
Large Language Models are Demonstration Pre-Selectors for Themselves

Jiarui Jin 1 2 * † Yuwei Wu 3 * Haoxuan Li 4 Xiaoting He 5 Weinan Zhang 1 Yiming Yang 3 Yong Yu 1

Jun Wang 6 Mengyue YangB 7

Abstract

In-context learning (ICL) with large language
models (LLMs) delivers strong few-shot per-
formance by choosing few-shot demonstrations
from the entire training data. However, exist-
ing ICL methods, which rely on similarity or di-
versity scores to choose demonstrations, incur
high computational costs due to repeatedly re-
trieval from large-scale datasets for each query.
To this end, we propose FEEDER (FEw yet Es-
sential Demonstration prE-selectoR), a novel pre-
selection framework that identifies a core sub-
set of demonstrations containing the most repre-
sentative examples in the training data, tailored
to specific LLMs. To construct this subset, we
introduce the “sufficiency” and “necessity” met-
rics in the pre-selection stage and design a tree-
based algorithm to identify representative exam-
ples efficiently. Once pre-selected, this represen-
tative subset can effectively replace the full train-
ing data, improving efficiency while maintain-
ing comparable performance in ICL. Additionally,
our pre-selected subset also benefits fine-tuning
LLMs, where we introduce a bi-level optimization
method that enhances training efficiency without
sacrificing performance. Experiments with LLMs
ranging from 300M to 8B parameters show that
FEEDER can reduce training data size by over 20%
while maintaining performance and seamlessly in-
tegrating with various downstream demonstration
selection strategies in ICL.

* Equal contributions: Jiarui Jin and Yuwei Wu. † Work done
during Jiarui Jin’s visit at University College London. 1Shanghai
Jiao Tong University 2Xiaohongshu Inc. 3Carnegie Mellon Uni-
versity 4Peking University 5No Affiliation 6University College
London 7University of Bristol. Correspondence to: Mengyue Yang
<mengyue.yang@bristol.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Large language models (LLMs), e.g., GPT (Brown et al.,
2020), Gemma (Team et al., 2024), and Llama (Touvron
et al., 2023), have demonstrated impressive performance
across a wide range of tasks by employing few-shot infer-
ence, referred as in-context learning (ICL) (Brown et al.,
2020; Dong et al., 2022). This approach avoids the compu-
tational expense associated with fine-tuning LLMs. Here,
the core challenge is how to select the most representative
demonstrations from large training data.

Early approaches (Qiu et al., 2022; Liu et al., 2021; Rubin
et al., 2021; Wang et al., 2022) primarily selected demonstra-
tions based on relevance, typically using similarity scores
between each demonstration and the input question. How-
ever, recent studies (Levy et al., 2022; Köksal et al., 2022;
Zhou et al., 2023) indicate that evaluating examples in isola-
tion is suboptimal. Instead, they advocate for incorporating
additional selection criteria, such as diversity, uncertainty,
or clustering-based metrics, alongside similarity, to enhance
demonstration selection effectiveness. As a result, the above
enhancements in the demonstration selection process intro-
duce significant computational overhead, particularly when
the number of shots is large. Beyond efficiency, we argue
that the effectiveness of selected demonstrations should also
consider the specific LLM in use, as different LLMs exhibit
varying capabilities and knowledge domains.

To this end, we introduce a new stage called the pre-selection
stage and propose a demonstration pre-selector named
FEEDER (FEw yet Essential Demonstration prE-selectoR).
FEEDER functions as a representative subset selector, aim-
ing to identify a representative subset from the full training
data before the demonstration selection process, thereby en-
hancing both efficiency and effectiveness in demonstration
selection. For this purpose, we introduce the concepts of
“sufficiency” and “necessity”, where sufficiency investigates
whether incorporating a demonstration is representative of
other samples, while necessity examines whether a demon-
stration provides redundant information, taking into account
the LLM’s capability, knowledge, and the selected samples.
By directing LLMs to focus on the selected subset, FEEDER
prevents them from processing unnecessary data, thereby
improving efficiency. Since exhaustively enumerating and

1

Large Language Models are Demonstration Pre-Selectors for Themselves

FEEDER Input
and Output

Training
Dataset

Frozen
Large Language Model

(a) In-Context Learning with Frozen LLM

Trainable
Large Language Model

(b) Fine-Tuning with Trainable LLM

Test
Input Data

Training
Dataset FEEDER Input

Output to Test
Input

Output to
FEEDER Input

conditioned

Loss

FEEDER
Output

Demonstration
Selector

Figure 1. Overview of FEEDER that operates effectively within both in-context learning and fine-tuning settings. In the in-context learning
setting, depicted in (a), we first pre-select a representative subset termed FEEDER from the training dataset, and then incorporate existing
demonstration selector to get samples regarding specific test input. This pre-selected subset is characterized by its sufficiency and necessity
conditioned on the frozen LLM. In the fine-tuning setting, shown in (b), FEEDER allows the LLM to be tuned on the fixed subset FEEDER,
and this subset is intentionally pre-selected to be a faithful representation of the training dataset, with the dual objectives of maintaining
data quality and minimizing computational expenses. The above two processes can be encapsulated into a bi-level optimization framework,
allowing for iterative refinement of both the pre-selected FEEDER and the fine-tuned LLM.

evaluating all possible subsets is impractical, we develop a
tree-based approximation algorithm that leverages the ca-
pability of the given LLM to assess whether each subset is
sufficient and necessary for representing others.

Besides ICL, we further observe that our pre-selection pro-
cess can enhance the fine-tuning process by allowing LLMs
to achieve comparable or even superior performance while
training on the pre-selected representative subset of the data,
rather than the full data, where we introduce a bi-level opti-
mization method that enhances training efficiency without
sacrificing performance.

Our empirical evaluations encompass six LLM bases, rang-
ing from 335M to 7B parameters, and include six demon-
stration selectors in the demonstration selection stage, ap-
plied to text classification, reasoning, and semantic parsing
tasks. Our results demonstrate that our pre-selection pro-
cess produces a subset that consistently reduces the data
size for demonstration selection by over 20% across vari-
ous datasets. Moreover, using this pre-selected subset in
ICL with a simple similarity-based metric can outperform
existing sophisticated metrics such as diversity-based ap-
proaches. Additionally, we show that this subset can en-
hance the fine-tuning process, enabling LLMs trained on
the selected representative subset to achieve comparable or
even superior performance.

To summarize, our pre-selector FEEDER offers three key
advantages:

• The pre-selection stage effectively identifies a represen-
tative subset, eliminating unnecessary data and signifi-
cantly reducing the high computational complexity of
downstream demonstration selection.

• FEEDER evaluates the representativeness of demonstra-
tions in terms of sufficiency and necessity, taking the
LLM’s capabilities and knowledge into consideration.

• The pre-selected subset is beneficial not only for ICL
but also for accelerating the fine-tuning process while
maintaining comparable or even superior performance.

2. Demonstration Pre-Selection
We begin by delineating two distinct contexts where FEEDER
can operate: ICL and fine-tuning settings. Throughout this
paper, we approach both scenarios from a data-centric per-
spective (Strickland, 2022), emphasizing the significance of
data quality over data quantity.

In the ICL setting, we are given a training dataset DTRAIN =
{(xn,yn)}Nn=1 consisting of pairs of input data (e.g., ques-
tions) and output labels (e.g., answers). We are also given
a test dataset DTEST = {(xm,ym)}Mm=1, where we assume
that DTRAIN share the same support set (Yosida, 2012) with
DTEST. Our goal is to develop a demonstration selector that
extracts n-shot demonstrations from the training dataset,
denoted as DDEMO ⊆ DTRAIN. We use ΨLLM : X × D → Y
to represent a LLM using selected demonstrations as the
context. Here, x· ∈ X is an input text, y· ∈ Y is the cor-
responding output, and (x·,y·) ∈ D is one demonstration.
Formally, our objective is to minimize:

L(DDEMO,DTEST) =
∑

(xm,ym)∈DTEST

ℓ
(
Ψ∗

LLM(xm,DDEMO),ym

)
,

(1)
where ℓ(·, ·) is the task-specific loss function, and Ψ∗

LLM(·)
means that the LLM is frozen. However, since we do not
have access to DTEST during the training phase, it is imprac-
tical to optimize the demonstration selection directly by
minimizing L(DDEMO,DTEST).

Instead, we re-consider the demonstration selection task
as a two-stage problem, where we first pre-select a subset
of high-quality demonstrations from DTRAIN as the selec-
tion pool, i.e., a FEEDER subset denoted as DFEEDER; and

2

Large Language Models are Demonstration Pre-Selectors for Themselves

then we apply existing demonstration selectors such as ran-
dom or similarity-based selectors on DFEEDER, to choose the
corresponding demonstrations as context for a specific test
instance. Our key idea is that a high-quality training dataset
DFEEDER should be both representative of the entire training
dataset DTRAIN and as minimal in size as possible. Formally,
we use the loss function L(DFEEDER,DTRAIN) from Eq. (1) to
evaluate our pre-selector, i.e., how well the representation
of DFEEDER aligns with DTRAIN. Then, our objective can be
written as:

min
DFEEDER⊆DTRAIN

|DFEEDER|,

s.t. L(DFEEDER,DTRAIN) ≤ L(DTRAIN,DTRAIN).
(2)

This formulation indices that DFEEDER should be not only suf-
ficient but also necessary to represent DTRAIN, thus removing
redundant data points to save computation costs meanwhile
maintaining LLM performance.

Our pre-selected subset of high-quality data DFEEDER also can
be applied to fine-tune LLMs. Concretely, instead of fine-
tuning LLMs on the entire training dataset DTRAIN, DFEEDER

allows us to fine-tune LLMs with few but high-quality data,
reducing computation costs. In this case, the LLM ΨLLM is
usually trainable, and our goal can be formulated as:

min
ΨLLM

E(xn,yn)∈D∗
FEEDER

[ℓ
(
ΨLLM(xn, ∅),yn

)
], (3)

where D∗
FEEDER means that the pre-selected DFEEDER is fixed

during fine-tuning.

Algorithm 1 Bi-level Optimization
Input: Training dataset DTRAIN, LLM ΨLLM.
Output: Approximated subset D̃FEEDER, tuned LLM ΨLLM.
Initialize D̃FEEDER = DTRAIN.
for each iteration do

Update D̃FEEDER by using our approximation algorithm
with frozen LLM ΨLLM.
Tune LLM ΨLLM by using Eq. (3) as our loss function
on fixed D̃FEEDER.

Given the above analysis, we can further bridge the (pre)-
selection of DFEEDER and the LLM fine-tuning on DFEEDER

into a bi-level optimization framework. On the outer level,
following Eq. (2), we optimize the selection of DFEEDER in
the context of a frozen LLM Ψ∗

LLM; while on the inner level,
following Eq. (3), we optimize the LLM ΨLLM using the
fixed dataset D∗

FEEDER. The bi-level optimization procedure
described above is amenable to repetition, enabling iterative
refinement of both the selected DFEEDER and the tuned LLM.
The overall process is summarized in Algorithm 1, and
the construction of our FEEDER subset is detailed in the
subsequent sections.

3. Connections to Existing Work
With the growing capabilities of LLMs, data (referred to as
“demonstrations”) selection has gained prominence, which
involves selecting suitable examples as the context for in-
context learning (Dong et al., 2022; Yang et al., 2023; Zhou
et al., 2022) or filtering a subset from training examples
for fine-tuning (Sachdeva et al., 2024; Zhou et al., 2024).
Previous solutions have revolved around constructing either
parameter-free selection mechanisms (Wang et al., 2022;
Zemlyanskiy et al., 2022; Gao et al., 2023) or neural-based
selection methods (Pasupat et al., 2021; Liu et al., 2021;
Gupta et al., 2021; Rubin et al., 2021; Li et al., 2023). Re-
cent investigations (Xia et al., 2024; Marion et al., 2023)
focus on mining training examples for fine-tuning specific
tasks, with Wang et al. (2024) and Wan et al. (2025) ex-
tending this approach to in-context learning. In contrast to
previous methods that use LLMs as demonstration selectors,
our work leverages the powerful few-shot inference capa-
bilities of LLMs by employing them as pre-selectors. For
this purpose, we introduce a pre-selection stage to exam-
ine “sufficiency” and “necessity” to identify a representative
subset of training examples. The resulting FEEDER subset
can serve a dual purpose: they can be used as candidate
input contexts or to fine-tune the LLM. In both scenarios,
FEEDER can significantly reduce the computation costs by
substituting the entire training data with FEEDER subset.

4. Demonstration Pre-Selector with Sufficiency
and Necessity Metrics

Notations. Let X,C denote variables for the input and the
context (i.e., pre-selected demonstrations). We introduce
Y , a boolean variable, to represent whether the correspond-
ing output is correct. For simplicity, we use Yxn = 1 to
denote Y = 1|X = xn, meaning that the LLM generates
the correct output for the input xn. Similarly, Yxn

= 0,
equivalent to Y = 0|X = xn, indicates that LLM produces
an incorrect output for xn. For convenience, we introduce
S, a variable to record the original status of the LLM be-
fore new plug-in and unplug operations (denoted as plug(·)
and unplug(·) respectively). The connections between the
above operations and the do(·) operation in causality are
discussed in Appendix A1.

We begin by considering the relationship between two
demonstrations, denoted as (xn,yn) and (xm,ym), and
the sufficiency and necessity metrics based on particular
LLMs as follows.

The sufficiency metric is introduced to assess whether plug-
ging in one data point is adequate for the LLM to produce
the correct answer to another data point. Formally, we define
sufficiency between pair of demonstrations as:

Definition 1 (Sufficiency Metric). Given tuple (X,Y,C, S),

3

Large Language Models are Demonstration Pre-Selectors for Themselves

a training sample (xn,yn) is considered sufficient for an-
other one (xm,ym), if the following equation holds:

Yxm = 1|plug((xn,yn));C, S = (Yxm = 0), (4)

where (xn,yn) is not included in C. It means that when
plugging in (xn,yn), it would correct the LLM’s answer to
xm.

The necessity metric is introduced to assess whether it is
necessary to retain a particular plugged-in data point to
maintain the correct output of another data point. Its formal
definition over pairs of demonstrations can be written as:

Definition 2 (Necessary Metric). Given tuple (X,Y,C, S),
a training sample (xn,yn) is considered necessary for
(xm,ym), if the following equation holds:

Yxm
= 0|unplug((xn,yn));C, S = (Yxm

= 1), (5)

where (xn,yn) is included in C. It means that prior to
unplugging (xn,yn), the LLM’s output is correct. However,
when we do unplug (xn,yn) from the context, it causes the
LLM to offer an incorrect output.

The above definitions of sufficiency and necessity metrics,
operating on the instance level, are further clarified with
examples in Appendix A2.1.

Extending these definitions to the set level, a sufficient set
signifies that plugging in a specific set is adequate to ensure
the correct outputs for all examples in another set, while
a necessary set implies that removing any example from
this set would result in incorrect answers for at least one
example within another set. Formal definitions for the above
set-level metrics, along with examples, are available in Ap-
pendix A2.2.

Taking into account both the sufficiency and necessity met-
rics, we define a subset of the training dataset DTRAIN as
FEEDER subset DFEEDER, if it can be both sufficient and nec-
essary to represent DTRAIN. We provide its formal definition
along with some examples in Appendix A2.3. Strictly fol-
lowing the above definition to discover a FEEDER subset
is impractical because the constraints are too stringent and
the computational costs are prohibitively high with O(2N)
computational complexity to enumerate all the possible sub-
sets. Therefore, we propose an approximation algorithm for
discovering a FEEDER subset with a tree-based algorithm.

Our tree-based approach leverages the capability of the LLM
to assess the sufficiency and necessity for each sample in
DTRAIN, which can filter out unnecessary portions of DTRAIN,
while retaining a sufficient subset that effectively represents
the entire train data DTRAIN. Concretely, our tree expands
from the bottom to the top, where each node represents a set
of instances. Formally, we use the variable K to represent
the depth of the tree, corresponding to the number of rounds.

Check Whether

An Example of Approximation Algorithm for FEEDER

and have a Sufficiency

Relationship, Remove Unnecessary Parts

Check Whether and have a Sufficiency

Relationship, Remove Unnecessary Parts

Figure 2. An illustrated example of our approximation algorithm
for FEEDER. At each round (corresponding to each layer of the
tree), we check whether there is a sufficiency relationship between
each pair of nodes. After each check, we remove those unnecessary
parts from W·.

Specifically, we use k = 1, 2, . . . ,K to refer to each k-th
round; and during each k-th round, we generate the (k+1)-
th layer of the tree. We denote Wk as the set of nodes after
the k-th round. We initialize W0 by assigning all the samples
in DTRAIN as the bottom nodes:

W0 := {Wn := {(xn,yn)}|(xn,yn) ∈ DTRAIN}. (6)

During each k-th round, we generate Wk from Wk−1. This is
achieved by examining the sufficiency relationship between
every pair of nodes in Wk−1, denoted as Wi,Wj ∈ Wk−1.
In this evaluation, we assess whether the following equation
holds true by assigning Wi and Wj as WIN and WOUT, or
vice versa:

Y({xn|xn∈WOUT}) = 1|WOUT||plug(WIN);C, S, (7)

where C = ∅ and S is loosened to allow for any value. If
the above equation holds, it signifies that plugging in WIN is
sufficient for the LLM to generate the correct output to any
input in WOUT. In other words, once we have WIN included
in the plugged-in context, it is unnecessary to further include
WOUT. Formally, we can derive the following equation that
is equivalent to Eq. (7) as:

Y({xn|xn∈WOUT}) = 1|WOUT||unplug(WOUT);C, S, (8)

where C = (WIN∪WOUT) and S is loosened to be any value.

Concretely, there are three possible scenarios by examining
each pair of nodes in Wk−1 using Eq. (7): (i) If both Wi and
Wj are sufficient for representing each other, then we select
the one with fewer elements to append to Wk. (ii) If only
one of Wi and Wj is sufficient to represent the other, then
we append the sufficient one to Wk. (iii) If neither Wi nor
Wj is sufficient to represent the other, we append Wi ∪Wj

4

Large Language Models are Demonstration Pre-Selectors for Themselves

to Wk. After performing the above calculations for each
pair of nodes, we remove them from Wk−1. When there is
only one element left in Wk−1, it is directly appended to Wk.
This process continues until W· contains only one element.

Then, we can effectively remove unnecessary samples from
DTRAIN by extending the tree structure above from the bot-
tom to the top. Moreover, the complexity of the above
algorithm with K rounds (corresponding to a tree depth of
K + 1) is O(K log

|DTRAIN|
2). In practice, we investigate the

impact of varying K and find that setting K = 1 already
produces excellent performance. This indicates that a one-
shot inference by LLM is sufficient to assess the sufficiency
between each pair of samples. Once the results of pairs
of samples are computed, we take their union to form the
resulting subset DFEEDER. Figure 2 illustrates the process for
K = 2. When K = 1, the top-level check between W1 and
W3∪W4 is no longer required. Instead, the resulting subset
is W1 ∪W3 ∪W4 after the bottom-level check.

Moreover, our tree-based algorithm can be iterated across
multiple runs to further refine the necessary components.
Specifically, the FEEDER subset obtained from one run
serves as the input for the next. We denote the num-
ber of runs as R, leading to an overall complexity of
O(RK log

|DTRAIN|
2). Empirical investigations show that vary-

ing R has minimal impact, with a single run (R = 1) already
achieving strong performance. Thus, our implementation
complexity simplifies to O(log

|DTRAIN|
2).

Our tree-based approximation algorithm is summarized in
Algorithm 2 in Appendix A3. If we hypothesize that suffi-
ciency is transitive among sets, our tree-based approxima-
tion algorithm can ensure that the remaining subset remains
sufficient to represent the entire DTRAIN, as verified in the
following proposition.

Proposition 1. If we successively apply our tree-based ap-
proximation algorithm on DTRAIN for a certain number of
runs to obtain a subset (denoted as D̃FEEDER), then DFEEDER

is sufficient to represent DTRAIN.

We offer the proof of the above proposition in Appendix A3,
which demonstrates that our tree-based algorithm can ef-
fectively remove unnecessary samples from DTRAIN while
ensuring that the resulting subset remains sufficient to rep-
resent the entire training dataset.

Additionally, we present another algorithm for finding an ex-
act sufficient and necessary subset from DTRAIN, along with
its proof and deployment discussion, in Appendices A4.1,
Appendix A4.2, and A7.

5. Experiments
Our evaluations are mainly conducted on 6 text classification
datasets: SST-2 (Socher et al., 2013), SST-5 (Socher et al.,

2013), COLA (Warstadt et al., 2018), TREC (Voorhees &
Tice, 2000), SUBJ (Pang & Lee, 2004), and FPB (Malo
et al., 2014). These datasets cover a range of tasks from
sentiment classification and linguistic analysis to textual
entailment. We also further assess FEEDER on the reasoning
dataset GSM8K (Cobbe et al., 2021), the semantic-parsing
dataset SMCALFlow (Andreas et al., 2020), and the scien-
tific question-answering dataset GPQA (Rein et al., 2024).
For each dataset, we directly follow the official splits to
obtain DTRAIN and DTEST.

To evaluate the performance of our approach, we employed
two GPT-2 variants (Radford et al., 2019): one with 335M
parameters, and the other with 774M parameters; one GPT-
neo with 1.3B parameters; one GPT-3 variant (Brown et al.,
2020) with 6B parameters; one Gemma-2 variant (Team
et al., 2024) with 2B parameters, one Llama-2 variant (Tou-
vron et al., 2023) with 7B parameters, Llama-3 variant
(Meta, 2024) with 8B parameters, and Qwen-2.5 variant
(Yang et al., 2024) with 32B parameters, as the LLM base.

5.1. Performance on In-context Learning

Since our DFEEDER works as a pre-selector, when applied in
the in-context learning setting, we propose incorporating
demonstration selectors into FEEDER. In other words, our
evaluations follow an ablative approach, with the baseline
involving the direct application of these demonstration se-
lectors on DTRAIN. This baseline can be regarded as treating
these methods both as pre-selectors and demonstration se-
lectors. As discussed in Section 4, our DFEEDER is applied
using only a one-shot inference check (i.e., K = 1) and a
single-round run (i.e., R = 1), unless otherwise stated.

