
The Illusion of Thinking:
Understanding the Strengths and Limitations of

Reasoning Models via the Lens of Problem Complexity

Parshin Shojaee∗† Iman Mirzadeh∗ Keivan Alizadeh Vahid

Maxwell Horton Samy Bengio Mehrdad Farajtabar

Apple

Abstract
Recent generations of frontier language models have introduced Large Reasoning
Models (LRMs) that generate detailed thinking processes before providing answers.
While these models demonstrate improved performance on reasoning benchmarks,
their fundamental capabilities, scaling properties, and limitations remain insuffi-
ciently understood. Current evaluations primarily focus on established mathemati-
cal and coding benchmarks, emphasizing final answer accuracy. However, this eval-
uation paradigm often suffers from data contamination and does not provide insights
into the reasoning traces’ structure and quality. In this work, we systematically
investigate these gaps with the help of controllable puzzle environments that allow
precise manipulation of compositional complexity while maintaining consistent
logical structures. This setup enables the analysis of not only final answers but also
the internal reasoning traces, offering insights into how LRMs “think”. Through
extensive experimentation across diverse puzzles, we show that frontier LRMs face
a complete accuracy collapse beyond certain complexities. Moreover, they exhibit
a counterintuitive scaling limit: their reasoning effort increases with problem com-
plexity up to a point, then declines despite having an adequate token budget. By
comparing LRMs with their standard LLM counterparts under equivalent infer-
ence compute, we identify three performance regimes: (1) low-complexity tasks
where standard models surprisingly outperform LRMs, (2) medium-complexity
tasks where additional thinking in LRMs demonstrates advantage, and (3) high-
complexity tasks where both models experience complete collapse. We found that
LRMs have limitations in exact computation: they fail to use explicit algorithms and
reason inconsistently across scales and problems. We also investigate the reasoning
traces in more depth, studying the patterns of explored solutions and analyzing the
models’ computational behavior, shedding light on their strengths, limitations, and
ultimately raising questions about the nature for their reasoning capabilities.

1 Introduction

Large Language Models (LLMs) have recently evolved to include specialized variants explicitly
designed for reasoning tasks—Large Reasoning Models (LRMs) such as OpenAI’s o1/o3 [1, 2],
DeepSeek-R1 [3], Claude Sonnet Thinking [4], and Gemini Thinking [5]. These models are new
artifacts, characterized by their “thinking” mechanisms such as long Chain-of-Thought (CoT) with

∗Equal contribution.
†Work done during an internship at Apple.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Initial State

Middle State

1

Peg 0

[1, 0, 2]

[2, 0, 1]

[1, 2, 1]

[3, 0, 2]

[1, 1, 0]

[2, 1, 2]

[1, 0, 2]

Peg 1 Peg 2

1

1

2

2

2

3

3

3Target State

<think>

Move disk 1 from peg 0 to peg 2 ...  
moves = [

]

Let me double-check this...

</think>

 [1, 0, 2],

 [2, 0, 1],

 [1, 2, 1],

 [3, 0, 2],

 [1, 1, 0],

 [2, 1, 2],

 [1, 0, 2],

<answer> the final answer is moves=...
</answer>

LLM Response

extract moves from thoughts 
(for analysis)

extract final answer 
(for measuring accuracy)

1 2 4 6 8 10 12
Complexity (number of disks)

0

20

40

60

80

100

Ac
cu

ra
cy

 (\
%

)

Claude 3.7 Sonnet
(+thinking)

Claude 3.7 Sonnet

1 2 4 6 8 10 12
Complexity (number of disks)

0

5k

10k

15k

20k

R
ea

so
ni

ng
 E

ff
or

t (
To

ke
ns

)

Claude 3.7 Sonnet
(+thinking)

Claude 3.7 Sonnet

1 2 4 6 8 10 12
Complexity (number of disks)

0.0

0.2

0.4

0.6

0.8

1.0

Po
si

tio
n

W
ith

in
 T

ho
ug

ht
s

Correct Solutions

Incorrect Solutions

Figure 1: Top: Our setup enables verification of both final answers and intermediate reasoning traces,
allowing detailed analysis of model thinking mechanisms. Bottom left & middle: At low complexity,
non-thinking models are more accurate and token-efficient. As complexity increases, reasoning
models outperform but require more tokens—until both collapse beyond a critical threshold, with
shorter traces. Bottom right: For correctly solved cases, Claude 3.7 Sonnet (Thinking) tends to
find answers early at low complexity and later at higher complexity. In failed cases, it often fixates
on an early wrong answers, wasting the remaining token budget. Both cases reveal inefficiencies
in the reasoning process.

self-reflection, and have demonstrated promising results across various reasoning benchmarks. Their
emergence suggests a potential paradigm shift in how LLM systems approach complex reasoning
and problem-solving tasks, with some researchers proposing them as significant steps toward more
general artificial intelligence capabilities.

Despite these claims and performance advancements, the fundamental benefits and limitations of
LRMs remain insufficiently understood. Critical questions still persist: Are these models capable
of generalizable reasoning, or are they leveraging different forms of pattern matching [6]? How
does their performance scale with increasing problem complexity? How do they compare to their
standard LLM (non-reasoning) counterparts when provided with the same inference token compute?
Most importantly, what are the inherent limitations of current reasoning approaches, and what
improvements might be necessary to advance toward more robust reasoning capabilities?

We believe the lack of systematic analyses investigating these questions is due to limitations in current
evaluation paradigms. Existing evaluations predominantly focus on established mathematical and
coding benchmarks, which, while valuable, often suffer from data contamination issues and do not
allow for controlled experimental conditions across different settings and complexities. Moreover,
these evaluations do not provide insights into the structure and quality of intermediate reasoning traces.
To understand the reasoning behavior of these models more systematically, we need environments
that enable controlled experimentation.

In this study, we probe the reasoning mechanisms of frontier LRMs through the lens of problem
complexity. Instead of the standard and common math benchmarks, we adopt controllable puzzle
environments that let us vary complexity systematically—by adjusting puzzle elements while
preserving the core logic—and inspect both solutions and internal reasoning (Fig. 1, top). These
puzzles: (1) offer fine-grained control over complexity; (2) require only the explicitly provided
rules, emphasizing algorithmic reasoning; (3) create new controlled setting that avoid contamination
common in established benchmarks; and (4) support rigorous, simulator-based evaluation, enabling
precise solution checks and detailed failure analyses.

2

Our empirical investigation reveals several key findings about current Language Reasoning Models
(LRMs): First, despite their sophisticated self-reflection mechanisms learned through reinforcement
learning, we observe that these models still fail to develop generalizable problem-solving capabilities
for planning tasks, with performance collapsing to near-zero beyond a certain complexity threshold.
Second, our comparison between LRMs and standard LLMs under equivalent inference token compute
reveals three distinct reasoning regimes (Fig. 1, bottom). For simpler, low-compositional problems,
standard LLMs demonstrate greater efficiency and accuracy. As problem complexity moderately in-
creases, reasoning (thinking) models gain advantage. However, when problems reach high complexity
with longer compositional depth, both model types experience complete performance collapse (Fig. 1,
bottom left). Counterintuitively, near this collapse point, LRMs begin reducing their reasoning effort
(measured by inference-time thinking tokens) as problem complexity increases, despite operating well
below generation length limits (Fig. 1, bottom middle). This suggests a fundamental inference-time
scaling limitation in LRMs’ reasoning capabilities relative to problem complexity. Finally, our anal-
ysis of intermediate reasoning traces or thoughts reveals complexity-dependent patterns: In simpler
problems, reasoning models often identify correct solutions early but inefficiently continue exploring
incorrect alternatives—an “overthinking” phenomenon. At moderate complexity, correct solutions
emerge only after extensive exploration of incorrect paths. Beyond a certain complexity threshold,
models completely fail to find correct solutions and fixate on early incorrect attempts which leads to
wasting the remaining inference token budget (Fig. 1, bottom right). This indicates LRMs possess lim-
ited self-correction capabilities that, while valuable, show clear inefficiencies and scaling limitations.

These findings highlight both the strengths and limitations of existing LRMs, raising questions about
the nature of reasoning in these systems with important implications for their design and deployment.
Our key contributions are as follows:

• We question the current evaluation paradigm of reasoning models on established math benchmarks
and design a controlled experimental testbed by leveraging algorithmic puzzle environments that
enable controllable experimentation with respect to problem complexity.

• We show that frontier LRMs (e.g., o3-mini, DeepSeek-R1, Claude-3.7-Sonnet-Thinking) still
fail to develop generalizable problem-solving capabilities, with accuracy ultimately collapsing to
near-zero beyond certain complexities across different environments.

• We find that there exists a scaling limit in the LRMs’ reasoning effort with respect to problem
complexity, evidenced by the counterintuitive decreasing trend in the thinking tokens after specific
complexity points.

• We question the current evaluation paradigm based on final accuracy and extend our evaluation
to intermediate reasoning traces using rigorous puzzle simulators. Our findings show that as
complexity increases, LRMs locate correct solutions later than incorrect ones within their thought,
but beyond a complexity point, they fixate on early errors and cannot recover. This provides
quantitative insights into LRMs’ self-correction mechanism and its scaling limits with complexity.

• We uncover surprising behaviors in LRMs’ ability to perform exact computation, including their fail-
ure to benefit from explicit algorithms and their inconsistent reasoning across problems and scales.

2 Related Works
Reasoning in Language Models. Large Language Models (LLMs) undergo multiple costly training
phases using vast amounts of training data. While these LLMs demonstrate promising language
understanding with strong compression capabilities, their intelligence and reasoning abilities remain a
critical topic of scientific debate [7, 8]. Earlier iterations of LLMs [9–11] exhibited poor performance
on reasoning benchmarks [12–14, 6]. To address these shortcomings, several approaches have
been explored with the common theme among them being “scaling” both the training data and
test-time computation. For instance, generating a Chain of Thought (CoT) [15–18] and incorporating
self-verification [19–21] prior to the final answer have been shown to improve model performance.
However, obtaining high-quality and scalable CoT data is quite expensive due to its scarcity. Another
line of research focuses on compensating for the lack of supervised data by teaching models to
think more effectively through supervised learning or reinforcement learning [22–27]. A notable
open-source example of these improvements is Deepseek-R1 [3], which demonstrated that applying
RL with verifiable rewards can significantly enhance model reasoning performance, matching that of
closed models like OpenAI’s o1 [2], leading to a new generation of language models referred to as
Large Reasoning Models (LRMs) such as Gemini flash thinking [5], Claude Sonnet thinking [4], etc.

3

0 5000 10000 15000 20000 25000 30000 35000

Inference Compute Budget (Tokens)

80

85

90

95

100

p
as

s@
k

MATH-500

claude-3-7-sonnet-thinking

claude-3-7-sonnet-no-thinking

0 50000 100000 150000 200000

Inference Compute Budget (Tokens)

0

20

40

60

80

100

p
as

s@
k

AIME24

claude-3-7-sonnet-thinking

claude-3-7-sonnet-no-thinking

0 50000 100000 150000 200000

Inference Compute Budget (Tokens)

0

20

40

60

80

100

p
as

s@
k

AIME25

claude-3-7-sonnet-thinking

claude-3-7-sonnet-no-thinking

0 10000 20000 30000 40000

Inference Compute Budget (Tokens)

80

85

90

95

100

p
as

s@
k

MATH-500

DeepSeek-R1

DeepSeek-V3

0 20000 40000 60000 80000 100000 120000

Inference Compute Budget (Tokens)

0

20

40

60

80

100

p
as

s@
k

AIME24

DeepSeek-R1

DeepSeek-V3

0 20000 40000 60000 80000 100000 120000

Inference Compute Budget (Tokens)

0

20

40

60

80

100

p
as

s@
k

AIME25

DeepSeek-R1

DeepSeek-V3

Figure 2: Comparative analysis of reasoning (thinking) versus non-reasoning (no-thinking) model
variants across math benchmarks reveals inconsistent performance patterns.

