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Abstract

The availability of rich and vast data sources has greatly advanced machine learning ap-
plications in various domains. However, data with privacy concerns comes with stringent
regulations that frequently prohibit data access and data sharing. Overcoming these ob-
stacles in compliance with privacy considerations is key for technological progress in many
real-world application scenarios that involve sensitive data. Differentially private (DP) data
publishing provides a compelling solution, where only a sanitized form of the data is publicly
released, enabling privacy-preserving downstream analysis and reproducible research in
sensitive domains. In recent years, various approaches have been proposed for achieving
privacy-preserving high-dimensional data generation by private training on top of deep
neural networks. In this paper, we present a novel unified view that systematizes these
approaches. Our view provides a joint design space for systematically deriving methods
that cater to different use cases. We then discuss the strengths, limitations, and inherent
correlations between different approaches, aiming to shed light on crucial aspects and inspire
future research. We conclude by presenting potential paths forward for the field of DP data
generation, with the aim of steering the community toward making the next important steps
in advancing privacy-preserving learning.

1 Introduction

Data sharing is crucial for the growth of machine learning applications across various domains. However, in
many application scenarios, data sharing is prohibited due to the private nature of data (e.g., individual data
from mobile devices, medical treatments, and banking records) and associated stringent regulations, such as
the General Data Protection Regulation (GDPR) and the American Data Privacy Protection Act (ADPPA),
which largely hinders technological progress in sensitive areas. Fortunately, differentially private (DP) data
publishing (Dwork, 2008; Dwork et al., 2009; Fung et al., 2010) provides a compelling solution, where only
a sanitized form of the data, with rigorous privacy guarantees, is made publicly available. Such sanitized
synthetic data can be leveraged as a surrogate for real data, enabling downstream statistical analysis using
established analytic tools, and can be shared openly with the research community, promoting reproducible
research and technological advancement in sensitive domains.

Traditionally, the sanitization algorithms are designed for capturing low-dimensional statistical characteristics
and target at specific downstream tasks (e.g., answering linear queries (Roth & Roughgarden, 2010; Hardt &
Rothblum, 2010; Blum et al., 2013; Vietri et al., 2020)), which are hardly generalizable to unanticipated tasks
involving high-dimensional data with complex distributions. On the other hand, the latest research, inspired
by the recent successes of deep generative models in learning high-dimensional representations, applies deep
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generative models as the foundation of the generation algorithm. This line of approaches, as demonstrated in
recent studies (Cao et al., 2021; Chen et al., 2020a; Xie et al., 2018; Yoon et al., 2019; Beaulieu-Jones et al.,
2017; Ghalebikesabi et al., 2023), have shown promising results in sanitizing high-dimensional samples for
general purposes.

Towards designing models that are better compatible with the privacy target, recent research typically
customizes the training objective for privacy-centric scenarios (Cao et al., 2021; Harder et al., 2021; Chen
et al., 2020a; Long et al., 2021), all building on top of a foundational generic generator framework. However,
research is fragmented as contributions have been made in different domains, different modeling paradigms,
different metric and discriminator choices, and different data modalities. So far, a unified view of private
generative models is notably missing in the literature, despite its potential to consolidate the design space
for systematic exploration of innovative architectures and leveraging strengths across diverse modeling
frameworks.

In this paper, we pioneer in providing a comprehensive framework and a unified perspective on existing
approaches for differentially private deep generative modeling. Our innovative framework, complemented
by an insightful taxonomy, effectively encapsulates approaches from existing literature, categorizing them
according to the intrinsic differences in their underlying privacy barriers. We thoroughly assess each category’s
characteristics, emphasizing crucial points relevant for privacy analysis, and discuss their inherent strengths
and weaknesses, with the aim of laying a foundation that supports seamless transition into potential future
research.

Moreover, we present a thorough introduction to the key concepts of DP and generative modeling. We
highlight the key considerations that should be accounted for when developing DP generative models to
ensure results comparable, error-free results. Furthermore, we introduce a taxonomy of existing representative
types of deep generative models, classifying them based on the distinctive privacy challenges present during
DP training. This introduction aims to equip researchers and practitioners with a systematic approach for
the design and implementation of future privacy-preserving data generation techniques.