Concretely, we conducted an evaluation of FEEDER in con-
junction with following six demonstration selectors: (i) Ran-
dom is the random selector, which selects input demon-
stration randomly from the selection pool; (ii) Similarity
(Sorensen et al., 2022; Gonen et al., 2022) is the similarity-
based selector, which selects relevant demonstrations in
terms of the cosine similarity metric over the embedding
vectors generated by a sentence transformer (Reimers &
Gurevych, 2019); (iii) Diversity (Ye et al., 2022) is the
diversity-based selector , which selects similar and diverse
demonstrations in terms of maximal marginal relevance
(Carbonell & Goldstein, 1998); (iv) Uncertainty (Köksal
et al., 2022) is the uncertainty-based selector that conducts
selections according to their uncertainty metric; (v) Clus-
tering (Zhou et al., 2023) is the clustering-based selector
that searches demonstrations by clustering. (vi) Latent
(Wang et al., 2024) uses LLMs as latent variable models to
learn latent variables for down-streaming in-context learn-
ing. Please refer to Appendix A5.1 for detailed descriptions
of the above demonstration selectors.

Experimental results regarding in-context learning perfor-

5

Large Language Models are Demonstration Pre-Selectors for Themselves

Table 1. Performance comparisons on text classification datasets are conducted in the in-context learning setting. We report both the mean
and variance of accuracy using 8 different seeds and 5 different permutations of n-shots. Refer to Appendix A5.2 for more extended
results on LLMs GPT-2 variants and GPT-3 variants, datasets FPB, SST-5, TREC, and demonstration selectors Uncertainty, Clustering
and Latent.

ΨLLM(·) D n
SUBJ SST-2 COLA

Random Similarity Diversity Random Similarity Diversity Random Similarity Diversity

Gemma-2 (2B)

DTRAIN

1 45.0 (5.9) 48.1 (0.6) 48.1 (0.6) 51.2 (6.8) 52.2 (0.8) 52.2 (0.8) 37.5 (7.0) 40.5 (1.3) 40.5 (1.3)

2 62.3 (6.9) 82.5 (1.8) 74.2 (1.3) 71.5 (5.6) 78.5 (1.5) 75.9 (0.9) 40.6 (5.9) 62.5 (1.0) 61.6 (0.5)

5 68.0 (7.1) 91.5 (1.2) 84.2 (1.6) 70.2 (5.6) 80.5 (1.6) 80.6 (0.7) 46.5 (5.9) 67.2 (1.8) 65.6 (0.6)

10 50.3 (8.2) 86.2 (1.9) 85.6 (0.8) 68.2 (4.8) 85.5 (1.5) 76.3 (1.3) 50.2 (7.4) 69.8 (1.5) 71.5 (1.2)

DFEEDER

1 48.2 (4.2) 49.5 (1.0) 49.5 (1.0) 52.6 (4.6) 53.1 (0.8) 53.1 (0.8) 38.9 (5.2) 39.6 (0.8) 39.6 (0.8)

2 65.2 (2.9) 85.2 (1.0) 80.3 (0.8) 74.2 (4.9) 82.1 (1.2) 83.0 (0.7) 52.5 (2.5) 68.9 (2.1) 67.8 (1.5)

5 72.2 (6.2) 94.5 (5.3) 85.5 (0.7) 72.0 (4.2) 83.6 (2.1) 84.5 (1.7) 55.2 (4.8) 77.6 (2.5) 73.9 (2.3)

10 60.5 (4.0) 86.5 (2.5) 88.4 (2.4) 70.5 (5.6) 92.6 (2.6) 78.5 (5.3) 58.6 (4.6) 75.6 (2.9) 76.6 (2.5)

GPT-3 (6B)

DTRAIN

1 44.9 (6.6) 49.5 (0.1) 49.5 (0.1) 48.2 (2.9) 47.0 (0.1) 47.0 (0.1) 38.9 (6.7) 41.2 (0.2) 41.2 (0.2)

2 55.4 (3.5) 85.5 (0.1) 86.5 (0.2) 68.1 (4.2) 78.7 (0.2) 77.5 (0.1) 42.8 (4.0) 45.5 (0.3) 45.6 (0.2)

5 51.2 (4.4) 90.8 (0.2) 82.7 (0.1) 75.2 (3.3) 80.7 (0.1) 77.8 (0.2) 48.5 (3.3) 51.8 (0.3) 52.1 (0.2)

10 57.7 (4.8) 87.3 (0.1) 85.3 (0.1) 72.1 (3.8) 77.6 (0.1) 76.5 (0.2) 59.1 (4.2) 60.3 (0.1) 61.0 (0.2)

DFEEDER

1 43.9 (4.2) 51.2 (1.0) 51.2 (1.0) 49.6 (2.4) 51.3 (1.6) 51.3 (1.6) 41.2 (2.1) 43.8 (1.8) 43.8 (1.8)

2 65.7 (3.0) 91.5 (1.1) 88.8 (1.6) 73.5 (2.5) 85.7 (4.2) 76.1 (2.1) 61.8 (2.1) 63.1 (1.5) 60.1 (1.4)

5 53.7 (3.8) 92.9 (0.8) 91.5 (1.4) 77.6 (4.0) 81.0 (1.3) 79.4 (1.0) 50.6 (2.7) 63.3 (1.4) 65.8 (1.4)

10 58.0 (3.4) 88.8 (0.9) 87.8 (1.2) 83.8 (2.8) 86.4 (2.0) 87.2 (1.3) 59.7 (3.0) 67.5 (1.9) 68.4 (2.2)

Llama-2 (7B)

DTRAIN

1 42.9 (6.6) 48.5 (0.1) 48.5 (0.1) 46.2 (2.7) 49.1 (0.1) 49.1 (0.1) 40.1 (6.1) 42.0 (0.2) 42.0 (0.2)

2 51.9 (4.4) 90.7 (0.1) 85.2 (0.2) 67.8 (3.2) 73.5 (0.2) 74.5 (0.2) 43.5 (4.5) 47.4 (0.2) 49.6 (0.1)

5 51.6 (3.2) 86.8 (0.2) 82.9 (0.1) 74.8 (3.8) 81.2 (0.2) 78.7 (0.2) 50.2 (3.7) 52.6 (0.2) 48.2 (0.3)

10 56.1 (4.6) 81.3 (0.1) 85.7 (0.1) 73.2 (3.1) 76.3 (0.1) 77.1 (0.1) 59.6 (4.3) 55.3 (0.2) 60.0 (0.4)

DFEEDER

1 43.8 (4.3) 49.7 (1.0) 49.7 (1.0) 47.2 (2.4) 50.8 (1.7) 50.8 (1.7) 41.2 (2.1) 43.8 (1.8) 43.8 (1.8)

2 54.8 (3.0) 92.5 (1.1) 84.8 (0.7) 72.2 (3.1) 82.5 (4.0) 80.1 (2.6) 50.8 (2.3) 58.6 (1.7) 53.5 (1.3)

5 53.7 (3.8) 87.9 (1.8) 91.5 (1.4) 78.3 (4.6) 83.2 (1.1) 80.1 (1.4) 53.8 (2.8) 65.3 (1.6) 61.8 (1.4)

10 58.0 (3.4) 85.8 (0.9) 87.8 (1.2) 85.0 (2.2) 87.1 (2.2) 86.9 (1.0) 60.5 (3.1) 68.0 (1.7) 68.4 (2.0)

Table 2. Performance comparisons on reasoning GSM8K dataset and semantic-parsing SMCALFlow dataset are conducted in the in-
context learning setting. We report both the mean and variance of accuracy using 8 different seeds and 5 different permutations of n-shots.
Refer to Appendix A5.3 for more extended results on demonstration selectors Clustering and Latent.

ΨLLM(·) D n
GSM8K SMCALFlow

Random Similarity Diversity Uncertainty Random Similarity Diversity Uncertainty

Gemma-2 (2B)

DTRAIN

1 6.54 (1.56) 15.16 (0.17) 15.16 (0.17) 10.51 (0.78) 8.54 (1.64) 19.12 (0.15) 19.12 (0.15) 11.21 (0.89)

2 8.56 (0.85) 18.89 (0.85) 19.52 (0.45) 17.58 (0.27) 9.56 (0.84) 20.05 (0.36) 22.50 (0.41) 13.58 (0.77)

5 15.30 (2.89) 20.31 (0.58) 21.56 (0.78) 19.30 (0.90) 18.56 (4.58) 28.65 (0.95) 27.89 (1.85) 25.22 (3.56)

10 17.45 (4.21) 21.52 (0.49) 20.85 (0.55) 20.66 (1.84) 19.85 (5.21) 30.58 (1.04) 28.56 (0.58) 31.00 (0.88)

DFEEDER

1 10.25 (0.51) 16.25 (0.21) 16.25 (0.21) 11.12 (1.78) 9.64 (0.55) 20.54 (0.66) 20.54 (0.66) 15.25 (0.87)

2 13.76 (0.48) 19.68 (0.13) 20.51 (1.55) 16.85 (3.65) 10.25 (0.52) 23.73 (0.18) 24.25 (2.65) 17.58 (6.58)

5 18.52 (5.21) 22.58 (0.85) 22.05 (0.77) 20.20 (2.05) 20.44 (5.12) 30.54 (4.58) 32.54 (5.21) 28.95 (3.66)

10 19.20 (5.22) 22.20 (1.45) 23.52 (2.20) 22.10 (6.21) 21.52 (2.01) 31.48 (1.52) 31.02 (2.54) 30.01 (1.20)

Llama-2 (7B)

DTRAIN

1 2.45 (0.83) 3.52 (0.88) 3.52 (0.88) 3.05 (0.25) 2.25 (0.64) 10.25 (0.85) 10.25 (0.85) 9.01 (0.33)

2 2.65 (0.77) 4.97 (0.18) 5.62 (0.85) 4.12 (0.47) 4.97 (0.84) 10.05 (2.36) 10.52 (1.45) 11.20 (1.54)

5 3.54 (0.88) 8.25 (0.89) 7.25 (0.96) 7.88 (0.64) 7.52 (0.85) 16.20 (1.85) 15.28 (1.75) 15.33 (1.30)

10 4.25 (0.36) 8.85 (0.85) 9.21 (1.98) 8.10 (1.11) 8.70 (1.05) 18.95 (1.25) 19.55 (2.01) 17.52 (2.66)

DFEEDER

1 3.54 (0.51) 4.44 (0.89) 4.44 (0.89) 3.36 (0.66) 3.64 (0.55) 10.89 (0.63) 10.89 (0.63) 10.02 (0.69)

2 3.76 (0.48) 5.68 (0.13) 6.66 (0.58) 4.85 (0.88) 4.25 (0.52) 12.03 (0.16) 11.13 (1.10) 12.50 (2.01)

5 4.20 (1.23) 9.22 (1.01) 8.81 (0.98) 8.20 (1.14) 8.25 (1.25) 17.20 (3.66) 16.66 (5.20) 16.06 (2.22)

10 5.02 (1.51) 10.22 (1.32) 9.25 (0.79) 9.45 (0.66) 9.20 (0.77) 20.11 (2.02) 21.25 (3.36) 20.22 (4.02)

Llama-3 (8B)

DTRAIN

1 78.24 (6.56) 79.56 (3.42) 79.56 (3.42) 78.42 (3.76) 12.37 (6.65) 15.64 (2.34) 15.64 (2.34) 14.35 (4.56)

2 79.55 (7.29) 83.40 (4.53) 83.67 (4.05) 81.23 (3.53) 13.21 (4.34) 16.74 (3.45) 17.43 (3.65) 16.60 (4.62)

5 81.45 (5.43) 83.47 (5.63) 84.52 (4.76) 82.34 (5.34) 14.53 (5.23) 16.54 (2.35) 17.87 (1.35) 16.52 (3.21)

10 82.31 (6.34) 84.42 (3.24) 84.53 (4.45) 84.12 (4.44) 14.63 (4.53) 16.50 (2.21) 18.64 (2.34) 17.87 (2.23)

DFEEDER

1 80.23 (4.43) 81.21 (3.45) 81.21 (3.45) 79.64 (2.34) 13.56 (3.22) 16.55 (2.31) 16.55 (2.31) 15.40 (2.44)

2 82.13 (4.76) 84.43 (3.23) 83.88 (3.33) 82.22 (3.43) 14.03 (3.35) 17.45 (3.64) 17.77 (3.20) 17.00 (4.57)

5 82.55 (5.96) 85.03 (3.66) 84.77 (3.77) 83.56 (3.76) 14.58 (3.45) 18.22 (2.78) 18.12 (2.01) 17.53 (2.55)

10 84.56 (2.33) 85.79 (3.56) 85.43 (4.55) 84.98 (4.76) 14.99 (4.65) 16.66 (2.33) 18.78 (3.42) 18.01 (2.44)

6

Large Language Models are Demonstration Pre-Selectors for Themselves

Table 3. Performance comparisons on text classification datasets are conducted in our bi-level optimization (i.e., fine-tuning) setting,
where we tune the LLMs and evaluate their few-shot inference performance. We report both the mean and variance of accuracy using 8
different seeds and 5 different permutations of n-shots. Refer to Appendix A8.2 for more extended results on datasets FPB, SST-5, TREC.

ΨLLM(·) D n
SUBJ SST-2 COLA

Random Similarity Diversity Random Similarity Diversity Random Similarity Diversity

GPT-2 (0.8B)

DTRAIN

1 67.8 (7.2) 83.7 (0.1) 83.7 (0.1) 61.3 (8.1) 71.6 (0.2) 71.6 (0.2) 59.3 (5.2) 69.4 (0.2) 69.4 (0.2)

2 69.1 (4.3) 88.7 (0.2) 86.9 (0.2) 73.5 (3.2) 75.8 (0.5) 74.2 (0.3) 64.1 (5.7) 74.1 (0.2) 74.0 (0.3)

5 70.8 (5.1) 73.3 (0.1) 72.7 (0.2) 74.6 (4.1) 82.8 (0.3) 75.3 (0.2) 60.9 (4.6) 76.7 (0.3) 76.4 (0.3)

10 89.2 (4.1) 94.0 (0.2) 91.6 (0.2) 70.8 (2.9) 84.5 (0.2) 77.4 (0.2) 70.7 (3.8) 75.7 (0.3) 77.6 (0.5)

DFEEDER

1 93.0 (4.3) 93.5 (1.8) 93.5 (1.8) 89.5 (4.3) 88.4 (1.6) 88.4 (1.6) 81.5 (3.3) 82.6 (1.4) 82.6 (1.4)

2 96.1 (3.8) 94.1 (1.3) 92.6 (1.2) 92.6 (2.8) 94.4 (0.6) 93.8 (0.7) 90.2 (3.8) 91.2 (1.7) 90.8 (0.9)

5 85.7 (3.5) 94.7 (1.5) 94.1 (1.1) 87.5 (4.1) 92.5 (1.7) 93.7 (1.7) 87.7 (3.2) 89.6 (2.7) 90.0 (3.9)

10 90.5 (3.3) 95.5 (1.3) 95.6 (1.4) 91.9 (2.9) 93.1 (2.1) 89.0 (1.4) 91.3 (3.5) 92.4 (1.8) 93.5 (1.9)

GPT-neo (1.3B)

DTRAIN

1 72.7 (5.2) 91.0 (0.1) 91.0 (0.1) 65.4 (4.4) 72.5 (0.2) 72.5 (0.2) 61.8 (5.2) 68.5 (0.2) 68.5 (0.2)

2 74.1 (4.3) 93.7 (0.2) 92.1 (0.3) 74.5 (3.2) 75.8 (0.4) 76.4 (0.5) 70.8 (5.7) 63.9 (0.2) 64.3 (0.4)

5 71.8 (5.5) 74.8 (0.3) 75.8 (0.4) 73.6 (4.1) 77.8 (0.3) 76.3 (0.2) 68.7 (4.7) 75.4 (0.8) 74.9 (0.4)

10 90.2 (4.0) 93.6 (0.4) 92.5 (0.4) 72.8 (2.9) 81.5 (0.2) 78.8 (0.2) 72.7 (3.4) 76.7 (0.4) 77.5 (0.7)

DFEEDER

1 93.5 (4.3) 94.1 (1.4) 94.1 (1.4) 91.2 (3.8) 92.7 (1.5) 92.7 (1.5) 86.8 (3.3) 89.6 (0.9) 89.6 (0.9)

2 95.5 (3.9) 95.1 (1.3) 96.6 (1.8) 88.6 (2.4) 93.4 (0.6) 94.2 (0.5) 84.2 (3.7) 87.3 (0.7) 89.5 (0.9)

5 91.5 (3.8) 95.7 (1.0) 95.3 (1.4) 89.4 (2.7) 92.5 (1.8) 93.7 (1.9) 89.7 (3.2) 92.4 (2.3) 90.8 (1.8)

10 92.8 (3.1) 96.0 (1.4) 94.8 (1.2) 90.9 (2.0) 93.6 (1.6) 92.2 (1.8) 89.3 (3.9) 93.5 (1.7) 94.4 (1.6)

mance are reported in Tables 1, 2, and 4. We also present
the reduction of our FEEDER in Figure 3. Our findings are
summarized as follows.

• Our FEEDER working as a pre-selector can improve the
performance of diverse demonstration selectors. Particu-
larly, we can observe that in many cases, our FEEDER can
incorporate with the similarity-based demonstration se-
lector (i.e., DFEEDER+Similarity) can achieve comparable
or even better performance than diversity or clustering-
based demonstration selectors (i.e., DTRAIN+Diversity).

• By combining the results from Table 1 and Figure 3, it
is evident that FEEDER enables the retention of almost
half of the training samples while consistently achieving
superior or comparable performance, which provides evi-
dence supporting the efficacy of FEEDER as a proficient
data pre-selection method for in-context learning.

• We also evaluate the few-shot performance on more com-
plex tasks using LLMs Gemma-2, with the corresponding
results reported in Table 2. The table demonstrates that,
even though LLMs may not perform well on these tasks,
our FEEDER can consistently enhance their performance.

• FEEDER performs well with a large number of shots. In
Table 1, we can observe many cases where the LLM per-
formance drops when the number of shots increases from
5 to 10 (e.g., Llama-2 on the COLA dataset). This may
be caused by the introduction of noisy and redundant
shots. Our FEEDER addresses this issue by evaluating
the sufficiency and necessity of each demonstration. To
further verify this claim, in Appendix A9.3, we duplicate
the training dataset and evaluate GPT-neo’s performance.
Our results show that FEEDER minimizes the negative im-
pact on the LLM, supporting its effectiveness in managing
demonstration quality.

5.2. Performance on Bi-level Optimization

Here, we would like to verify whether our FEEDER can be
beneficial to the fine-tuning setting. As formulated in Sec-
tion 2, our pre-selection and the LLM fine-tuning can be in-
tegrated into a bi-level optimization framework. Specifically,
in our evaluation, we assess the performance of FEEDER by
initially fine-tuning the LLM on the pre-selected DFEEDER.
Subsequently, we use the tuned LLM to generate a new
DFEEDER, and evaluate the LLM within the in-context learn-
ing setting, using the new DFEEDER as the selection pool. For
comparison, our baseline is to initially fine-tune the LLM
with DTRAIN and then evaluate the LLM within ICL, using
DTRAIN as the selection pool.

The corresponding experimental results are reported in Ta-
ble 3. FEEDER can improve the LLM fine-tuning perfor-
mance within our bi-level framework. This emphasizes the
potential for achieving enhanced performance by utilizing a
small yet high-quality dataset for fine-tuning, while simulta-
neously reducing computational expenses, which aligns with
the core-set selection literature (Feldman, 2020; Guo et al.,
2022). By combining the results from Table 1 and Table 3,
we can see that fine-tuning LLMs provides greater perfor-
mance improvements compared to augmenting LLMs with
contexts. Furthermore, our FEEDER achieves even better
performance gains in the fine-tuning setting. One potential
explanation is that in this scenario, fine-tuning can leverage
input demonstrations more effectively than prompting can,
and our high-quality FEEDER can therefore provide greater
benefits.

We also investigate the performance of FEEDER with vary-
ing the number of runs (i.e., R) and different tree depths
(i.e., the number of rounds K) in Appendix A9.2. FEEDER’s

7

Large Language Models are Demonstration Pre-Selectors for Themselves

Table 4. Performance comparisons on reasoning GSM8K dataset and scientific question-answering GPQA dataset are conducted in the
in-context learning setting. We report both the mean and variance of accuracy using 8 different seeds and 5 different permutations of
n-shots.

ΨLLM(·) D n
GSM8K GPQA

Random Similarity Diversity Uncertainty Random Similarity Diversity Uncertainty

Qwen-2.5 (32B)

DTRAIN

1 81.01 (4.31) 82.14 (0.18) 82.14 (0.18) 81.02 (5.24) 40.10 (1.64) 42.04 (0.19) 42.04 (0.19) 42.00 (5.04

2 83.25 (5.63) 84.19 (0.56) 84.68 (0.56) 84.01 (4.27) 42.06 (3.65) 44.52 (0.36) 45.23 (0.41) 42.85 (7.77)

5 85.20 (3.52) 89.52 (0.58) 89.61 (0.84) 86.02 (3.90) 43.33 (5.88) 46.20 (1.05) 46.81 (1.95) 46.70 (5.66)

10 86.21 (4.28) 90.41 (0.63) 89.92 (0.58) 90.20 (3.84) 43.23 (5.21) 46.85 (1.04) 46.71 (0.98) 45.28 (0.89)

DFEEDER

1 81.85 (2.61) 83.52 (0.11) 83.52 (0.11) 81.91 (3.78) 40.51 (5.95) 42.71 (0.66) 42.71 (0.66) 41.22 (6.87)

2 84.52 (6.48) 85.71 (0.33) 86.03 (0.56) 84.80 (5.65) 43.50 (0.52) 45.81 (0.38) 45.66 (3.65) 43.20 (6.58)

5 86.70 (7.11) 90.20 (0.96) 90.12 (0.88) 88.82 (4.38) 44.94 (4.12) 48.03 (5.58) 48.08 (6.21) 48.95 (4.66)

10 87.58 (7.22) 91.23 (3.45) 90.71 (4.24) 91.96 (7.71) 44.55 (2.11) 47.80 (4.52) 47.93 (3.54) 47.91 (6.26)

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������

����

����

����

����

���	

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������

����

����

����

����

����

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	�

���

���

��

����

���

����

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

�
#-

� �����������	

��	�

��	

��	�

��	�

��	�

��
�

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

�
#-

�!�����������

��	�

��
�

��

��
�

��
�

��
�

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

�
#-

�"�����������

��

����

���

����

���

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�,&� *�(!��,!!$�$ '�-��,'+

�

	���

���

����

����

���

�
$.