Understanding Large Reasoning Models. Recent studies have explored various aspects of rea-
soning behavior: Large Reasoning Models have shown emergent behaviors such as discrepancy
between thought traces and final answers [28, 29] as well as efficiency concerns through what re-
searchers term the “overthinking phenomenon” [30–33], where models produce verbose, redundant
outputs, even after finding the solution, creating significant inference computational overhead. In
this work, we systematically analyze how much the model thinks with respect to task complexity.
Recent works [34, 33, 32] have demonstrated that in newer LRMs accuracy generally declines
when thinking increases in math problems, in contrast we observe that the opposite correlation of
thinking and accuracy actually depends on the problem complexity and it only happens up to some
complexity threshold in controlled puzzle environments. Yue et al. [35] have questioned whether
reinforcement learning elicits novel reasoning patterns, observing that the pass@k performance of
reasoning and non-reasoning models ultimately converge with larger samples. We also observe that
in math datasets like MATH-500, pass@k is close for reasoning versus non-reasoning models but
we observed different patterns under medium and high complexity of puzzles, which is not easily
observable on established math benchmarks used in common evaluations.
Controllable Evaluation Environments. Unlike earlier studies that are mostly focused on mathe-
matical benchmarks to evaluate the reasoning capabilities of language models, this work introduces
controllable puzzle environments. These environments allow for precise manipulation of problem
complexity while maintaining consistent logical processes, enabling a more rigorous analysis of
reasoning patterns and limitations. Controllable environments are not uncommon in the relevant
theoretical [36] and empirical studies in recent literature [12, 37–39]. However, our primary aim is not
to propose a new benchmark; instead, we use similar benchmarks as tools for designing experiments
to better understand the reasoning behavior of language models. Two closely related studies by
Valmeekam et al. [40] and Ruoss et al. [39] demonstrated that reasoning models such as o1 show
significant performance improvements compared to previous models on puzzles and decision-making
tasks. Our work offers additional insights, such as examining pairs of reasoning/non-reasoning mod-
els (e.g., DeepSeek-R1/V3, Claude 3.7 Sonnet thinking/non-thinking). We also study the reasoning
traces of the LRMs in more depth, revealing different complexity-dependent behaviors. Overall,
the promising results from recent LRMs raise a critical question: how much have the previously
reported limitations of LLMs been improved? In this work, we move beyond only measuring the final
accuracy and analyze how well these LRMs tackle problems of varying complexities with controllable
experiments, examining the properties of their reasoning processes.

3 Math and Puzzle Environments
Currently, it is not clear whether the performance enhancements observed in recent RL-based
reasoning (thinking) models are attributable to increased exposure to established mathematical
reasoning data, to the significantly greater inference compute allocated to longer thinking tokens, or
to reasoning capabilities developed by RL-based training? Recent studies [35, 41] have explored this
question with established math benchmarks by comparing the upper-bound capabilities (pass@k)

4

Initial State

Middle State

moves

moves

Tower of Hanoi Checkers Jumping River Crossing Blocks World

Target State

Figure 3: Illustration of the four puzzle environments. Rows show the progression from initial state
(top) through intermediate state (middle) to target state (bottom) for puzzles: Tower of Hanoi
(disk transfer across pegs), Checkers Jumping (position swapping of colored tokens), River Crossing
(transporting entities across a river), and Blocks World (stack reconfiguration).

of RL-based reasoning (thinking) models with their non-reasoning (non-thinking) standard LLM
counterparts. They have shown that under equivalent inference token budgets, non-thinking LLMs can
eventually reach performance comparable to thinking models on benchmarks like MATH500 [42] and
AIME24 [43]. We also conducted our comparative analysis of frontier LRMs like Claude-3.7-Sonnet
(with vs. without thinking) and DeepSeek (R1 vs. V3). Our results (shown in Fig. 2) confirm that,
on the MATH500 dataset, the pass@k performance of thinking models is comparable to their non-
thinking counterparts when provided with the same inference token budget. However, we observed
that this performance gap slightly widens on the AIME24 benchmark and widens further on AIME25.
This widening gap presents an interpretive challenge. It could be attributed to either: (1) increasing
complexity requiring more sophisticated reasoning processes, thus revealing genuine advantages
of the thinking models for more complex problems, or (2) reduced data contamination in newer
benchmarks (particularly AIME25). Interestingly, human performance on AIME25 was actually
higher than on AIME24 [44, 45], suggesting that AIME25 might be less complex. Yet models perform
worse on AIME25 than AIME24—suggesting potential for some degree of data contamination in
the training of frontier LRMs. Given these non-justified observations and the fact that mathematical
benchmarks do not allow for controlled experimentation and manipulation of complexity, we turned
to puzzle environments that enable more precise and systematic experimentation.

3.1 Puzzle Environments
We evaluate LRM reasoning on four controllable puzzles spanning compositional depth, planning
complexity, and distributional settings. The puzzles are defined below and a schematic illustration is
provided in Fig. 3.
Tower of Hanoi is a puzzle featuring three pegs and n disks of different sizes stacked on the first
peg in size order (largest at bottom). The goal is to transfer all disks from the first peg to the third
peg. Valid moves include moving only one disk at a time, taking only the top disk from a peg, and
never placing a larger disk on top of a smaller one. The difficulty in this task can be controlled by
the number of initial disks as the minimum number of required moves with n initial disks will be
2n − 1. However, in this work we do not grade for optimality of final solution and only measuring
the correctness of each move and reaching the target state.
Checker Jumping is a one-dimensional puzzle arranging red checkers, blue checkers, and a single
empty space in a line. The objective is to swap the positions of all red and blue checkers, effectively
mirroring the initial configuration. Valid moves include sliding a checker into an adjacent empty space
or jumping over exactly one checker of the opposite color to land in an empty space. No checker can
move backward in the puzzle process. The complexity of this task can be controlled by the number
of checkers: with 2n checkers, the minimum number of moves required will be (n+ 1)2 − 1.
River Crossing is a constraint satisfaction planning puzzle involving n actors and their correspond-
ing n agents who must cross a river using a boat. The goal is to transport all 2n individuals from the
left bank to the right bank. The boat can carry at most k individuals and cannot travel empty. Invalid
situations arise when an actor is in the presence of another agent without their own agent present, as

5

Figure 4: Pass@k performance of thinking models (Claude 3.7 Sonnet with extended thinking,
DeepSeek-R1) versus their non-thinking counterparts (Claude 3.7 Sonnet, DeepSeek-V3) across
equivalent inference compute budgets in puzzle environments of low , medium , and high com-
plexity. Non-thinking models outperform in simple problems, thinking models show advantages at
medium complexity, while both approaches fail at high complexity regardless of compute allocation.

each agent must protect their client from competing agents. The complexity of this task can also be
controlled by the number of actor/agent pairs present. For n = 2, n = 3 pairs, we use boat capacity
of k = 2 and for larger number of pairs we use k = 3.

Blocks World is a block-stacking puzzle requiring rearrangement of blocks from an initial configu-
ration into a specified goal configuration. The objective is to find the minimum number of moves
needed for this transformation. Valid moves are restricted to the topmost block of any stack, which
can be placed either on an empty stack or on top of another block. The complexity in this task can
also be controlled by the number of blocks present.

4 Experiments & Results
4.1 Experimental Setup

Most of our experiments are conducted on reasoning models and their non-reasoning counterparts,
such as Claude 3.7 Sonnet (thinking/non-thinking) and DeepSeek-R1/V3. We chose these models
because they allow access to the thinking traces, unlike models such as OpenAI’s o-series. For
experiments focused solely on final accuracy, we also report results on the o3-mini model. For Claude
3.7 Sonnet models, we allow the maximum token budget (64k). Similarly, for DeepSeek-R1/V3
models on local servers, we allow the maximum length to be up to 64k tokens. For each puzzle
instance and complexity level, we analyze 25 samples per model. We apply a filtering process to
ensure the analyzed samples follow the requested response format (including sequence of moves in
the specified format, reasoning steps, etc.). Comprehensive details of our experimental setup and
results are provided in the Appendix.

4.2 How Does Complexity Affect Reasoning?

4.2.1 Three Regimes of Complexity

Motivated by the observations in Fig. 2, to systematically investigate the impact of problem complexity
on reasoning behavior, we conducted experiments comparing thinking (reasoning model with
long CoT enabled by RL) and non-thinking (standard) model pairs across our controlled puzzle
environments. Our analysis focus on matched pairs of LLMs with same model backbones, specifically
Claude-3.7-Sonnet (w. vs. w/o thinking) and DeepSeek (R1 vs. V3). In each puzzle, we vary the
complexity by manipulating problem size N (representing disk count, checker count, block count, or
crossing elements).

6

Figure 5: Accuracy of thinking models (Claude 3.7 Sonnet with extended thinking, DeepSeek-
R1) versus their non-thinking counterparts (Claude 3.7 Sonnet, DeepSeek-V3) across all puzzle
environments and varying levels of problem complexity.

Fig. 4 shows the upper bound performance capabilities (pass@k) of these model pairs under equivalent
inference token compute (averaged across all puzzles), extending earlier analyses from mathematical
benchmarks (Fig. 2) to the controlled puzzle environments. Complementing this, Fig. 5 presents the
accuracy of both model types as a function of problem complexity across each puzzle environment.
Results from both these figures demonstrate that, unlike observations from math, there exists three
regimes in the behavior of these models with respect to complexity. In the first regime where
problem complexity is low, we observe that non-thinking models are capable of obtaining perfor-
mance comparable to, or even better than thinking models with more token-efficient inference. In the
second regime with medium complexity, the advantage of reasoning models capable of generating

long chain-of-thought begin to manifest, and the performance gap between model pairs increases. The
most interesting regime is the third regime where problem complexity is higher and the performance
of both models have collapsed to zero. Results show that while thinking models delay this collapse,
they also ultimately encounter the same fundamental limitations as their non-thinking counterparts.

Additional results comparing the QwQ-32B and Qwen2.5-32B model pairs under the same thinking
vs. non-thinking setup are provided in Appendix A.6.

4.2.2 Collapse of Reasoning Models

We next examine how different specialized reasoning models equipped with thinking tokens respond
to increasing problem complexity. Our experiments evaluate five thinking models: o3-mini (medium
and high configurations), DeepSeek-R1, DeepSeek-R1-Distill-Qwen-32B, and Claude-3.7-Sonnet
(thinking). Fig. 6 demonstrates these models’ performance in terms of accuracy (top) and thinking
token usage (bottom) across varying complexity levels. Results show that all reasoning models
exhibit a similar pattern with respect to complexity: accuracy progressively declines as problem
complexity increases until reaching collapse (near-zero accuracy) beyond a model-specific complexity
threshold. Analysis of inference thinking token compute also reveals an intriguing pattern in thinking
token allocation learned by these models. We observe that reasoning models initially increase their
thinking tokens proportionally with problem complexity. However, upon approaching a critical
threshold—which closely corresponds to their accuracy collapse point—models counterintuitively
begin to reduce their reasoning effort despite increasing problem complexity. This phenomenon is
most pronounced in o3-mini variants and less severe in the Claude-3.7-Sonnet (thinking) model.
Notably, despite mostly operating well below their generation length limits with ample inference
budget available these models fail to take advantage of additional inference compute during the
thinking phase as problems become more complex. This behavior suggests a fundamental scaling
limitation in the thinking capabilities of current reasoning models relative to problem complexity.

4.3 What Happens Inside the Thoughts of Reasoning Models?

To gain deeper insights into the thinking processes of reasoning models, we conducted a fine-grained
analysis of their reasoning traces. As shown in Fig. 1, our setup with puzzle environments allows
us to look beyond final answer and obtain more detailed insight into the reasoning traces (“thoughts”)

7

Figure 6: Accuracy and thinking tokens versus problem complexity for reasoning models across
puzzle environments. As complexity increases, reasoning models initially spend more tokens while
accuracy declines gradually, until a critical point where reasoning collapses—performance drops
sharply and reasoning effort counterintuitively decreases.

(a)

0 4000 8000 12000
Position in Thinking (Token)

0

20

40

60

80

100

So
lu

tio
n

Ac
cu

ra
cy

 (%
)

Tower of Hanoi
N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8
N=10

(b)
Figure 7: (a) Position and correctness of intermediate solutions within reasoning traces across four
puzzles at varying complexity levels. ✓ indicates correct solutions, ✗ indicates incorrect solutions,
with distribution density shown by shading; (b) Solution accuracy versus position in thinking for
Tower of Hanoi at different complexity levels. Simple problems (N=1-4) show early accuracy
declining over time (overthinking), moderate problems (N=5-7) show slight improvement in accuracy
with continued reasoning, and complex problems (N≥8) exhibit consistently near-zero accuracy,
indicating complete reasoning failure.

produced by these models. We extract and analyze the intermediate solutions explored within the
thoughts of a model with the help of puzzle simulators. Our investigation examines the patterns and
characteristics of these intermediate solutions, their correctness relative to their sequential position
in the reasoning process, and how these patterns evolve with increasing problem complexity. For
this analysis, we focus on the reasoning traces generated by Claude-3.7-Sonnet-Thinking across
our puzzle suite. For each unique intermediate solution identified within the traces, we recorded:
(1) its relative position within the reasoning trace (normalized by total thought length), (2) its
correctness and specific failure move as validated by our puzzle simulators, and (3) the complexity
of the corresponding problem. This allows to characterize the progression and accuracy of solution
development throughout the reasoning process.