Lastly, we discuss open issues and potential future directions in the broader field of developing DP generation
methods. Our objective is not limited to reviewing existing techniques, but also aims to equip readers with
a systematic perspective for devising new approaches or refining existing ones. This work is thoughtfully
written to serve diverse audiences, with an effort of providing practitioners with a comprehensive overview
of the recent advancements, while aiding experts in reassessing existing strategies and designing innovative
solutions for privacy-preserving generative modeling.

2 Preliminaries of Differential Privacy

Setting. In this paper, we focus on the standard central model of DP, which is commonly agreed upon by all
the approaches referenced herein. In this model, a trusted party or server is responsible for managing all data
points, executing DP algorithms, and producing sanitized data that conforms to privacy constraints. This
sanitized data, generated from the implemented DP algorithms, can be later shared with untrusted parties or
released to the public while ensuring strict privacy guarantees. It is noteworthy that although approaches
based on local DP may seem to generate a form of synthetic data—where users typically modify their own
data due to distrust in the central server and a desire to conceal private information—these methods are
fundamentally distinct from the ones explored in this work due to differing threat models and the resulting
privacy implications.
Definition 2.1 ((ε, δ)-DP (Dwork, 2008)). A randomized mechanism M with range R is (ε, δ)-DP, if

Pr[M(D) ∈ O] ≤ eε · Pr[M(D′) ∈ O] + δ

holds for any subset of outputs O ⊆ R and for any adjacent datasets D and D′, where D and D′ differ from
each other with only one training example. ε is the upper bound of privacy loss, and δ is the probability of
breaching DP constraints. Smaller values of both ε and δ translate to stronger DP guarantees and better
privacy protection. Typically, M refers to the training algorithm of a generative model. DP ensures that
inferring the presence of an individual in the private dataset—by observing the trained generative models
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M(D)—is challenging, with D being the original private dataset. This same level of guarantee also holds
when the attacker observes the samples generated by the trained generative models (i.e., the sanitized dataset)
due to the post-processing theorem (Theorem 2.1).

Privacy notion. There are two widely used definitions for adjacent datasets in existing works of DP data
generation, which result in different DP notions: the “replace-one” and the “add-or-remove one” notions:

• Replace-one: adjacent datasets are formed by replacing one data sample, i.e., D′ ∪ {x′} = D ∪ {x} for
some x and x′. This is sometimes referred to bounded-DP in literature.

• Add-or-remove-one: adjacent datasets are constructed by adding or removing one data sample, i.e.,
D′ = D ∪ {x} for some x (or vice versa).

It is crucial to understand that different notions of DP may not provide equivalent privacy guarantees even
under identical (ε, δ) values, potentially leading to slight differences in comparisons when algorithms are
developed under varying privacy notions, a sentiment also noted in Ponomareva et al. (2023). Specifically,
the “replacement” operation in the bounded-DP notion can be understood as executing two edits: removing
one data point x and adding another x′. This suggests that the replace-one notion may be nested within
the add-or-remove-one notion, and a naive transformation would result in a (2ε, δ)-DP algorithm under the
replace-one notion from an algorithm that was (ε, δ)-DP under the add-or-remove-one notion. To minimize
potential confusion and promote fair comparisons, we emphasize that future researchers should clearly specify
the chosen notion in their work. Moreover, we encourage future research to include a privacy analysis for
both notions, if technically feasible.

Privacy-preserving data generation is building on top of the closedness of DP under post-processing: if a
generative model is trained under a (ε, δ)-DP mechanism, releasing a sanitized dataset generated by the
model (for conducting downstream analysis tasks) will also be privacy-preserving, with the privacy cost
bounded by ε (and δ).
Theorem 2.1 (Post-processing (Dwork et al., 2014)). If M satisfies (ε, δ)-DP, F ◦M will satisfy (ε, δ)-DP
for any data-independent function F with ◦ denoting the composition operator.