�#�����������	�

���	

���

����

����

���

����

�
�
�

� 	 	�

�,&� *�(!��(,'�+

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����&�%%

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
%$
)
�
-
�

�%$)�-

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
(
"
%(
+
+
�
�
%$
)
�
-
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

 � �� ��
�& ��$�"���"&!�%

����

���

����

����

����

����

����

���	

��
��

����� �("!

��	

��	�

��
�

��
	

��
�

��
��

 � �� ��
�& ��$�"���"&!�%

��	�

��	�

��	�

��
�

��
�

��
	

��
��

����� ���

����

���

����

����

����

��	�

��	�

��		

��
��

 �	 � 	�
���

����

����

���

����

����

��
��
��
�#
�'
�

���#�'

����

����

��	�

��	�

��		

��	

��	�

��	�

�"
��
"%
%�
��
�#
�'
�

 � �� ��
�& ��$�"���"&!�%

����

���

����

����

����

����

����

���	

��
��

����� �("!

��	

��	�

��
�

��
	

��
�

��
��

 � �� ��
�& ��$�"���"&!�%

��	�

��	�

��	�

��
�

��
�

��
	

��
��

����� ���

����

���

����

����

����

��	�

��	�

��		

��
��

 �	 � 	�
���

����

����

���

����

����

��
��
��
�#
�'
�

���#�'

����

����

��	�

��	�

��		

��	

��	�

��	�

�"
��
"%
%�
��
�#
�'
�

 � �� ��
�& ��$�"���"&!�%

����

���

����

����

����

����

����

���	

��
��

����� �("!

��	

��	�

��
�

��
	

��
�

��
��

 � �� ��
�& ��$�"���"&!�%

��	�

��	�

��	�

��
�

��
�

��
	

��
��

����� ���

����

���

����

����

����

��	�

��	�

��		

��
��

 �	 � 	�
���

����

����

���

����

����

��
��
��
�#
�'
�

���#�'

����

����

��	�

��	�

��		

��	

��	�

��	�

�"
��
"%
%�
��
�#
�'
�

 � �� ��
�& ��$�"���"&!�%

����

���

����

����

����

����

����

���	

��
��

����� �("!

��	

��	�

��
�

��
	

��
�

��
��

 � �� ��
�& ��$�"���"&!�%

��	�

��	�

��	�

��
�

��
�

��
	

��
��

����� ���

����

���

����

����

����

��	�

��	�

��		

��
��

 �	 � 	�
���

����

����

���

����

����

��
��
��
�#
�'
�

���#�'

����

����

��	�

��	�

��		

��	

��	�

��	�

�"
��
"%
%�
��
�#
�'
�

 � �� ��
�& ��$�"���"&!�%

����

���

����

����

����

����

����

���	

��
��

����� �("!

��	

��	�

��
�

��
	

��
�

��
��

 � �� ��
�& ��$�"���"&!�%

��	�

��	�

��	�

��
�

��
�

��
	

��
��

����� ���

����

���

����

����

����

��	�

��	�

��		

��
��

 �	 � 	�
���

����

����

���

����

����

��
��
��
�#
�'
�

���#�'

����

����

��	�

��	�

��		

��	

��	�

��	�

�"
��
"%
%�
��
�#
�'
�

 � �� ��
�& ��$�"���"&!�%

����

���

����

����

����

����

����

���	

��
��

����� �("!

��	

��	�

��
�

��
	

��
�

��
��

 � �� ��
�& ��$�"���"&!�%

��	�

��	�

��	�

��
�

��
�

��
	

��
��

����� ���

����

���

����

����

����

��	�

��	�

��		

��
��

 �	 � 	�
���

����

����

���

����

����

��
��
��
�#
�'
�

���#�'

����

����

��	�

��	�

��		

��	

��	�

��	�

�"
��
"%
%�
��
�#
�'
�

 � �� ��
�& ��$�"���"&!�%

����

���

����

����

����

����

����

���	

��
��

����� �("!

��	

��	�

��
�

��
	

��
�

��
��

 � �� ��
�& ��$�"���"&!�%

��	�

��	�

��	�

��
�

��
�

��
	

��
��

����� ���

����

���

����

����

����

��	�

��	�

��		

��
��

 �	 � 	�
���

����

����

���

����

����

��
��
��
�#
�'
�

���#�'

����

����

��	�

��	�

��		

��	

��	�

��	�

�"
��
"%
%�
��
�#
�'
�

 � �� ��
�& ��$�"���"&!�%

����

���

����

����

����

����

����

���	

��
��

����� �("!

��	

��	�

��
�

��
	

��
�

��
��

 � �� ��
�& ��$�"���"&!�%

��	�

��	�

��	�

��
�

��
�

��
	

��
��

����� ���

����

���

����

����

����

��	�

��	�

��		

��
��

 �	 � 	�
���

����

����

���

����

����

��
��
��
�#
�'
�

���#�'

����

����

��	�

��	�

��		

��	

��	�

��	�

�"
��
"%
%�
��
�#
�'
�

� 	
 �

�)#��'�%���%)$�(

�

	���

���

����

����

���

����

����

����

�
!+
�

�������������

����

����

����

���	

���

����

����

���

�
�
�

� 	
 �

�)#��'�%���%)$�(

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����#�""

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
"!
&
�
*
�

�"!&�*

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
%

"%
(
(
�
�
"!
&
�
*
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������

����

����

����

����

���	

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������

����

����

����

����

����

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	�

���

���

��

����

���

����

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

�
#-

� �����������	

��	�

��	

��	�

��	�

��	�

��
�

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

�
#-

�!�����������

��	�

��
�

��

��
�

��
�

��
�

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

�
#-

�"�����������

��

����

���

����

���

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�,&� *�(!��,!!$�$ '�-��,'+

�

	���

���

����

����

���

�
$.

�#�����������	�

���	

���

����

����

���

����

�
�
�

� 	 	�

�,&� *�(!��(,'�+

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����&�%%

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
%$
)
�
-
�

�%$)�-

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
(
"
%(
+
+
�
�
%$
)
�
-
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

� 	 	�

�+%�)�'!��+!!#�# &�,��+&*

�

	���

���

����

����

���

����

����

����

�
#-

�������������	

���

����

����

����

���

�
�
�

� 	 	�

�+%�)�'!��'+&�*

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����%�$$

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
$#
(
�
,
�

�$#(�,

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
'
"
$'
*
*
�
�
$#
(
�
,
�

 � �� ��
�& ��$�"���"&!�%

����

���

����

����

����

����

����

���	

��
��

����� �("!

��	

��	�

��
�

��
	

��
�

��
��

 � �� ��
�& ��$�"���"&!�%

��	�

��	�

��	�

��
�

��
�

��
	

��
��

����� ���

����

���

����

����

����

��	�

��	�

��		

��
��

 �	 � 	�
���

����

����

���

����

����

��
��
��
�#
�'
�

���#�'

����

����

��	�

��	�

��		

��	

��	�

��	�

�"
��
"%
%�
��
�#
�'
�

 � �� ��
�& ��$�"���"&!�%

����

���

����

����

����

����

����

���	

��
��

����� �("!

��	

��	�

��
�

��
	

��
�

��
��

 � �� ��
�& ��$�"���"&!�%

��	�

��	�

��	�

��
�

��
�

��
	

��
��

����� ���

����

���

����

����

����

��	�

��	�

��		

��
��

 �	 � 	�
���

����

����

���

����

����

��
��
��
�#
�'
�

���#�'

����

����

��	�

��	�

��		

��	

��	�

��	�

�"
��
"%
%�
��
�#
�'
�

 � �� ��
�& ��$�"���"&!�%

����

���

����

����

����

����

����

���	

��
��

����� �("!

��	

��	�

��
�

��
	

��
�

��
��

 � �� ��
�& ��$�"���"&!�%

��	�

��	�

��	�

��
�

��
�

��
	

��
��

����� ���

����

���

����

����

����

��	�

��	�

��		

��
��

 �	 � 	�
���

����

����

���

����

����

��
��
��
�#
�'
�

���#�'

����

����

��	�

��	�

��		

��	

��	�

��	�

�"
��
"%
%�
��
�#
�'
�

 � �� ��
�& ��$�"���"&!�%

����

���

����

����

����

����

����

���	

��
��

����� �("!

��	

��	�

��
�

��
	

��
�

��
��

 � �� ��
�& ��$�"���"&!�%

��	�

��	�

��	�

��
�

��
�

��
	

��
��

����� ���

����

���

����

����

����

��	�

��	�

��		

��
��

 �	 � 	�
���

����

����

���

����

����

��
��
��
�#
�'
�

���#�'

����

����

��	�

��	�

��		

��	

��	�

��	�

�"
��
"%
%�
��
�#
�'
�

 � �� ��
�& ��$�"���"&!�%

����

���

����

����

����

����

����

���	

��
��

����� �("!

��	

��	�

��
�

��
	

��
�

��
��

 � �� ��
�& ��$�"���"&!�%

��	�

��	�

��	�

��
�

��
�

��
	

��
��

����� ���

����

���

����

����

����

��	�

��	�

��		

��
��

 �	 � 	�
���

����

����

���

����

����

��
��
��
�#
�'
�

���#�'

����

����

��	�

��	�

��		

��	

��	�

��	�

�"
��
"%
%�
��
�#
�'
�

 � �� ��
�& ��$�"���"&!�%

����

���

����

����

����

����

����

���	

��
��

����� �("!

��	

��	�

��
�

��
	

��
�

��
��

 � �� ��
�& ��$�"���"&!�%

��	�

��	�

��	�

��
�

��
�

��
	

��
��

����� ���

����

���

����

����

����

��	�

��	�

��		

��
��

 �	 � 	�
���

����

����

���

����

����

��
��
��
�#
�'
�

���#�'

����

����

��	�

��	�

��		

��	

��	�

��	�

�"
��
"%
%�
��
�#
�'
�

 � �� ��
�& ��$�"���"&!�%

����

���

����

����

����

����

����

���	

��
��

����� �("!

��	

��	�

��
�

��
	

��
�

��
��

 � �� ��
�& ��$�"���"&!�%

��	�

��	�

��	�

��
�

��
�

��
	

��
��

����� ���

����

���

����

����

����

��	�

��	�

��		

��
��

 �	 � 	�
���

����

����

���

����

����

��
��
��
�#
�'
�

���#�'

����

����

��	�

��	�

��		

��	

��	�

��	�

�"
��
"%
%�
��
�#
�'
�

 � �� ��
�& ��$�"���"&!�%

����

���

����

����

����

����

����

���	

��
��

����� �("!

��	

��	�

��
�

��
	

��
�

��
��

 � �� ��
�& ��$�"���"&!�%

��	�

��	�

��	�

��
�

��
�

��
	

��
��

����� ���

����

���

����

����

����

��	�

��	�

��		

��
��

 �	 � 	�
���

����

����

���

����

����

��
��
��
�#
�'
�

���#�'

����

����

��	�

��	�

��		

��	

��	�

��	�

�"
��
"%
%�
��
�#
�'
�

� 	
 �

�)#��'�%���%)$�(

�

	���

���

����

����

���

����

����

����

�
!+
�

�������������

����

����

����

���	

���

����

����

���

�
�
�

� 	
 �

�)#��'�%���%)$�(

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����#�""

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
"!
&
�
*
�

�"!&�*

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
%

"%
(
(
�
�
"!
&
�
*
�

� 	
 �

�*$��(�& ��&*%�)

�

	���

���

����

����

���

����

����

����

�
",

�

�������������

����

����

����

���	

���

����

����

���

�
�
�

� 	
 �

�*$��(�& ��&*%�)

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����$�##

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�

�
�
�
#"
'
�
+
�

�#"'�+

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
&
!
#&

)
)
�
�
#"
'
�
+
�

Figure 3. Performance comparisons for running our approximation algorithm to pre-select FEEDER with different runs R are evaluated in
terms of accuracy (denoted as ACC) with Random as the demonstration selector and the size of the resulting FEEDER subset (denoted as
Size). Each sub-figure is entitled with Dataset+LLM base+n shots.

performance first rises and then drops with increasing R or
K. These findings further verify that identifying a represen-
tative subset from the training dataset - either by increasing
the number of runs or the number of rounds - can signif-
icantly enhance the performance of the LLM. However,
overly narrow subsets may limit the potential performance
gains. This trend may be summarized as a trade-off between
data quantity and data quality, and similar observations are
reported in Chen et al. (2023).

Furthermore, we analyze scaling up FEEDER into larger
LLMs and real-world datasets in Appendix A6.

5.3. Case Study

Subsequently, we conduct a case study to substantiate the
central proposition of this paper: whether the assessment of
the quality of demonstrations should depend on the specific

LLM in use. We consider the factual error made by Google
Bard in the first demo1. We further prompt gpt-3.5-turbo
to generate 5 sufficient and necessary statements for the
fact. We evaluate separately using these statements as a
prompt to gpt-3.5-turbo, and find that either one of the
generated statements is sufficient and necessary to answer
the question “What took the very first pictures of a planet
outside of our own solar system?” We then evaluate the
performance of gpt-j-6b with the above 5 statements, and
find that only the 1-st or the 5-th statement is sufficient and
necessary instance to answer the above question. Combining
the results of gpt-j-6b and gpt-3.5-turbo verifies one of
the core insights of our paper: the evaluation of prompting

1https://www.theverge.com/2023/2/8/
23590864/google-ai-chatbot-bard-mistake
-error-exoplanet-demo

8

https://www.theverge.com/2023/2/8/23590864/google-ai-chatbot-bard-mistake
https://www.theverge.com/2023/2/8/23590864/google-ai-chatbot-bard-mistake
-error-exoplanet-demo

Large Language Models are Demonstration Pre-Selectors for Themselves

a demonstration should consider the specific LLM in use.
Refer to the detailed description in Appendix A10.2.

5.4. Time Complexity

Here, we provide some empirical evidence of the time com-
plexity of the proposed method. As summarized in Algo-
rithm 2 in Appendix A3 and discussed in Section 4, there
are two key hyperparameter settings for reducing the time
cost of Algorithm 2: the number of iterations (i.e., K) and
the number of rounds (i.e., R). In our main experiment,
we set K = 1 and R = 1, meaning that we perform only
one-shot inference for sufficiency checks in each round of
Algorithm 2 and execute the algorithm for a single round.
We investigate the performance differences arising from
varying K and R in Appendix A9.2 and Section 5.2 re-
spectively. Additionally, we report the time complexity
associated with different values of K and R on COLA and
TREC datasets in Figure 4. From the figure, we observe
that as the number of samples decreases, the time consump-
tion of Algorithm 2 also decreases. Furthermore, we note
that increasing the number of rounds has a great impact on
reducing the time complexity. This may be attributed to
the fact that two-shot inference for sufficiency-satisfying
Eq. (7)-is significantly more challenging than a one-shot
inference check. By further combining Figure 4 and Fig-
ure 3 in Section 5.1, we observe that the time consumption
is nearly linear with respect to the size of the data samples.

���� ����

�

�

��

��

��

��

	�

	�

�
 "

�
��

'
�

�
$

#
�

�

���&�� #���������* (��$)&��%%&$+ "�($#��!�$& (�"

�

�

	

�

�

�

�

��

Figure 4. Time complexity of searching FEEDER using our approx-
imation algorithm for different runs on COLA and TREC datasets
using varying the number of rounds R and varying the number of
rounds K.

Consider two hyper-parameter settings in our approxima-
tion algorithm: the number of rounds R and the number
of iterations K, both designed to balance performance and
computational efficiency. As detailed in Figures 3 and 4, the
time complexity of our method scales almost linearly with
the number of samples, making these parameters critical for
practical applications. While Figure 3 illustrates the per-
formance changes across different values of R, Figure A6
in Appendix A5.4 explores the impact of varying K. Inter-

estingly, Figure A6 reveals a similar but more robust trend
compared to Figure 3. This robustness could be attributed
to the inherent strength of the two-shot inference process
for sufficiency, as defined in Eq. (7). The two-shot inference
introduces a more rigorous evaluation mechanism than the
one-shot inference check, enabling a stronger filtering of
unnecessary samples.

In practice, we deploy our approximation algorithm with
K = 1 and R = 1, which provides an optimal trade-off
between computational efficiency and model performance.
This configuration ensures that the pre-selection process
remains practical while maintaining competitive accuracy.

6. Conclusion and Future Work
In this paper, we present a novel demonstration pre-selector
FEEDER, designed to leverage LLM’s capabilities and do-
main knowledge to identify high-quality demonstration and
provide an approximate approach for their discovery. Our
experimental results showcase the significant advantages of
FEEDER across diverse LLM bases in both ICL and bi-level
optimization for fine-tuning LLMs. In the future, it would
be valuable to explore the use of larger LLMs and extend
the applications of FEEDER to areas such as data safety and
data management.

Acknowledgment
The Shanghai Jiao Tong University team is partially sup-
ported by National Key R&D Program of China (No.
2022ZD0114804), Shanghai Municipal Science and Tech-
nology Major Project (No. 2021SHZDZX0102) and Na-
tional Natural Science Foundation of China (No. 62322603,
No. 62177033). This work is also supported in part
by National Natural Science Foundation of China (No.
623B2002).

Impact Statement
The objective of this paper is to develop a pre-selection
method over the training data as an intermediary process to
enhance the accuracy of factual knowledge in the model’s
outputs. It is essential to note that our FEEDER, pre-selected
from the training dataset without external trustworthy cor-
pora, relies on the capability of the given LLM itself. This
characteristic may potentially amplify existing biases in the
model weights of LLMs.

9

Large Language Models are Demonstration Pre-Selectors for Themselves

References
Andreas, J., Bufe, J., Burkett, D., Chen, C., Clausman, J.,

Crawford, J., Crim, K., DeLoach, J., Dorner, L., Eisner, J.,
et al. Task-oriented dialogue as dataflow synthesis. Trans-
actions of the Association for Computational Linguistics,
8:556–571, 2020.

Ben-David, E., Oved, N., and Reichart, R. Pada: A prompt-
based autoregressive approach for adaptation to unseen
domains. arXiv preprint arXiv:2102.12206, 3, 2021.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Carbonell, J. and Goldstein, J. The use of mmr, diversity-
based reranking for reordering documents and producing
summaries. In Proceedings of the 21st annual interna-
tional ACM SIGIR conference on Research and develop-
ment in information retrieval, pp. 335–336, 1998.

Chen, L., Li, S., Yan, J., Wang, H., Gunaratna, K., Yadav,
V., Tang, Z., Srinivasan, V., Zhou, T., Huang, H., et al.
Alpagasus: Training a better alpaca with fewer data. arXiv
preprint arXiv:2307.08701, 2023.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Davison, J., Feldman, J., and Rush, A. M. Commonsense
knowledge mining from pretrained models. In Proceed-
ings of the 2019 conference on empirical methods in nat-
ural language processing and the 9th international joint
conference on natural language processing (EMNLP-
IJCNLP), pp. 1173–1178, 2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B., Sun,
X., Xu, J., and Sui, Z. A survey for in-context learning.
arXiv preprint arXiv:2301.00234, 2022.

Dor, L. E., Halfon, A., Gera, A., Shnarch, E., Dankin, L.,
Choshen, L., Danilevsky, M., Aharonov, R., Katz, Y., and
Slonim, N. Active learning for bert: An empirical study.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp.
7949–7962, 2020.

Feldman, D. Introduction to core-sets: an updated survey.
arXiv preprint arXiv:2011.09384, 2020.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, pp.
1050–1059. PMLR, 2016.

Gao, L., Chaudhary, A., Srinivasan, K., Hashimoto, K., Ra-
man, K., and Bendersky, M. Ambiguity-aware in-context
learning with large language models. arXiv preprint
arXiv:2309.07900, 2023.

Gao, T. Prompting: Better ways of using language models
for nlp tasks. The Gradient, 2021.

Gissin, D. and Shalev-Shwartz, S. Discriminative active
learning. arXiv preprint arXiv:1907.06347, 2019.

Gonen, H., Iyer, S., Blevins, T., Smith, N. A., and Zettle-
moyer, L. Demystifying prompts in language models via
perplexity estimation. arXiv preprint arXiv:2212.04037,
2022.

Guo, C., Zhao, B., and Bai, Y. Deepcore: A comprehen-
sive library for coreset selection in deep learning. In
Database and Expert Systems Applications: 33rd Interna-
tional Conference, DEXA 2022, Vienna, Austria, August
22–24, 2022, Proceedings, Part I, pp. 181–195. Springer,
2022.

Gupta, V., Shrivastava, A., Sagar, A., Aghajanyan,
A., and Savenkov, D. Retronlu: Retrieval aug-
mented task-oriented semantic parsing. arXiv preprint
arXiv:2109.10410, 2021.

Jiang, Z., Xu, F. F., Araki, J., and Neubig, G. How can we
know what language models know? Transactions of the
Association for Computational Linguistics, 8:423–438,
2020.

Köksal, A., Schick, T., and Schütze, H. Meal: Stable and
active learning for few-shot prompting. arXiv preprint
arXiv:2211.08358, 2022.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021.

Levy, I., Bogin, B., and Berant, J. Diverse demonstrations
improve in-context compositional generalization. arXiv
preprint arXiv:2212.06800, 2022.

Lewis, D. D. A sequential algorithm for training text clas-
sifiers: Corrigendum and additional data. In Acm Sigir
Forum, volume 29, pp. 13–19. ACM New York, NY, USA,
1995.

Li, X., Lv, K., Yan, H., Lin, T., Zhu, W., Ni, Y., Xie, G.,
Wang, X., and Qiu, X. Unified demonstration retriever
for in-context learning. arXiv preprint arXiv:2305.04320,
2023.

10

Large Language Models are Demonstration Pre-Selectors for Themselves

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., and Chen,
W. What makes good in-context examples for gpt-3?
arXiv preprint arXiv:2101.06804, 2021.

Lu, Y., Bartolo, M., Moore, A., Riedel, S., and Stenetorp,
P. Fantastically ordered prompts and where to find them:
Overcoming few-shot prompt order sensitivity. arXiv
preprint arXiv:2104.08786, 2021.

Malo, P., Sinha, A., Korhonen, P., Wallenius, J., and Takala,
P. Good debt or bad debt: Detecting semantic orientations
in economic texts. Journal of the Association for Infor-
mation Science and Technology, 65(4):782–796, 2014.

Marion, M., Üstün, A., Pozzobon, L., Wang, A., Fadaee,
M., and Hooker, S. When less is more: Investigating
data pruning for pretraining llms at scale. arXiv preprint
arXiv:2309.04564, 2023.

Meta, A. Introducing meta llama 3: The most capable
openly available llm to date. Meta AI, 2024.

Pang, B. and Lee, L. A sentimental education: Sentiment
analysis using subjectivity summarization based on mini-
mum cuts. arXiv preprint cs/0409058, 2004.