Fig. 7a demonstrates the relation between the position of intermediate solutions within thoughts, their
correctness, and problem complexity across all puzzle environments. Our analysis from intermediate
reasoning traces also further validates three regimes of complexity discussed above. For simpler
problems, reasoning models often find the correct solution early in their thinking but then continue
exploring incorrect solutions. Note the distribution of incorrect solutions (red) is comparable or shifted
more upward towards end of thinking compared to correct solutions (green). This phenomenon,

8

1 3 6 9 12
Complexity (Number of Disks)

0

20

40

60

80

100

Ac
cu

ra
cy

 (\
%

)

Tower of Hanoi
DeepSeek-R1

Algorithm Given
Default

1 3 6 9 12
Complexity (Number of Disks)

0

20

40

60

80

100

Ac
cu

ra
cy

 (\
%

)

Tower of Hanoi

Claude-3.7-Sonnet
(+thinking)

Algorithm Given
Default

1 3 6 9 12 15
Complexity (Number of Checkers)

0

20

40

60

80

100

Ac
cu

ra
cy

 (\
%

)

Checker Jumping
DeepSeek-R1

Algorithm Given
Default

1 3 6 9 12 15
Complexity (Number of Checkers)

0

20

40

60

80

100

Ac
cu

ra
cy

 (\
%

)

Checker Jumping
Claude-3.7-Sonnet
(+thinking)

Algorithm Given
Default

Figure 8: Performance comparison between default problem-solving and algorithm-guided execution
across Tower of Hanoi and Checker Jumping puzzles. Even when given the solution algorithm and
only needing to execute prescribed steps, failures occur at similar points, highlighting reasoning
models’ limitations in following logical procedures.

referred to as “overthinking” in the literature, leads to the waste of compute. As problems become
moderately more complex, this trend reverses: models first explore incorrect solutions and mostly later
in thought arrive at the correct ones. This time the distribution of incorrect solutions (red) is shifted
more downward compared to correct ones (green). Finally, for the problems with higher complexity,
collapse emerges, meaning that the model fails to recover any correct solutions within the thought
and it often fixates on an early incorrect solutions, wasting the remaining thought token budget.

Fig. 7b presents a complementary analysis of solution accuracy within sequential segments (bins) of
the thoughts in the Tower of Hanoi environment. It can be observed that for simpler problems (smaller
N), solution accuracy tends to decrease or oscillate as thinking progresses, providing further evidence
of the overthinking phenomenon. However, this trend changes for more complex problems, where so-
lution accuracy increases with thinking progression—up to a certain threshold. Beyond this complex-
ity threshold, in the “collapse mode”, accuracy is zero and model fail to recover any incorrect solution.

4.4 Open Questions: Puzzling Behavior of Reasoning Models

In this section, we present surprising results concerning the limitations of reasoning models in
executing exact problem-solving steps, as well as demonstrating different behaviors of the models
based on the failure moves. As shown in Figure 8, in the Tower of Hanoi and Checker Jumping puzzle
environments, even when we provide the algorithm in the prompt—so that the model only needs to
execute the prescribed steps—performance does not improve, and the observed collapse still occurs
at roughly the same point on both puzzle environments. This is noteworthy because finding and
devising a solution should require substantially more computation (e.g., for search and verification)
than merely executing a given algorithm. This further highlights the limitations of reasoning models
in verification and in following logical steps to solve a problem, suggesting that further research
might be needed to better understand the symbolic manipulation capabilities of such models [46, 6].

1 3 6 9 12
Complexity (Number of Disks)

0

20

40

60

80

100

Fi
rs

t F
ai

lu
re

 M
ov

e

Tower of Hanoi

Claude-3.7-Sonnet
(+thinking)

1 3 6 9 12 15
Complexity (Number of Checkers)

4

6

8

10

12

14

16

Fi
rs

t F
ai

lu
re

 M
ov

e

Checker Jumping

Claude-3.7-Sonnet
(+thinking)

0 10 20 30 40
Complexity (Number of Blocks)

0

5

10

15

20

25

30

35

Fi
rs

t F
ai

lu
re

 M
ov

e

Blocks World

Claude-3.7-Sonnet
(+thinking)

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Complexity (Number of Pairs)

2

3

4

Fi
rs

t F
ai

lu
re

 M
ov

e

River Crossing
Claude-3.7-Sonnet
(+thinking)

Figure 9: First failure move versus problem com-
plexity for Claude 3.7 Sonnet (thinking) across
four puzzle environments.

Moreover, by looking deeper into failure cases,
shown in Figure 9 for Claude-3.7-Sonnet think-
ing as well as Figures 14 and 15 in Appendix
for other models, we observe inconsistencies
in how models apply learned solution strategies
across different problems and scales. Some-
times, models exhibit a non-monotonic failure
behavior with respect to problem complex-
ity—instances where models fail earlier in the
solution sequence for higher N values despite
requiring longer overall solutions. For example,
Figure 9 shows that in Tower of Hanoi, failure
happens at below 50 moves for N = 12 but the
model succeeds through more than 100 moves
for N = 10, contradicting the expectation that
effective algorithmic planning and execution for
the same puzzle should maintain consistent fail-
ure patterns. Also, we observe longer error-free
sequences in some puzzle environments com-
pared to others. For example, in the Tower of
Hanoi environment, the model’s first error in the

9

proposed solution often occurs much later, e.g., around move 100 for (N=10), compared to the River
Crossing environment, where the model can only produce a valid solution until move 4. Note that
this model also achieves near-perfect accuracy when solving the Tower of Hanoi with (N=5), which
requires 31 moves, while it fails to solve the River Crossing puzzle when (N=3), which has a solution
of 11 moves. Although the branching factor for solution exploration in River Crossing is larger than
in Tower of Hanoi, this analysis on the comparison of computational complexity between puzzles
is asymptotic and doesn’t hold for the small values of N in our experiments where collapse happens.
The search space for a valid 11-move (N=3) River Crossing solution is vastly smaller than the search
space for a 255-move (N=8) Tower of Hanoi solution where models begin to fail. This likely suggests
that examples of River Crossing puzzle with larger N are less familiar for the model, meaning LRMs
may not have frequently encountered such instances during training. At the end, LLMs (or LRMs) are
complex artifacts and we cannot easily say which problem is easier or more complex for them only
based on computational complexity and without knowing about their training data distribution. How
they approach complexity does not necessarily corresponds to the actual computational complexity
of the problem and more to the learned solution distributions. That’s why our focus on complexity
is mostly to track model behavior within each puzzle setting rather than between the puzzles.

5 Conclusion
In this paper, we systematically examine frontier Large Reasoning Models (LRMs) through the
lens of problem complexity using controllable puzzle environments. Our findings reveal several
strengths and limitations in current models: despite sophisticated self-reflection mechanisms learned
by reinforcement learning, these models still fail to develop generalizable reasoning capabilities
beyond certain complexity thresholds. We identified three distinct reasoning regimes: standard
LLMs outperform LRMs at low complexity, LRMs show advantage at moderate complexity, and
both collapse at high complexity. We observe the counterintuitive reduction in reasoning effort as
problems approach critical complexity, suggesting an inherent compute scaling limit in LRMs. Our
detailed analysis of reasoning traces further exposed complexity-dependent reasoning patterns, from
inefficient “overthinking” on simpler problems to complete failure on complex ones. These insights
help us to better understand the nature reasoning in LRMs and challenge some of the prevailing
assumptions about LRM’s capabilities. Finally, we presented some of our surprising observations
on LRMs that lead to several open questions for future research. Most notably, we observed their
limitations in performing exact computation; for example, when we provided the solution algorithm
of puzzle to the models, their performance on this puzzle did not improve. Investigating the first
failure move of the models also revealed some surprising and inconsistent behaviors. Our results show
that models sometimes fail earlier on harder instances despite requiring longer overall solutions. They
also show very different error-free sequence lengths across puzzles, e.g., performing up to 100 correct
moves in Tower of Hanoi but only 4 in River Crossing. This disparity likely reflects differences in the
models’ familiarity with each setting based on the distribution of training data rather than intrinsic
differences in problem’s computational complexity. We hope that these findings can pave the way
for future investigations into better understanding the reasoning process of these systems.

Limitations

We acknowledge that our work has limitations. While our puzzle environments enable controlled
experimentation with fine-grained control over problem complexity, they represent a narrow slice of
reasoning tasks and may not capture the diversity of real-world or knowledge-intensive reasoning
problems. It is notable that most of our experiments rely on black-box API access to the closed frontier
LRMs, limiting our ability to mechanistically analyze internal states or architectural components.
Furthermore, the use of deterministic puzzle simulators assumes that reasoning can be perfectly
validated step by step. However, in less structured domains, such precise validation may not be
feasible, limiting the transferability of this analysis to other more generalizable and open-ended
reasoning.

Acknowledgments

The authors would like to thank Scott Hoang, Yichen Jiang, Minsik Cho, Mohammad Sekhavat, David
Harrison, Mohammadreza Armandpour and Devi Krishna for the valuable feedback and support.

10

References
[1] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec

Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

[2] OpenAI. Introducing openai o1. Jan 2024.

[3] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[4] Anthropic. Claude 3.7 sonnet. Feb 2025.

[5] Google. Gemini flash thinking. Google AI Blog, Jan 2025.

[6] Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio,
and Mehrdad Farajtabar. GSM-symbolic: Understanding the limitations of mathematical
reasoning in large language models. In The Thirteenth International Conference on Learning
Representations, 2025.

[7] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On
the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021
ACM conference on fairness, accountability, and transparency, pages 610–623, 2021.

[8] Francois Chollet, Mike Knoop, Gregory Kamradt, Bryan Landers, and Henry Pinkard. Arc-
agi-2: A new challenge for frontier ai reasoning systems. arXiv preprint arXiv:2505.11831,
2025.

[9] Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah,
Hany Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat S. Behl, and et. al.
Phi-3 technical report: A highly capable language model locally on your phone. CoRR,
abs/2404.14219, 2024.

[10] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825,
2023.

[11] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne
Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano,
Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily
Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee,
Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey
Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, and et al. The llama 3 herd of models.
CoRR, abs/2407.21783, 2024.

[12] Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin,
Sean Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya
Sanyal, Xiang Ren, Allyson Ettinger, Zaïd Harchaoui, and Yejin Choi. Faith and fate: Limits
of transformers on compositionality. In Alice Oh, Tristan Naumann, Amir Globerson, Kate
Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

11

[13] R. Thomas McCoy, Shunyu Yao, Dan Friedman, Matthew Hardy, and Thomas L. Griffiths.
Embers of autoregression: Understanding large language models through the problem they are
trained to solve, 2023.

[14] Marianna Nezhurina, Lucia Cipolina-Kun, Mehdi Cherti, and Jenia Jitsev. Alice in wonderland:
Simple tasks showing complete reasoning breakdown in state-of-the-art large language models.
arXiv preprint arXiv:2406.02061, 2024.

[15] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022.

[16] Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin Xu, and Deepak Ramachandran. Lam-
bada: Backward chaining for automated reasoning in natural language. arXiv preprint
arXiv:2212.13894, 2022.

[17] Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur, and
Hanie Sedghi. Teaching algorithmic reasoning via in-context learning. arXiv preprint
arXiv:2211.09066, 2022.

[18] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

[19] Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and
Jun Zhao. Large language models are better reasoners with self-verification. In Houda Bouamor,
Juan Pino, and Kalika Bali, editors, Findings of the Association for Computational Linguistics:
EMNLP 2023, pages 2550–2575, Singapore, December 2023. Association for Computational
Linguistics.

[20] Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen.
Making language models better reasoners with step-aware verifier. In Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 5315–5333, 2023.

[21] Eric Zhao, Pranjal Awasthi, and Sreenivas Gollapudi. Sample, scrutinize and scale: Effective
inference-time search by scaling verification. arXiv preprint arXiv:2502.01839, 2025.

[22] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with
reasoning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022.

[23] Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and
Vaishnavh Nagarajan. Think before you speak: Training language models with pause tokens. In
The Twelfth International Conference on Learning Representations, 2024.

[24] David Herel and Tomas Mikolov. Thinking tokens for language modeling. ArXiv,
abs/2405.08644, 2024.

