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Abstract. Medical imaging is essential for the diagnosis and treatment
of diseases, with medical image segmentation as a subtask receiving high
attention. However, automatic medical image segmentation models are
typically task-specific and struggle to handle multiple scenarios, such
as different imaging modalities and regions of interest. With the intro-
duction of the Segment Anything Model (SAM), training a universal
model for various clinical scenarios has become feasible. Recently, sev-
eral Medical SAM (MedSAM) methods have been proposed, but these
models often rely on heavy image encoders to achieve high performance,
which may not be practical for real-world applications due to their high
computational demands and slow inference speed. To address this is-
sue, a lightweight version of the MedSAM (LiteMedSAM) can provide
a viable solution, achieving high performance while requiring fewer re-
sources and less time. In this work, we introduce Swin-LiteMedSAM, a
new variant of LiteMedSAM. This model integrates the tiny Swin Trans-
former as the image encoder, incorporates multiple types of prompts,
including box-based points and scribble generated from a given bound-
ing box, and establishes skip connections between the image encoder
and the mask decoder. In the Segment Anything in Medical Images
on Laptop challenge (CVPR 2024), our approach strikes a good bal-
ance between segmentation performance and speed, demonstrating sig-
nificantly improved overall results across multiple modalities compared
to the LiteMedSAM baseline provided by the challenge organizers. Our
proposed model achieved a DSC score of 0.8678 and an NSD score
of 0.8844 on the validation set. On the final test set, it attained a
DSC score of 0.8193 and an NSD score of 0.8461, securing fourth
place in the challenge. The code and trained model are available at
https://github.com/RuochenGao/Swin_LiteMedSAM.
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1 Introduction

Medical imaging diagnosis is fundamental for evaluating diseases, and medical
image segmentation, which involves the extraction of specific structures such as
tumors and organs from medical images, consistently receives significant atten-
tion. Deep learning methods have demonstrated effectiveness in this field, leading
to the development of numerous models tailored for specific scenarios. However,
each scenario typically requires training a dedicated segmentation model, de-
manding substantial effort. In recent years, inspired by the rapid development of
large language models (LLMs) in the natural language processing (NLP) field,
researchers have begun exploring the application of large models in computer vi-
sion. Segment Anything Model (SAM) [5] is one such innovation, aiming to unify
the segmentation task for general images by training with a huge amount of data.
while SAM holds potential, the distinct features of medical images can hinder
its performance in medical image segmentation. Therefore, recent works [8,10]
focus on adapting the SAM model for medical applications by re-training with a
large volume of medical images. Despite achieving high performance in various
medical image segmentation tasks, SAM models’ large parameter volume and
the high spatial resolution of medical images require substantial computational
resources and processing time. This poses challenges for practical deployment
of SAM models in real-world applications, or even for non-industry academic
groups conducting research on them. Consequently, lite SAM models are gain-
ing more attention as a solution to this problem.

The original SAM model is composed of three main components: an image en-
coder, a prompt encoder, and a mask decoder. Among these, the image encoder
is the primary factor contributing to high computational and memory costs due
to the usage of ViT-H [3]. To mitigate resource consumption and accelerate pro-
cessing, various studies have aimed to make the image encoder more lightweight.
For instance, FastSAM [15] introduces a CNN-based framework, while Mobile-
SAM [13] tackles this issue by distilling knowledge from the ViT-H image en-
coder into a tiny ViT-based encoder. Additionally, EfficientSAM [11] employs
the Masked Autoencoders (MAE) [4] framework to efficiently transfer knowledge
from a large image encoder to a small one, resulting in a more resource-efficient
design with better performance. EfficientViT-SAM [14] further enhances this
approach by incorporating EfficientViT [1] with fused MBConv blocks [9] to cre-
ate a lightweight image encoder. Recently, the challenge Segment Anything in
Medical Images on Laptop1, hosted at CVPR 2024, sought universal prompt-
able medical image segmentation models deployable on laptops or edge devices
without GPU reliance. The organizers developed LiteMedSAM2 as a baseline,
using the distillation strategy described in [13]. Although LiteMedSAM focuses
on optimizing the image encoder to reduce resource usage, segmentation perfor-
mance is compromised. Therefore, our goal is to enhance performance without
highly sacrificing efficiency. To achieve this, we use a lightweight Swin Trans-

1 https://www.codabench.org/competitions/1847/
2 https://github.com/bowang-lab/MedSAM/tree/LiteMedSAM

https://www.codabench.org/competitions/1847/
https://github.com/bowang-lab/MedSAM/tree/LiteMedSAM
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former as image encoder and also introduce two additional prompts, box-based
points and box-based scribble, except the original box prompt. To this end, we
introduce our model, Swin-LiteMedSAM. The key contributions of our model
are as follows:

– Instead of transferring knowledge to a tiny ViT, we employ a tiny Swin
Transformer [6] as the image encoder. The Swin Transformer is designed
to handle large images more efficiently, both in terms of computation and
memory usage compared to ViT. Moreover, skip connections are established
between the image encoder and mask decoder to enhance feature integration.