Pasupat, P., Zhang, Y., and Guu, K. Controllable seman-
tic parsing via retrieval augmentation. arXiv preprint
arXiv:2110.08458, 2021.

Pearl, J. Causality: models, reasoning, and inference, 1980.

Pearl, J. Causality. Cambridge university press, 2009.

Qin, G. and Eisner, J. Learning how to ask: Query-
ing lms with mixtures of soft prompts. arXiv preprint
arXiv:2104.06599, 2021.

Qiu, L., Shaw, P., Pasupat, P., Shi, T., Herzig, J., Pitler,
E., Sha, F., and Toutanova, K. Evaluating the impact of
model scale for compositional generalization in semantic
parsing. arXiv preprint arXiv:2205.12253, 2022.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence
embeddings using siamese bert-networks. arXiv preprint
arXiv:1908.10084, 2019.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y.,
Dirani, J., Michael, J., and Bowman, S. R. GPQA: A
graduate-level google-proof q&a benchmark. In First
Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=Ti67584b98.

Reynolds, L. and McDonell, K. Prompt programming for
large language models: Beyond the few-shot paradigm.
In Extended Abstracts of the 2021 CHI Conference on
Human Factors in Computing Systems, pp. 1–7, 2021.

Rubin, O., Herzig, J., and Berant, J. Learning to re-
trieve prompts for in-context learning. arXiv preprint
arXiv:2112.08633, 2021.

Sachdeva, N., Coleman, B., Kang, W.-C., Ni, J., Hong,
L., Chi, E. H., Caverlee, J., McAuley, J., and Cheng,
D. Z. How to train data-efficient llms. arXiv preprint
arXiv:2402.09668, 2024.

Sanh, V., Webson, A., Raffel, C., Bach, S. H., Sutawika, L.,
Alyafeai, Z., Chaffin, A., Stiegler, A., Scao, T. L., Raja,
A., et al. Multitask prompted training enables zero-shot
task generalization. arXiv preprint arXiv:2110.08207,
2021.

Schick, T. and Schütze, H. Exploiting cloze questions for
few shot text classification and natural language inference.
arXiv preprint arXiv:2001.07676, 2020.

Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., and
Singh, S. Autoprompt: Eliciting knowledge from lan-
guage models with automatically generated prompts.
arXiv preprint arXiv:2010.15980, 2020.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631–1642, 2013.

Sorensen, T., Robinson, J., Rytting, C. M., Shaw, A. G.,
Rogers, K. J., Delorey, A. P., Khalil, M., Fulda, N., and
Wingate, D. An information-theoretic approach to prompt
engineering without ground truth labels. arXiv preprint
arXiv:2203.11364, 2022.

Strickland, E. Andrew ng: Farewell, big data. IEEE Spec-
trum, Mar, 2022.

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin,
C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahri-
ari, B., Ramé, A., et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Voorhees, E. M. and Tice, D. M. Building a question an-
swering test collection. In Proceedings of the 23rd annual
international ACM SIGIR conference on Research and
development in information retrieval, pp. 200–207, 2000.

11

https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98

Large Language Models are Demonstration Pre-Selectors for Themselves

Wan, X., Zhou, H., Sun, R., Nakhost, H., Jiang, K., and
Arık, S. Ö. From few to many: Self-improving many-shot
reasoners through iterative optimization and generation.
arXiv preprint arXiv:2502.00330, 2025.

Wang, S., Xu, Y., Fang, Y., Liu, Y., Sun, S., Xu, R., Zhu, C.,
and Zeng, M. Training data is more valuable than you
think: A simple and effective method by retrieving from
training data. arXiv preprint arXiv:2203.08773, 2022.

Wang, X., Zhu, W., Saxon, M., Steyvers, M., and Wang,
W. Y. Large language models are latent variable mod-
els: Explaining and finding good demonstrations for in-
context learning. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Warstadt, A., Singh, A., and Bowman, S. R. Neu-
ral network acceptability judgments. arXiv preprint
arXiv:1805.12471, 2018.

Webson, A. and Pavlick, E. Do prompt-based models really
understand the meaning of their prompts? arXiv preprint
arXiv:2109.01247, 2021.

Xia, M., Malladi, S., Gururangan, S., Arora, S., and Chen,
D. Less: Selecting influential data for targeted instruction
tuning. arXiv preprint arXiv:2402.04333, 2024.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B.,
Li, C., Liu, D., Huang, F., Wei, H., Lin, H., Yang, J., Tu,
J., Zhang, J., Yang, J., Yang, J., Zhou, J., Lin, J., Dang,
K., Lu, K., Bao, K., Yang, K., Yu, L., Li, M., Xue, M.,
Zhang, P., Zhu, Q., Men, R., Lin, R., Li, T., Xia, T., Ren,
X., Ren, X., Fan, Y., Su, Y., Zhang, Y., Wan, Y., Liu, Y.,
Cui, Z., Zhang, Z., and Qiu, Z. Qwen2.5 technical report.
arXiv preprint arXiv:2412.15115, 2024.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., and
Chen, X. Large language models as optimizers. arXiv
preprint arXiv:2309.03409, 2023.

Ye, X., Iyer, S., Celikyilmaz, A., Stoyanov, V., Durrett, G.,
and Pasunuru, R. Complementary explanations for effec-
tive in-context learning. arXiv preprint arXiv:2211.13892,
2022.

Yosida, K. Functional analysis. Springer Science & Busi-
ness Media, 2012.

Yuan, W., Neubig, G., and Liu, P. Bartscore: Evaluating
generated text as text generation. Advances in Neural
Information Processing Systems, 34:27263–27277, 2021.

Zemlyanskiy, Y., de Jong, M., Ainslie, J., Pasupat, P., Shaw,
P., Qiu, L., Sanghai, S., and Sha, F. Generate-and-retrieve:
use your predictions to improve retrieval for semantic
parsing. arXiv preprint arXiv:2209.14899, 2022.

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X.,
Efrat, A., Yu, P., Yu, L., et al. Lima: Less is more for
alignment. Advances in Neural Information Processing
Systems, 36, 2024.

Zhou, H., Wan, X., Vulić, I., and Korhonen, A. Sur-
vival of the most influential prompts: Efficient black-box
prompt search via clustering and pruning. arXiv preprint
arXiv:2310.12774, 2023.

Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S.,
Chan, H., and Ba, J. Large language models are human-
level prompt engineers. arXiv preprint arXiv:2211.01910,
2022.

12

Supplementary Materials: FEEDER

A1. Connections to Existing Approaches
A1.1. Connections to Causality

The concepts of sufficiency and necessity have a broad ap-
plication scope, especially in causality (Pearl, 1980; 2009),
where sufficiency and necessity are proposed to define the
causal relationship between two binary variables. Let X
and Y denote a pair of variables. Then, the probability
of sufficiency measures the capacity of setting X = true

to produce Y = true, while the probability of necessity
measures the changing the value of X from X = true to
X = false would cause the value of Y changing from
Y = true to Y = false

In this paper, we adopt the concepts of sufficiency and ne-
cessity in the context of demonstration selection, where we
investigate whether prompting certain data points is suffi-
cient or necessary for the given LLM to generate correct
answers for input questions. For this purpose, we introduce
the plugging-in operation, denoted as plug(·), to exam-
ine sufficiency, and the unplugging operation, denoted as
unplug(·), to examine necessity. Both of these operations
are analogous to the do operation in causality, denoted as
do(·), which indicates that the system operates under the
condition that certain variables are controlled by external
forces. To be more specific, in our setting, the external
force can be explained as follows. We have the choice to
either plug in or unplug certain data points, thereby altering
what is already plugged into the LLM. Our approach shares
similarities with the counterfactual idea in causality, which
explores hypothetical scenarios by considering what might
happen if certain variables are set with different values. In
our case, we investigate the impact of plugged-in data that
includes data points differing from the historical (i.e., fac-
tual) setting. Notably, a significant distinction between our
approach and the counterfactual setting in causality lies in
the fact that we do not need to estimate “counterfactual”
situations; instead, we can directly conduct evaluations.

A1.2. Connections to Demonstration Selection

In the context of few-shot inference, a central challenge lies
in selecting the appropriate training samples as extra input
during inference. These samples are often referred to as
demonstrations or prompts (Levy et al., 2022; Liu et al.,
2021; Dong et al., 2022). The underlying assumption is that
the training dataset serves as a support set (Yosida, 2012)
for test samples. Previous studies (Wang et al., 2022; Ru-
bin et al., 2021) have demonstrated that introducing similar
training samples can enhance the performance of LLMs on
test instances. (Gao et al., 2023) enhances these approaches
by retrieving candidates whose ground label lies in top-2
zero-shot predictions. However, as pointed out in (Levy
et al., 2022), existing methods often treat each data point in
isolation, neglecting the collective impact of multiple data

points. For instance, retrievers based on similarity metrics
may select redundant data points together. To address this
limitation, (Levy et al., 2022) proposes to consider the di-
versity among the data points, to avoid the case where too
“similar” data points are selected together. Further, (Rubin
et al., 2021) trains an LLM as a contrastive scorer as well as
a demonstration referrer, and (Li et al., 2023) advances this
framework through unified training across various datasets.

In this paper, we present a novel perspective, asserting that
the quality of demonstrations is contingent on the specific
LLM in use. Namely, a high-quality demonstration for one
LLM might be deemed low-quality for another. Leveraging
this insight, we introduce sufficiency and necessity as new
set-level metrics. Our approach offers several advantages:
Firstly, sufficiency and necessity measure the quality of data
points based on the specific LLM, in contrast to generic
similarity and diversity metrics. Secondly, our proposed
sufficiency and necessity extend to the set level, enabling
the consideration of data points as a cohesive whole. In our
framework, “similarity” is akin to “sufficiency” signifying
that plugging in data points can enhance LLM performance,
while “diversity” is akin to “necessity” suggesting that each
data point should play an indispensable role.

Recent studies (Xia et al., 2024; Marion et al., 2023) focus
on mining training examples for fine-tuning on specific
tasks, while (Wang et al., 2024) extends this idea to in-
context learning. Unlike these approaches, which use LLMs
to select demonstrations tailored to specific test datasets,
our work leverages LLMs as demonstration pre-selectors,
identifying a core subset of the training data that remains
independent of the test datasets, thus eliminating the need
for re-computation across different test datasets.

A1.3. Connections to Core-set Selection

Core-set selection (Feldman, 2020; Guo et al., 2022), a long-
standing problem in machine learning, focuses on identify-
ing a subset of the most informative training samples. Previ-
ous research (Dor et al., 2020) has surveyed and evaluated
state-of-the-art approaches for models like BERT (Devlin
et al., 2018), encompassing strategies such as random sam-
pling, uncertainty-sampling (using entropy metric) (Lewis,
1995; Gal & Ghahramani, 2016) and diversity sampling
(using diversity metric) (Gissin & Shalev-Shwartz, 2019).

FEEDER, in contrast to these prior papers mainly using active
learning, is designed to select core sets, which can serve as
additional input contexts (i.e., in-context learning setting)
or be used for fine-tuning LLMs (i.e., fine-tuning setting).
FEEDER defines “informative training samples” as those
samples that specifically enhance the LLM’s performance
on a given task.

13

Supplementary Materials: FEEDER

A1.4. Connections to Prompt Optimization

Prompting provides a natural way for humans to inter-
act with; and due to its flexibility, prompting has been
widely used as a genre method for various natural language
processing tasks (Schick & Schütze, 2020; Brown et al.,
2020; Sanh et al., 2021). However, using prompting ef-
fectively with LLMs requires careful design, either done
manually (Reynolds & McDonell, 2021) or automatically
(Gao, 2021; Shin et al., 2020), as LLMs do not interpret
prompts in the same way humans do (Webson & Pavlick,
2021; Lu et al., 2021). While numerous successful methods
(Liu et al., 2021; Lester et al., 2021; Qin & Eisner, 2021)
for prompt tuning rely on optimizing a continuous space
through gradient-based techniques, this approach becomes
impractical as many powerful LLMs are only accessible
through APIs that may not offer gradient access.

Our FEEDER approach can be seen as a discrete pre-search
method for prompts, distinct from existing methods for
prompt generation (Gao, 2021; Ben-David et al., 2021),
prompt scoring (Davison et al., 2019), and prompt para-
phrasing (Jiang et al., 2020; Yuan et al., 2021), which aim
to optimize instructions by directly searching the natural
language hypothesis space. Instead, our approach leverages
the causal dependencies among candidate demonstrations,
focusing on searching for the most informative demonstra-
tions as prompts, in terms of sufficiency and necessity.

A2. A Family of Analysis on Sufficiency and
Necessity Metrics

Notations. Let X,C denote variables for the input and the
context (i.e., previously plugged-in demonstrations). We
use Y , a boolean variable, to denote whether the output to
the input is correct. Concretely, we use Yx = 1 to denote
Y = 1|X = x, meaning that the LLM generates the cor-
rect output to the input x. Similarly, Yx = 0, equivalent
to Y = 0|X = x, indicates that the LLM produces the
incorrect output to x. For clarity, we introduce S, a variable
to record the original status of the LLM before new plug-in
and unplug operations (denoted as plug(·) and unplug(·)
respectively), e.g., C = ((x,y)), S = (Yx = 1) means
that without plugging-in any new data or unplugging any
plugged-in data, the plugged-in data is (x,y) and the LLM’s
performance is Yx = 1.

A2.1. Instance Level Metrics

Here, two instances are considered, represented as (xn,yn)
and (xm,ym).

The sufficiency metric is introduced to assess whether plug-
ging in one data point is sufficient to enable the LLM to
generate the correct output for the other one. Formally, the

sufficiency relationship is defined as follows:
Definition A1 (Instance-level Sufficiency Metric). Given
tuple (X,Y,C, S), data point (xn,yn) is sufficient for
(xm,ym), if the following equation holds:

Yxm = 1|plug((xn,yn));C, S, (9)

where (xn,yn) is not included in C and S can be any value.
It means that when plugging in (xn,yn), it would correct
the LLM’s answer to xm.

Example A1. Let xm,xn be Which country does Sherlock
Holmes live? and Which city does Sherlock Holmes live?
Then, after informing the LLM of the correct answer of
xn (e.g., yn is Sherlock Holmes lives in London), the LLM
can deduce the correct answer of xm (e.g., ym is Sherlock
Holmes lives in the United Kingdom). In this case, the LLM
is using the city where Sherlock Holmes lives to infer the
country in which he lives.

The necessity metric is introduced to assess whether the
presence of one plugged-in data point is necessary for pre-
serving the correct output in relation to another. Formally,
this is expressed as:
Definition A2 (Instance-level Necessity Metric). Given
tuple (X,Y,C, S), we say that data point (xn,yn) is nec-
essary for (xm,ym), if the following equation holds:

Yxm
= 0|unplug((xn,yn));C, S, (10)

where (xn,yn) is included in C and S = (Yxm = 1). It
means that before unplugging (xn,yn), the LLM’s answer
to xm is correct. However, when we do unplug (xn,yn), it
causes the LLM to offer an incorrect output to xm.

Example A2. Consider xm as Which city does Sherlock
Holmes live? and xn as What is the detailed address of
Sherlock Holmes lives?. Assume the LLM has no prior
knowledge about Sherlock Holmes until the introduction
of the plugged-in data (xn,yn), where yn is 221B Baker
Street, London. After plugging in (xn,yn), the LLM is
capable of generating the correct output ym (e.g., Sherlock
Holmes lives in London) in response to xm. If we were
to unplug (xn,yn), the LLM would provide an incorrect
output for xm, such as Sherlock Holmes lives in New York.

In an ideal scenario, ensuring optimal LLM performance
entails the extraction of data points that are both sufficient
and necessary.
Definition A3 (Instance-level Sufficiency and Necessity
Metric). Given tuple (X,Y,C), we say that data point
(xn,yn) is both sufficient and necessary for (xm,ym), if
the following equation holds:(

Yxm
= 1|plug((xn,yn));C = ∅

)
∧
(
Yxm

= 0|unplug((xn,yn));C = ((xn,yn))
)
,

(11)

14

Supplementary Materials: FEEDER

which indicates that plugging in data point (xn,yn) can
respond to the LLM’s answering xm in both ways. We omit
S here, because we can derive the original status of the
necessary instance based on the condition of the sufficiency
instance.

We further demonstrate that neither of the aforementioned
quantities (i.e., sufficiency and necessity) is adequate for
determining the other, indicating that they are not entirely
independent. This is illustrated in the following lemma.
Lemma 1 (Connection between Sufficiency and Neces-
sity). Supposing that we only consider using the data point
(xn,yn) as the plug in data, and only care about the LLM’s
performance regarding the input question xm, then overall
there are only two situations here: (i) (xn,yn) is plugged-
in, and (ii) (xn,yn) is not plugged-in. Based on the above
assumption, we re-write (i) as plugging-in (xn,yn) when
there is no plugged-in data (i.e., plug((xn,yn));C = ∅,
and re-write (ii) as unplugging (xn,yn) when there is
plugged-in data (xn,yn) (i.e., unplug((xn,yn));C =
((xn,yn))). For convenience, we use E∗ and E to denote
(i) and (ii) respectively; and we use Y ∗ and Y to denote
Yx1

= 1 and Yx1
= 0. Then, we have: E∗ ∨ E = true,

E∗ ∧ E = false, Y ∗ ∨ Y = true, Y ∗ ∧ Y = false.

We define PS as the probability of being sufficient as:

PS :=Pr
(
Yxm

= 1|plug((xn,yn));C = ∅
)

=Pr(Y ∗|E∗).
(12)

We define PN as the probability of being necessary as:

PN :=Pr
(
Yxm

= 0|unplug((xn,yn));C = ((xn,yn))
)

=Pr(Y |E).
(13)

We further define PNS as the probability of being sufficient
and necessary as:

PNS := Pr(Y ∗|E∗, Y |E). (14)

Then, PS, PN, PSN satisfy the following relationship:

PSN = Pr(Y,E) · PS+ Pr(Y ∗, E∗) · PN. (15)

Proof. Based on the earlier delineation of Y ∗, Y , E∗, and
E, we can express:

Y ∗|E∗ ∧ Y |E = (Y ∗|E∗ ∧ Y |E) ∧ (E ∨ C∗)

=(Y ∗|E∗ ∧ Y ∧ E) ∨ (Y |E ∧ Y ∗ ∧ E∗).
(16)

Taking probabilities on both sides and using the disjointed-
ness of E∗ and E, we have:

PSN =Pr(Y ∗|E∗, Y |E)

=Pr(Y |E, Y ∗, E∗) + Pr(Y ∗|E∗, Y, E)

=Pr(Y,E) · PS+ Pr(Y ∗, E∗) · PN.
(17)

A2.2. Set Level Metrics

We extend Definitions A1 and A2 to the set level as:
Definition A4 (Set-level Sufficiency Metric). Given tuple
(X,Y, C, S), the input set DIN is sufficient for output set
DOUT, if the following equation holds:

Y({xn|xn∈DOUT}) = 1|DOUT||plug(DIN);C, S. (18)

where DIN is not included in C and S can be any value.
1|DOUT| denotes 1|DOUT|-dimensional vectors whose elements
are all 1s. It indicates that when plugging in DIN, it guaran-
tees that the LLM’s output to any input question in DOUT is
correct.
Definition A5 (Set-level Necessity Metric). Given tuple
(X,Y, C, S), the input set DIN is necessary for output set
DOUT, if the following equation holds:

Y({xn|xn∈DOUT}) ̸= 1|DOUT||unplug(D
′
IN);C, S, (19)

where DIN is included in C, S = (Y({xn|xn∈DOUT}) =
1|DOUT|), and D′

IN can be any subset of DIN. 1|DOUT| denotes
1|DOUT|-dimensional vectors whose elements are all 1s. It
means that before unplugging any subset of DIN, there is
plugged-in data DIN and the LLM’s output to any input in
DOUT is correct. When we unplug any subset of DIN, then it
would cause the LLM’s output to at least one input in DOUT

to be incorrect.

From the above description, when we refer to a set as a
sufficient set, we are stating that the collective set of data
points is sufficient. On the other hand, when we characterize
a set as a necessary set, we mean that each individual data
point within the set is necessary.

Example A3. Let DOUT = {(xm,ym)} and DIN = {(xi,
yi), (xj ,yj)}. We assign xm and ym as Which country
does Sherlock Holmes live? and Sherlock Holmes lives in
the United Kingdom. Let xi and yi denote Which street
does Sherlock Holmes live? and Baker street. We assign xj

and yj as Where is Baker street? and Bake street is located
in London. Supposing that the LLM does not know that
Bake Street is located in the United Kingdom, then solely
plugging in either (xi,yi) or (xj ,yj) is not sufficient for
the LLM to get the right answer to the input question xm.
In this regard, it is easy to derive that DIN is both a sufficient
and necessary set for DOUT when both (i) plugging in DIN

is sufficient to maintain the right answer for DOUT; and (ii)
unplugging any subset of DIN can not maintain the right
answer for DOUT, are satisfied.

A2.3. FEEDER Set

Next, we explore the problem of defining a subset within
the given dataset DTRAIN that is both sufficient and necessary
to represent DTRAIN. This subset is termed FEEDER (FEw yet
Essential DEmonstRations).

15

Supplementary Materials: FEEDER

Definition A6 (FEEDER Set). Given tuple (X,Y,C, S) and
DTRAIN, a subset of DTRAIN, is considered as a FEEDER set
(denoted as DFEEDER), if the following conditions are satis-
fied:

(i) Y(x1...,xN) = 1N |plug(DFEEDER);C = ∅, S =
(Y(x1...,xN) ̸= 1N) holds.

(ii) Y(x1...,xN) ̸= 1N |unplug(D′
FEEDER);C = DTRAIN, S =

(Y(x1...,xN) = 1N) holds for any subset of DFEEDER (de-
noted as D′

FEEDER).

1N denotes N -dimensional vectors whose elements are all
1s. (i) and (ii) respectively imply that plugging in DFEEDER

is sufficient and necessary to maintain the LLM generating
correct output.

Example A4. If we merge DIN and DOUT exemplified in
Example A3 into one set D, namely let D = DIN ∪ DOUT,
then in this case, it is easy to derive that DIN is a FEEDER

set (denoted as DFEEDER) for D.

The above definition of the FEEDER set is overly strict, as
identifying it would require enumerating all possible subsets.
To mitigate this complexity, we introduce the following
approximation algorithm.