[25] Zhihong Shao, Peiyi Wang, Runxin Xu Qihao Zhu, Junxiao Song, Mingchuan Zhang, Y.K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models, 2024.

[26] Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning
through refined credit assignment, 2024.

[27] Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya
Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris

12

Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Ha-
jishirzi. Tülu 3: Pushing frontiers in open language model post-training. ArXiv, abs/2411.15124,
2024.

[28] Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schul-
man, Arushi Somani, Peter Hase, Misha Wagner, Fabien Roger, et al. Reasoning models don’t
always say what they think. arXiv preprint arXiv:2505.05410, 2025.

[29] Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Eric Tang, Sumanth Hegde,
Kourosh Hakhamaneshi, Shishir G Patil, Matei Zaharia, et al. Llms can easily learn to reason
from demonstrations structure, not content, is what matters! arXiv preprint arXiv:2502.07374,
2025.

[30] Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the
overthinking of o1-like llms. arXiv preprint arXiv:2412.21187, 2024.

[31] Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi
Liu, Andrew Wen, Hanjie Chen, Xia Hu, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

[32] Sara Vera Marjanović, Arkil Patel, Vaibhav Adlakha, Milad Aghajohari, Parishad
BehnamGhader, Mehar Bhatia, Aditi Khandelwal, Austin Kraft, Benno Krojer, Xing Han
Lù, et al. Deepseek-r1 thoughtology: Let’s< think> about llm reasoning. arXiv preprint
arXiv:2504.07128, 2025.

[33] Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching,
Ruslan Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement
fine-tuning. arXiv preprint arXiv:2503.07572, 2025.

[34] Marthe Ballon, Andres Algaba, and Vincent Ginis. The relationship between reasoning and
performance in large language models–o3 (mini) thinks harder, not longer. arXiv preprint
arXiv:2502.15631, 2025.

[35] Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model?
arXiv preprint arXiv:2504.13837, 2025.

[36] Nikola Zubić, Federico Soldá, Aurelio Sulser, and Davide Scaramuzza. Limits of deep learning:
Sequence modeling through the lens of complexity theory. arXiv preprint arXiv:2405.16674,
2024.

[37] Benjamin Estermann, Luca A. Lanzendörfer, Yannick Niedermayr, and Roger Wattenhofer.
Puzzles: A benchmark for neural algorithmic reasoning, 2024.

[38] Karthik Valmeekam, Alberto Olmo Hernandez, Sarath Sreedharan, and Subbarao Kambhampati.
Large language models still can’t plan (A benchmark for llms on planning and reasoning about
change). CoRR, abs/2206.10498, 2022.

[39] Anian Ruoss, Fabio Pardo, Harris Chan, Bonnie Li, Volodymyr Mnih, and Tim Genewein.
Lmact: A benchmark for in-context imitation learning with long multimodal demonstrations.
arXiv preprint arXiv:2412.01441, 2024.

[40] Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan; can
lrms? a preliminary evaluation of openai’s o1 on planbench. 2024.

[41] Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025.

[42] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

13

[43] Mathematical Association of America. American invitational mathe-
matics examination (aime). https://maa.org/math-competitions/
american-invitational-mathematics-examination-aime, 2025. Accessed: 2025-05-
15.

[44] Art of Problem Solving. Amc historical results - aime i (february 1, 2024).
https://artofproblemsolving.com/wiki/index.php/AMC_historical_results#
AIME_I_.28February_1.2C_2024.29, 2024. Accessed: 2025-05-15.

[45] Art of Problem Solving. Amc historical results – aime i (february 6, 2025).
https://artofproblemsolving.com/wiki/index.php/AMC_historical_results#
AIME_I_.28February_6.2C_2025.29, 2025. Accessed: 2025-05-15.

[46] Gary F Marcus. The algebraic mind: Integrating connectionism and cognitive science. MIT
press, 2003.

[47] Saul Amarel. On representations of problems of reasoning about actions. In Readings in
artificial intelligence, pages 2–22. Elsevier, 1981.

[48] Günter Rote. Crossing the bridge at night. Bulletin of the EATCS, 78:241, 2002.

[49] Xinran Zhao, Hanie Sedghi, Bernd Bohnet, Dale Schuurmans, and Azade Nova. Improving large
language model planning with action sequence similarity. arXiv preprint arXiv:2505.01009,
2025.

[50] Xiaomin Li, Zhou Yu, Zhiwei Zhang, Xupeng Chen, Ziji Zhang, Yingying Zhuang, Narayanan
Sadagopan, and Anurag Beniwal. When thinking fails: The pitfalls of reasoning for instruction-
following in llms. arXiv preprint arXiv:2505.11423, 2025.

14

https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://artofproblemsolving.com/wiki/index.php/AMC_historical_results#AIME_I_.28February_1.2C_2024.29
https://artofproblemsolving.com/wiki/index.php/AMC_historical_results#AIME_I_.28February_1.2C_2024.29
https://artofproblemsolving.com/wiki/index.php/AMC_historical_results#AIME_I_.28February_6.2C_2025.29
https://artofproblemsolving.com/wiki/index.php/AMC_historical_results#AIME_I_.28February_6.2C_2025.29

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

15

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper describes the full experimental setup in Section 4 and Section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [Yes]
Justification: We can not release the code at this stage, but, we plan to release the full code
and experiments upon paper acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Same as Q4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Thinking models are compute heavy and pretty expensive due to very long
tokens for each sample. It was not economically feasible to run many experiments to
compute error bars too.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: the detailed computer resources and GPU hours will be reported in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We thoroughly discussed benefits and impacts of this work in introduction and
discussion sections
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risk

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

20

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Appendix

In this appendix, we provide details supplementing the main text, including our response to alternative
critics, experimental setup specifications, additional results, and extended analysis.

A.1 Response to Main Criticisms
A.2 Details on Puzzle Environment Specifications and Design - Comprehensive descriptions

of all four puzzle environments, including their problem descriptions, prompt designs, and
simulators.

A.2.1 Tower of Hanoi
A.2.2 Checker Jumping
A.2.3 River Crossing
A.2.4 Blocks World

A.3 Implementation Details - Full experimental setup specifications, model configurations,
extraction pipeline details, and prescribed algorithm execution experiments.

A.4 Details on Computational Complexity
A.4.1 Compositional Depth Characterization
A.4.2 Performance and Inference vs Compositional Depth

A.6 Additional Results and Analysis - Extended analysis including additional Qwen model pairs,
sampling effects, reasoning effort patterns, and detailed failure analysis across all models
and puzzle environments.

22

A.1 Response to Main Criticisms

This section addresses critiques raised regarding our paper and provides our responses to these
concerns. We appreciate the engagement from the research community and have incorporated several
modifications to address valid points while clarifying misunderstandings where appropriate.

Question: Are failures on Tower of Hanoi due to context limit issues rather than reasoning
limitations?

Response: Our empirical evidence demonstrates that model failures observed in experiments occur
within the context limits in all puzzles. For the Tower of Hanoi, with its exponential growth raising
questions of context-limit failures, reasoning models begin to collapse at N=7 and 8, corresponding
to ∼100-200 moves (as shown in Figures 5, 6 and 11) which is well within the context limits. More
importantly, if we look deeper into the failure cases (like in Figures 9, 14, and 15), we see that the
first failure move actually happens much sooner than the final move. For example, for Tower of
Hanoi with N≈10 (requiring ∼ 103 moves), failure typically occurs within the first ∼100 moves
(10% of solution length); for N=8, which requires 255 moves, failure occurs around ∼40 moves
(15% of solution length). This indicates that model failures happen much earlier and are not due to
context limits. To account for context limit concerns for large values of N in Tower of Hanoi, we
have removed N>12 from the experiments on this puzzle.

Question: Do models collapse primarily due to the sampling of large number of moves
(particularly on Tower of Hanoi)?

Response: Some critics argue that sampling is the primary cause of the observed collapse behavior
(particularly on Tower of Hanoi). While we acknowledge that longer move sequences may reduce
the chance of correct reasoning chains due to sampling, our experiments demonstrate that sampling
is not the primary factor underlying these failures. To investigate this, we conducted additional
ablation experiments using temperature zero to remove sampling effects on solution length. These
experiments were performed on the DeepSeek-R1 reasoning model to ensure precise temperature
control on local servers. Results show that eliminating sampling does not change the collapse across
any of the puzzles, including Tower of Hanoi, indicating that sampling of long sequences is not
causing the observed collapse behavior. In fact, in Tower of Hanoi and Blocks World, sampling
actually helps delay collapse. For example, in Blocks World, R1 with temperature zero collapses at
N=4, but sampling delays the collapse until N=30 (details in Figure 13 of Appendix A.6). Similar
collapse behavior in much shorter sequences where sampling has less impact like River Crossing (11
moves, N=3) and Checker Jumping (24 moves, N=4) also further supports this conclusion.

Question: Does River Crossing with N≥6 invalidate our core findings on this puzzle?

Response: Upon further experiments, we found that the puzzle dynamics shift considerably for
N≥6, where the optimal boat capacity (k = 4) fundamentally changes the problem structure, making
it less suitable for evaluating planning capabilities. This insight led us to refine our analysis by
focusing on the cases where N<6. However, this modification does not invalidate our core findings, as
performance of models mostly collapse earlier from N=3, which requires only an 11-move solution
for basic constraint satisfaction. This early performance collapse is particularly noteworthy and
suggests that current frontier reasoning models may have limited capability for constraint verification
and satisfaction while planning.

Question: Is the finding that providing algorithms doesn’t improve performance specific to
Tower of Hanoi due to its well-known recursive algorithm or reflecting a general limitation of
reasoning models?

Response: The critic suggests that the findings of algorithm execution limitation in LRMs (Sec-
tion 4.4) may be only an artifact of the Tower of Hanoi’s well-known recursive algorithm being
already memorized by models, rather than indicating a general limitation in algorithm execution. To
investigate this, we conducted additional experiments on Checker Jumping puzzle, with some different
characteristics: it requires fewer moves than Tower of Hanoi, exhibits earlier collapse behavior, and

23

appears to have less algorithmic familiarity. If the critic’s hypothesis were correct, we should observe
clear benefits from algorithm provision in this problem. However, our results in Figure 8 show very
similar patterns for both puzzles. Even when given explicit algorithm steps—requiring only execution
rather than problem-solving and solution discovery—models show no meaningful improvement on
either puzzle, with collapse happening at similar points. These results further validate our findings
regarding limitations in the execution of logical steps and suggest a more fundamental failure mode
in reasoning models, rather than one specific to the Tower of Hanoi.

Question: Why not use tools for solving these puzzles?

Response: We would like to highlight that our objective is to assess models’ reasoning
processes—their ability to understand problems, explore solution spaces, and execute logical
steps—rather than merely achieving correct final answers. For the puzzles in our study, algorithmic
solutions are very well-established and likely exist in models’ training data as standard implemen-
tations. Allowing tool use would tell us nothing about their capacity for problem understanding,
constraint reasoning, or multi-step logical execution. Tool usage becomes valuable when algorithmic
codes for solving the problem are unknown and require compositional reasoning to be developed.

We believe it’s crucial to separate tool use from understanding when evaluating reasoning capabilities.
As the Chinese room argument illustrates, it’s entirely possible to use tools effectively without any
real comprehension of the underlying problem. Consider a student who complains about a math
exam requiring integration by hand, arguing that software can produce correct answers instantly. The
teacher’s goal isn’t to find the answer—they already know it—but to assess the student’s conceptual
understanding. The same principle applies to LLM evaluation. Furthermore, if an LLM cannot
reliably perform sequential reasoning steps on its own, how can we expect it to write complex code
or coordinate multiple tools correctly for even more challenging problems? Reliable tool use requires
the same systematic thinking and logical execution that these simple puzzles assess.

A.2 Details on Puzzle Environment Specifications and Design

A.2.1 Tower of Hanoi

Problem Description. The Tower of Hanoi is a classic recursive puzzle that serves as a great
problem for evaluating sequential reasoning and planning capabilities in reasoning models. The
puzzle consists of three pegs (labeled 0, 1, and 2 from left to right) and N disks of varying sizes,
where each disk is uniquely numbered from 1 (smallest) to N (largest). In the initial configuration,
all N disks are stacked on the leftmost peg (peg 0) in descending order of size, with the largest
disk at the bottom and the smallest at the top. The remaining two pegs (1 and 2) are initially empty.
The goal is to transfer all disks from peg 0 to peg 2, maintaining the same size ordering (largest at
bottom, smallest at top). This puzzle is governed by three fundamental constraints: (1) Single Disk
Movement: Only one disk may be moved at a time; (2) Top Disk Access: Only the topmost disk from
any peg can be selected for movement; and (3) Size Ordering Constraint: A larger disk may never be
placed on top of a smaller disk. This puzzle is a good evaluation testbed for reasoning and planning
capabilities of models as it requires models to demonstrate key cognitive demands such as breaking
down the problem into subproblems (recursive thinking), tracking multiple states and disk positions
simultaneously (working memory management), adhering to movement rules and constraints while
planning ahead (constraint satisfaction), and determining the correct order of operations to achieve
the final goal (sequential planning).

