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ABSTRACT

Successful learning algorithms like DNNs, kernel methods or ensemble learning
methods, have been known to produce models that exhibit good generalization de-
spite being drawn from overparameterized model families. This observation has
put in question the convex relationship between model complexity and general-
ization. We instead propose rethinking the relevant notion of model complexity
for the purposes of assessing the complexity of models trained on a given dataset.
Borrowing from information theory, we identify the optimal model one can train
on a given dataset as one achieving its lossless maximal compression. In the noise-
less dataset setting, it can be shown that such a model coincides with an average
margin maximizer of the training data. Experimental results on gradient boost-
ing confirm our observations and show that the minimal generalization error is
attained in expectation by models achieving lossless maximal compression of the
training data.

1 INTRODUCTION

Recent theoretical and empirical results have demonstrated that contrary to the traditionally-held be-
lief that overparameterized models1 are likely to overfit, in practice, models produced by contempo-
rary learning algorithms like DNNs, kernel methods or ensemble learning methods, can exhibit good
generalization despite being drawn from overparameterized model families Wyner et al. (2015);
Belkin et al. (2019); Hastie et al. (2019), even without the use of explicit regularization Bühlmann
& Hothorn (2007); Zhang et al. (2016); Kawaguchi et al. (2017). The related “double descent”
behavior of generalization errors Belkin et al. (2019); Loog et al. (2020); Chen et al. (2020) has re-
vealed situations in which increasing model complexity, causes generalization performance to first
deteriorate and then improve (even to do so repeatedly), prompting us to rethink our understanding
of the relation between generalization and model complexity.

We propose an alternative approach for reconciling these recent findings to the established theory:
by rethinking the notion of model complexity that is useful in such a setting. The goal is to compare
the potential of overfitting of models trained in a supervised manner on a given training dataset
and for doing so we need to move beyond naive parameter counts2 of the trained models or worst-
case measures of the richness of their respective model family3, like the VC-dimension Vapnik &
Chervonenkis (2015) or the Rademacher complexity Bartlett & Mendelson (2002).

Taking an information-theoretic perspective to learning, inspired by the information bottleneck prin-
ciple Tishby et al. (2000); Tishby & Zaslavsky (2015); Shwartz-Ziv & Tishby (2017), we treat
the features & targets of the training data, as well as the outputs of the trained model as random

1Models whose degrees of freedom exceed the number of training datapoints.
2Although sparse models tend to be more resistant to overfitting, one can easily come up with counterex-

amples. Sparsity can make models more robust (in the sense that their output will not change much for small
perturbations of their input) but it is neither a necessary, nor a sufficient condition for robustness.

3Successful learning algorithms should, after all, have inductive biases that steer them towards models that
are robust, regardless of the capacity of the underlying model family.
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variables. We then identify the ideal model as one that achieves lossless maximal compression
(LMC) of the training dataset, i.e. extracts from the features all the useful information for pre-
dicting the target and no more. We show that in the noiseless binary classification setting, LMC
models are equivalent to average margin maximizers, models known to exhibit good generalization
guarantees Vapnik (1982); Schapire et al. (1998); Sokolić et al. (2017); Dziugaite & Roy (2017);
Neyshabur et al. (2017); Wei et al. (2018). In the noisy case -when margin maximizers are known
to perform poorly Kalai & Servedio (2003); Servedio (2003); Bootkrajang & Kabán (2013); Poggio
et al. (2017)- we show that the aforementioned equivalence collapses, as LMC models also capture
label uncertainty while margin maximizers are not even guaranteed to be lossless.

We posit that adequate overparameterization guarantees losslessness (in the noiseless case this
means interpolation) and the inductive biases of successful machine learning algorithms guide them
towards maximal compression, yielding LMC models. This explains their surprisingly good gen-
eralization properties Wyner et al. (2015); Belkin et al. (2019); Hastie et al. (2019); Muthukumar
et al. (2020); Bartlett et al. (2020); Muthukumar et al. (2020). We support our observations with
theoretical arguments and empirical evidence, using gradient boosting as an example and identify
interesting directions for future work.

2 AN INFORMATION-THEORETIC VIEW OF MODEL COMPLEXITY

We shall focus on the case of binary classification and we will treat the features X & targets Y of the
training dataset S, as well as the outputs (scores) of the trained model F as random variables. Being
a deterministic transformation of X , F cannot contain more information4 than X . So, H(F |X) =
0 ⇐⇒ I(X;F ) = H(F ) ≤ H(X). We shall now define the following properties:

Noiselessness: The dataset S is noiseless if and only if H(Y |X) = 0. Otherwise, S is noisy and
H(Y |X) > 0.