Algorithm 2 Approximation Algorithm for FEEDER
Input: Training dataset DTRAIN.
Output: An approximated FEEDER set D̃FEEDER.
Initialize k = 1.
Initialize W0 = {Wn = {(xn,yn)}|(xn,yn) ∈ DTRAIN}.
repeat

for each pair (Wi,Wj) where Wi,Wj ∈ Wk−1 do
Check Y({xn|xn∈Wj}) = 1|Wj ||plug(Wi);C, S
(a), where C = ∅ and S can be any value.
Check Y({xn|xn∈Wi}) = 1|Wi||plug(Wj);C, S
(b), where C = ∅ and S can be any value.
Case I (Both (a) and (b) hold), if |Wi| ≥ |Wj |, ap-
pend Wj to Wk; otherwise, append Wi to Wk.
Case II (Either one of (a) and (b) holds), if (a) holds,
append Wi to Wk; otherwise, append Wj to Wk.
Case III (Neither (a) nor (b) holds), append Wi ∪
Wj to Wk.
Remove Wi,Wj from Wk−1, i.e., Wk−1 = Wk−1−
{Wi,Wj}.

if |Wk−1| = 1 then
Append only element in Wk−1 to Wk.

Grow tree from bottom to top via k = k + 1.
until |Wk| = 1, and we assume the current round is K;
Let WSUFFICIENT denote only one element (i.e. the root node)
in WK .
Assign D̃FEEDER as WSUFFICIENT, i.e., DOUT = WSUFFICIENT.

Algorithm 3 Exact Algorithm for FEEDER
Input: Training dataset DTRAIN.
Output: An exact FEEDER set D̃FEEDER.
Initialize k = 1.
Initialize H0 = ∅.
for each instance (xn,yn) ∈ DTRAIN do

Check Y({xn′ |xn′∈DTRAIN}) = 1|DTRAIN||unplug((xn,yn

)); C, S (a), C = DTRAIN, S = (Y({xn′ |xn′∈DTRAIN}) =
1|DTRAIN|).
If (a) holds, let Hn = {(xn,yn)} and append Hn to
H0.

repeat
for each pair (Hi,Hj) where Hi,Hj ∈ Hk−1 do

Check Y({xn|xn∈DTRAIN}) = 1|DTRAIN||unplug(Hi ∪
Hj);C, S (b), where C = DTRAIN and S =
(Y({xn′ |xn′∈DTRAIN}) = 1|DTRAIN|).
If (b) holds, generate a new node Hi∪Hj , append it
to Hk, and assign Hi ∪Hj with MAINTAIN signals;
otherwise, append Hi and Hj to Hk.

Assign HMAX = argmaxH·∈Hk
|H·| with MAINTAIN

signal.
Remove the nodes without MAINTAIN signals in Hk.
Grow tree from bottom to top via k = k + 1.

until |Hk| = 1 where we assume the current round is K;
Let HUNNCESSARY denote only one element (i.e. the root node)
in HK .
Assign D̃FEEDER as removing HUNNCESSARY from DTRAIN, i.e.,
D̃FEEDER = DTRAIN −HUNNECESSARY.

A3. Approximated Extraction of FEEDER
Definition A7 (Transitivity Inference over Sets). We assume
that sufficiency is transitive over sets. Formally, for any
three sets, denoted as DA, DB, and DC, if DA is a sufficient
set of DB and DB is a sufficient set of DC, then we can
conclude that DA is a sufficient set of DC.

We also establish case studies in Appendix A10.1 to verify
the feasibility of the above assumption.

For convenience, we use DIN = {(xn,yn)}NIN

n=1 to denote
the input set for our tree algorithm, and we use DOUT to
denote the corresponding output. The tree expands from the
bottom to the top. We use the variable K to represent the
depth of these trees, which corresponds to the number of
iterations. To be more specific, we use k = 1, 2, . . . ,K to
refer to each k-th iteration, and during each k-th iteration,
we generate the (k + 1)-th layer of the tree.

Concretely, we leverage the transitivity of sufficiency to
build the tree, where each node is a set of samples. Formally,
we denote Wk as the set of nodes after the k-th iteration. We
initialize W0 by assigning all the candidate samples in DIN

16

Supplementary Materials: FEEDER

Run 1

Run 2

(a) An Example of Algorithm for Searching Exact FEEDER

Check Whether is Unnecessary for

, Extract Unnecessary Parts

Check Whether is Unnecessary for

, Extract Unnecessary Parts

(b) An Example of Alternative Algorithm for Searching Exact FEEDER

Check Whether is Unnecessary for

, Extract Unnecessary Parts

Figure A1. An illustrated example of our algorithm for deriving an exact FEEDER set. As shown in (a), we check the necessity of the
conjunction of each pair of nodes, and we do not remove them from H·; instead, we assign MAINTAIN signals to newly generated nodes
and the node with the maximum size, and those nodes without MAINTAIN signals, circled with dashed lines, would be removed from H·.
In (b), we propose an alternative algorithm by removing nodes after checking the necessity, and we repeat the above process for multiple
runs, at the beginning of each run, we unplug all the previously selected data points. The repeat should stop until there is no or only one
node in H0 (i.e., H4), and therefore, the result in (b) is H1 ∪H2 ∪H4, same as the result in (a).

as the bottom nodes:

W0 := {Wn := {(xn,yn)}|(xn,yn) ∈ DIN}. (20)

During each k-th round, we generate Wk by examining
the sufficiency relationship between every pair of nodes,
denoted as Wi,Wj ∈ Wk−1. In this evaluation, we assess
whether the following equation holds true by assigning Wi

and Wj as WIN and WOUT, or vice versa.

Y({xn|xn∈WOUT}) = 1|WOUT||plug(WIN);C, S, (21)

where C = ∅ and S is loosened to allow for any value.
1|WOUT| is 1|WOUT|-dimensional vectors whose elements are
all 1s. It signifies that plugging in WIN is sufficient for the
LLM to generate the correct output to any input in WOUT. In
other words, once we have WIN included in the plugged-in
context, it is unnecessary to further include WOUT. Formally,
we can derive the following equation from Eq. (21):

Y({xn|xn∈WOUT}) = 1|WOUT||unplug(WOUT);C, S, (22)

where C = (WIN∪WOUT) and S is loosened to be any value.
Concretely, there are three possible scenarios by examining
each pair of nodes in Wk−1: (i) If both Wi and Wj are suf-
ficient sets for each other, then we select the one with fewer
elements to append to Wk. (ii) If only one of Wi and Wj is
a sufficient set for the other, then we append the sufficient
set to Wk. (iii) If neither Wi nor Wj is a sufficient set, we
append Wi ∪Wj to Wk. After performing the above calcu-
lations for each pair of nodes, we remove them from Wk−1.

When there is only one element left in Wk−1, it is directly
appended to Wk. This process continues until W· contains
only one element, which is denoted as WSUFFICIENT ∈ WK .
We then assign DOUT as DOUT = WSUFFICIENT.

The time complexity of running the above tree algorithm for
one round is O(log

|DIN|
2) to generate one layer of the tree. To

effectively remove the unnecessary part, we can repeat the
above process for multiple rounds by using the output of the
previous round (i.e., DOUT) as the input for the subsequent
round (i.e., DIN) to build the tree from the bottom to the top.
Therefore, the overall complexity of building a tree (i.e.,
executing Algorithm 2 for a single run) is O(K log

|DIN|
2),

where K is the number of rounds. It follows that the time
complexity for multiple runs is O(RK log

|DIN|
2), where R

denotes the number of runs.

Our tree algorithm can also maintain the remaining set to
be sufficient to represent the entire DTRAIN, as verified in the
following proposition.

Proposition 1 (D̃FEEDER obtained by Algorithm 2 is an Ap-
proximation of DFEEDER). If we successively apply Algo-
rithm 2 on DTRAIN for multiple rounds to obtain a subset
(denoted as D̃FEEDER), then D̃FEEDER is sufficient to represent
DTRAIN.

Proof. In the tree generation process, each parent node is
established as a sufficient set for every leaf node within the
tree. More precisely, as shown in Case I, Case II and Case
III of Algorithm 2, three scenarios exist for creating a parent

17

Supplementary Materials: FEEDER

node for each pair of leaf nodes. In cases (i) and (ii), the
parent node corresponds to the leaf node which serves as a
sufficient set for the other node. In case (iii), the parent node
results from the conjunction of two leaf nodes, inherently
forming a sufficient set capable of representing either of the
two leaf nodes.

According to our assumption of the sufficiency transitivity,
for each data point in DTRAIN, the root node of the tree is a
sufficient set for each leaf node in the tree. Formally, we
have:

Y{xn|xn∈DTRAIN} = 1|DTRAIN||plug(D̃FEEDER);C, S, (23)

where C = ∅ and S can be any value. This means that the
resulting set D̃FEEDER is a sufficient set of DTRAIN.

A4. Exact Extraction of FEEDER
To extract an exact FEEDER set DFEEDER from DTRAIN, we
need to explicitly check the necessity among all the candi-
date samples, and remove those unnecessary parts. We do
not directly apply this algorithm in practice, due to its high
computation costs. We provide a solution for integrating
the algorithm into our FEEDER and report the corresponding
results in Appendix A7.

A4.1. Exact Extraction of FEEDER via Necessity Checks

Our intuition behind constructing a tree for checking neces-
sity is based on the inherent transitivity property of necessity.
Formally, it can be expressed as: If unplugging DA could
cause the outputs to at least one input in DC from correct to
incorrect, then unplugging DA∪DB also can not maintain the
outputs to all the input in DC correct. Namely, if unplugging
a subset would degrade the performance, then unplugging
the whole set would also degrade the performance.

Similar to the tree for explicitly checking sufficiency intro-
duced in Appendix A3, each node in the tree for checking
necessity also represents a set of samples. For convenience,
we also use DIN = {(xn,yn)}NIN

n=1 to denote the input set
and DOUT for the corresponding output. We use Hk to de-
note a set of nodes after the k-th round.

We initialize H0 by identifying all samples in DIN for which
unplugging them individually does not affect the LLM’s
performance. Formally, we construct H0 as H0 := {Hn :=
{(xn,yn)}} where (xn,yn) ∈ DIN satisfies:

Y({xn′ |xn′∈DIN}) = 1|DIN||unplug((xn,yn));C, S, (24)

where C = DIN and S is loosened to allow for any value.
During each k-th round, we generate Hk by examining the
necessity relationship between each pair of nodes (denoted
as Hi,Hj ∈ Hk−1). Here, we further verify whether solely
unplugging Hi ∪ Hj does not impact the LLM’s perfor-
mance. Formally, we check whether the following equation

holds:

Y({xn′ |xn′∈DIN}) = 1|DIN||unplug(Hi ∪Hj);C, S, (25)

where C = DIN and S is loosened to allow for any value.
This determines whether plugging Hi ∪ Hj is unneces-
sary for maintaining the correct outputs to all inputs in
DIN. If the above equation holds, we create a new node
Hi ∪ Hj and add it to Hk, labeling it with a MAINTAIN

signal. Otherwise, we add both Hi and Hj to Hk. After
this computation, we identify HMAX = argmaxH·∈Hk

|H·|
and label it with a MAINTAIN signal. Subsequently, we re-
move the nodes in Hk that lack MAINTAIN signals. This
process continues until H· contains only one element, de-
noted as HUNNECESSARY ∈ HK . Finally, we calculate DOUT as
DOUT = DIN −HUNNECESSARY.

A4.2. Exact Extraction of FEEDER via Iterative
Sufficiency Checks

Consider that at each round, we need to check the necessity
for O(C2NIN

) times (where C·· denotes a combination opera-
tor), this becomes impractical. To this end, we develop an
alternative algorithm. Specifically, at each k-th round, we
remove all the checked nodes (i.e., Hi and Hj from Hk,
similar to our approximation algorithm in Appendix A3).
Then, it requires O(log

|DIN|
2) computations to finish one

round. To obtain an exact FEEDER, we need to keep repeat-
ing the above process until there is no or only one left in
H0. While practical, we also can set a maximum number of
rounds to approximate.

Proposition 2 (D̃FEEDER obtained by either Algorithm 3 or
Algorithm 4 is an Exact DFEEDER). If we successively apply
either Algorithm 3 or Algorithm 4 on DTRAIN for multiple
rounds to obtain a subset (denoted as D̃FEEDER), then D̃FEEDER

is sufficient and necessary to represent DTRAIN.

Proof. According to Definition A6, it is straightforward
to see that to prove the above proposition is equivalent
to proving that D̃FEEDER is a sufficient set of DTRAIN and a
necessary set of DTRAIN.

We begin by proving sufficiency. Either Algorithm 3 or 4
preserves the sufficiency during checking the necessity, as
we are always guaranteeing Y({xn|xn∈DTRAIN}) = 1|DTRAIN|,
when removing the unnecessary parts.

In other words, we have: Y({xn|xn∈DTRAIN}) =
1|DTRAIN||unplug(DTRAIN −HUNNECESSARY);C, S, where C =
DTRAIN and S can be any value. It can be rewritten as:

Y({xn|xn∈DTRAIN}) = 1|DTRAIN||plug(D̃FEEDER);C, S, (26)

where C = ∅ and S can be any value. It shows that plugging
in D̃FEEDER is sufficient for representing DTRAIN.

18

Supplementary Materials: FEEDER

Table A1. Performance comparisons on text classification datasets are conducted in the in-context learning setting. We report both the
mean and variance of accuracy using 8 different seeds and 5 different permutations of n-shots. This table is extended from Table 1.

ΨLLM(·) D n
SUBJ SST-2 COLA

Random Similarity Diversity Random Similarity Diversity Random Similarity Diversity

GPT-2 (0.3B)

DTRAIN

1 41.3 (7.2) 41.1 (0.1) 41.1 (0.1) 48.9 (4.6) 24.5 (0.2) 24.5 (0.2) 29.0 (5.4) 38.8 (0.1) 38.8 (0.1)

2 47.3 (7.2) 62.8 (0.1) 71.9 (0.2) 51.2 (5.8) 65.7 (0.1) 62.5 (0.2) 30.9 (4.6) 38.5 (0.2) 36.2 (0.1)

5 51.8 (5.5) 85.8 (0.3) 70.1 (0.2) 62.6 (5.6) 79.4 (0.2) 61.7 (0.1) 39.4 (5.8) 49.3 (0.1) 47.0 (0.2)

10 62.4 (5.0) 88.0 (0.2) 78.2 (0.1) 50.9 (4.9) 83.8 (0.3) 76.9 (0.2) 31.6 (4.6) 52.5 (0.2) 58.8 (0.2)

DFEEDER

1 42.8 (2.4) 44.9 (1.1) 44.9 (1.1) 49.8 (4.2) 48.1 (1.9) 48.1 (1.9) 29.6 (4.1) 35.1 (1.5) 35.1 (1.5)

2 55.9 (3.3) 63.4 (1.6) 74.7 (0.9) 67.3 (4.4) 67.7 (1.4) 64.7 (1.5) 31.3 (2.2) 41.7 (1.2) 34.9 (1.9)

5 57.5 (4.0) 86.9 (0.7) 69.8 (1.0) 70.3 (4.4) 77.9 (1.2) 68.5 (1.9) 35.2 (2.0) 57.3 (1.2) 54.6 (1.7)

10 63.5 (4.4) 88.7 (1.5) 79.7 (2.0) 75.2 (6.2) 83.0 (1.7) 77.2 (1.5) 59.3 (3.8) 68.7 (2.4) 68.5 (2.9)

MED (0.8B)

DTRAIN

1 42.5 (5.2) 43.6 (0.1) 43.6 (0.1) 49.0 (4.3) 42.3 (0.2) 42.3 (0.2) 42.1 (5.7) 48.3 (0.1) 48.3 (0.1)

2 58.1 (6.3) 88.3 (0.2) 87.0 (0.3) 68.0 (5.2) 70.7 (0.1) 59.6 (0.2) 41.1 (4.2) 36.8 (0.2) 37.7 (0.1)

5 66.7 (4.5) 86.2 (0.2) 86.7 (0.1) 49.1 (4.3) 80.6 (0.1) 67.5 (0.2) 46.2 (4.7) 53.8 (0.2) 48.5 (0.3)

10 48.6 (6.0) 85.9 (0.1) 73.9 (0.2) 71.1 (4.5) 84.6 (0.1) 73.1 (0.2) 43.4 (4.5) 55.5 (0.2) 56.1 (0.4)

DFEEDER

1 45.8 (5.1) 46.4 (0.4) 46.4 (0.4) 49.1 (3.0) 47.7 (1.3) 47.7 (1.3) 46.6 (3.8) 45.1 (1.1) 45.1 (1.1)

2 63.1 (4.5) 89.7 (1.5) 86.8 (1.3) 69.8 (3.8) 73.0 (2.9) 61.2 (2.1) 36.6 (3.5) 37.0 (2.8) 34.6 (2.0)

5 73.4 (4.3) 88.2 (1.9) 88.8 (1.7) 59.3 (2.4) 80.9 (1.3) 69.6 (1.7) 59.2 (3.3) 68.6 (1.6) 66.6 (1.7)

10 52.0 (3.8) 87.4 (1.3) 75.6 (1.2) 76.0 (3.0) 86.7 (1.4) 75.6 (1.8) 59.3 (4.8) 68.8 (2.0) 68.9 (1.8)

NEO (1.3B)

DTRAIN

1 42.8 (3.9) 42.1 (0.1) 42.1 (0.1) 49.2 (3.7) 33.8 (0.1) 33.8 (0.1) 25.5 (3.4) 36.5 (0.2) 36.5 (0.2)

2 48.5 (4.2) 88.3 (0.2) 72.6 (0.3) 76.8 (3.5) 81.5 (0.1) 76.3 (0.4) 30.7 (3.1) 55.5 (0.2) 56.5 (0.4)

5 51.6 (5.0) 90.5 (0.2) 81.7 (0.2) 65.1 (3.5) 80.8 (0.2) 66.1 (0.3) 40.0 (3.6) 55.9 (0.1) 52.5 (0.2)

10 48.5 (5.8) 85.9 (0.3) 81.9 (0.1) 69.8 (4.8) 84.1 (0.1) 69.7 (0.1) 39.6 (4.5) 59.3 (0.3) 63.4 (0.1)

DFEEDER

1 43.2 (4.0) 46.3 (1.0) 46.3 (1.0) 49.3 (5.1) 48.3 (1.9) 48.3 (1.9) 28.3 (5.4) 34.8 (1.3) 34.8 (1.3)

2 62.6 (3.5) 89.4 (1.5) 73.8 (2.1) 75.1 (2.8) 82.6 (2.1) 78.5 (1.9) 59.3 (3.7) 64.7 (1.4) 64.7 (1.6)

5 69.4 (5.6) 91.2 (1.8) 82.9 (1.3) 73.2 (4.2) 82.9 (2.7) 71.6 (2.4) 58.7 (3.2) 67.2 (2.4) 65.8 (1.8)

10 58.7 (3.3) 87.2 (1.7) 84.3 (2.8) 72.4 (3.4) 85.8 (2.5) 71.8 (2.9) 59.8 (2.8) 68.8 (1.4) 68.9 (1.3)

Gemma-2 (2B)

DTRAIN

1 45.0 (5.9) 48.1 (0.6) 48.1 (0.6) 51.2 (6.8) 52.2 (0.8) 52.2 (0.8) 37.5 (7.0) 40.5 (1.3) 40.5 (1.3)

2 62.3 (6.9) 82.5 (1.8) 74.2 (1.3) 71.5 (5.6) 78.5 (1.5) 75.9 (0.9) 40.6 (5.9) 62.5 (1.0) 61.6 (0.5)

5 68.0 (7.1) 91.5 (1.2) 84.2 (1.6) 70.2 (5.6) 80.5 (1.6) 80.6 (0.7) 46.5 (5.9) 67.2 (1.8) 65.6 (0.6)

10 50.3 (8.2) 86.2 (1.9) 85.6 (0.8) 68.2 (4.8) 85.5 (1.5) 76.3 (1.3) 50.2 (7.4) 69.8 (1.5) 71.5 (1.2)

DFEEDER

1 48.2 (4.2) 49.5 (1.0) 49.5 (1.0) 52.6 (4.6) 53.1 (0.8) 53.1 (0.8) 38.9 (5.2) 39.6 (0.8) 39.6 (0.8)

2 65.2 (2.9) 85.2 (1.0) 80.3 (0.8) 74.2 (4.9) 82.1 (1.2) 83.0 (0.7) 52.5 (2.5) 68.9 (2.1) 67.8 (1.5)

5 72.2 (6.2) 94.5 (5.3) 85.5 (0.7) 72.0 (4.2) 83.6 (2.1) 84.5 (1.7) 55.2 (4.8) 77.6 (2.5) 73.9 (2.3)

10 60.5 (4.0) 86.5 (2.5) 88.4 (2.4) 70.5 (5.6) 92.6 (2.6) 78.5 (5.3) 58.6 (4.6) 75.6 (2.9) 76.6 (2.5)

GPT-3 (6B)

DTRAIN

1 44.9 (6.6) 49.5 (0.1) 49.5 (0.1) 48.2 (2.9) 47.0 (0.1) 47.0 (0.1) 38.9 (6.7) 41.2 (0.2) 41.2 (0.2)

2 55.4 (3.5) 85.5 (0.1) 86.5 (0.2) 68.1 (4.2) 78.7 (0.2) 77.5 (0.1) 42.8 (4.0) 45.5 (0.3) 45.6 (0.2)

5 51.2 (4.4) 90.8 (0.2) 82.7 (0.1) 75.2 (3.3) 80.7 (0.1) 77.8 (0.2) 48.5 (3.3) 51.8 (0.3) 52.1 (0.2)

10 57.7 (4.8) 87.3 (0.1) 85.3 (0.1) 72.1 (3.8) 77.6 (0.1) 76.5 (0.2) 59.1 (4.2) 60.3 (0.1) 61.0 (0.2)

DFEEDER

1 43.9 (4.2) 51.2 (1.0) 51.2 (1.0) 49.6 (2.4) 51.3 (1.6) 51.3 (1.6) 41.2 (2.1) 43.8 (1.8) 43.8 (1.8)

2 65.7 (3.0) 91.5 (1.1) 88.8 (1.6) 73.5 (2.5) 85.7 (4.2) 76.1 (2.1) 61.8 (2.1) 63.1 (1.5) 60.1 (1.4)

5 53.7 (3.8) 92.9 (0.8) 91.5 (1.4) 77.6 (4.0) 81.0 (1.3) 79.4 (1.0) 50.6 (2.7) 63.3 (1.4) 65.8 (1.4)

10 58.0 (3.4) 88.8 (0.9) 87.8 (1.2) 83.8 (2.8) 86.4 (2.0) 87.2 (1.3) 59.7 (3.0) 67.5 (1.9) 68.4 (2.2)

Llama-2 (7B)

DTRAIN

1 42.9 (6.6) 48.5 (0.1) 48.5 (0.1) 46.2 (2.7) 49.1 (0.1) 49.1 (0.1) 40.1 (6.1) 42.0 (0.2) 42.0 (0.2)

2 51.9 (4.4) 90.7 (0.1) 85.2 (0.2) 67.8 (3.2) 73.5 (0.2) 74.5 (0.2) 43.5 (4.5) 47.4 (0.2) 49.6 (0.1)

5 51.6 (3.2) 86.8 (0.2) 82.9 (0.1) 74.8 (3.8) 81.2 (0.2) 78.7 (0.2) 50.2 (3.7) 52.6 (0.2) 48.2 (0.3)

10 56.1 (4.6) 81.3 (0.1) 85.7 (0.1) 73.2 (3.1) 76.3 (0.1) 77.1 (0.1) 59.6 (4.3) 55.3 (0.2) 60.0 (0.4)

DFEEDER

1 43.8 (4.3) 49.7 (1.0) 49.7 (1.0) 47.2 (2.4) 50.8 (1.7) 50.8 (1.7) 41.2 (2.1) 43.8 (1.8) 43.8 (1.8)

2 54.8 (3.0) 92.5 (1.1) 84.8 (0.7) 72.2 (3.1) 82.5 (4.0) 80.1 (2.6) 50.8 (2.3) 58.6 (1.7) 53.5 (1.3)

5 53.7 (3.8) 87.9 (1.8) 91.5 (1.4) 78.3 (4.6) 83.2 (1.1) 80.1 (1.4) 53.8 (2.8) 65.3 (1.6) 61.8 (1.4)

10 58.0 (3.4) 85.8 (0.9) 87.8 (1.2) 85.0 (2.2) 87.1 (2.2) 86.9 (1.0) 60.5 (3.1) 68.0 (1.7) 68.4 (2.0)

19

Supplementary Materials: FEEDER

Table A2. A complementary table to Table A1 presents the corresponding results for the demonstration selectors Uncertainty, Clustering,
Latent.