The minimum number of moves required to solve the Tower of Hanoi recursive puzzle with N disks
is 2N −1, making it an exponentially scaling problem. This property allows for fine-grained difficulty
control by adjusting the problem size with number of initial disks. However, in our evaluation
framework, we focus on solution correctness rather than optimality, assessing each of the move’s
validity and the model’s ability to reach the target state as the success criteria.

Prompt Design. The system prompt begins with a clear problem statement describing the puzzle
setup. It explicitly states the movement rules and the objective of transferring all disks to the third
peg. To facilitate understanding, the prompt includes example demonstrations as well as the critical
formatting and reasoning expectations.

24

System Prompt - Tower of Hanoi

You are a helpful assistant. Solve this puzzle for me.
There are three pegs and n disks of different sizes stacked on the first peg. The disks are
numbered from 1 (smallest) to n (largest). Disk moves in this puzzle should follow:

1. Only one disk can be moved at a time.
2. Each move consists of taking the upper disk from one stack and placing it on top of

another stack.
3. A larger disk may not be placed on top of a smaller disk.

The goal is to move the entire stack to the third peg.
Example: With 3 disks numbered 1 (smallest), 2, and 3 (largest), the initial state is [[3, 2, 1],
[], []], and a solution might be:

moves = [[1, 0, 2], [2, 0, 1], [1, 2, 1], [3, 0, 2],
[1, 1, 0], [2, 1, 2], [1, 0, 2]]

This means: Move disk 1 from peg 0 to peg 2, then move disk 2 from peg 0 to peg 1, and so on.
Requirements:

• When exploring potential solutions in your thinking process, always include the
corresponding complete list of moves.

• The positions are 0-indexed (the leftmost peg is 0).
• Ensure your final answer includes the complete list of moves in the format:
moves = [[disk id, from peg, to peg], ...]

The user prompt after the system prompt presents the specific puzzle instance with current configura-
tion showing the distribution of disks across pegs and the goal configuration specifying the target state.

User Prompt Template for N Disks - Tower of Hanoi

I have a puzzle with N disks of different sizes with
Initial configuration:

• Peg 0: N (bottom), . . . 2, 1 (top)
• Peg 1: (empty)
• Peg 2: (empty)

Goal configuration:
• Peg 0: (empty)
• Peg 1: (empty)
• Peg 2: N (bottom), . . . 2, 1 (top)

Rules:
• Only one disk can be moved at a time.
• Only the top disk from any stack can be moved.
• A larger disk may not be placed on top of a smaller disk.

Find the sequence of moves to transform the initial configuration into the goal configuration.

Simulator. Our evaluation framework employs separate puzzle simulators for each puzzle to ensure
consistent assessment and rigorous failure analysis of solutions obtained from LRMs. The Tower of
Hanoi simulator is designed as a stateful environment that tracks disk configurations across three
pegs and validates each proposed move against the puzzle’s fundamental constraints. The simulator
architecture follows a modular design pattern with clear separation between state management, move
validation, and solution verification. In this simulator, we have a puzzle class which tracks the current

25

disk configuration and enforces the puzzle’s fundamental constraints. We also have a method to
execute each move in the puzzle setup and perform four-layer validation: checking peg boundary
conditions (0-2), verifying source pegs contain disks, confirming the specified disk is topmost, and
enforcing the size ordering constraint that prevents larger disks from being placed on smaller ones.
Upon successful validation, the method executes the disk transfer and updates the puzzle state. Finally,
the complete solution validation is processed by sequentially processing move lists, and verifying
goal state achievement.

A.2.2 Checker Jumping

Problem Description. Checker Jumping is a one-dimensional constraint-satisfaction puzzle de-
signed to test sequential reasoning, planning, and rule understanding capabilities. The puzzle consists
of a linear arrangement of red checkers (’R’), blue checkers (’B’), and a single empty space (’_’).
In the standard configuration, N red checkers are positioned on the left side, followed by an empty
space in the middle, and N blue checkers on the right side, forming a linear board of length 2N + 1.
The objective is to swap the positions of all red and blue checkers, effectively mirroring the initial
configuration, where red checkers end up on the right and blue checkers on the left. Movement in
this puzzle is governed by two fundamental rules: (1) Slide Movement: A checker can slide forward
into an adjacent empty space; and (2) Jump Movement: A checker can jump forward over exactly
one checker of the opposite color to land in an empty space. Therefore, checkers cannot move
backward toward their starting side—red checkers can only move rightward, and blue checkers can
only move leftward from the initial configuration. This puzzle presents cognitive challenges that
make it a good testbed for reasoning models. For example, models must demonstrate some aspect of
spatial reasoning (tracking checker positions and possible moves), constraint satisfaction (adhering to
movement rules during puzzle), lookahead planning (anticipating how current moves affect future
possibilities towards goal), and state-space exploration (searching through possible move sequences
to find a valid solution path).

The difficulty of the Checker Jumping puzzle scales with the number of checkers: with N checkers
of each color, the minimum solution requires (N + 1)2 − 1 moves, creating a quadratic relationship
between problem size and solution complexity. In our evaluation framework, we mainly focus on
solution correctness rather than optimality, evaluating each move against the puzzle constraints and
confirming that the final state matches the goal configuration. This approach allows us to precisely
identify reasoning failures and constraint violations that might occur during the solution process.

Prompt Design. The system prompt begins with a clear problem statement describing the puzzle
setup and movement rules. It explicitly states the objective and provides a concrete example with a
small board configuration to illustrate how moves should be represented.

System Prompt - Checker Jumping

You are a helpful assistant. Solve this puzzle for me.
On a one-dimensional board, there are red checkers (’R’), blue checkers (’B’), and one empty
space (’_’). A checker can move by either:

1. Sliding forward into an adjacent empty space, or
2. Jumping over exactly one checker of the opposite color to land in an empty space.

The goal is to swap the positions of all red and blue checkers, effectively mirroring the initial
state.
Example: If the initial state is [’R’, ’_’, ’B’], the goal is to reach [’B’, ’_’, ’R’]. Your solution
should be a list of moves where each move is represented as [checker_color, position_from,
position_to]. For example:

moves = [[’R’, 0, 1], [’B’, 2, 0], [’R’, 1, 2]]

This means: Move the red checker from position 0 to 1, then move the blue checker from
position 2 to 0, and so on.
Requirements:

26

• When exploring potential solutions in your thinking process, always include the
corresponding complete list of moves.

• The positions are 0-indexed (the leftmost position is 0).
• Ensure your final answer includes the complete list of moves for final solution in the

format: moves = [[checker_color, position_from, position_to], ...]

The user prompt presents the specific puzzle instance with the initial board configuration, and the
goal state.

User Prompt Template for N Checkers - Checker Jumping

I have a puzzle with 2N+1 positions, where N red checkers (’R’) on left, N blue checkers
(’B’) on right, and one empty space (’_’) in between are arranged in a line.
Initial board: R R ... R _ B B ... B
Goal board: B B ... B _ R R ... R
Rules:

• A checker can slide into an adjacent empty space.
• A checker can jump over exactly one checker of the opposite color to land in an empty

space.
• Checkers cannot move backwards (towards their starting side).

Find the sequence of moves to transform the initial board into the goal board.

Simulator. Our evaluation framework employs a custom simulator for validating Checker Jumping
puzzle solutions. The simulator implements a comprehensive validation system that enforces all
puzzle constraints while tracking the state evolution throughout the solution path. The Checker
Jumping simulator is designed as a stateful environment that tracks the position of all checkers and
the empty space, validating each move of a given solution against the puzzle’s movement rules.
The simulator begins by validating that both the initial and goal states are generally well-formed,
containing the same number of red and blue checkers and exactly one empty space. Then, each
move is executed with a method that performs multi-layer validation: verifying position boundaries,
confirming correct checker color at source, ensuring target positions are empty, and validating
move types as either slides (distance=1) or jumps (distance=2). The simulator enforces directional
constraints preventing backward movement (red checkers only move right, blue checkers only move
left) and validates jump moves by confirming the presence of an opposite-colored checker in the
middle position. Upon successful validation, the method executes the checker transfer by updating
positions and clearing the source. Then, the complete move sequences are processed with final goal
state verification.

A.2.3 River Crossing

Problem Description. River Crossing is a constraint satisfaction planning puzzle that tests multi-
agent coordination and constraint management. This puzzle is a generalization of classic problems
such as the Missionaries and Cannibals problem and the Bridge and Torch problem, which have been
widely studied in planning literature [47, 48]. The river crossing puzzle involves N actors (denoted
by a1, a2, ..., aN) and their corresponding N agents (denoted by A1, A2, ..., AN) who must cross
a river using a boat. In the initial state, all 2N individuals are on the left bank of the river. The goal
is to transport everyone safely to the right bank. The puzzle operates under several key movement
constraints: (1) Boat Capacity Constraint: The boat can carry at most k individuals at a time, where
k is typically set to 2 for smaller puzzles (N ≤ 3) and 3 for larger puzzles; (2) Non-Empty Boat Con-
straint: The boat cannot travel empty and must have at least one person aboard; (3) Safety Constraint:
An actor cannot be in the presence of another agent unless their own agent is also present, as agents
must protect their clients from competing agents. This safety constraint applies both on the banks and
in the boat. This puzzle requires complex planning and state tracking as participants must carefully

27

coordinate their crossings while maintaining safety constraints at all times. The solver must reason
through different combinations of individuals who can safely travel together, determine who should
return with the boat after a crossing, and strategically plan a sequence that eventually brings everyone
to the right bank without violating any constraints. The complexity of this task can be controlled by
adjusting the number of actor-agent pairs, creating a scalable challenge for reasoning models.

Prompt Design. The system prompt introduces the notation for representing actors and agents,
establishes the solution format as a list of boat moves, and provides a simple example to demonstrate
the format.

System Prompt - River Crossing

You are a helpful assistant. Solve this puzzle for me.
You can represent actors with a1, a2, ... and agents with A1, A2, Your solution must be
a list of boat moves where each move indicates the people on the boat. For example, if there
were two actors and two agents, you should return:

moves =[["A2", "a2"], ["A2"], ["A1", "A2"], ["A1"], ["A1", "a1"]]

which indicates that in the first move, A2 and a2 row from left to right, and in the second move,
A2 rows from right to left and so on.
Requirements:

• When exploring potential solutions in your thinking process, always include the
corresponding complete list of boat moves.

• The list shouldn’t have comments.
• Ensure your final answer also includes the complete list of moves for final solution.

The user prompt presents the specific puzzle instance with N actor-agent pairs, and the boat capacity
k, and the safety constraint that must be maintained throughout the solution.

User Prompt Template for N Pairs - River Crossing

N actors and their N agents want to cross a river in a boat that is capable of holding only
k people at a time, with the constraint that no actor can be in the presence of another
agent, including while riding the boat, unless their own agent is also present, because each
agent is worried their rivals will poach their client. Initially, all actors and agents are on the left
side of the river with the boat. How should they cross the river? (Note: the boat cannot travel
empty)

Simulator. Our evaluation framework employs a custom simulator for validating River Crossing
puzzle extracted solutions. The simulator tracks the state of all individuals (actors and agents) and the
boat position while enforcing all puzzle constraints. Each move is executed with multi-step validation:
checking boat capacity limits, verifying all passengers are on the boat’s current side, and enforcing
the critical safety constraint that actors cannot be in the presence of other agents without their own
agent present, both on the boat and on each bank after the move. The simulator manages dynamic
boat positioning, automatically switching sides after each crossing, and validates the complete state
after each move to ensure no safety violations occur on either bank. Then, the complete crossing
sequences are verified that all 2N individuals successfully reach the right bank.