While (ε, δ)-DP provides an intuitive understanding of the mechanism’s overall privacy guarantee, dealing with
composition is more convenient under the notion of Rényi Differential Privacy (RDP). Existing approaches
typically use RDP to aggregate privacy costs across a series of mechanisms (such as multiple DP gradient
descent steps during generative model training) and then convert to the (ε, δ)-DP notion at the end (See
Appendix D). The formal definitions and the corresponding theorems are listed below.
Definition 2.2 (Rényi Differential Privacy (RDP) (Mironov, 2017)). A randomized mechanism M is
(α, ρ)-RDP with order α, if

Dα(M(D)∥M(D′)) = 1
α− 1 logEt∼M(D)

[(
Pr[M(D) = t]
Pr[M(D′) = t]

)α]
≤ ρ

holds for any adjacent datasets D and D′, where Dα(P∥Q) = 1
α−1 logEt∼Q[(P (t)/Q(t))α] denotes the Rényi

divergence.
Theorem 2.2 (Composition (Mironov, 2017)). For a sequence of mechanisms M1, ...,Mk s.t. Mi is
(α, ρi)-RDP ∀i, the composition M1 ◦ ... ◦Mk is (α,

∑
i ρi)-RDP.

Theorem 2.3 (From RDP to (ε, δ)-DP (Balle et al., 2020)). If a randomized mechanism M is (α, ρ)-RDP,
then M is also

(
ρ+ log((α− 1)/α)− (log δ + logα)/(α− 1), δ

)
-DP for any 0 < δ < 1.

In literature, achieving DP typically involves adding calibrated random noise, with scale proportional to the
sensitivity value (Definition 2.3), to the private dataset’s associated quantity to conceal individual influence.
A notable instance of this practice can be formularized as the Gaussian Mechanism, as defined below.
Definition 2.3 (Sensitivity). The (global) ℓp-sensitivity for a function f : X → Rd that outputs d-dimensional
vectors is defined as:

∆p
f = max

D,D′
∥f(D)− f(D′)∥p (1)
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over all adjacent datasets D and D′. The sensitivity characterizes the maximum influence (measured by ℓp

norm) of one individual datapoint on the function’s output. When dealing with matrix and tensor outputs,
the ℓp norm is computed over the vectors that result from flattening the matrices and tensors into vectors.
Definition 2.4 (Gaussian Mechanism (Dwork et al., 2014)). Let f : X → Rd be an arbitrary d-dimensional
function with ℓ2-sensitivity ∆2

f . The Gaussian Mechanism Mσ, parameterized by σ, adds noise into the
output, i.e.,

Mσ(x) = f(x) +N (0, σ2I). (2)

Mσ is (ε, δ)-DP for σ ≥
√

2 ln (1.25/δ)∆2
f/ε and (α, α(∆2

f )2

2σ2 )-RDP.

2.1 Training Deep Learning Models with DP

Additionally, we present the most prominent frameworks for training deep learning models with DP guarantees:
Differentially Private Stochastic Gradient Descent (DP-SGD) in Section 2.1.1 and Private Aggregation of
Teacher Ensembles (PATE) in Section 2.1.2.

2.1.1 Differenetially Private Stochastic Gradient Descent (DP-SGD)

DP-SGD (Abadi et al., 2016) is an adaptation of the standard SGD algorithm that injects calibrated random
Gaussian noise into the gradients during the optimization process, which ensures DP due to the Gaussian
mechanism. The algorithm consists of the following steps:

1. Compute the per-example gradients for a mini-batch of training examples.
2. Clip the gradients to bound their ℓ2-norm (i.e., ℓ2-sensitivity) to ensure that the influence of any individual

training example is limited.
3. Add Gaussian noise to the aggregated clipped gradients to introduce the required randomness for DP

guarantees.
4. Update the model parameters using the noisy gradients.

The privacy guarantees provided by DP-SGD are determined by the choice of noise multiplier (which defines
the standard deviation of the Gaussian noise by multiplying it with the sensitivity), the mini-batch sampling
ratio, and the total number of optimization steps. The overall privacy guarantee can be calculated using the
composition rule, which accounts for the cumulative privacy loss over multiple iterations of the algorithm. By
default, DP-SGD adopts the add-or-remove-one notion, leading to a sensitivity value equal to the gradient
clipping bound (see Appendix C).

2.1.2 Private Aggregation of Teacher Ensembles (PATE)

The PATE framework (Papernot et al., 2017; 2018) consists of two main components: an ensemble of teacher
models and a student model. The training process begins with the partitioning of sensitive data into multiple
disjoint subsets. Each subset is then used to train a teacher model independently (and non-privately), limiting
the effect of each individual training sample to influence only one teacher model. To train a DP student
model, a public dataset with similar characteristics to the sensitive data is used. During the training process,
the student model queries the ensemble of teacher models for predictions on the public dataset. The teacher
models’ predictions are then aggregated using a DP voting mechanism, which adds noise to the aggregated
votes to ensure privacy. The student model subsequently learns from the noisy aggregated predictions,
leveraging the collective knowledge of the teacher models while preserving the privacy of the original training
data.