– We introduce additional types of prompts beyond boxes, including box-based
points and box-based scribble. These prompts are automatically generated
from the given bounding box and effectively improve model performance
without significantly increasing resource costs.

– Overall, Swin-LiteMedSAM achieves substantial improvements in perfor-
mance over LiteMedSAM while maintaining high inference speed.

2 Method

2.1 Data preprocessing

To accelerate the model’s training and inference stages and reduce memory con-
sumption, we resize the input image to 256 × 256. This is achieved by first
resizing the images while maintaining their original aspect ratio based on the
longest side, and then do zero padding to reach the final size of 256 × 256. For
data normalization, we use the method described in [8]. Please refer to [8] for
more details.

Note that gray-scale images such as CT, MR, US, and PET typically have
only one channel, whereas RGB images from modalities like endoscopy, der-
moscopy, and fundus imaging usually have three channels. To maintain consis-
tency during model training, we replicated the channel dimension for gray-scale
images, converting them from one channel to three channels.

2.2 Proposed method

Our model’s structure is shown in Fig. 1. It mainly comprises three components:
an image encoder, a prompt decoder, and a mask decoder. The function of these
three components are detailed below.

The image encoder architecture is inspired by the original tiny ViT design
of LiteMedSAM. The input first passes through two convolutional layers, which
capture low-level spatial features and adjust the number of channels to 64. Fol-
lowing this, the encoder consists of four stages, with their depths arranged ac-
cording to the tiny ViT configuration as (2, 2, 6, 2). The structure of the Swin
block used in our encoder is illustrated in Fig. 2. We have slightly modified
the standard Swin block by adding a convolutional block with batch normal-
ization between the windowed multi-head self-attention (W-MSA) module and
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Fig. 1. Overview of the Swin-LiteMedSAM architecture.

the Multi-Layer Perceptron (MLP). This modification enables our encoder to
effectively capturing both global and local features. Furthermore, the number
of channels and spatial resolution across four stages remain consistent with the
original design. Finally, a head branch consisting of several convolutional layers
and layer normalization adjusts the channel number to 256.

In the prompt encoder, we introduce two additional types of prompts: box-
based points and a box-based scribble, alongside the original box prompt. The
box-based points and the box are combined to form a sparse embedding, while
the box-based scribble is used for dense embedding. For the box-based prompt,
drawing from insights provided by [10] and [2], which demonstrate the effective-
ness of using multiple points over a single point, we opt to utilize four points in
our prompt encoder. To achieve this, we divide the bounding box area into four
equivalent sub-parts based on the central point. We then randomly generate one
point in the non-zero area of each sub-part, resulting in four points distributed
inside the box. If a sub-part contains only zeros, we select the central point. This
approach ensures a relatively sparse distribution of points that covers more area.
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Fig. 2. The overall structure of the Swin Transformer block.

(a) (b) (c)

Fig. 3. (a) Box-based points and scribble generation strategies during the training
stage. (b) Box-based points generation strategy during the inference stage. (c) Box-
based scribble generation strategy during inference stage.

Furthermore, a box-based scribble is randomly generated within the box using
the algorithm in [16]. All pixels in the scribble are set to 1 and placed into the
corresponding part of an all-zero matrix with a shape of (256, 256) to create a
mask for the dense embedding. Similarly, if all pixels in the box are zeros, the
scribble is set to an all-zero matrix of shape (256, 256) to ensure the prompt
encoder focuses on the sparse prompt embedding part, as illustrated in Fig. 3(a).