A.2.4 Blocks World

Problem Description. Blocks World is a classical planning puzzle that has been recently studied for
analyzing the planning capabilities of LLMs [38, 40]. The puzzle involves multiple stacks of blocks
(A, B, C, etc.) that must be rearranged from an initial configuration to a specified goal configuration.
Each block is uniquely identified by its letter, and the objective is to find the sequence of valid moves

28

needed to transform the initial state exactly into the goal state. The puzzle operates only under two
fundamental constraints: (1) Top Block Movement: Only the topmost block from any stack can be
moved; and (2) Valid Placement: A block can only be placed either on an empty position or on top of
another block. These constraints create planning problem where the order of operations becomes
critical, as some configurations may require temporary placement of blocks to access those beneath
them later. Blocks World serves as a good testbed for evaluating planning capabilities in reasoning
models because it requires forward thinking, and state tracking. Recent studies have examined this
puzzle in various configurations, including simplified settings with as few as 3 to 5 blocks, to evaluate
LLM performance on sequential planning tasks [38, 40, 49]. Models must demonstrate the ability to
decompose complex state transformations into valid sequential moves, reason about dependencies
between blocks (e.g., unblocking lower blocks before accessing them), and efficiently plan paths
to the goal state without illegal moves. Our design of this puzzle is motivated by recent works in
literature [40, 49], but it’s set to be more challenging for the recent reasoning models requiring more
disassembly and reassembly of the stacks (eg. alternating between blocks from different stacks to
reach target).

The difficulty of this puzzle can be scaled by adjusting several parameters: the number of blocks,
the number of stacks, and the complexity of the initial and goal configurations. We primarily control
complexity through the block count N , while following clear structural patterns in the initial and
goal configurations. In our experimental design, the initial configuration consistently divides the
N blocks between two stacks in alphabetical order, with the third stack empty as workspace. The
goal configuration consolidates all blocks onto the first stack in a systematic interleaved pattern that
alternates between blocks from the two initial stacks, with specific positioning that requires complete
disassembly and reassembly of the existing stacks. For example, for N = 4, the initial state has
blocks divided between two stacks [["A", "B"], ["C", "D"], []] and the goal state [["D",
"B", "C", "A"], [], []] requires interleaving blocks from both stacks; and for N = 6, the
initial state [["A", "B", "C"], ["D", "E", "F"], []] must be transformed to [["F", "C",
"E", "B", "D", "A"], [], []], forming a complex alternating pattern. As N increases, the
state space grows factorially, and the minimum solution length increases approximately linearly.

Prompt Design. The system prompt introduces the fundamental rules of the Blocks World puzzle,
establishes the move representation format, and provides a simple example to demonstrate the
solution structure.

System Prompt - Blocks World

You are a helpful assistant. Solve this puzzle for me.
In this puzzle, there are stacks of blocks, and the goal is to rearrange them into a target
configuration using a sequence of moves where:

• Only the topmost block from any stack can be moved.
• A block can be placed either on an empty position or on top of another block.

Example: With initial state [["A", "B"], ["C"], []] and goal state [["A"], ["B"],
["C"]], a solution might be:

moves = [["C", 1, 2], ["B", 0, 1]]

This means: Move block C from stack 1 to stack 2, then move block B from stack 0 to stack 1.
Requirements:

• When exploring potential solutions in your thinking process, always include the
corresponding complete list of moves.

• The positions are 0-indexed (the leftmost position is 0).
• Ensure your final answer also includes the complete list of moves for final solution in

the format: moves = [[block, from stack, to stack], ...]

The user prompt presents the specific puzzle instance with the initial and goal configurations provided,
and explicitly reminds the model about the movement constraint.

29

User Prompt Template for N Blocks - Blocks World

I have a puzzle with N blocks.
Initial state:

Stack 0: $blocks_0$ (top)
Stack 1: $blocks_1$ (top)
...
Stack m: $blocks_m$ (top)

Goal state:
Stack 0: $goal_blocks_0$ (top)
Stack 1: $goal_blocks_1$ (top)
...
Stack m: $goal_blocks_m$ (top)

Find the sequence of moves to transform the initial state into the goal state. Remember that
only the topmost block of each stack can be moved.

Simulator. Our evaluation framework employs a custom simulator for validating Blocks World
puzzle extracted solutions. The simulator manages the state of all blocks across stacks while enforcing
the puzzle’s movement constraints. Each move is executed in the puzzle setup with three-layer
validation: verifying stack indices are within bounds, confirming the source stack contains blocks,
and ensuring the specified block is at the top of its stack (enforcing the top-block-only movement
rule). Upon successful validation, the block transfer is executed and the block is popped from the
source stack and appended to the destination stack. Finally, the complete solution sequences of block
movements are processed and verified that the resulting configuration matches the target goal state.

A.3 Implementation Details

Configurations. Our experiments primarily utilized reasoning models and their corresponding
non-reasoning counterparts to enable thorough analysis of the RL-enabled long CoT (i.e., thinking
process). We specifically selected Claude 3.7 Sonnet (thinking/non-thinking) and DeepSeek-R1/V3
due to their ability to provide access to intermediate reasoning traces (thinking tokens), a critical
requirement for our analysis. For experiments focused solely on final accuracy metrics, we also
included results from OpenAI’s o3-mini models. For Claude 3.7 Sonnet (w. and w/o extended
thinking) models we used maximum generation budget of 64,000 tokens, accessed through the API
interface. Temperature is the default 1.0 for all API rus (Claude-3.7-Sonnet and o3-mini runs). The
experiments with DeepSeek-R1, DeepSeek-V3, and DeepSeek-R1-Distill-Qwen-32B are conducted
on local servers with maximum generation length set to 64,000 and temperature set to 1.0. For
each puzzle instance and complexity level, the results are reported on 25 samples per model. We
apply a filtering process to ensure all analyzed samples are following the requested response format,
including move sequences and reasoning steps as specified.

Solution Extraction. A custom extraction pipeline was developed to process model responses
and intermediate reasoning traces (thoughts). The pipeline consists of several key components. We
implemented a flexible regex-based extractors to identify potential solution attempts in both the
final response and thinking trace. The extraction process identify solution patterns using regular
expressions (both explicit “moves =” patterns and alternative bracket-based solutions). We process
and clean each extracted candidate solution by (i) Removing comments from the list (text following
"#" in any line), and (ii) Normalizing move formats to what suggested in context to ensure consistent
structure. Then, we validate solution format and structure to filter out invalid matches. During the
extraction, we also capture metadata of token position for each extracted solution. Notably, for
accurate position tracking within thinking traces, we employed the same tokenizer (cl100k_base)
as the corresponding model to count tokens across all experiments. Token positions were also
normalized with respect to thought length to enable cross-sample comparison. Finally, we make sure

30

that the recorded solutions within the thought trace are unique and duplicate solutions (identical move
sequences) were filtered. In case of duplicate solutions, only the first solution is recorded for analysis.

Solution Evaluation. After extraction, each solution candidate is passed to the corresponding
rigorous puzzle simulator for fine-grained verification and failure analysis. The simulator takes a
solution as list of moves and evaluate that with respect to the puzzle (check App. A.2 for details of
each puzzle simulator). Each move in the compositional solution is executed sequentially according
to previous moves and the puzzle rules. At the end, the final state obtained from all moves in the
sequence is compared to the goal state of puzzle to determine full solution correctness. For incorrect
solutions, details of first failure move and the type of failure is also collected during the move
verification with puzzle simulator.

Execution of Prescribed Steps. In addition to open-ended problem solving across different puzzles,
we also conducted focused experiments to test how providing the explicit solving algorithm guidance
with prescribed steps would affect behavior of these reasoning models (Sec. 4.4).

We expected that finding and devising solution from scratch should require substantially more
computation for model (e.g., for search and verification) than just following a given algorithm’s steps.
However, results over two puzzles (Tower of Hanoi and Checker Jumping) in Figures 8 show that
reasoning models’ behavior does not change that much and the collapse still occurs at roughly same
points as before with this setting. This finding strengthens evidence that the limitation is not just in
problem-solving and solution strategy discovery but also in consistent logical verification and step
execution limitation throughout the generated reasoning chains.

For example, models are provided with a complete recursive algorithm of solving Tower of Hanoi
and Checker Jumping puzzles as follows. These algorithm scratchpads were appended to the standard
problem prompt to test its impact on reasoning behavior.

Example of Prescribed Algorithm for Tower of Hanoi

Here is a pseudocode of recursive algorithm to solve the puzzle:

ALGORITHM Solve(n, source, target, auxiliary, moves)
// n = number of disks to move
// source = starting peg (0, 1, or 2)
// target = destination peg (0, 1, or 2)
// auxiliary = the unused peg (0, 1, or 2)
// moves = list to store the sequence of moves

IF n equals 1 THEN
// Get the top disk from source peg
disk = the top disk on the source peg
// Add the move to our list: [disk_id, source, target]
ADD [disk, source, target] to moves
RETURN

END IF

// Move n-1 disks from source to auxiliary peg
Solve(n-1, source, auxiliary, target, moves)

// Move the nth disk from source to target
disk = the top disk on the source peg
ADD [disk, source, target] to moves

// Move n-1 disks from auxiliary to target
Solve(n-1, auxiliary, target, source, moves)

END ALGORITHM

31

Note: When executing this pseudocode, track which disk is currently on top of each peg. The
disk IDs in the moves list should correspond to the actual disk being moved.
You can use this algorithm as a scratchpad to help you solve the problem step by step.

Example of Prescribed Algorithm for Checker Jumping

Here is a pseudocode of recursive algorithm to solve the puzzle:

ALGORITHM Solve(board, goal, moves)
// board = current state (string with ’R’, ’B’, ’_’)
// goal = target configuration
// moves = list to store the sequence of moves

IF board equals goal THEN
RETURN moves

END IF

FOR each position i in board DO
IF board[i] is ’R’ THEN

// Try moving R piece right (step or jump)
TryMove(’R’, i, i+1, board, goal, moves)
TryMove(’R’, i, i+2, board, goal, moves)

END IF

IF board[i] is ’B’ THEN
// Try moving B piece left (step or jump)
TryMove(’B’, i, i-1, board, goal, moves)
TryMove(’B’, i, i-2, board, goal, moves)

END IF
END FOR

RETURN null // No solution found
END ALGORITHM

FUNCTION TryMove(piece, from, to, board, goal, moves)
IF to is valid position AND board[to] is ’_’ THEN

// Make the move
new_board = copy of board
SET new_board[from] = ’_’
SET new_board[to] = piece

// Recursively solve
result = Solve(new_board, goal, moves + [piece, from, to])

RETURN result
END IF

END FUNCTION

Note: When executing this pseudocode, use backtracking and use TryMove function to validate
that moves follow the rules (R moves right, B moves left, jumps are over opposite colors).
You can use this algorithm as a scratchpad to help you solve the problem step by step.

A.4 Details on Computational Complexity

A.4.1 Compositional Depth Characterization

32

Figure 11: Inference compute (tokens) and accuracy versus compositional depth (number of required
moves) across puzzle environments for DeepSeek-R1 and Claude-3.7-Sonnet (thinking).

1 2 3 4 5 6
Problem Size (N)

0

10

20

30

40

50

60

C
om

po
si

tio
na

l D
ep

th
 (#

 o
f M

ov
es

)

Blocks World
Checker Jumping
River Crossing
Tower of Hanoi

Figure 10: Compositional depth (number
of moves required) across different problem
sizes for our four puzzle environments.

Compositional depth is the number of sequential op-
erations (i.e., moves) required to completely solve
the puzzle. Figure 10 demonstrates how this depth
scales with problem size (N) across our four puz-
zle environments. Each puzzle has a distinct growth
pattern, reflecting its underlying computational com-
plexity. For example, Tower of Hanoi shows exponen-
tial growth (2N − 1), and Checker Jumping displays
quadratic scaling ((N + 1)2 − 1). The River Cross-
ing and Blocks World puzzles show more moderate,
near-linear growth with N . These varying compo-
sitional depth profiles enable us to better evaluate
how reasoning models approach different types of se-
quential reasoning challenges and if their accuracy is
always correlated with the computational complexity
required to solve the puzzle. More details regarding
this analysis is provided in Figure 11.

A.4.2 Performance vs Compositional Depth

While intuition suggests a negative correlation between problem computational complexity and model
accuracy, our analysis reveals a more nuanced relationship between compositional depth and LRM
performance which needs deeper discussion. Figure 11 demonstrates this across three state-of-the-art
reasoning models (Claude-3.7-Sonnet w. thinking, DeepSeek-R1, and o3-mini) on our puzzle suite.
Within individual puzzle types, we observe the expected negative correlation: as compositional depth
increases, model accuracy consistently decreases. However, across different puzzle types, this relation
does not hold. Models may struggle with puzzles of lower compositional depth while succeeding
on different puzzles with higher compositional depth. For instance, models achieve >50% accuracy
on Tower of Hanoi instances requiring approximately ∼ 102 moves, yet consistently fail on River
Crossing or Cross Jumping puzzles with substantially lower compositional depth (∼ 101 moves).