The sensitivity of PATE is measured as the maximum change in label counts for teacher models’ predictions
between neighboring datasets. Given m teacher models, c label classes, the counts for class j is defined by
the number of teachers that assign class j to a query input x̄, i.e., nj(x̄) = |i : i ∈ [m], fi(x̄) = j| for j ∈ [c],
where fi denotes the i-th teacher model. Changing a single data point (whether by replacing, adding, or
removing) will at most affect one data partition and, consequently, the prediction for one teacher trained on
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the altered partition, increasing the counts by 1 for one class and decreasing the counts by 1 for another class.
This results in a global sensitivity equal to ∆2

(n1,...,nc) =
√

2 for both the replace-one and add-or-remove-one
notion (see Appendix C). To reduce privacy consumption, PATE is associated with a data-dependent privacy
accountant method to exploit the fact that when teachers have a large agreement, the privacy cost is usually
much smaller than the data-independent bound would suggest. Moreover, Papernot et al. (2018) suggest
private threshold checking for queries to only use teacher predictions with high consensus for training the
student model. Notably, to obtain comparable results to approaches with data-independent privacy costs,
extra sanitization via smooth sensitivity analysis is required.

2.2 Important Notes for Deploying DP Models

The development of DP models necessitate a thorough examination to ensure their correctness for providing
a fair comparison of research progress and maintaining public trust in DP methodologies. We present below a
series of critical questions that serve as fundamental sanity checks when developing DP models. This enables
researchers to rapidly identify and rule out approaches that are incompatible with DP, thereby optimizing
their research efforts towards innovation in this domain.

• What will be released to the public and accessible to potential adversaries? The most critical
question is to determine which components (e.g., model modules, data statistics, intermediate results, etc.)
will be made public and, as a result, could be accessible to potential adversaries. This corresponds to
the assumed threat model and establishes the essential concept of a privacy barrier , which separates
components accessible to potential attackers from those that are not.
All components within the attacker-accessible domain must be provided with DP guarantees. One common
oversight is neglecting certain data-related intermediate statistics utilized during the model’s training
phase. These statistics might constitute only a minor aspect of the entire process, or their existence might
be implicit, given that they are incorporated into other quantities. Nevertheless, failing to implement
DP sanitization for these aspects can undermine the intended DP protection for the outcomes, e.g., the
trained model may no longer adhere to DP standards.
For instance, when pre-processing is required for the usage of a DP model, an additional privacy budget
should be allocated for exposing related statistics such as the dataset’s mean and standard deviation (Tramer
& Boneh, 2021). From a research standpoint, innovations may involve carefully designing DP mechanisms
that apply DP constraints only to components accessible by attackers, while other components can be
trained or computed non-privately to maintain high utility. A concrete example includes training a
discriminator non-privately and withholding it by the model owner in deploying DP generative adversarial
networks (see Section 4.3) while only privatizing the generator’s training and releasing it to the public
with a dedicated DP mechanism.

• What is the adopted privacy notion and granularity? While DP asserts that an algorithm’s output
remains largely unchanged when a single database entry is modified, the definition of a “single entry” can
vary considerably (reflecting the concept of granularity), and the way to modify the single entry can
also be different (embodying the privacy notion). Thus, the claims of DP necessitate an unambiguous
declaration of the sense and level at which privacy is being promised. As discussed in the previous section,
the distinction in privacy notion is universally crucial in the design of DP mechanisms. On the other
hand, the granularity becomes particularly relevant when handling data modalities that exhibit relatively
less structural representations, such as graphs and text. For instance, training DP (generative) language
models that provide guarantees at different levels (tokens, sentences, or documents) will lead to substantial
differences in the complexity and the application scenarios.

• What constitutes the sensitivity analysis? Sensitivity analysis demands rigorous attention, focusing
on two primary aspects. The first consideration calls for a clear statement of the sensitivity type in use,
e.g., global, local, and smooth sensitivity. Notably, techniques predicated on local and smooth sensitivity
are generally not directly comparable to those depending on the global sensitivity. Second, determining
the sensitivity bound during the training of a generative model that consists of more than one trainable
module may be challenging, as discussed in Section 4.4, which necessitates a meticulous analysis to ensure
the correctness of the privacy cost computation.
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Figure 1: Overview of training pipeline of generative models. (Blue arrow: forward pass; Red arrow:
backward pass; Dashed arrows indicate optional processes that may not be present in all generative models.)