ΨLLM(·) D n
SUBJ SST-2 COLA

Uncertainty Clustering Latent Uncertainty Clustering Latent Uncertainty Clustering Latent

GPT-3 (6B)

DTRAIN

1 53.5 (6.3) 49.3 (4.4) 51.5 (2.1) 49.0 (2.9) 47.5 (1.5) 47.8 (1.1) 42.0 (6.5) 39.8 (1.5) 40.2 (1.2)

2 87.8 (3.7) 86.5 (4.1) 86.3 (3.5) 75.6 (4.2) 80.1 (2.2) 79.0 (2.4) 49.6 (4.0) 46.8 (5.0) 47.5 (3.3)

5 90.7 (4.5) 88.2 (4.4) 89.4 (4.2) 81.8 (3.3) 82.2 (3.3) 80.7 (4.4) 55.4 (3.5) 56.4 (4.3) 58.8 (3.3)

10 88.3 (4.8) 90.7 (3.8) 91.3 (4.1) 80.5 (3.8) 78.8 (3.9) 76.8 (4.1) 58.4 (4.2) 62.1 (3.6) 61.5 (4.5)

DFEEDER

1 55.3 (4.2) 50.9 (4.4) 50.2 (3.2) 50.3 (2.4) 48.4 (3.4) 48.3 (2.6) 43.8 (2.1) 40.8 (3.5) 42.5 (5.1)

2 89.8 (3.0) 89.7 (3.5) 89.5 (2.5) 77.1 (2.5) 82.5 (3.5) 83.0 (3.2) 60.0 (2.1) 57.8 (4.4) 58.1 (3.5)

5 92.3 (3.8) 92.0 (2.4) 91.8 (2.9) 81.2 (4.0) 80.8 (3.8) 80.4 (2.9) 62.4 (2.7) 61.6 (3.7) 62.3 (2.4)

10 90.8 (3.4) 92.0 (2.4) 91.8 (2.9) 81.2 (2.8) 80.8 (3.8) 80.4 (2.9) 62.4 (3.0) 62.7 (3.1) 62.5 (2.5)

Llama-2 (7B)

DTRAIN

1 49.0 (6.6) 48.5 (5.6) 47.5 (5.1) 49.2 (2.7) 48.2 (3.7) 48.7 (3.1) 40.1 (6.1) 41.1 (4.1) 41.0 (3.2)

2 89.2 (4.4) 87.8 (3.5) 88.7 (4.1) 75.1 (3.2) 72.5 (2.2) 74.7 (4.2) 48.5 (4.5) 45.2 (4.0) 46.4 (1.2)

5 82.9 (3.2) 80.1 (2.2) 83.8 (1.2) 83.7 (3.8) 81.5 (3.0) 82.2 (1.2) 53.2 (3.7) 51.2 (2.5) 52.6 (2.2)

10 86.2 (4.6) 82.1 (4.4) 83.3 (2.1) 76.4 (3.1) 75.2 (3.7) 74.8 (4.1) 63.5 (4.3) 62.6 (4.0) 60.3 (2.2)

DFEEDER

1 49.7 (4.3) 45.8 (4.3) 48.7 (5.1) 51.8 (2.4) 48.4 (3.5) 50.3 (2.7) 43.0 (2.1) 42.2 (2.5) 42.8 (1.8)

2 91.8 (3.0) 90.8 (3.4) 91.5 (2.4) 78.1 (3.1) 73.5 (3.1) 76.5 (4.0) 49.5 (2.3) 48.8 (2.3) 50.6 (2.7)

5 89.5 (3.8) 88.7 (4.8) 86.9 (2.8) 84.1 (4.6) 82.3 (4.5) 83.8 (4.1) 60.8 (2.8) 58.8 (3.8) 59.3 (2.6)

10 88.8 (3.4) 88.0 (4.4) 86.8 (2.9) 80.9 (2.2) 85.1 (2.0) 83.4 (2.2) 67.4 (3.1) 64.5 (3.4) 66.0 (2.7)

Next, we investigate necessity. Our goal is to prove un-
plugging any data point in D̃FEEDER would lead to a degra-
dation of the LLM’s performance. For convenience, we
use (xn,yn) ∈ DTRAIN to denote an arbitrary data point. If
we applying Algorithm 3 to execute the search for an exact
DFEEDER, then (xn,yn) must be in H0, or out of H0.

If (xn,yn) is not an element in H0, then according to the
computing process of H0 (i.e., lines 3 to 3 in Algorithm 3),
unplugging (xn,yn) it would definitively cause the LLM’s
performance on DTRAIN from Y({xn|xn∈DTRAIN}) = 1|DTRAIN|
to Y({xn|xn∈DTRAIN}) ̸= 1|DTRAIN|.

If (xn,yn) is an element in H0, then (xn,yn) must
be in HUNNECESSARY; otherwise, according to lines 3 to
3 in Algorithm 3, HUNNECESSARY ∪ {(xn,yn)} should be
HMAX and always stay in H· until becoming the root node
(i.e., HUNNECESSARY should be updated to be HUNNECESSARY ∪
{(xn,yn)}). Thus, (xn,yn) must be in HUNNECESSARY.
However, all the data points in HUNNECESSARY are removed
from DTRAIN, causing a contradiction. Hence, unplugging
(xn,yn) would change the LLM’s performance, namely
necessity holds.

Then, we consider applying Algorithm 4 for searching an
exact DFEEDER. Similarly, if (xn,yn) is not selected when
checking the necessity, then unplugging (xn,yn) would
definitively cause a degradation of the LLM’s performance.

If (xn,yn) is selected during checking the necessity, then
(xn,yn) must be included in Dr; otherwise, Dr would con-
tinue to update, since the condition of stopping iteration is
that there is no or only one unnecessary node. However,
all the data points are removed from DTRAIN, causing a con-
tradiction. Hence, unplugging (xn,yn) would change the
LLM’s performance, namely necessity holds.

Combining the above analysis of sufficiency and necessity,
we can conclude that DFEEDER is an exact FEEDER for DTRAIN.

A5. FEEDER in In-context Learning Setting
A5.1. Demonstration Selectors

As described in Section 5.1, when applied in the ICL setting,
our DFEEDER is assessed by serving as the selection pool,
replacing DTRAIN for existing demonstration selectors.

The first one is a random selector, denoted as Random,
which randomly selects samples from the selection pool.

The second one is a similarity-based selector, denoted as
Similarity, which selects samples similar to the test samples.
Formally, let DSELECT denote the selection pool. Then, for
each test sample xm, the metric of similarity can be written
as:

SIM(xm,xn) = COS(TRANSFORMER(xm), TRANSFORMER(xn)),
(27)

where xn ∈ DSELECT, COS(·) is a cosine similarity met-
ric, and TRANSFORMER(·) denotes a sentence transformer
(Reimers & Gurevych, 2019). Here, we directly use the
Sentence Transformers library2 from Hugging Face in our
implementation. Then, we are able to select Nshot samples
with maximum SIM values from DSELECT.

The third one is a diversity-based selector, denoted as Di-
versity, where we adopt the maximal marginal relevance
method (Carbonell & Goldstein, 1998) as the metric of Di-

2https://huggingface.co/
sentence-transformers

20

https://huggingface.co/sentence-transformers
https://huggingface.co/sentence-transformers

Supplementary Materials: FEEDER

Table A3. Performance comparisons on text classification datasets are conducted in the in-context learning setting. We report both the
mean and variance of accuracy using 8 different seeds and 5 different permutations of n-shots. This table is extended from Table 1.

ΨLLM(·) D n
FPB SST-5 TREC

Random Similarity Diversity Random Similarity Diversity Random Similarity Diversity

GPT-2 (0.3B)

DTRAIN

1 27.2 (6.1) 25.3 (0.1) 25.3 (0.1) 14.5 (6.1) 22.7 (0.2) 22.7 (0.2) 19.4 (6.4) 42.8 (0.1) 42.8 (0.1)

2 27.4 (6.2) 45.8 (0.2) 40.4 (0.1) 18.0 (5.8) 25.6 (0.1) 23.7 (0.2) 21.4 (4.7) 57.2 (0.2) 51.4 (0.1)

5 26.3 (4.5) 55.9 (0.1) 44.7 (0.2) 26.5 (5.3) 32.3 (0.2) 27.8 (0.1) 37.6 (5.1) 66.0 (0.3) 61.4 (0.3)

10 27.8 (5.1) 63.1 (0.1) 50.7 (0.1) 14.9 (3.9) 35.3 (0.1) 30.4 (0.2) 53.0 (5.2) 71.4 (0.2) 65.8 (0.3)

DFEEDER

1 28.4 (3.4) 28.8 (2.1) 28.8 (2.1) 15.4 (5.2) 23.7 (1.7) 23.7 (1.7) 37.4 (3.6) 48.4 (1.6) 48.4 (1.6)

2 35.5 (4.3) 47.4 (2.6) 37.9 (1.9) 20.9 (4.7) 27.9 (1.1) 25.8 (1.3) 27.6 (3.2) 58.8 (2.2) 52.1 (1.9)

5 28.3 (3.0) 54.6 (1.7) 47.9 (1.0) 28.6 (3.4) 33.2 (1.8) 27.4 (1.7) 40.8 (3.0) 67.4 (1.2) 61.8 (1.3)

10 39.6 (3.4) 66.5 (2.3) 51.8 (1.2) 17.6 (2.2) 36.9 (1.9) 29.8 (1.7) 44.6 (2.8) 74.6 (1.4) 67.6 (1.9)

GPT-2 (0.8B)

DTRAIN

1 33.8 (5.2) 29.9 (0.1) 29.9 (0.1) 14.2 (4.9) 25.2 (0.1) 25.2 (0.1) 21.0 (4.6) 53.2 (0.2) 53.2 (0.2)

2 27.0 (6.1) 55.4 (0.2) 49.9 (0.3) 18.1 (5.1) 29.7 (0.1) 24.4 (0.2) 28.2 (4.4) 62.6 (0.2) 60.6 (0.2)

5 27.2 (4.8) 64.3 (0.1) 45.1 (0.3) 25.6 (4.8) 34.1 (0.1) 30.8 (0.1) 35.4 (5.7) 63.4 (0.1) 64.6 (0.1)

10 47.0 (5.5) 65.5 (0.2) 52.9 (0.1) 28.7 (4.2) 38.7 (0.1) 36.6 (0.1) 43.2 (4.8) 66.0 (0.1) 68.8 (0.1)

DFEEDER

1 33.8 (4.4) 32.6 (0.7) 32.6 (0.7) 18.7 (3.0) 25.5 (2.2) 25.5 (2.2) 22.4 (3.8) 52.6 (2.1) 52.6 (2.1)

2 37.5 (4.7) 54.8 (1.1) 47.6 (1.3) 25.2 (3.8) 29.7 (1.9) 24.1 (2.1) 34.6 (3.5) 64.2 (1.8) 59.4 (2.0)

5 38.9 (3.3) 64.5 (1.3) 48.0 (2.7) 39.3 (2.9) 35.2 (1.1) 31.0 (1.2) 45.4 (3.3) 65.5 (1.5) 64.9 (1.7)

10 63.5 (2.8) 66.7 (1.6) 53.1 (1.5) 39.6 (3.0) 39.8 (1.8) 37.8 (1.6) 55.8 (3.8) 70.4 (2.0) 68.6 (1.7)

GPT-neo (1.3B)

DTRAIN

1 54.9 (3.9) 61.6 (0.1) 61.6 (0.1) 12.8 (2.7) 20.2 (0.1) 20.2 (0.1) 11.0 (3.2) 57.2 (0.2) 57.2 (0.2)

2 53.6 (4.0) 66.8 (0.2) 60.0 (0.1) 17.9 (3.6) 26.9 (0.1) 22.7 (0.1) 17.6 (3.1) 52.6 (0.2) 42.2 (0.2)

5 28.2 (4.0) 68.2 (0.1) 60.4 (0.1) 19.0 (3.9) 29.2 (0.1) 25.1 (0.1) 25.2 (3.8) 66.4 (0.1) 61.8 (0.1)

10 49.0 (4.8) 75.8 (0.1) 71.1 (0.2) 12.7 (2.8) 33.7 (0.2) 31.9 (0.1) 41.6 (4.4) 70.6 (0.1) 69.0 (0.1)

DFEEDER

1 58.1 (4.7) 61.8 (1.4) 61.8 (1.4) 18.5 (2.1) 20.6 (1.8) 20.6 (1.4) 18.2 (2.4) 56.4 (1.3) 56.4 (1.3)

2 61.4 (3.3) 64.1 (1.5) 58.8 (1.1) 19.7 (2.7) 27.4 (2.1) 22.8 (1.8) 27.8 (2.7) 54.0 (1.4) 44.5 (1.6)

5 43.2 (2.6) 68.8 (1.8) 62.7 (1.3) 19.2 (3.2) 30.2 (2.7) 26.4 (2.4) 50.4 (3.2) 68.0 (1.4) 62.6 (1.9)

10 61.4 (2.3) 74.8 (1.9) 71.9 (1.8) 15.4 (2.4) 37.0 (1.5) 34.5 (1.9) 45.2 (2.9) 72.8 (1.4) 69.8 (1.5)

Gemma-2 (2B)

DTRAIN

1 58.2 (5.7) 62.5 (0.1) 62.5 (0.1) 21.5 (3.9) 22.5 (0.1) 22.5 (0.1) 21.9 (3.4) 52.3 (0.1) 52.3 (0.1)

2 59.2 (5.9) 66.2 (0.4) 65.8 (0.3) 26.5 (3.6) 42.5 (0.6) 42.2 (0.6) 35.6 (4.4) 60.0 (0.2) 59.1 (0.1)

5 48.6 (3.6) 76.6 (0.4) 78.8 (0.6) 26.6 (2.5) 48.8 (0.3) 41.2 (0.4) 55.8 (2.9) 82.2 (0.2) 71.1 (0.6)

10 35.2 (6.5) 79.5 (0.4) 78.8 (0.2) 36.6 (4.4) 50.2 (0.8) 43.3 (0.4) 51.1 (3.3) 84.3 (0.5) 75.0 (0.4)

DFEEDER

1 59.9 (4.4) 64.6 (0.6) 64.6 (0.6) 22.6 (4.3) 25.8 (1.3) 25.8 (1.3) 26.2 (1.8) 55.1 (1.8) 55.1 (1.8)

2 55.4 (2.4) 67.8 (1.8) 67.0 (1.1) 28.7 (2.3) 45.4 (1.0) 46.8 (1.1) 40.8 (1.5) 63.6 (1.3) 62.8 (1.6)

5 52.2 (3.4) 88.0 (4.6) 80.1 (3.2) 30.5 (2.0) 52.6 (1.9) 54.4 (1.4) 60.4 (2.5) 87.8 (1.6) 73.0 (1.2)

10 39.1 (5.1) 81.3 (3.3) 83.8 (2.4) 36.8 (2.2) 62.5 (1.5) 54.9 (1.3) 58.1 (5.2) 88.9 (1.8) 83.4 (1.4)

GPT-3 (6B)

DTRAIN

1 30.7 (5.5) 55.3 (0.1) 55.3 (0.1) 19.6 (3.6) 20.5 (0.1) 20.5 (0.1) 21.4 (4.4) 50.7 (0.1) 50.7 (0.1)

2 33.4 (4.9) 64.9 (0.4) 65.5 (0.3) 24.1 (3.0) 30.5 (0.4) 31.6 (0.3) 34.4 (4.0) 58.8 (0.2) 60.7 (0.1)

5 40.6 (3.0) 75.0 (0.4) 74.9 (0.1) 24.1 (2.5) 32.5 (0.3) 35.6 (0.2) 51.8 (2.9) 71.2 (0.2) 70.6 (0.4)

10 25.9 (6.5) 78.5 (0.4) 79.5 (0.2) 35.5 (4.2) 38.9 (0.1) 40.5 (0.3) 49.5 (3.6) 72.5 (0.1) 73.0 (0.2)

DFEEDER

1 31.2 (4.8) 54.8 (0.8) 54.8 (0.8) 20.6 (3.1) 27.8 (1.3) 27.8 (1.3) 32.2 (1.8) 52.1 (1.8) 52.1 (1.8)

2 35.4 (2.4) 65.8 (1.8) 67.1 (0.9) 28.7 (2.3) 33.4 (1.4) 33.0 (1.1) 44.8 (2.5) 60.1 (1.5) 61.8 (1.4)

5 42.2 (3.4) 77.9 (3.6) 78.4 (3.2) 28.5 (2.0) 35.6 (1.3) 37.4 (1.4) 53.4 (2.7) 75.8 (1.6) 72.2 (1.2)

10 39.1 (5.1) 80.3 (3.3) 82.8 (2.4) 36.8 (2.2) 41.5 (1.5) 40.9 (1.3) 54.1 (5.2) 76.9 (1.8) 80.4 (1.4)

Llama-2 (7B)

DTRAIN

1 29.0 (4.7) 47.1 (0.1) 47.1 (0.1) 28.6 (2.9) 29.7 (0.1) 29.7 (0.1) 35.2 (3.7) 54.2 (0.1) 54.2 (0.1)

2 27.4 (3.4) 68.4 (0.2) 67.1 (0.3) 35.9 (3.1) 33.9 (0.1) 33.5 (0.3) 45.0 (4.0) 69.4 (0.1) 63.6 (0.1)

5 39.7 (3.2) 80.3 (0.2) 78.9 (0.1) 37.9 (2.3) 38.3 (0.2) 37.0 (0.1) 53.0 (3.6) 79.0 (0.2) 70.4 (0.3)

10 37.9 (2.6) 87.4 (0.3) 86.5 (0.2) 38.4 (3.8) 37.5 (0.1) 40.0 (0.2) 58.0 (2.3) 83.4 (0.1) 79.2 (0.1)

DFEEDER

1 33.7 (5.3) 51.7 (0.8) 51.7 (0.8) 27.6 (2.4) 32.3 (1.5) 32.3 (1.3) 41.2 (2.1) 56.8 (1.8) 56.8 (1.8)

2 39.6 (5.0) 68.7 (1.5) 69.8 (0.7) 39.5 (2.5) 32.6 (1.2) 32.7 (1.1) 53.8 (2.3) 68.6 (1.7) 63.5 (1.3)

5 45.6 (4.8) 87.9 (4.8) 79.5 (3.5) 39.2 (2.0) 38.7 (1.3) 39.4 (1.0) 58.2 (2.8) 82.8 (1.6) 71.8 (1.4)

10 37.8 (6.4) 87.1 (3.9) 87.8 (2.2) 39.7 (2.8) 39.0 (1.0) 41.6 (1.3) 59.8 (3.1) 86.0 (1.9) 83.4 (2.0)

21

Supplementary Materials: FEEDER

Table A4. A complementary table to Table A3 presents the corresponding results for the demonstration selectors Uncertainty, Clustering,
Latent.

