the task difficulty for that task. When selecting
tasks for different task scales, we ensure that the average task difficulty of the chosen task set aligns

11

Published as a conference paper at ICLR 2025

with that of the complete set of 160 tasks. We use the 1.47M PromptDT model to compute the task
difficulty and derive the task sets for all task scales. Subsequently, all experiments are conducted
using the same task set to eliminate potential bias.

B.4 IMPLEMENTATION OF MODEL EXPANSION

In this experiment, we do not invest significant effort into exploring the optimal structure for each
baseline model at different parameter scales. Instead, we adopt their default number of layers and
attention heads, only increasing the width of the models, i.e. the dimension of their hidden states.
Although previous research Kaplan et al. (2020) have shown that the model structure has only a
marginal impact on performance when the parameter size remains constant, we conduct experiments
with PromptDT to verify whether our expanding approach is reasonable in the context of MTRL.
The results are shown in Figure 4, where dmodel denotes the width of the model, nlayer and nhead

denote the number of layers and attention heads, respectively. In MTRL, the model performance is
also weakly depends on the model architecture. We summarize the specific structures of each scaled
model in Table 3.

101 102

Aspect Ratio dmodel/nlayer

60

65

70

75

80

N
or

m
al

iz
ed

 S
co

re

101 102

Attention Head Dim dmodel/nhead

173M
77M

Figure 4: Performance depends very mildly on model shape when the total number of parameters is
held fixed.

Table 3: DMControl tasks used in this paper.
Parameters Layers Attention Heads Model Width
1.47M 6 8 128
5.29M 6 8 256
20.02M 6 8 512
77.78M 6 8 1024
173.30M 6 8 1536

B.5 EXPERIMENTAL SETUPS, HYPER-PARAMETERS AND RESOURCES

In this section, we introduce the implementation for M3DT. We employ the PromptDT with 5.29M
parameters as the backbone of M3DT, with the structure outlined in Table 3. The structures of our
introduced experts are identical to that of the FFN in the backbone. We employ a 5-MLP as our
router. The padded input and output dimensions are 39 and 8, respectively, as illustrated in B.1. All
experiment in this paper are run with 3 seeds. The specific model parameters and hyper-parameters
utilized in our training process are outlined in Table 4. We use NVIDIA GeForce RTX 4090 to train
and evaluate each model except HarmoDT-Large, while it is trained and evaluated on NVIDIA A100
40G due to its substantial resource requirements.

12

Published as a conference paper at ICLR 2025

Table 4: Hyper-parameters of M3DT in our experiments.
Parameter Value
Number of layers 6
Number of attention heads 8
Hidden dimension 256
Number of experts [8,16,24,32,40,48]
Nonlinearity function ReLU
Batch size 16
Prompt length K 20
Dropout 0.1
Learning rate 1.0e-4
Optimizer Adam
Total rounds 1e6

-Backbone training rounds 4e5
-Expert training rounds 2e5
-Router training rounds 4e5

C FURTHER ANALYSIS

C.1 IS GROUPED TRAINING IMPORTANT?

To investigate whether the success of M3DT is primarily due to the explicit task grouping and
three-stage training mechanism, or the inherent advantages of the MoE architecture itself, we conduct
a detailed ablation study, as illustrated in Table 5. Despite utilizing the MoE structure, the absence of
our meticulously designed training strategy leads to a substantial performance degradation. Training
a PromptDT with MoE end-to-end from scratch (i.e. M3DT w/o 3-stage training) only yields results
similar to those of a standalone PromptDT with the same parameter scale, while freezing the trained
backbone and jointly training all experts and the router on all tasks (i.e. M3DT w/o grouping) results
in a worse performance, with a score of 67.34. In addition, after training the experts in groups,
simultaneously fine-tuning them when training the router (i.e. both M3DT-R/G w/o expert freezing)
also leads to suboptimal results. This further underscores the validity of our entire framework.