Then in the mask decoder, we follow the SAM original design by using a
two-way transformer to process embeddings from the prompt encoder and image
encoder. Moreover, we build skip connections between the image encoder and
mask decoder, concatenating outputs from the last three stages and fusing them
with several convolutional layers. This output is then combined with the two-way
transformer’s output and passed through an upscaling block to double the image
resolution. Similarly, the upscaled output is concatenated with the first stage’s
output from the image encoder, and the resulting output is further upsampled
to return back to the original spatial resolution.
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For the loss function, it consists of a mask prediction loss Lmask and a IoU
score prediction loss Liou:

L = Lmask + Liou, (1)

where Lmask is the summation of the Dice loss and binary cross-entropy by
comparing the predicted mask with the ground truth mask, while Liou is the
MSE loss between the predicted and actual IoU scores.

2.3 Inference strategy for box-based points and box-based scribble

The strategy for generating box-based points and box-based scribble has some
difference between the training and inference stages. During the training stage,
the range for generating four points is within the entire bounding box, which
aims to expose the model to diverse cases and helps improve its generalization
capabilities. However, randomly generating points within the whole box might
not be ideal during the inference stage, as objects are typically located near the
central part of the box. Random generation can easily place some points near
the boundary, which is less effective and even negatively impact performance.
Furthermore, for the situation of a single point prompt, the central point of
the box is always the first choice [2]. Likewise, the two corner points of the box
already provide some external and surrounding information of objects. Therefore,
points should be better distributed in the relatively central part of the box. For
a given bounding box, represented by its upper left point (xmin, ymin) and
bottom right point (xmax, ymax), we introduce two variables, shifth and shiftw,
to adjust the coordinates along height and width directions so that four points
do not occur in the peripheral area, as shown in Fig. 3(b). This adjustment is
denoted as follows:

x′
min = xmin + shiftw,

y′min = ymin + shifth,

x′
max = xmax − shiftw,

y′max = ymax − shifth.

Here, the new upper left point (x′
min, y′min) and bottom right point (x′

max,
y′max) form a new box and randomly generate four points within it. The range
of shiftw is (0, 1

2w), and the range of shifth is (0, 1
2h), where w and h are the

width and height of the image, respectively. In this study, we adjusted the range
of shiftw to ( 15w,

2
5w) and the range of shifth to ( 15h,

2
5h) to ensure that the

distribution of points is closer to the center. Additionally, shiftw and shifth are
randomly adjusted within their ranges for each sample to achieve better overall
performance. We also follow the same points distribution strategy as in the
training stage to ensure that the four points are positioned in the four quadrants
of the image.

Then Fig. 3(c) illustrates the strategy of generating a scribble in the inference
stage. Considering the empirical distribution of points, we believe that placing
the scribble closer to the edges is more effective than points for capturing contour
information. Therefore, we adjusted the range of shiftw to ( 18w,

1
6w) and the
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Table 1. Evaluation Platform environment settings.

System Ubuntu 20.04 Desktop
CPU Intel Xeon(R) W-2133 @3.60GHz
RAM 8GB
Docker version 20.10.13

Table 2. Training environmentn settings.

System Red Hat 9
CPU AMD EPYC 7513 @2.60GHz
RAM 256GB
GPU (number and type) One NVIDIA A100 40G
CUDA version 12.4
Programming language Python 3.10
Deep learning framework PyTorch 2.2.2
Specific dependencies Monai, Einops, Timm and Transformers

range of shifth to ( 18h,
1
6h) to expand the area for generating a scribble. Note

that we generate the scribble in non-zero areas, based on the prior knowledge
that people typically avoid drawing scribble in regions with zero pixel values.

3 Experiments

3.1 Dataset and evaluation metrics

Training and validation dataset We only use the provided challenge dataset,
without additional public datasets. This dataset includes 11 modalities: CT,
MRI, PET, X-ray, ultrasound, mammography, OCT, endoscopy, fundus, der-
moscopy, and microscopy, totaling more than one million 2D image-mask pairs.
Testing dataset The testing set in this challenge is hidden, with all testing
images newly collected from 20+ different institutions worldwide.
Evaluation metrics The evaluation metrics are the Dice Similarity Coefficient
(DSC) and Normalized Surface Dice (NSD) for accuracy, and Docker container
running time for efficiency. These metrics together determine the ranking. Note
that only mean results are available. The evaluation platform environment is
presented in Table 1.

3.2 Implementation details

Training environment settings The training environments are presented in
Table 2.
Training protocols Our training strategy consists of two stages. In the first
stage, we utilize knowledge distillation to transfer information from the large
ViT-B image encoder to the tiny Swin Transformer as our image encoder. To
note, we pre-saved the output image embeddings from the ViT-B encoder to
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Table 3. Training protocols of the first stage and the second stage.