A noiseless training dataset S is one in which no datapoints with the same feature vector have
different labels. For such a dataset, there exists a model that can achieve zero empirical risk (training
error), i.e. that can perfectly classify the training data. In other words, the features X , contain all
information to perfectly describe the target Y .

Losslessness: The model F is lossless on the dataset S if and only if I(F ;Y ) = I(Y ;X). Other-
wise, the model is lossy on S and I(F ;Y ) < I(Y ;X).

A lossless model F on a dataset S is one that captures all the information in features X that is
relevant for describing the target Y 5. If a model F is lossless on a training set S, its output can
be used to describe the target Y with the only source of training error being the irreducible class
overlap in the training set.

Maximal Compression: The model F is a maximal compressor of the dataset S if and only if
I(F ;X) = I(F ;Y ). Otherwise, the model is undercompressed on S and I(F ;X) > I(F ;Y ).

A model F that is a maximal compressor of a training dataset S is one that only captures from the
features X information relevant for describing the target Y . It does not necessarily capture all that
information; this special case, merits a definition of its own given below.

Lossless Maximal Compression - (LMC): The model F is a lossless maximal compressor (LMC)
of the training dataset S if and only if it is lossless on S and a maximal compressor on S.

A model F that is an LMC of a training dataset S is one that only captures from the features X all
the information relevant for describing the target Y 6. From an information-theoretic perspective, an
LMC of S is the optimal classification model that can be constructed from S.

Average Margin Maximization: A model F is an average margin maximizer of a training dataset
S if and only if there exists some invertible transformation g such that g(F ) = Y .

4Information-theoretic quantities refer to estimates obtained on the training data (empirical distribution).
5Equivalently: the r.v. F is a sufficient statistic of the empirical distribution of the training data.
6Equivalently: the r.v. F is a minimal sufficient statistic of the empirical distribution of the training data.
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In other words, an average margin maximizer would assign the same score s+ to all positively
labelled training examples and the same score s− to all negatively labelled training examples.

From the above definitions the following propositions can easily be derived Nikolaou et al. (2020):

(I) The model F is an LMC of a training dataset S, if and only if I(F;X) = I(F;Y) = I(Y;X).

(II) Any LMC model on a noiseless dataset S is also an average margin maximizer on S and vice-
versa.

(III) In the noisy case, the above equivalence no longer holds. A lossless model is one that also
captures the uncertainty introduced by the ambiguous labelling of a feature vector i.e. P (Y |X). So
a lossless model should assign different scores F to examples corresponding to different P (Y |X),
even if they have the same label Y . An average margin maximizer, assigning only 2 values s+ to
positives & s− to negatives (regardless of label uncertainty) would therefore not even necessarily be
lossless, let alone a LMC on a noisy dataset.

3 EMPIRICAL EVIDENCE

3.1 EXPERIMENTAL SETUP

Boosting, a method that explicitly maximizes the margins of the training examples, can be shown
empirically to also converge to LMC models on noiseless datasets. After lossless maximal com-
pression is achieved, so is the minimal generalization error, as estimated by the error on the test
set. To demonstrate this, we plot the trajectory of the boosting ensemble on the entropy-normalized
information plane, I(F ;Y )/H(Y ) vs. I(F ;X)/H(X) Tishby & Zaslavsky (2015); Shwartz-Ziv
& Tishby (2017). For each boosting round t, F = Ft denotes the random variable of which the
ensemble’s outputs are realizations.

The boosting ensemble consisted of a maximum of T = 100 decision trees (i.e. rounds of boosting)
of maximal depth 6. No shrinkage of the updates or subsampling of the examples was performed
(both are techniques to counter overfitting), and the exponential loss function was used (i.e. the
loss minimized by AdaBoost). We performed no hyperparameter optimization. Plotting trajectories
on the information plane follows Tishby & Zaslavsky (2015); Shwartz-Ziv & Tishby (2017). All
information-theoretic quantities were estimated on the training data by first discretizing the features
& model outputs in b = 100 equal-sized bins7, then using maximum likelihood estimators. The joint
r.v. X was then constructed by the discretized features X1, X2, . . . , Xd as X =

∑d
i=1 Xib

i−1. We
plot average results across 100 runs with different train-test splits (50%–50%) on the same original
data. We also visualize the trajectories obtained by some random individual runs to showcase that
although they can vary significantly from one another, they all follow the same general pattern8.

3.2 EXPERIMENTAL RESULTS

In Figure 1 we present some example trajectories on noiseless datasets. Below follows a summary
of our observations:
Boosting leads to lossless maximal compression: The boosting ensemble traces a trajectory on
the information plane that leads to the LMC point and once it reaches it in never escapes.
Lossless maximal compression coincides with margin maximization: The image on the
information plane of the models that minimize the margin coincides with the LMC point.
Lossless maximal compression coincides with maximal generalization: The point of the
ensemble’s trajectory corresponding to the minimal test error coincides –on average– with the LMC
point on the information plane (and so does the margin maximization point).
Average trajectory shape: After the training error is minimized, the test error can be further

7Note that by discretizing the features we might convert an originally noiseless dataset into a noisy one. In
the experiments included in this paper this did not happen for any dataset for the numbers of discretization bins
chosen. So all results shown are on noiseless datasets.