Table 5: Ablation study on different training process of M3DT, which illustrate the effectiveness of
our dedicated three-stage training mechanism.

Method Normalized Score

M3DT-R 76.67± 0.29
M3DT-G 77.89± 0.47
M3DT w/o 3-stage training 71.90± 0.70
M3DT w/o grouping 67.34± 0.56
M3DT-R w/o expert freezing 71.89± 0.63
M3DT-G w/o expert freezing 71.88± 0.62

C.2 IS EARLY STOPPING OF BACKBONE TRAINING TRULY EFFECTIVE?

As illustrated in Figure 5 (left), the gradient conflicts in the PromptDT backbone progressively escalate
with training duration, eventually reaching a peak, after which the performance improvements become
notably sluggish. To assess the efficacy of early stopping, which is employed to mitigate these severe
gradient conflicts at the expense of some performance gains, we conduct a comparison of M3DT
using PromptDT trained for varying steps as backbone. The results are depicted in Figure 5 (right).
M3DT consistently achieves strong performance across various training durations, with early stopping
at 400k steps, just as gradient conflicts peak, yielding the most optimal results. This demonstrates the
robustness of M3DT in the initial training phase. Training for only 200k steps prevents the backbone
from fully learning the shared knowledge, causing the parameters to deviate from the optimal solution
space, resulting in suboptimal performance. On the other hand, continuing training beyond 400k
steps, when gradient conflicts are extremely severe, also leads to a decline in M3DT’s performance.

13

Published as a conference paper at ICLR 2025

0 0.2 0.4 0.6 0.8 1
Iterations of Backbone Training (In millions)

0

0.2

0.4

0.6

0.8

G
ra

di
en

t C
on

fli
ct

s

Training curves of the PromptDT

0.2 0.4 0.6 0.8 1
Iterations of Backbone Training (In millions)

72

73

74

75

76

77

78

N
or

m
al

iz
ed

 S
co

re

PromptDT-L on 160 tasks

Ablation on Backbone training duration

M3DT-R
M3DT-G0

20

40

60

80

Performance
Gradient Conflicts

Figure 5: (left) Training curves of the PromptDT, where the early stage exhibits mild gradient conflicts
with swift performance gain; (right) The overall performance of M3DT varies with the number of
training steps applied to the backbone, with optimal performance occurring just as gradient conflicts
reach the peak.

This is likely due to the parameters become overfitted to tasks whose gradients dominate, causing
them to deviate further from the solution space of other conflicting tasks. Introducing expert modules
at this time for grouped task learning also falls victim to this issue, as they unable to learn the specific
knowledge on these conflicting tasks, thus failing to alleviate the performance drop.

C.3 WHAT AFFECTS PARAMETER EXPANSION?

25 50 75 100 125 150 175 200
Model Size (M)

68

70

72

74

76

78

80

N
or

m
al

iz
ed

 S
co

re

M3DT-R
M3DT-G
M3DT-R-Small
M3DT-G-Small

Overall Performance
Expert Performance

Figure 6: Performance curves of M3DT with increasing model
size (i.e., the number of experts) across different base sizes,
where each point denotes the addition of 8 experts.

In this study, we introduce: Expert Per-
formance: the averaged results of di-
rectly testing all experts on their cor-
responding task subsets without involv-
ing the router, as the upper-bound per-
formance of M3DT; Small: a scaled-
down version of M3DT, where the width
of backbone, experts, and router are all
proportionally reduces. As shown in
Figure 6, the main factors influencing
the parameter scalability of M3DT are
threefold: (1) Model width: With the
number of experts increasing, M3DT-
Small achieves significant performance
improvements with modest growth in pa-
rameters. However, due to the constrains
of the small model width on the capacity
of each module, its scalability to the number of experts is poor, reaching the performance ceiling
at only 24 experts. As a result, its parameter scalability is inherently constrained. (2) Router: The
performance gap between the dashed and solid lines reflects the performance loss attributed to the
router. When the number of experts is small, the router can easily allocate weights across the few
experts, resulting in minimal performance loss or even better results. As the number of experts
increases, the difficulty of assigning weights to the experts grows, resulting in a progressively larger
performance gap, which peaks when the expert performance continues to improve while the overall
performance plateaus. (3) Backbone + Expert: Expert performance also tends to plateau when
the number of experts becomes sufficiently large. This is primarily due to the shared knowledge
learned by the backbone across all tasks is limited, which restricts further performance improvements,
regardless of the expert’s capabilities. Additionally, when the number of experts is large enough and
each expert already faces a sufficiently small task subset, further increasing the number of experts
yields diminishing returns in reducing the task load.