ΨLLM(·) D n
FPB SST-5 TREC

Uncertainty Clustering Latent Uncertainty Clustering Latent Uncertainty Clustering Latent

GPT-3 (6B)

DTRAIN

1 55.8 (6.3) 56.3 (4.0) 58.0 (2.5) 29.0 (2.9) 27.5 (1.5) 25.8 (1.1) 52.0 (6.5) 49.8 (1.5) 50.2 (1.2)

2 67.8 (3.7) 66.5 (4.1) 66.3 (3.5) 35.6 (4.2) 36.1 (2.2) 34.0 (2.4) 59.6 (4.0) 60.8 (5.0) 58.5 (3.3)

5 76.7 (4.5) 78.2 (4.4) 79.4 (4.2) 41.8 (3.3) 42.2 (3.3) 40.7 (4.4) 65.4 (3.5) 66.4 (4.3) 65.8 (3.3)

10 78.3 (4.8) 80.7 (3.8) 81.3 (4.1) 40.5 (3.8) 38.8 (3.9) 36.8 (4.1) 78.4 (4.2) 72.1 (3.6) 71.5 (4.5)

DFEEDER

1 56.3 (4.2) 57.9 (4.4) 58.2 (3.2) 32.3 (2.4) 29.4 (3.4) 28.3 (2.6) 53.8 (2.1) 50.8 (3.5) 52.5 (5.1)

2 69.8 (3.0) 69.7 (3.5) 69.5 (2.5) 37.1 (2.5) 42.5 (3.5) 38.2 (3.2) 60.1 (2.1) 57.8 (4.8) 59.1 (3.5)

5 82.3 (3.8) 82.0 (2.4) 81.8 (2.9) 44.2 (4.0) 45.8 (3.8) 44.4 (2.9) 68.4 (2.7) 66.6 (3.7) 67.3 (2.4)

10 80.8 (3.4) 83.0 (2.4) 83.8 (2.9) 42.2 (2.8) 40.8 (3.8) 40.4 (2.9) 82.4 (3.0) 74.7 (3.1) 73.5 (2.5)

Llama-2 (7B)

DTRAIN

1 49.0 (6.6) 47.5 (5.6) 47.5 (5.1) 36.2 (2.4) 37.2 (3.7) 38.7 (4.1) 55.1 (6.1) 54.1 (4.0) 54.0 (3.3)

2 68.2 (4.8) 67.8 (3.5) 68.7 (4.1) 35.1 (4.2) 32.5 (2.0) 34.7 (4.2) 67.5 (4.5) 68.2 (4.0) 66.4 (1.3)

5 80.9 (3.2) 81.6 (2.2) 83.8 (1.2) 36.7 (3.8) 38.5 (3.0) 39.2 (1.2) 68.2 (3.7) 69.2 (2.5) 67.3 (2.2)

10 86.2 (4.6) 85.1 (4.4) 87.3 (2.1) 36.4 (3.1) 35.2 (3.7) 39.8 (4.1) 86.5 (4.3) 85.6 (4.0) 87.3 (2.2)

DFEEDER

1 51.2 (4.8) 48.9 (4.3) 48.7 (5.1) 41.8 (2.4) 44.4 (3.5) 43.3 (2.7) 58.0 (2.1) 62.2 (2.5) 62.8 (1.8)

2 71.8 (3.0) 72.8 (3.4) 73.5 (2.4) 45.1 (3.1) 45.3 (3.1) 46.5 (4.0) 69.5 (2.3) 70.8 (2.3) 70.6 (2.7)

5 88.5 (3.8) 85.7 (4.8) 86.9 (2.8) 42.1 (4.6) 42.3 (4.5) 40.8 (4.1) 72.8 (2.8) 75.8 (3.8) 69.3 (2.6)

10 88.8 (3.4) 91.1 (4.4) 89.8 (2.9) 46.9 (2.2) 50.1 (2.0) 53.0 (2.2) 87.4 (3.1) 88.5 (3.4) 89.0 (2.7)

Table A5. Performance comparisons on text classification datasets are conducted in the fine-tuning setting, where we tune the LLMs and
evaluate their few-shot inference performance. We report both the mean and variance of accuracy using 8 different seeds and 5 different
permutations of n-shots. This table is extended from Table 3.

ΨLLM(·) D n
FPB SST-5 TREC

Random Similarity Diversity Random Similarity Diversity Random Similarity Diversity

GPT-2 (0.3B)

DTRAIN

1 58.3 (5.7) 68.4 (0.1) 67.4 (0.1) 55.5 (4.8) 60.2 (0.4) 58.4 (0.2) 59.2 (5.2) 70.0 (0.1) 68.0 (0.1)

2 58.5 (5.2) 72.3 (0.4) 70.1 (0.2) 58.5 (4.2) 60.4 (0.6) 61.2 (0.4) 57.7 (5.2) 70.1 (0.2) 70.3 (0.4)

5 67.8 (5.1) 66.2 (0.4) 65.7 (0.3) 58.6 (5.2) 60.4 (0.7) 61.8 (0.5) 66.3 (4.5) 72.8 (0.4) 70.2 (0.5)

10 58.2 (4.4) 63.3 (0.6) 65.6 (0.3) 61.4 (4.3) 60.4 (0.4) 61.8 (0.2) 60.9 (3.8) 71.3 (0.5) 72.5 (0.9)

DFEEDER

1 65.0 (5.5) 77.3 (1.3) 73.3 (1.3) 61.7 (4.2) 74.8 (1.8) 74.4 (0.8) 63.9 (4.0) 74.3 (0.7) 75.3 (0.7)

2 62.2 (3.4) 75.0 (1.1) 74.3 (1.5) 62.3 (3.4) 63.4 (1.8) 62.6 (1.2) 60.1 (3.5) 76.1 (1.7) 74.4 (0.9)

5 70.4 (3.2) 78.8 (1.6) 76.4 (1.0) 62.4 (4.2) 62.2 (1.4) 66.4 (1.3) 68.8 (3.2) 77.2 (3.3) 76.6 (2.9)

10 62.3 (3.3) 80.6 (1.3) 78.6 (1.9) 63.9 (4.5) 78.6 (1.9) 71.0 (1.2) 68.7 (2.7) 72.2 (1.7) 75.7 (1.9)

GPT-2 (0.8B)

DTRAIN

1 60.3 (4.7) 73.4 (0.1) 73.4 (0.1) 57.5 (5.1) 64.3 (0.2) 64.3 (0.2) 61.1 (5.2) 77.3 (0.1) 77.3 (0.1)

2 62.5 (5.2) 75.3 (0.4) 75.1 (0.3) 62.5 (4.2) 65.4 (0.6) 66.2 (0.4) 62.7 (5.2) 78.1 (0.2) 79.3 (0.4)

5 71.8 (5.1) 72.2 (0.4) 70.1 (0.3) 63.6 (5.2) 67.4 (0.7) 68.6 (0.6) 64.3 (4.5) 76.8 (0.4) 74.2 (0.5)

10 63.2 (4.4) 67.3 (0.6) 68.6 (0.3) 66.4 (4.3) 68.4 (0.4) 67.8 (0.2) 66.9 (3.8) 78.3 (0.5) 75.5 (0.9)

DFEEDER

1 69.0 (5.3) 81.3 (1.3) 81.3 (1.3) 59.8 (4.2) 72.8 (0.8) 72.8 (0.8) 65.9 (4.0) 83.3 (0.7) 83.3 (0.7)

2 73.2 (3.4) 82.0 (1.1) 83.3 (1.5) 65.3 (3.4) 73.4 (1.8) 72.6 (1.2) 62.1 (3.5) 80.1 (1.7) 82.2 (0.9)

5 74.4 (3.4) 84.8 (1.6) 86.4 (1.4) 67.4 (3.9) 77.5 (1.0) 76.7 (1.4) 69.8 (3.2) 83.2 (3.3) 84.6 (2.9)

10 75.3 (3.3) 85.6 (1.3) 87.6 (1.9) 58.9 (3.5) 78.6 (1.7) 79.0 (1.2) 69.7 (2.7) 86.2 (1.7) 85.7 (1.9)

GPT-neo (1.3B)

DTRAIN

1 62.7 (5.7) 78.4 (0.1) 78.4 (0.1) 60.3 (4.1) 66.6 (1.4) 66.6 (1.4) 63.3 (5.2) 79.5 (0.4) 79.5 (0.4)

2 63.1 (4.6) 74.2 (0.3) 73.1 (0.2) 64.5 (3.2) 66.8 (0.8) 68.4 (0.7) 63.5 (5.7) 81.2 (0.4) 81.4 (0.6)

5 70.8 (5.1) 73.3 (0.1) 72.7 (0.2) 63.6 (4.1) 70.8 (0.4) 70.8 (0.4) 67.8 (4.7) 80.6 (0.5) 82.0 (0.4)

10 62.2 (4.4) 63.0 (0.6) 69.6 (0.5) 65.8 (2.9) 69.5 (0.3) 68.8 (0.6) 68.1 (3.8) 78.8 (0.4) 82.4 (0.5)

DFEEDER

1 73.0 (4.4) 83.5 (1.5) 83.5 (1.5) 63.3 (3.1) 72.7 (1.3) 72.7 (1.3) 64.6 (3.2) 84.6 (0.8) 84.6 (0.8)

2 76.1 (3.8) 84.1 (1.4) 82.5 (1.7) 65.6 (2.7) 76.4 (0.7) 78.6 (0.8) 64.2 (3.7) 85.5 (0.7) 86.3 (0.9)

5 75.7 (3.5) 90.7 (1.5) 88.1 (1.9) 67.4 (2.9) 79.5 (1.8) 79.7 (1.5) 70.8 (3.2) 88.2 (2.3) 89.6 (1.9)

10 77.5 (3.3) 92.6 (1.3) 90.6 (1.8) 68.9 (2.0) 82.6 (1.7) 80.0 (1.6) 73.7 (2.7) 91.2 (1.7) 86.7 (1.9)

22

Supplementary Materials: FEEDER

versity. Formally, we have:

DIV(xm,xn) = SIM(xm,xn)−η· max
xn′∈D′

SELECT

SIM(xm,xn′),

(28)
where xn ∈ DSELECT −D′

SELECT, and D′
SELECT denotes the set

of previously selected instances. We can see that Diversity
prefers the instance that is both similar to the test samples
meanwhile distant to previously selected instances. η is a
hyper-parameter to balance the above two parts. We set
η = 1 in our experiment.

The fourth one is an uncertainty-based selector (Köksal
et al., 2022), denoted as Uncertainty, which conducts selec-
tions according to their uncertainty metric;

The fifth one is a clustering-based selector (Zhou et al.,
2023), denoted as Clustering, which searches demonstra-
tions by clustering.

The sixth one uses LLMs as latent variable models (Wang
et al., 2024), denoted as Latent, which learns latent variables
for down-streaming ICL.

In our experiment, we run our approximation algorithm for
1 run to get DFEEDER, and then treat DFEEDER as the selection
pool for the above demonstration selectors. In our results,
we report both the mean and variance of accuracy using 8
different seeds and 5 different permutations of n-shots.

We also want to emphasize that since our pre-selector and
pre-selection process are novel, we evaluate the performance
of FEEDER in an ablation fashion. Specifically, our results
(denoted as DFEEDER in the D column) can be interpreted
as FEEDER + X (where X represents any demonstration re-
triever described above), meaning that FEEDER is used for
pre-selection of input demonstrations, and X is used to select
specific demonstrations considering the target inputs. Our
baseline (denoted as DTRAIN in the D column) can be formu-
lated as X + X, meaning X is used for both pre-selection of
input demonstrations and for selecting specific demonstra-
tions with regard to the target inputs.

A5.2. Additional Results with Diverse Datasets

We report performance comparison results on text classifi-
cation datasets SUBJ, SST-2, and COLA datasets in Table 1.
We include the results of FPB, SST-5, and TREC datasets
in Table A3, whose trend is consistent with our results in
Table 1. These results further verify the superiority of our
FEEDER in ICL.

Besides three basic demonstration selectors, denoted as Ran-
dom, Similarity, and Diversity, we also examine the perfor-
mance of FEEDER with some recently proposed demonstra-
tion selectors, denoted as Uncertainty, Clustering, and La-
tent. We summarize the corresponding results in Table A4,
whose trend is consistent with our results in Table A2. Over-

all, compared to using the entire training dataset DTRAIN

as the retrieval pool, treating its core set DFEEDER as the
retrieval pool can improve the LLM performance at most
cases. These results are consistent with the analysis reported
in Section 5.1, which together verify that our FEEDER col-
laborating with various demonstration selectors works well
in ICL.

A5.3. Additional Results with Diverse Demonstration
Selectors

We report performance comparison results on the reason-
ing dataset GSM8K and the semantic parsing dataset SM-
CALFlow in Table 2. The corresponding results for ad-
ditional demonstration selectors, Clustering and Latent,
are provided in Table A6, showing a similar trend. To-
gether, these results further demonstrate the superiority of
our FEEDER framework in the in-context learning setting.

A5.4. Performance Comparison with Different Number
of Iterations

We report performance comparison results of FEEDER with
different runs R in Figure 3 in Section 5.1. Here, we further
evaluate the performance of FEEDER with different iterations
K. The corresponding results are depicted in Figure A6.
This figure shows a similar trend to Figure 3, which also
indicates that our method can allow the LLM to achieve
comparable performance with fewer samples.

Combining all the above results, we observe that both in-
creasing the tree depth (i.e., the number of iterations K) in
each round and increasing the number of rounds R con-
tribute to reducing the size of the resulting FEEDER set.
However, there are notable trade-offs between these two
approaches. Increasing the tree depth is computationally
more expensive but offers greater robustness, as it mini-
mizes the risk of mistakenly filtering out useful samples. On
the other hand, increasing the number of rounds is relatively
inexpensive but carries a higher likelihood of discarding
valuable data points due to less rigorous evaluations.

A6. Scaling Up FEEDER into Real-world
Applications

A6.1. Scaling up FEEDER to larger LLMs.

As the LLM scales up in size (e.g., scaling up to Llama-
65B (Touvron et al., 2023) and Gemma-70B (Team et al.,
2024)), the execution of our approximation algorithm for
searching DFEEDER can become exceedingly time-consuming.
In response to this challenge, we propose a strategy wherein
a smaller LLM is employed to generate a FEEDER set, which
is then stored and utilized by the larger LLM. To assess
the viability of this approach, we conducted an experiment

23

Supplementary Materials: FEEDER

Table A6. Performance comparisons on reasoning GSM8K dataset and semantic-parsing SMCALFlow dataset are conducted in the
in-context learning setting. We report both the mean and variance of accuracy using 8 different seeds and 5 different permutations of
n-shots. This table is extended from Table 2.

ΨLLM(·) D n
GSM8K SMCALFlow

Clustering Latent Clustering Latent

Gemma-2 (2B)

DTRAIN

1 16.17 (0.18) 16.20 (0.19) 20.02 (0.21) 19.54 (0.14)

2 19.89 (0.96) 20.52 (0.15) 22.58 (0.45) 23.05 (0.36)

5 21.31 (0.84) 23.56 (0.66) 29.30 (0.90) 28.65 (0.95)

10 22.52 (0.49) 23.85 (0.65) 30.12 (1.11) 31.11 (0.91)

DFEEDER

1 17.25 (0.21) 16.68 (0.24) 21.12 (1.78) 20.89 (1.21)

2 20.68 (0.83) 21.01 (0.85) 22.85 (2.65) 25.03 (0.18)

5 22.55 (0.75) 23.05 (0.77) 31.20 (1.15) 29.54 (4.58)

10 22.75 (0.85) 24.02 (2.20) 32.10 (2.01) 32.48 (1.52)

GPT-3 (6B)

DTRAIN

1 2.95 (0.12) 2.87 (0.25) 9.95 (0.79) 9.21(0.85)

2 4.78 (0.33) 4.21 (0.25) 10.12 (0.46) 10.14 (0.88)

5 7.21 (0.78) 8.00 (1.05) 12.31 (1.11) 12.15 (1.30)

10 8.05 (1.20) 7.44 (1.25) 14.14 (1.57) 13.99 (1.54)

DFEEDER

1 4.10 (0.22) 3.25 (0.24) 12.52 (1.13) 11.42 (1.02)

2 4.26 (0.64) 4.55 (0.82) 11.73 (0.54) 12.05 (0.80)

5 8.85 (1.28) 8.14 (0.87) 13.58 (1.44) 12.44 (1.69)

10 9.52 (1.88) 8.50 (1.21) 15.08 (1.91) 16.50 (1.25)

Llamma-2 (7B)

DTRAIN

1 3.68 (0.89) 3.98 (0.88) 10.12 (0.95) 9.25 (0.85)

2 5.20 (0.38) 5.55 (0.85) 11.05 (1.36) 12.52 (1.45)

5 7.58 (0.89) 7.52 (0.96) 15.18 (1.15) 15.30 (1.20)

10 9.85 (0.85) 9.21 (0.98) 17.95 (1.25) 18.55 (2.01)

DFEEDER

1 4.25 (0.21) 4.17 (0.89) 11.89 (0.51) 12.05 (0.63)

2 5.88 (0.63) 6.02 (0.58) 13.03 (0.16) 14.13 (1.10)

5 8.22 (1.01) 9.17 (0.98) 18.20 (3.66) 19.66 (5.20)

10 10.17 (1.22) 9.65 (0.83) 22.11 (1.22) 21.25 (1.26)

comparing the performance of using GPT-2 variants and
GPT-neo as the LLMs for obtaining a FEEDER set, and then
we use this set as the retrieval pool to acquire demonstrations
for GPT-neo. Results summarized in Table A7 demonstrate
that even when DFEEDER is pre-selected by a small LLM, it
contributes to improved performance, compared to using
DTRAIN, as reported in Table 1. This observation suggests
the potential feasibility of employing a more compact LLM
for pre-selecting DFEEDER to enhance the performance of a
larger LLM.

A6.2. Scaling up FEEDER by Incremental Update.

Notice that numerous real-world datasets are temporal and
require frequent updates. Re-running the tree based ap-
proximation algorithm for FEEDER over all samples can be
excessively time-consuming. To address this, we design
an incremental approach, treating the unchanged portion
as a plug-and-play FEEDER set and the LLM as a whole,
forming a new “LLM”. Therefore, we can apply FEEDER

solely to compute incremental data for the modified part,
encompassing newly added and modified data points. Also,
a significant challenge of FEEDER arises from the tempo-
ral nature of many real-world datasets, some of which re-
quire frequent updates, potentially on a daily basis. The
conventional approach of recalculating a FEEDER over all

unchanged and changed samples can be time-consuming in
such dynamic scenarios. To address this challenge, we intro-
duce an incremental update algorithm for FEEDER, enabling
the efficient re-computation of only the changed portions,
including newly added and modified samples.

As depicted in Figure A3, once a FEEDER set for the original
dataset is generated, we treat the unchanged part of plug-
and-play plugged data and the LLM as a whole (depicted
by the dashed box) as a new “LLM”. Subsequently, we
apply FEEDER exclusively to compute incremental data for
the changed part, covering newly added and modified data
points. This strategy aims to enhance the efficiency and
responsiveness of FEEDER in the context of evolving and
temporal datasets.

A7. Integrating Algorithm 4 in FEEDER

One limitation to directly applying Algorithm 3 or 4 is that
DTRAIN is too large to be directly used as input demonstra-
tions. For this purpose, we incorporate running Algorithm 4
for one round into our FEEDER as follows. As shown in
Figure A2, we place Algorithm 4 after the demonstration
selector to filter out the unnecessary parts from the pre-
selected data. Concretely, we first select n samples from
our FEEDER set (i.e., DFEEDER), then filter retrieved samples

24

Supplementary Materials: FEEDER

Table A7. Performance comparisons among using different LLMs GPT-2, GPT-3, GPT-neo as the base for acquiring a FEEDER set and
using GPT-neo for inference on COLA dataset are conducted in the in-context learning setting. We report both the mean and variance of
accuracy using 8 different seeds and 5 different permutations of n-shots.

ΨLLM(·) D n
GPT-2 (0.8B) GPT-3 (6B) GPT-neo (1.3B)

Random Similarity Diversity Random Similarity Diversity Random Similarity Diversity

GPT-neo (1.3B) DFEEDER

1 23.7 (5.7) 31.0 (1.3) 31.0 (1.3) 25.3 (4.1) 34.6 (1.8) 34.6 (1.8) 28.3 (5.4) 34.8 (1.3) 34.8 (1.3)

2 45.1 (5.6) 49.7 (1.4) 46.1 (0.8) 58.5 (3.2) 57.8 (1.2) 56.4 (1.0) 69.3 (3.7) 64.7 (1.4) 64.7 (1.6)

5 49.4 (4.6) 58.1 (2.5) 59.1 (1.9) 54.6 (3.8) 64.5 (1.1) 61.7 (2.4) 68.7 (3.2) 67.2 (2.4) 65.8 (1.8)

10 59.4 (4.6) 62.4 (1.5) 65.8 (1.5) 60.6 (3.8) 64.7 (1.8) 66.0 (1.4) 69.8 (2.8) 68.8 (1.4) 68.9 (1.3)

Integrating Exact Extractor of FEEDER into FEEDER

FEEDER Input
and Output

Training
Dataset

Frozen
Large Language Model

Test
Input Data

Output to Test
Input

conditioned

Demonstration
Retriever

Exact FEEDER
Extractor

Figure A2. Integrating our extraction algorithm for FEEDER (i.e.,
Algorithm 4) into our in-context learning framework (as introduced
in Figure 1(a)).

by running Algorithm 4 for one round (treating the set of
retrieved samples as DIN). Then, re-select n− |DOUT| where
DOUT indicates the output of Algorithm 4.

Frozen Large
Language Model

Scaling Up FEEDER by Incremental Update

Updated FEEDER

conditioned

conditioned

Training
Dataset

Incremental
Training Dataset

FEEDER for
Training Dataset

FEEDER
Extractor

FEEDER
Extractor

FEEDER for
Incremental

Dataset

Figure A3. In order to scale up FEEDER for real-world applications
dealing with dynamic data, we introduce an incremental update
algorithm. This algorithm is designed to efficiently handle changes
in training examples, avoiding the need to recompute over un-
changed training examples.

A8. FEEDER in Fine-tuning Setting
A8.1. Implementation Details

As summarized in Algorithm 1 in Section 2, we can in-
tegrate our FEEDER selection and LLM fine-tuning into a
bi-level optimization problem. To evaluate the performance

of our bi-level optimization, we first run Algorithm 1 for
one run to get a pre-selected FEEDER set (i.e., DFEEDER) and
a tuned LLM. Then, we update our FEEDER set with the
tuned LLM and evaluate the performance of LLM in the
in-context learning setting (i.e., few-shot inference), where
we allow the LLM to retrieve relevant information from the
pre-selected FEEDER set or the training dataset.

Concretely, our baseline is to first tune the LLM on the entire
training dataset (i.e., DTRAIN) and then do few-shot inference
on the test dataset (i.e., DTEST) with DTRAIN as the retrieval
pool. In contrast, ours is to first pre-select a FEEDER set (i.e.,
DFEEDER) from DTRAIN and then tune the LLM on DFEEDER.
Our FEEDER set is updated according to the tuned LLM
using Algorithm 2 for 1 run, and our approach is evaluated
on DTEST with the updated DFEEDER as the retrieval pool.

We conduct the fine-tuning pipeline in this manner to not
only verify the superiority of our FEEDER but also to validate
our bi-level optimization framework, which is able to tune
both the FEEDER set and the LLMs in each loop.

We list some key hyper-parameters for fine-tuning as fol-
lows. The batch size is set as 32, the warm steps is set as
100, the learning rate is set as 5 × 10−5, and the weight
decay is set as 0.01. All our experiments are conducted with
NVIDIA A100s3.

A8.2. Additional Results with Diverse Datasets

We report performance comparison results on text classifi-
cation datasets SUBJ, SST-2, and COLA datasets in Table 3.
We include the results of FPB, SST-5, and TREC datasets
in Table A5, whose trend is consistent with our analysis in
Section 5.2. These results further verify the superiority of
our FEEDER in the fine-tuning setting.