Although River Crossing may generally have a higher branching factor than Tower of Hanoi, this
comparison of computational complexity is asymptotic and does not hold for the small N values
used in our experiments where collapse occurs. The search space for a valid 11-move (N=3) River
Crossing solution is vastly smaller than the search space for a 255-move (N=8) Tower of Hanoi
solution where models start to struggle. This might reflect the limited availability of River Crossing
examples with larger N values in web-based training data, meaning LRMs encountered fewer such
instances during their training phase. Ultimately, LLMs and LRMs represent complex systems whose
problem-solving capabilities cannot be predicted solely from computational complexity without
considering their training data exposure. Their approach to handling complexity aligns more closely
with the solution patterns they learned during training rather than the actual computational complexity
of the problems themselves. That’s why our focus on complexity is mostly to track model behavior
within each puzzle setting rather than between the puzzles.

33

1 2 4 6 8 10 12
Complexity (number of disks)

0

20

40

60

80

100

Ac
cu

ra
cy

 (\
%

) QwQ-32B

Qwen-32B

Tower of Hanoi

1 2 3 6 9 12 15
Complexity (number of checkers)

0

20

40

60

80

100

Ac
cu

ra
cy

 (\
%

)

QwQ-32B

Qwen2.5-32B

Checker Jumping

2 10 20 30 40
Complexity (number of blocks)

0

20

40

60

80

100

Ac
cu

ra
cy

 (\
%

)

QwQ-32B

Qwen2.5-32B

Blocks World

2 3 4 5
Complexity (number of pairs)

0

20

40

60

80

100

Ac
cu

ra
cy

 (\
%

)

QwQ-32B

Qwen2.5-32B

River Crossing

1 2 4 6 8 10 12
Complexity (number of disks)

0

5k

10k

15k

20k

R
ea

so
ni

ng
 E

ff
or

t (
To

ke
ns

)

QwQ-32B

Qwen-32B

1 2 3 6 9 12 15
Complexity (number of checkers)

0

5k

10k

15k

20k

R
ea

so
ni

ng
 E

ff
or

t (
To

ke
ns

)

QwQ-32B

Qwen-32B

2 10 20 30 40
Complexity (number of blocks)

0

5k

10k

15k

R
ea

so
ni

ng
 E

ff
or

t (
To

ke
ns

)

QwQ-32B

Qwen-32B

2 3 4 5
Complexity (number of pairs)

0

5k

10k

15k

R
ea

so
ni

ng
 E

ff
or

t (
To

ke
ns

)

QwQ-32B

Qwen-32B

Figure 12: Comparison of reasoning (“thinking”) and non-reasoning (“non-thinking”) models for the
QwQ-32B and Qwen2.5-32B backbone pair across all the controlled puzzle environments. Top: task
accuracy (%) as a function of problem complexity. Bottom: reasoning effort (measured by the number
of thinking tokens) versus problem complexity. Shaded regions correspond to the three observed
regimes of reasoning behavior— low-complexity , mid-complexity , and high-complexity . Similar
to other model pairs (DeepSeek-R1 vs V3 and Claude-3.7-Sonnet w./w.o. thinking), QwQ-32B
demonstrates an initial advantage in the mid-complexity regime but ultimately exhibits collapse
behavior at higher complexity levels with the counterintuitive decrease of reasoning effort after the
collapse.

A.5 Inference Compute vs Compositional Depth

We extend our analysis by examining how inference compute (i.e., the number of inference generated
tokens) scales with compositional depth—a proxy for the number of reasoning steps/moves required
to reach a solution. Figure 11 presents this relation alongside task accuracy for the DeepSeek-R1 and
Claude-3.7-Sonnet (thinking) models across the four puzzle environments. Interestingly, compute
allocation across puzzles is not monotonic with respect to compositional depth. We also observe
inconsistent compute allocation across puzzles, with models sometimes spending more tokens on
problems with lower compositional depth and vice versa—further supporting that their approach to
complexity doesn’t necessarily align with the actual computational complexity of the problem.

A.6 Extended Results and Analysis

Additional Model Pairs (QwQ-32B vs Qwen2.5-32B). To further validate the generality of
our findings, we extended our experiments to include the Qwen backbone family, comparing
the reinforcement-learning–enhanced reasoning/thinking model QwQ-32B with its standard non-
reasoning/non-thinking counterpart Qwen2.5-32B. These models follow the same experimental setup
as in the main paper, evaluated across the four controlled puzzle environments: Tower of Hanoi,
Checker Jumping, Blocks World, and River Crossing. As shown in Figure 12, this additional model
pair exhibits similar trends with those observed for the DeepSeek-R1 vs V3 and Claude-3.7-Sonnet
(w./w.o. thinking) pairs. Specifically, three distinct regimes of reasoning behavior emerge with respect
to problem complexity. Quantitatively, the collapse points occur around N = 7 for Tower of Hanoi, N
= 2 for Checker Jumping, N = 10 for Blocks World, and N = 3 for River Crossing. QwQ-32B also
shows a counterintuitive reduction in reasoning effort (token count) near and beyond the collapse
point, suggesting the similar scaling limit behavior with respect to complexity.

Eliminating Sampling Effects. To examine whether sampling causes collapse behavior, we con-
ducted ablation experiments using temperature zero to eliminate sampling effects on solution length.
These experiments used the DeepSeek-R1 reasoning model on local servers to ensure precise tem-
perature control. The results demonstrate that removing sampling does not prevent collapse—we
observe failure at roughly the same points across all puzzles, including Tower of Hanoi. This indicates
that sampling of long sequences is not the primary cause of the observed collapse behavior. In fact,
sampling actually helps delay collapse slightly in Tower of Hanoi and Blocks World puzzles, as

34

1 3 6 9 12
Complexity (number of disks)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Tower of Hanoi

DeepSeek-R1
Sampling (= 1)
Greedy (= 0)

1 3 6 9 12 15
Complexity (number of checkers)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Checker Jumping
DeepSeek-R1

Sampling (= 1)
Greedy (= 0)

2 10 20 30 40
Complexity (number of blocks)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Blocks World
DeepSeek-R1

Sampling (= 1)
Greedy (= 0)

2 3 4 5
Complexity (number of pairs)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

River Crossing
DeepSeek-R1

Sampling (= 1)
Greedy (= 0)

Figure 13: Performance comparison of the DeepSeek-R1 model with sampling versus greedy
generations (temperature=0) across all puzzles.

Figure 14: The first failure move versus problem complexity (N) comparison for thinking and
non-thinking models across puzzle environments. Top: Claude-3.7-Sonnet comparison; Bottom:
DeepSeek-R1 vs DeepSeek-V3.

shown in Figure 13. For instance, in Tower of Hanoi, the R1 model with temperature 0 collapses
at N=8, whereas with sampling enabled, it maintains 18.2% accuracy at N=8 and delays collapse
until N=9. In Blocks World also the R1 model with temperature 0 collapses at N=4, whereas with
sampling enabled, it maintains 44.1% accuracy at N=4 and delays collapse until N=30.

Failure Analysis. Understanding where models fail within the compositional reasoning steps
provides insights beyond binary success metrics. Our accuracy evaluation requires perfect execution
of entire move sequences—a single incorrect move results in failure. To examine failure patterns
more granularly, we analyze the compositional depth at which models first make incorrect moves
across varying problem complexity levels.

Figures 14 and 15 show the failure move ID versus problem complexity (N) within the solution
sequence across different models. In Figure 14, the top row compares Claude-3.7-Sonnet with and
without extended thinking capabilities, while the bottom row compares deepseek model variants:
DeepSeek-R1 (thinking) with DeepSeek-V3 (non-thinking). Figure 15 also shows this for the o3-mini
model variants. These comparisons demonstrates how thinking mechanisms of LRMs influence
failure patterns in compositional reasoning tasks of puzzles with respect to complexity. Our analysis
reveals several interesting findings. First, we observe that the failure move usually happens much
earlier than the final move required to solve the puzzle across all environments. For example, the
Tower of Hanoi with N=10 requires ∼ 103 moves, but the first failure move typically occurs ∼ 102

moves (approximately 10% of the solution length), or N=8 requires 255 moves to complete, but
the first failure move typically occurs around move 50 (approximately 20% of the solution length).
Similarly, the River Crossing puzzle with N=3 requires 11 moves to solve, but the first failure move
happens as early as move 4. Second, models exhibit inconsistent and non-monotonic failure behavior
with respect to problem complexity—instances where models fail earlier in the solution sequence

35

3 6 9 12
Complexity (Number of Disks)

0

20

40

60

80

100

120

140

160

Fa
ilu

re
 M

ov
e

Tower of Hanoi

3 6 9 12 15
Complexity (Number of Checkers)

0

10

20

30

40

50

Checker Jumping

10 20 30 40
Complexity (Number of Blocks)

0

5

10

15

20

25

30
Blocks World

2 3 4 5
Complexity (Number of Pairs)

0

1

2

3

4

5

6
River Crossing

o3-mini (medium)
o3-mini (high)

Figure 15: The first failure move versus problem complexity (N) comparison for o3-mini model
variants across puzzle environments.

Figure 16: Density distribution of first failure moves for thinking and non-thinking models across
puzzle environments. Top: Claude-3.7-Sonnet comparison; Bottom: DeepSeek-R1 vs DeepSeek-V3.

for higher N values despite requiring longer overall solutions. For example, in Tower of Hanoi,
models sometimes fail at below 50 moves for N = 12 but succeed through more than 100 moves
for N = 10, contradicting the expectation that effective algorithmic planning and execution for the
same puzzle should maintain consistent failure patterns relative to solution progress. This suggests
fundamental inconsistencies in how models (both LRMs and their non-thinking standard LLM
counterparts) apply learned solution strategies across different problem scales. Also, we observe that
in the high-complexity regimes where both model variants experience complete accuracy collapse,
e.g., Tower of Hanoi with N ≥ 8 and Blocks World with N ≥ 30, non-thinking models occasionally
sustain performance deeper into the solution sequence and are able to fail at later moves than thinking-
enabled variants. This is interesting as it shows that compositional reasoning failures in LLMs are
not simply due to insufficient context length or inference compute, but rather reflect fundamental
limitations in how models apply maintain and apply algorithmic consistency across problem scales.

We also analyze the distributional characteristics of failure moves to understand the consistency and
reliability of model reasoning. Figure 16 presents the density distributions of failure move positions
aggregated across all problem complexities for each puzzle environment, comparing thinking and
non-thinking models within the same family. Based on the figure, thinking models (Claude-3.7-
Sonnet with thinking and DeepSeek-R1) consistently show higher mean failure positions across
all puzzles, as indicated by the dashed vertical lines showing mean of first failure in sequence of
moves. However, the distribution shape of thinking models mostly show higher variance in the failure
patterns. This suggests that while these models can reach deeper into solution sequences on average,
their reasoning processes seem to be more instable and prone to inconsistent performance.

Reasoning Effort Dynamics. Figure 18 demonstrates the reasoning effort (measured by inference
thinking tokens) versus problem complexity across our puzzle environments. Green dots indicate
correct solutions, red crosses show incorrect ones, and blue lines track average thinking token usage
at each complexity level (N) across different puzzles and LRMs. We observe a common pattern
across most experiments with three reasoning models (DeepSeek-R1, Claude-3.7-Sonnet-thinking,
o3-mini) where thinking token usage, i.e. reasoning effort, initially scales with problem complexity

36

1 3 6 9 12
Complexity (Number of Disks)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Tower of Hanoi
DeepSeek-V3
Algorithm Given
Default

1 3 6 9 12 15
Complexity (Number of Disks)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

Checker Jumping
DeepSeek-V3
Algorithm Given
Default

1 3 6 9 12
Complexity (Number of Disks)

0

20

40

60

80

100

Ac
cu

ra
cy

 (\
%

)

Tower of Hanoi
DeepSeek-R1

Algorithm Given
Default

1 3 6 9 12 15
Complexity (Number of Checkers)

0

20

40

60

80

100

Ac
cu

ra
cy

 (\
%

)

Checker Jumping
DeepSeek-R1

Algorithm Given
Default

Figure 17: Effect of algorithm provision on both reasoning (thinking) and non-reasoning (non-
thinking) models (DeepSeek R1 vs V3) across the Tower of Hanoi and Checker Jumping puzzles.
“Default” denotes the original task prompt, while “Algorithm Given” includes the explicit step-by-step
solving procedure in the input.

but later counterintuitively declines after reaching a model-specific complexity threshold. This
suggests an interesting and fundamental scaling limit in LRM thinking process for reasoning where
beyond certain complexity thresholds, models not only fail to solve problems but counterintuitively
reduce their inference compute despite facing more difficult problems and being well below the
context and generation limits.