The first stage The second stage
Pre-trained Model MedSAM ViT-B Tiny Swin Transformer
Batch size 64 16
Patch size 256×256×3 256×256×3
Total epochs 10 25
Optimizer AdamW AdamW
Initial learning rate (lr) 2e-4 2e-4
Lr decay schedule ReducedLROnPlateau ReducedLROnPlateau
Training time 60.8 hours 46 hours
Loss function L1 Loss MSE Loss+Dice Loss+BCE Loss
Number of model parameters 10.51M 36.77M
Number of flops 47.70G 55.20G

speed up the distillation process. In the second stage, we take the pre-trained
image encoder from the first stage and proceed to train the entire model. The
training details of these two stages are listed in Table 3.
Data sampling strategy During the training, we randomly sample image cases
from the dataset. If the case is 3D, such as a CT, MR, or PET scan, we ran-
domly sample a slice from the 3D image. If the case is 2D, such as an X-ray
or microscopy image, we use the image directly. This strategy significantly re-
duces training time and ensures a more balanced distribution of training samples
across different modalities.
Data augmentation We apply vertical and horizontal flips to the image, each
with a 50% probability.
Inference environment settings During the inference stage, the running en-
vironment differs from the training stage. A docker container is built, starting
with a ’python:3.10-slim’ image and installing the CPU version of PyTorch 2.2.2.
All other aspects still remain same with the training stage.

4 Results and discussion

4.1 Quantitative results on validation set

Table 4 shows that Swin-LiteMedSAM achieves higher average DSC (86.70%)
and NSD (88.55%) scores compared to LiteMedSAM, which recorded 83.81%
for DSC and 83.26% for NSD. In general, Swin-LiteMedSAM achieved a more
balanced and comprehensive performance across the nine modalities compared
to LiteMedSAM. It showed significant improvement in PET and Microscopy
while maintaining strong performance in most modalities. However, the model
experienced a noticeable drop in DSC and NSD scores for the US modality.

Then Table 5 further highlights the importance of each component in our
proposed method, particularly the inclusion of skip connections, as well as both
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Table 4. Comparison between LiteMedSAM and our proposed Swin-LiteMedSAM.

Target LiteMedSAM Swin-LiteMedSAM
DSC (%) NSD (%) DSC (%) NSD (%)

CT 92.26 94.90 91.46 94.70
MR 89.63 93.37 87.12 91.19
PET 51.58 25.17 69.43 56.99
US 94.77 96.81 85.57 90.63
X-ray 81.05 85.35 83.98 88.88
Dermoscopy 92.47 93.85 94.20 95.65
Endoscopy 96.04 98.11 95.29 97.63
Fundus 94.81 96.41 95.83 97.39
Microscopy 61.63 65.38 77.45 83.91
Average 83.81 83.26 86.70 88.55

Table 5. Ablation study of the proposed method. The check mark shows including the
module in the method. Here, Swin-T indicates tiny Swin Transformer.

Swin-T Skip connection Box-based points Box-based scribble DSC (%) NSD (%)
✓ 85.79 86.75
✓ ✓ 86.48 87.74
✓ ✓ ✓ 86.22 87.79
✓ ✓ ✓ ✓ 86.70 88.55

box-based points and scribble, in achieving superior segmentation performance.
Here, the introduction of two additional box-based prompts provide limited im-
provement. This could be due to two factors. First, some prompts may have
been placed in sub-optimal positions due to the random way, negatively im-
pacting overall performance. Second, inadequate training can be a contributing
factor. Although the data sampling strategy helped balance the distribution of
modalities and accelerated the training process, it significantly reduced the num-
ber of training samples. This reduction can hinder the effective training of the
prompts, which require a high volume of diverse cases to perform optimally.

4.2 Quantitative results on testing set

As shown in Table 6, our proposed method significantly outperforms LiteMed-
SAM across most imaging modalities in terms of DSC and NSD, while also
reducing runtime of all the modalities. Specifically, for CT images, our method
achieved an absolute DSC improvement of 17.15%, corresponding to a relative
improvement of 30.76%, and an NSD increase of 18.51%, corresponding to a
relative improvement of 31.75%, compared to LiteMedSAM, also with a faster
runtime. For PET and X-ray modalities, our method demonstrated competitive
DSC and NSD results. In PET, it achieved a marginal NSD improvement while
maintaining similar DSC performance, and significantly reduced runtime. For
X-ray, despite a slightly lower DSC compared to LiteMedSAM, the difference is
minimal, demonstrating a still competitive result.
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Table 6. Quantitative evaluation results for final testing set