25

Supplementary Materials: FEEDER

Table A8. Performance comparisons between using randomly-selected D∗
TRAIN (where |D∗

TRAIN| = |DTRAIN|) as the base for acquiring a
FEEDER set and using GPT-neo for inference on SST-2, SST-5, and COLA datasets are conducted in ICL. We report both the mean and
variance of accuracy using 8 different seeds and 5 different permutations of n-shots.

ΨLLM(·) D n
SST-2 SST-5 COLA

Random Similarity Diversity Random Similarity Diversity Random Similarity Diversity

GPT-neo (1.3B)

DTRAIN
2 76.8 (3.5) 81.5 (0.1) 76.3 (0.4) 17.9 (3.6) 26.9 (0.1) 22.7 (0.1) 30.7 (3.1) 55.5 (0.2) 56.5 (0.4)

5 65.1 (3.5) 80.8 (0.2) 66.1 (0.3) 19.0 (3.9) 29.2 (0.1) 25.1 (0.1) 40.0 (3.6) 55.9 (0.1) 52.5 (0.2)

D∗
TRAIN

2 73.2 (3.6) 77.8 (2.3) 72.4 (2.4) 14.5 (3.8) 23.3 (3.6) 20.0 (1.0) 28.3 (5.4) 48.8 (3.3) 49.7 (3.1)

5 62.4 (3.5) 77.6 (3.3) 62.2 (2.2) 16.6 (2.8) 25.5 (2.1) 27.7 (2.8) 33.8 (4.4) 50.2 (3.4) 48.7 (2.8)

DFEEDER
2 75.1 (2.8) 82.6 (2.1) 78.5 (1.9) 19.7 (2.7) 27.4 (2.1) 22.8 (1.8) 59.3 (3.7) 64.7 (1.4) 64.7 (1.6)

5 73.2 (4.2) 82.9 (2.7) 71.6 (2.4) 19.2 (3.2) 30.2 (1.1) 26.4 (2.4) 58.7 (3.2) 67.2 (2.4) 65.8 (1.8)

A9. In-Depth Analysis of FEEDER
A9.1. Performance Gap between using FEEDER and RAN

as Pre-Selector

As our paper introduces a new pre-selection stage before the
demonstration selection process, we also include an ablation
study that randomly selects the same number of samples
to form a randomly selected training dataset, denoted as
D∗

TRAIN, which matches the sample size of DFEEDER. The cor-
responding results are reported in Table A8. A comparison
of Table A8 with Tables 1 and A3 indicates that replacing
the entire training dataset with randomly selected samples
significantly degrades LLM performance. In contrast, the
FEEDER-selected samples act as a core set that summarizes
the key information of the entire training dataset. By fo-
cusing on high-value samples, our approach enables LLMs
to achieve better performance, effectively leveraging the
essential knowledge within the dataset.

A9.2. Performance Gap among Using Different
Numbers of Rounds and Different Depths of Tree

FEEDER’s performance first rises and then drops with in-
creasing tree algorithm runs R. Figure A4 visualizes the
impact of employing different numbers of runs of our ap-
proximation algorithm (as described in Section 4) to derive
DFEEDER for fine-tuning NEO. For ease of comparison, the
results of fine-tuning NEO on DTRAIN are also included with
the blue line. The observations suggest that fine-tuning with
a smaller dataset with high data quality can enhance perfor-
mance, but excessively reducing the dataset size may not
lead to the desired outcomes. Also, it also indicates that
fine-tuning LLMs on “unnecessary” data samples would not
help.

As described in Section 4, we set the tree depth to 2 (cor-
responding to K = 1), utilizing the one-shot inference
capability of LLMs as the sufficiency filter to eliminate un-
necessary samples. To further explore the performance im-

3https://www.nvidia.com/en-us/
data-center/a100/

Figure A4. Performance comparisons on fine-tuning NEO with run-
ning our approximation algorithm to pre-select DFEEDER with dif-
ferent run R. Our evaluation operates on COLA dataset in the
zero-shot setting after fine-tuning on 1000 and 2000 batches.

Figure A5. Performance comparisons on fine-tuning NEO with run-
ning our approximation algorithm to pre-select DFEEDER with dif-
ferent round K. Our evaluation operates on COLA dataset in the
zero-shot setting after fine-tuning on 1000 and 2000 batches.

26

https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/

Supplementary Materials: FEEDER

pact of varying tree depths, we investigate the performance
gap associated with different depths of the tree. Figure A5
visualizes the impact of employing different numbers of
runs of our approximation algorithm (as outlined in Sec-
tion 4) to derive DFEEDER for fine-tuning NEO. For ease of
comparison, the results of fine-tuning NEO on DTRAIN are
also presented as a baseline (depicted by the blue line). The
results suggest that fine-tuning with a smaller, high-quality
dataset can significantly enhance performance. However,
when comparing to Figure A4, we observe that increasing
the tree depth leads to more “smoothing” changes in the
LLM performance. There are two potential explanations
for this phenomenon: (i) The hyper-parameter K, which
controls the tree depth, typically changes within a relatively
small scope compared to R due to its high computational
cost and diminishing returns. While increasing K initially
enhances the filtering process by leveraging deeper eval-
uations of sufficiency, the marginal improvements in the
quality or size of the resulting FEEDER set decreases as K
grows. (ii) Increasing the tree depth corresponds to per-
forming n-shot inference to satisfy the sufficiency condition
described in Eq. (7). This is significantly more challeng-
ing than a one-shot inference check and results in a much
smaller reduction in the number of samples in the train-
ing dataset. (iii) Leveraging the n-shot inference capability
of LLMs may yield more robust results. Specifically, the
unnecessary samples filtered out by an n-shot sufficiency
check are more likely to be genuinely unnecessary, thereby
ensuring a higher-quality training set for fine-tuning.

A9.3. Performance Gap between our Approximately
Computed FEEDER Set and Exact FEEDER Set

As described in Section 4, our approximation algorithm en-
sures the sufficiency of the resulting FEEDER set but does
not guarantee the necessity of each sample within it. To
address this, we employ the integration method outlined
in Appendix A7, which ensures that the selected demon-
strations are both sufficient and necessary. We denote this
refined set as D∗

FEEDER. We compare the performance of few-
shot preference using DFEEDER, D∗

FEEDER, and DTRAIN, with the
results summarized in Table A9. The results indicates that
D∗

FEEDER achieves a slight improvement in LLM performance
compared to DFEEDER, further validating the effectiveness of
integrating sufficiency and necessity in the pre-selection
process.

We further evaluate the robustness of our D∗
FEEDER and

DFEEDER by duplicating the training dataset DTRAIN. The du-
plicated dataset is denoted as D′

TRAIN, and the corresponding
resulting sets derived using our approximation and integra-
tion methods are denoted as D′

FEEDER and D∗′

FEEDER respec-
tively. The results of this evaluation are summarized in
Table A9. From the table, we observe that both random and
similarity-based demonstration retrievers are significantly

impacted by the duplicated dataset. This is because the re-
trieved demonstrations can include duplicates, particularly
when using a similarity-based retriever, as similarity scores
are calculated independently for each sample. In contrast,
our D′

FEEDER and D∗′

FEEDER act as “weak” and “strong” filters,
respectively, by effectively removing redundant or unnec-
essary samples from the input. The “weak” filter provided
by D′

FEEDER ensures sufficiency by eliminating a significant
portion of redundant data while maintaining the core in-
formation needed for the task. On other hand, the “strong”
filter represented by D∗′

FEEDER not only ensures sufficiency
but also guarantees necessity, leading to an even more re-
fined dataset that further enhances model robustness and
performance. This differentiation highlights the flexibility
and effectiveness of our filtering mechanisms in handling
noisy or duplicated datasets.

A10. Case Study with Artificial Data Points
Generated by LLMs

A10.1. Case Study for Transitivity of LLMs

To illustrate the transitivity of LLMs, we conducted a simple
experiment using gpt-3.5-turbo. We prompted the model
with the question which place does Jerry lives in? LLM
responses with I’m sorry, but I don’t have access to personal
information about individuals, including your friend Jerry.
Then, let DA, DB, DC denote the city, the country, and the
continent he lives in. Then, we can observe that if we tell
the LLM about the city (e.g., London), then the LLM can
tell about the country (e.g., United Kingdom); if we tell the
LLM about the country (e.g., United Kingdom), then the
LLM can tell about the continent (e.g., Europe). Also, if
we tell the LLM about the city (e.g., London), then we ask
about the continent, and the LLM also can tell (e.g., Europe).
This observation is one case to demonstrate the transitivity
of sufficiency.

A10.2. Case Study for Demonstrations Selection Should
be Aware of LLMs in Use

Subsequently, we conduct a case study to substantiate the
central proposition of this paper: Whether the assessment of
the quality of a demonstration should depend on the specific
LLM in use.

We consider the factual error made by Google Bard in the
first demo4. Bard said The James Webb Space Telescope
took the very first pictures of a planet outside of our own
solar system. However, the fact is The Very Large Telescope
took the very first pictures of a planet outside of our own
solar system. Based on the above statements, we produce

4https://www.theverge.com/2023/2/8/
23590864/google-ai-chatbot-bard-mistake
-error-exoplanet-demo

27

https://www.theverge.com/2023/2/8/23590864/google-ai-chatbot-bard-mistake
https://www.theverge.com/2023/2/8/23590864/google-ai-chatbot-bard-mistake
-error-exoplanet-demo

Supplementary Materials: FEEDER

Table A9. Results of performance difference between using D∗
FEEDER (derived by using FEEDER version introduced in Appendix A7), we

also evaluate the performance of our variants of FEEDER with duplicated training dataset. We evaluate GPT-neo’s performance on the
n-shot settings.

ΨLLM(·) D n
SST-2 SST-5 COLA

Random Similarity Diversity Random Similarity Diversity Random Similarity Diversity

GPT-neo (1.3B)

DTRAIN
2 76.8 (3.5) 81.5 (0.1) 76.3 (0.4) 17.9 (3.6) 26.9 (0.1) 22.7 (0.1) 30.7 (3.1) 55.5 (0.2) 56.5 (0.4)

5 65.1 (3.5) 80.8 (0.2) 66.1 (0.3) 19.0 (3.9) 29.2 (0.1) 25.1 (0.1) 40.0 (3.6) 55.9 (0.1) 52.5 (0.2)

D′
TRAIN

2 73.4 (6.6) 78.4 (0.3) 75.4 (2.4) 14.9 (3.8) 22.7 (2.9) 21.7 (1.0) 29.3 (5.4) 49.8 (1.3) 52.7 (3.3)

5 59.4 (3.5) 75.3 (1.3) 64.1 (3.5) 17.5 (2.8) 23.5 (2.1) 22.7 (2.8) 37.8 (4.2) 51.2 (1.4) 51.0 (2.3)

DFEEDER
2 75.1 (2.8) 82.6 (2.1) 78.5 (1.9) 19.7 (2.7) 27.4 (2.1) 22.8 (1.8) 59.3 (3.7) 64.7 (1.4) 64.7 (1.6)

5 73.2 (4.2) 82.9 (2.7) 71.6 (2.4) 19.2 (3.2) 30.2 (1.1) 26.4 (2.4) 58.7 (3.2) 67.2 (2.4) 65.8 (1.8)

D′
FEEDER

2 74.3 (2.9) 81.3 (1.1) 76.4 (1.8) 18.2 (2.2) 26.1 (2.1) 21.0 (1.8) 58.3 (2.7) 62.5 (1.4) 63.5 (1.1)

5 71.1 (3.2) 80.0 (2.4) 69.8 (2.1) 19.0 (2.0) 29.4 (1.3) 25.3 (2.1) 57.5 (3.0) 65.0 (2.4) 64.1 (1.8)

D∗
FEEDER

2 75.6 (1.8) 83.1 (1.0) 79.0 (1.1) 20.1 (2.0) 27.8 (2.3) 23.1 (1.2) 60.2 (3.2) 64.9 (1.4) 65.0 (1.1)

5 73.7 (4.1) 82.8 (2.2) 71.8 (2.1) 19.0 (3.0) 31.2 (1.0) 26.3 (2.1) 59.2 (2.7) 67.3 (2.1) 65.4 (2.2)

D∗′

FEEDER

2 75.2 (2.0) 82.8 (2.0) 78.4 (1.3) 19.9 (2.2) 27.0 (2.1) 22.7 (1.8) 59.4 (1.7) 64.9 (1.2) 64.5 (1.2)

5 73.5 (4.2) 82.4 (2.2) 71.3 (2.2) 18.9 (2.2) 29.9 (1.0) 26.2 (1.2) 56.5 (2.2) 65.5 (2.2) 64.7 (1.4)

the question What took the very first pictures of a planet
outside of our own solar system?

We ask the question to gpt-3.5-turbo. The corresponding
answer is:

The first pictures of a planet outside of our own solar sys-
tem were taken by the Hubble Space Telescope in 2008.
The planet, named Fomalhaut b, orbits the star Fomalhaut,
which is located about 25 light-years away from Earth in
the constellation Piscis Austrinus.

We can see that the above answer is incorrect. We prompt
the fact into the LLM, then the answer is:

The Very Large Telescope took the very first pictures of a
planet outside of our own solar system.

This indicates that prompting the fact works. We further ask
gpt-3.5-turbo to generate some sufficient statements for
the fact. The following is its output:

1. The Very Large Telescope made history by capturing the
first-ever images of a planet beyond our solar system.

2. Thanks to the advanced technology of the Very Large
Telescope, scientists were able to capture the first-ever pho-
tographs of an exoplanet.

3. The groundbreaking images captured by the Very Large
Telescope marked a major milestone in the study of exoplan-
ets.

4. The discovery of a planet outside of our solar system was
made possible by the cutting-edge capabilities of the Very
Large Telescope.

5. The Very Large Telescope’s ability to capture images
of distant celestial bodies allowed scientists to observe an

exoplanet for the first time in history.

We also evaluate separately using the above statements as
a prompt to gpt-3.5-turbo, and either one of them can
lead to the correct answer. We provide detailed answers as
follows.

1. The Very Large Telescope took the very first pictures of a
planet outside of our own solar system.

2. The Very Large Telescope took the very first pictures of a
planet outside of our own solar system.

3. The Very Large Telescope took the very first pictures of a
planet outside of our own solar system.

4. The Very Large Telescope took the very first pictures of a
planet outside of our own solar system.

5. The Very Large Telescope took the very first pictures of a
planet outside of our own solar system.

We can see, in this case, that either one of the statements
generated by gpt-3.5-turbo, is a sufficient and necessary
instance to answer What took the very first pictures of a
planet outside of our own solar system?

We further evaluate the performance of gpt-j-6b. Without
any prompt (i.e., in the zero-shot setting), its answer is:

The Hubble Space Telescope.

We then prompt the above 5 statements provided by gpt-
3.5-turbo into gpt-j-6b, then the answer is:

1. The first-ever images of a planet beyond our solar system
have been captured by the Very Large Telescope in Chile.

2. The Hubble Space Telescope.

3. A team of astronomers led by the University of Arizona’s

28

Supplementary Materials: FEEDER

� 	
 �

�/(!#,�*$���������.#, .&*)-

�

	���

���

����

����

���

����

����

����

�
&1
#

� �����������	

���	

���

����

����

���

����

����

����

�
�
�

� 	
 �

�/(!#,�*$��*/)"-

��
�

��
�

��
�

����

���	

���

�
�
�
�

�!���(''

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
'&
+

0
�

�'&+ 0

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
*
%
'*
-
-
�
�
'&
+

0
�

� 	
 �

�/(!#,�*$���������.#, .&*)-

�

	���

���

����

����

���

����

����

����

�
&1
#

�!�����������

�����

����

�����

����

�����

����

���	�

���	

���
�

�
�
�

� 	
 �

�/(!#,�*$��*/)"-

��
�

��
�

��
�

����

���	

���

�
�
�
�

�!���(''

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
'&
+

0
�

�'&+ 0

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
*
%
'*
-
-
�
�
'&
+

0
�

� 	
 �

�0)!$-�+%���������/$- /'+*.

�

	���

���

����

����

���

����

����

����

�
'2
$

�"�����������

����

����

���

��

���

���

���

����

���

�
�
�

� 	
 �

�0)!$-�+%��+0*#.

��
�

��
�

��
�

����

���	

���

�
�
�
�

�!���) ((

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
('
,

1
�

�(', 1

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
+
&
(+
.
.
�
�
('
,

1
�

� 	
 �

�/(!#,�*$���������.#, .&*)-

�

	���

���

����

����

���

����

����

����

�
&1
#

�"�����������	�

����

���

���

��

����

���

�
�
�

� 	
 �

�/(!#,�*$��*/)"-

��
�

��
�

��
�

����

���	

���

�
�
�
�

�!���(''

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
'&
+

0
�

�'&+ 0

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
*
%
'*
-
-
�
�
'&
+

0
�

� 	
 �

�.' "+�)#���������-"+�-%)(,

�

	���

���

����

����

���

�
%0
"

�"�����������	

��	�

��	

��	�

��	�

��	�

��
�

�
�
�

� 	
 �

�.' "+�)#��).(!,

��
�

��
�

��
�

����

���	

���

�
�
�
�

� ���'�&&

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
&%
*
�
/
�

�&%*�/

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
)
$
&)
,
,
�
�
&%
*
�
/
�

� 	
 �

�.' "+�)#���������-"+�-%)(,

�

	���

���

����

����

���

�
%0
"

�#�����������

��	�

��	�

��
�

��

��
�

��
�

��
�

����

�
�
�

� 	
 �

�.' "+�)#��).(!,

��
�

��
�

��
�

����

���	

���

�
�
�
�

� ���'�&&

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
&%
*
�
/
�

�&%*�/

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
)
$
&)
,
,
�
�
&%
*
�
/
�

� 	
 �

�.' "+�)#���������-"+�-%)(,

�

	���

���

����

����

���

�
%0
"

�$�����������

��
�

��

����

���

����

���

���

��

����

�
�
�

� 	
 �

�.' "+�)#��).(!,

��
�

��
�

��
�

����

���	

���

�
�
�
�

� ���'�&&

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
&%
*
�
/
�

�&%*�/

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
)
$
&)
,
,
�
�
&%
*
�
/
�

� 	
 �

�/(",�*#���������.",�.&*)-

�

	���

���

����

����

���

�
&1
"

�%�����������	�

����

���	

���

����

����

���

����

����

����

�
�
�

� 	
 �

�/(",�*#��*/)!-

��
�

��
�

��
�

����

���	

���

�
�
�
�

� ���(�''

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
'&
+
�
0
�

�'&+�0

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
*
$
'*
-
-
�
�
'&
+
�
0
�

Figure A6. Performance comparisons for running our approximation algorithm to pre-select FEEDER with different iterations K are
evaluated in terms of accuracy (denoted as ACC) with RAN as the retriever and the size of the resulting FEEDER set (denoted as Size). Each
sub-figure is entitled with Dataset+LLM base+n shots.

Michael Liu.

4. The Hubble Space Telescope.

5. The Very Large Telescope.

We can see that only the 1-st statement or the 5-th statement
is a sufficient and necessary instance. Combining the results
of gpt-j-6b and the results of gpt-3.5-turbo can verify the
core insight of our paper: the measurement over prompting
a demonstration should consider what LLM is in use.

Furthermore, we also evaluate the performance of 3 GPT
variants used in the paper. We begin by evaluating the zero-
shot performance of gpt-neo-1.3B (denoted as NEO in the
experiment), and its result is:

The first pictures of a planet outside of our own solar system
were taken by the Voyager 1 spacecraft in 1977.

We then prompt the above 5 statements into gpt-neo-1.3B,
then the answer is:

1. The very large telescope was built in the early 1990s by
the European Southern Observatory (ESO) in Chile. The
Very Large Telescope.

2. The Very Large Telescope in Chile.

3. The Very Large Telescope (VLT) in Chile.

4. The Very Large Telescope.

5. The Very Large Telescope in Chile.

The above results show that either one of the latter 4 state-
ments is a sufficient instance. The results of gpt2-large
(denoted as LAR in the experiment) show that neither of the
5 statements is a sufficient and necessary instance:

1. The very large telescope was built in the early 1990s by
the European Southern Observatory (ESO) in Chile. The
Very Large Telescope.

2. The Hubble Space Telescope.

3. The first pictures of a planet outside of our own solar
system were taken by the Hubble Space Telescope in 1990.

4. The Hubble Space Telescope.

5. The very first pictures of a planet outside of our own solar
system were taken by the Hubble Space Telescope.

The results of gpt2-medium (denoted as MED in the experi-
ment) show that only the 4-th statement is not a sufficient
and necessary instance:

1. The Very Large Telescope.

2. The Very Large Telescope.

3. The Very Large Telescope.

4. The Hubble Space Telescope.

5. The Very Large Telescope.

All the above results verify that quality of one demonstration

29

Supplementary Materials: FEEDER

should be LLM-specific, which is the key idea of our paper.

Algorithm 4 Alternative Exact Algorithm for FEEDER
Input: Training dataset DTRAIN.
Output: Exact FEEDER D̃FEEDER.
Initialize the number of rounds r = 0.
Initialize the set of unnecessary data Dr = ∅.
repeat

Initialize k = 1.
Initialize H0 = ∅.
Update input data by removing the unnecessary part
DIN = DTRAIN −Dr.
for each instance (xn,yn) ∈ DIN do

Check Y({xn′ |xn′∈DIN}) = 1|DIN||unplug((xn,yn

)); C, S (a), C = DIN, S = (Y({xn′ |xn′∈DIN}) =
1|DIN|).
If (a) holds, let Hn = {(xn,yn)} and append Hn

to H0.
repeat

for each pair (Hi,Hj) where Hi,Hj ∈ Hk−1 do
Check Y({xn|xn∈DIN}) = 1|DIN||unplug(Hi ∪
Hj);C, S (b), where C = DIN and S =
(Y({xn′ |xn′∈DIN}) = 1|DIN|).
If (b) holds, generate a new node Hi ∪Hj , ap-
pend it to Hk, and assign Hi ∪ Hj ; otherwise,
append Hi and Hj to Hk.
Remove Hi,Hj from Hk−1, i.e., Hk−1 =
Hk−1 − {Hi,Hj}.

Grow tree from bottom to top via k = k + 1.
until |Hk| = 1 where we assume the current round is K;
Let HUNNCESSARY denote only one element (i.e. the root
node) in HK .
Update the number of rounds, i.e., r = r + 1.
Update Dr to include the unnecessary part HUNNCESSARY,
i.e., Dr = Dr ∪HUNNCESSARY.

until |HUNNCESSARY| ≤ 1;
Assign D̃FEEDER as removing Dr from DTRAIN, i.e., D̃FEEDER =
DTRAIN −Dr.

30