Algorithm Provision to Non-Reasoning Model. In addition to the algorithm-provision experi-
ments on reasoning models in Figure 8, we tested whether providing explicit solving algorithms
could change collapse behavior in non-reasoning models, given recent evidence that RL-induced
reasoning in LRMs may impair their instruction-following abilities [50]. As shown in Figure 17,
both reasoning (DeepSeek-R1) and non-reasoning (DeepSeek-V3) models demonstrate unchanged
collapse points despite modest accuracy gains from algorithm provision at certain complexity levels.
This indicates that while explicit instructions might improve local execution in some cases, the
collapse most likely arises from deeper limitations in compositional representation and planning
rather than the instruction-following deficiencies.

37

Figure 18: Detailed results on reasoning effort (measured in inference thinking tokens) versus problem
complexity (N) for three LRMs (DeepSeek-R1, Claude-3.7-Sonnet with thinking, and o3-mini) across
four puzzle environments.

38

Qualitative Examples of Thoughts in LRMs. Here are some qualitative examples of thinking
traces for the Claude-3.7-Sonnet (thinking) reasoning model.

Example of failures in constraint understanding and verification for River Crossing with N = 2:

<think>
Comprehension

Ok, this is a constraint-based puzzle. Let me try to understand the puzzle. We have two actors:
a1 and a2, two agents: A1 and A2 where ... The constraints are: (1) no actor can be in the
presence of another agent unless their own agent is also present, (2) the boat cannot travel
empty, ... Let’s understand the constraints more clearly Wait, I’m realizing that the constraint
is not clear to me. Let me restate it.. Actor a1 cannot be in the presence of agent A2 unless
agent A1 is also present.
...
Given these constraints, let’s think through the solution. ...

Solution
Now let’s start solving. First move: Two people have to cross from left to right. Let’s try with
Move 1: [a1, a2] cross from left to right Left side: A1, A2 Right side: a1, a2.
...

False violation alarm! (Both agents are still in the left bank)

Hmm, but now we have a problem. We need to send someone back from the right to the left,
but neither actor can go back alone (because they’d meet the other agent without their own).
...
Let’s try another approach with Move 1: [A1, A2] cross from left to right, Left side: a1, a2,
Right side: A1, A2, Now, one agent has to come back so Move 2: [A1] comes back from right
to left, Left side: a1, a2, A1, Right side: A2. But now we have a problem on the left side: a2
is with A1 but without A2, which violates our constraint..
...
Let’s try another approach with Move 1: [a1, A1] cross from left to right, Left side: a2, A2, Right
side: a1, A1. Move 2: [A1] comes back from right to left Left side: a2, A2, A1 Right side: a1.
...

False violation alarm! (Agent A2 is still in the left bank)
But now a2 is with A1 without A2, which violates our constraint.
...
Let’s try another approach with Move 1: [a2, A2] cross from left to right, Left side: a1, A1, Right
side: a2, A2. Move 2: [A2] comes back from right to left, Left side: a1, A1, A2, Right side: a2
...

False violation alarm! (Agent A1 is still in the left bank)
But now a1 is with A2 without A1, which violates our constraint.
...
Let me try to cross one actor-agent pair at a time. Initial state: a1: L, a2: L, A1: L, A2: L, boat
on Left.;
Move 1: [a1, A1] cross from left to right. State after Move 1: a1: R, a2: L, A1: R, A2: L, boat
on Right;
Move 2: [A1] comes back from right to left State after Move 2: a1: R, a2: L, A1: L, A2: L,
boat on Left;
Move 3: [a2, A2] cross from left to right. State after Move 3: a1: R, a2: R, A1: L, A2: R,
boat on Right;
Move 4: [A2] comes back from right to left. State after Move 4: a1: R, a2: R, A1: L, A2: L,
boat on Left;
Move 5: [A1, A2] cross from left to right. State after Move 5: a1: R, a2: R, A1: R, A2: R, boat
on Right.
...

Violation missed in Move 3! (A2 and a1 are in the left bank without A1).

39

Perfect! Everyone is now on the right side, and no actor was ever in the presence of another
agent without their own agent also being present.
...
So this solution correct. All right, I’ll make this solution my final answer:
moves=[[‘a1’, ‘A1’], [‘A1’], [‘a2’, ‘A2’], [‘A2’], [‘A1’, ‘A2’]]
</think>

Final Answer
Final solution for the sequence of boat moves is:
“ moves=[[‘a1’, ‘A1’], [‘A1’], [‘a2’, ‘A2’], [‘A2’], [‘A1’, ‘A2’]] ”
...

Wrong conclusion! The final solution is incorrect.
This solution fulfills all requirements - everyone starts on the left side and ends on the right
side, the boat always carries 1 or 2 people, and no actor is ever in the presence of another agent
without their own agent also being present.

Example of overthinking in the thinking traces of model for Tower of Hanoi with N = 2

<think>
Comprehension

Ok, let me try to understand this problem. I’m given a Tower of Hanoi puzzle with 2 disks.
This is a classic problem with a well-known solution algorithm. Initial configuration:
Peg 0: [2, 1] (bottom to top) Peg 1: [] Peg 2: []
Goal configuration:
Peg 0: [] Peg 1: [] Peg 2: [2, 1] (bottom to top)
For Tower of Hanoi with n disks, the minimum number of moves is 2n − 1. So with 2 disks,
we need 3 moves.

Solution
Let me solve this step by step:
First move: Move disk 1 from peg 0 to peg 1.
Peg 0: [2] Peg 1: [1] Peg 2: []
Second move: Move disk 2 from peg 0 to peg 2.
Peg 0: [] Peg 1: [1] Peg 2: [2]
Third move: Move disk 1 from peg 1 to peg 2.
Peg 0: [] Peg 1: [] Peg 2: [2, 1]
So the solution is: moves = [[1, 0, 1], [2, 0, 2], [1, 1, 2]] This means:
Move disk 1 from peg 0 to peg 1; Move disk 2 from peg 0 to peg 2; Move disk 1 from peg 1 to
peg 2;
...

Repeating the same solution (#1)
Let me double-check this solution: Initial state:
Peg 0: [2, 1] Peg 1: [] Peg 2: []
After move 1 - Move disk 1 from peg 0 to peg 1:
Peg 0: [2] Peg 1: [1] Peg 2: []
After move 2 - Move disk 2 from peg 0 to peg 2:
Peg 0: [] Peg 1: [1] Peg 2: [2]
After move 3 - Move disk 1 from peg 1 to peg 2:
Peg 0: [] Peg 1: [] Peg 2: [2, 1]
Final state:
Peg 0: [] Peg 1: [] Peg 2: [2, 1]
This matches our goal configuration, so our solution is correct.
..

Repeating the same solution (#2)

40

Double checking:
Disk 1 (smallest) on top of Disk 2 (largest) on Peg 2. This looks correct, but let’s look more
closely at the specified goal configuration.
Goal configuration: Peg 0: (empty) Peg 1: (empty) Peg 2: [(bottom) 1 (top) There seems to
be a typo or incomplete information in the goal configuration description. Let me assume that
the goal is to move all disks to Peg 2, with the smallest disk (1) on top of the largest disk (2),
which is the standard Tower of Hanoi goal. This would match my solution above. But if I read
it literally, it says: Peg 2: [(bottom) 1 (top) This could be interpreted as only having disk 1 on
peg 2, which doesn’t account for disk 2. Since this doesn’t make sense for Tower of Hanoi (we
need to move all disks), I’ll assume the goal is to have both disks on peg 2, with disk 2 at the
bottom and disk 1 on top, which matches my solution.
So the answer is: moves = [[1, 0, 1], [2, 0, 2], [1, 1, 2]]
...

Repeating the same solution (#3)
Actually, let me carefully review the problem statement once more to make sure I understand it
correctly. The goal is to: Move the entire stack to the third peg (peg 2). Follow the Tower of
Hanoi rules (no larger disk on smaller disk).
This confirms that we want both disks on peg 2, with disk 2 at the bottom and disk 1 on top. So
my solution is correct. Let me follow the step-by-step instructions once more:
Move disk 1 from peg 0 to peg 1:
Peg 0: [2] Peg 1: [1] Peg 2: []
Move disk 2 from peg 0 to peg 2:
Peg 0: [] Peg 1: [1] Peg 2: [2]
Move disk 1 from peg 1 to peg 2:
Peg 0: [] Peg 1: [] Peg 2: [2, 1]
So the sequence of moves is: moves = [[1, 0, 1], [2, 0, 2], [1, 1, 2]]
...

Repeating the same solution (#4)
Actually, I just noticed an ambiguity. The problem statement says the goal configuration has:
Peg 2: [(bottom) 1 (top) This could be interpreted as having disk 1 (the smallest) as both
the bottom and top disk on peg 2, which would mean only disk 1 is on peg 2, and disk 2 is
somewhere else. But this can’t be the case because the problem statement also mentions "move
the entire stack to the third peg", which means all disks should be on peg 2. Let’s assume
the goal configuration description meant to say: Peg 2: [2 (bottom) 1 (top)] This would be
consistent with the standard Tower of Hanoi goal. Let me ensure I haven’t misunderstood the
problem. The problem statement says the goal is to move the entire stack to the third peg. This
means all disks should be on peg 2 at the end. Following the Tower of Hanoi rules, the disks
should be arranged in ascending order from bottom to top, which means: Peg 2: [2, 1] (bottom
to top)
This is consistent with my solution: moves = [[1, 0, 1], [2, 0, 2], [1, 1, 2]]
...

Repeating the same solution (#5)
Actually, I’m second-guessing myself because the problem mentioned "find the minimum
sequence of moves." For Tower of Hanoi with 2 disks, the minimum number of moves is indeed
3, which matches our solution.
Let’s be sure we’ve interpreted the notation correctly: "[disk id, from peg id, to peg id]" - disk
id refers to the disk number (1 for the smallest, 2 for the next, and so on). - from peg refers to
the peg id from which the disk is being moved (0, 1, or 2). - to peg refers to the peg id to which
the disk is being moved (0, 1, or 2).
In our solution: 1. Move Disk 1 from Peg 0 to Peg 1: [1, 0, 1] 2. Move Disk 2 from Peg 0 to
Peg 2: [2, 0, 2] 3. Move Disk 1 from Peg 1 to Peg 2: [1, 1, 2]
So the final solution is:
moves = [[1, 0, 1], [2, 0, 2], [1, 1, 2]]
I’m reassured that this is correct.
...

Repeating the same solution (#6)

41

Actually, I’m overthinking this. Let me just follow the standard algorithm for Tower of Hanoi.
For n=2 disks, the minimum number of moves is 2**2 - 1 = 3 moves. The algorithm to move n
disks from source to target using auxiliary:
Move n-1 disks from source to auxiliary. Move the largest disk from source to target. Move n-1
disks from auxiliary to target.
Applying this to our problem with n=2:
Move disk 1 from peg 0 to peg 1; Move disk 2 from peg 0 to peg 2; Move disk 1 from peg 1 to
peg 2;
I’m confident this is the correct solution. This gives us: moves = [[1, 0, 1], [2, 0, 2], [1, 1, 2]]
So in summary, the answer is: moves = [[1, 0, 1], [2, 0, 2], [1, 1, 2]]
</think>

42

	Introduction
	Related Works
	Math and Puzzle Environments
	Puzzle Environments

	Experiments & Results
	Experimental Setup
	How Does Complexity Affect Reasoning?
	Three Regimes of Complexity
	Collapse of Reasoning Models

	What Happens Inside the Thoughts of Reasoning Models?
	Open Questions: Puzzling Behavior of Reasoning Models

	Conclusion
	Appendix
	Response to Main Criticisms
	Details on Puzzle Environment Specifications and Design
	Tower of Hanoi
	Checker Jumping
	River Crossing
	Blocks World

	Implementation Details
	Details on Computational Complexity
	Compositional Depth Characterization
	Performance vs Compositional Depth

	Inference Compute vs Compositional Depth
	Extended Results and Analysis