Target LiteMedSAM3 Proposed Swin-LiteMedSAM
DSC (%) NSD (%) Runtime (s) DSC (%) NSD (%) Runtime (s)

CT 55.75 58.48 32.68 72.90 76.99 25.14
MR 64.80 62.75 15.91 68.61 70.13 13.44
PET 76.94 66.98 12.99 76.50 67.63 10.52
US 85.24 89.73 8.27 88.01 92.43 7.58
X-ray 85.51 94.40 8.79 84.58 94.32 6.89
Endoscopy 94.41 96.95 13.85 94.58 97.17 11.36
Fundus 87.47 89.58 11.72 80.71 82.93 9.85
Microscopy 84.36 86.15 11.85 87.08 88.94 10.48
OCT 73.31 80.20 8.39 84.39 90.97 6.87
Average 78.64 80.58 13.99 81.93 84.61 11.01

Furthermore, we observed significant instability in the original LiteMedSAM.
Taking CT modality as an example, LiteMedSAM performed exceptionally well
on the validation set, surpassing Swin-LiteMedSAM. However, when evaluated
on the testing set, performance of CT experienced a significant performance
drop, with DSC falling from 92.26% to 55.75% and NSD dropping from 94.90%
to 58.48%. Although Swin-LiteMedSAM encounters a similar issue with the CT
modality, the performance drop is much less severe. Furthermore, this issue is ob-
served in other modalities as well, further approving that the Swin-LiteMedSAM
model offers better stability and generalization, which are essential for the real
world applications.

4.3 Qualitative results on external public dataset

Since the ground truth for the challenge validation and testing set is not avail-
able, we select SegRap2023 [7], a public head and neck CT dataset containing
annotations for multiple organs, to verify the model’s performance.

As depicted in Fig. 4, we showcase three representative examples from Seg-
Rap2023 to visually check our model’s performance. In the first case, our model
demonstrates strong performance in brain segmentation. This is primarily at-
tributed to the brain’s large size and distinct contrast with surrounding tissues.
Moving to the second case, we observed that our model maintains good perfor-
mance even with smaller targets such as the spinal cord, esophagus, and trachea.
However, in the third case, our model’s performance falls short compared to the
ground truth. The main issue arises from the ambiguous semantics in medical
images. For instance, when aiming to segment the oral cavity, our method only
identifies the teeth. This discrepancy stems from the fact that the box prompt
for oral cavity can also be interpreted as segmenting teeth. It is hard to provide a
more precise prompt in this case to specify the intended target for segmentation.

3 The model weights and results are released by the challenge organizer.
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Fig. 4. Visual comparison between ground truth and our proposed method, with each
row representing one case from SegRap2023. (a), (b), and (c) represent the original
image with box prompts, ground truth, and the prediction results of our proposed
model, respectively.

4.4 Limitation and future work

One main limitation of our method for this challenge is that our model is using
2D images for training and validation, whereas medical imaging data, such as
CT, MRI, and PET, are typically in 3D format. Currently, we process these 3D
images by making predictions on individual 2D slices, which does not fully utilize
the 3D anatomical information and might hinder the performance improvement.
The key issue is that the prompts input to the model are generally based on
2D information, such as bounding boxes and points. In the future, we aim to
explore how to provide effective prompt information in 3D and adapt the model
to handle 3D images directly.

Additionally, we applied certain manual rules to control the distribution of
box-based points and the scribble, which is impossible to find the optimal setting
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and can easily do harm to the overall performance if not set properly. Further-
more, due to variations in medical modalities and the shapes of segmentation
targets, the distribution of points and scribble should be adjusted accordingly.
Therefore, developing a learning-based method for generating box-based points
and scribble would be highly beneficial and could further enhance the model’s
performance.

5 Conclusion

In this paper, we introduce Swin-LiteMedSAM, a lightweight box-based seg-
ment anything model. Our model utilizes the tiny Swin Transformer as image
encoder, enabling it to extracts high-level features more effectively. Additionally,
the introduction of box-based points and box-based scribble provide more spa-
tial cues, which improve segmentation accuracy without substantially increasing
computational costs or demanding extensive manual annotation. Overall, our
approach achieves stronger and more stable performance across different med-
ical imaging modalities while maintaining fast inference speed, outperforming
the LiteMedSAM model.
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