14

Published as a conference paper at ICLR 2025

C.4 ROUTER DESIGN.

We compare the Top-K routing (Shazeer et al., 2017) strategy to investigate whether re-
ducing the number of activated experts can enhance the scalability of expert number. In
this experiment, we employed Top-4 routing, and the results are presented in Figure 7.

8 16 24 32 40
Expert Num

64

66

68

70

72

74

76

78

N
or

m
al

iz
ed

 S
co

re

M3DT-G M3DT-G-Top4

Figure 7: Top-K routing selects the router’s top-k out-
puts, applies softmax to obtain probabilities, and com-
putes the weighted sum of the corresponding expert out-
puts. M3DT with Top-4 router fails to scale with the
number of experts.

Although our proposed three-stage training
mechanism significantly simplifies the training
of MoE, Top-4 router fails to scale the number of
experts, and performance deteriorates as expert
number increases. This is attributed to improper
routing load balancing, where certain routes are
excessively optimized, combined with the insta-
bility in router training induced by sparsity. This
finding is consistent with prior work demonstrat-
ing the difficulty in scaling up deep RL networks
with Top-K router (Obando-Ceron et al., 2024).
While it is possible some losses (Riquelme et al.,
2021; Mustafa et al., 2022) may result in better
Top-K performance, this finding suggests that
M3DT benefits from having a weighted combi-
nation of all experts from all task subsets.

C.5 EXPERT DESIGN.

Our proposed MoE architecture replaces the FFN with an MoE in each transformer block. This is
based on what is common practice when adding MoEs to transformer architectures, but is by no means
the only way to utilize MoEs. Here we investigate a variant: Big: Each expert is a full transformer
architecture, where the embedding layer and prediction layer are shared in the backbone. However,
M3DT-Gradient-Big only results in a normalized score of 76.53, compared to M3DT-Random scored
77.89, which confirms our intuition that employing normal MoE performs better.

D AGREEMENT VECTOR

This section elucidates the utilization of the Agreement Vector, as proposed by Hu et al. (2024),
as a metric for task grouping. For each task Ti, the agreement score vector is defined as follows:
A(Ti) = gi ⊙ 1

N

∑N
i=1 gi, where gi denotes the gradient of the parameters calculated from task Ti

and N denotes the total number of tasks. This vector reflects the gradient similarity between the
task-specific and the average gradients, and further indicate the task similarity.

15

	Introduction
	Rethinking DT with MTRL
	Limited Scalability of Task Numbers
	Limited Scalability of Model Size in MTRL

	Methodology: M3DT
	Architecture: MoE for reducing Task Load
	Optimization: Three-Stage Training Mechanism

	Experiments and Analysis
	M3DT helps Task and Parameter Scalability

	Related Work
	Conclusion
	Preliminary
	Experimental Details
	Detailed Environments
	Meta-World
	DMControl
	Mujoco Locomotion

	Baselines
	Task Selection
	Implementation of Model Expansion
	Experimental Setups, Hyper-parameters and Resources

	Further Analysis
	Is grouped training important?
	Is early stopping of backbone training truly effective?
	What affects parameter expansion?
	Router design.
	Expert design.

	Agreement Vector