8The full theoretical & experimental results along with a detailed description of the datasets used and the
experimental setup can be found in Nikolaou et al. (2020). All datasets & code used in the experiments can be
downloaded at https://github.com/nnikolaou/margin_maximization_LMC.
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Figure 1: Trajectory of the boosting ensemble on the information plane. We highlight the point of the
first model in the ensemble (blue rectangle), the point on which the training error is first minimized
(full black circle), the point on which the test error is first minimized (magenta square), the point on
which the margins are first maximized (hollow green circle) and the lossless maximal compression
point (red star) on the [TOP] musk & [BOTTOM] credit datasets (both noiseless) from the UCI
repository. LEFT: Average trajectory across 100 runs; RIGHT: Some individual trajectories.

decreased by training for more rounds –a known result in boosting, explained via margin the-
ory Schapire et al. (1998). Here we give an information-theoretic interpretation. Training until
training error minimization, amounts to achieving losslessness. Subsequent rounds result in
travelling along the line of maximal I(F ;X) on the information plane, towards the LMC point.
This compresses the model (relieves it of remaining information from X irrelevant for predicting
Y ), decreasing its effective complexity9.
Training in boosting consists of 2 (typically distinct) phases: A similar behaviour was observed
in Shwartz-Ziv & Tishby (2017) for the trajectories of the representations learned by DNNs. Fol-
lowing the terminology of Shwartz-Ziv & Tishby (2017), these are the empirical risk minimization
(ERM) phase, when I(F ;Y ) increases (the model better fits the training data) but typically so does
I(F ;X) (the model uses more information from X) and the compression phase, when I(F ;X)
decreases (the model uses increasingly less information from X , reducing its effective complexity),
without decreasing I(F ;Y ). The ERM phase is usually much shorter than the compression phase,
as is the case with DNNs Shwartz-Ziv & Tishby (2017).
Early stopping does not improve generalization in gradient boosting: As long as losslessness
can be achieved, additional boosting rounds do not hurt generalization. Once the model reaches
the LMC point on the information plane, it never escapes it. This suggests that early stopping with
boosting is unnecessary for improving generalization. This result agrees with recent observations
in boosting Wyner et al. (2015), DNNs Belkin et al. (2019) and also linear models trained under
general margin losses Soudry et al. (2017).
Consistency across datasets, hyperparameter & discretization settings: These observations
hold across different datasets, hyperparameter settings and entropy estimation choices.

Margin maximization as a built-in regularization mechanism: Regularization methods like sub-
sampling or shrinkage are not the main reason why boosting regularizes. Their contribution is small
compared to the algorithm’s built-in regularization mechanism: margin maximization, which as
we saw amounts to lossless maximal compression of the training dataset. DNNs have also been

9Holds for average trajectories. Single runs include steps that both increase I(F ;X) & decrease I(F ;Y ).
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observed to perform implicit regularization and additional regularization control (e.g. dropout or
batch normalization) not to be the main contributor to their good generalization Zhang et al. (2016);
Shwartz-Ziv & Tishby (2017); Kawaguchi et al. (2017).

4 DISCUSSION

We characterized from an information theoretic perspective, models trained on a given training set
w.r.t. the information they capture from it. We identified an ideal model trained on a given dataset as
its lossless maximal compressor (LMC): one capturing all the information from the features relevant
for predicting the target and no more. We established that an LMC is –in the case of noiseless
classification– equivalent to an average margin maximizer of the dataset. In the noisy case the above
equivalence collapses and average margin maximizers are suboptimal from an information-theoretic
point.

Our experiments on gradient boosting, demonstrate that indeed, margin maximization amounts to
lossless maximal compression on noiseless data. The evolution of the model constructed by boost-
ing, traces a trajectory on the information plane that leads to the LMC point which also coincides
with the point of margin maximization and the point on average exhibiting the best generalization.

This work gives an information-theoretic interpretation of margin maximization and provides us with
a principled way to define model complexity for the purposes of generalization, thus shedding more
light on the success of methods like gradient boosting and identifying situations in which they would
underperform. It also opens various directions for future work. For instance, exploring how these
concepts can be applied in model selection or to inform learning algorithm design to more efficiently
traverse the information plane to reach the LMC point. It would also be of interest to identify the
analogue of the LMC in learning tasks other than classification, like ranking or regression.
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