3 Preliminaries of Generative Models

In this section, we present a comprehensive overview of representative generative models, with the aim to
develop a clear understanding of the essential operations required to achieve DP across different types of
generative models, as well as to demonstrate the fundamental differences in their compatibility with private
training.

3.1 Overview & Taxonomy

Given real data samples x from a dataset of interest, the goal of a generative model is to learn and capture
the characteristics of its true underlying distribution p(x) and subsequently allows the model to generate
new samples from the learned distribution. At a high-level of abstraction, the training pipeline of generative
models can be depicted as the diagram in Figure 1. The “Measurement” block in the diagram summarizes the
general process of comparing the synthetic and real data distributions using a “critic”, which yields a loss term
L that quantifies the similarity between the two. This loss term then acts as the training objective for the
generator, with the update signal computed and then backpropagated to adjust the generator’s parameters
and improve its ability to generate realistic samples.

Furthermore, the diagram outlines two optional processes (indicated by dashed arrows), that are involved in
some generative models but not all. The first optional process involves guiding the training of the generator
by feeding (quantities derived from) real data as inputs, which enables the explicit maximum likelihood
computation and categorizes the models into two types: implicit density and explicit density. The second
optional process involves updating the critic to better capture the underlying structure of the data and more
accurately reflect the similarity between the distributions. This distinction highlights the usage of either
static (data-independent) or learnable (data-dependent) features for the critic function within implicit density
models.

We present a taxonomy of existing representative types of generative models whose private training has been
realized in literature in Figure 2. We examine the following tiers in the taxonomy trees that exert significant
influence on the application scenarios and the design of corresponding private training algorithms:

• Explicit vs. Implicit Density Models
• Learnable vs. Static Critics
• Distribution-wise vs. Point-wise Optimization
• Tractable vs. Approximate Density

Explicit vs. Implicit Density Models. Existing generative models can be divided into two main
categories: explicit density models define an explicit density function pmodel(x; θ), while implicit density
models learn a mapping that generates samples by transforming an easy-to-sample random variable, without
explicitly defining a density function.

These distinctions in modeling design result in different paradigms during the training phase, particularly in
how real data samples are used (or accessed) in the process. Explicit density models typically use real data
samples as inputs to the generator and also for measurement (as demonstrated in Figure 1), thereby enabling
the tractable computation or approximation of the data likelihood objective. In contrast, implicit density
models necessitate real data samples solely for the purpose of distribution comparison measurements.
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Generative Models

Explicit Density Implicit Density

Tractable Density Approximate Density Learnable Critic Static Critic

Flow-based Model
Autoregressive Model

VAE
Diffusion Model

GAN, EBM Distribution Matching

Optimization

Point-wise 

(Set Generation)Distribution-wise

Figure 2: Overview of different deep generative models.

This distinction demarcates potential privacy barriers for these two types of models during DP model
training. In the context of implicit models, it is sufficient to privatize the single access point to the real data
(Section 4.1-4.3). However, when dealing with training private explicit density models, it becomes essential to
apply DP mechanisms that take both access points into account.

Learnable vs. Static Critics. The training of generative models necessitates a “critic” to assess the
distance between the real and generated distributions, which then builds up the training objectives for
optimizing the generator. Specifically for implicit density models, the use of different types of critics could
potentially influence the placement of privacy barrier when training DP models (Section 4.1- 4.2).

Within this framework, the critics may exist in two primary forms, namely learnable and static (data-
independent) variants. The distinction between the two lies in whether the critic itself is a parameterized
function that undergoes updates during the training of generative models (learnable), or a data-independent
function that remains static during the training process (static).

We do not further differentiate for explicit density models as they typically employ simple, data-independent
critic such as ℓ1 and ℓ2 losses. Meanwhile, in contrast to implicit models, varying the critics in explicit models
typically does not alter the privacy barrier in DP training. This is due to the constraint imposed by multiple
access to real data in training of explicit models, which restricts the flexibility in positioning the privacy
barriers.

Distribution-wise vs. Point-wise Optimization. Generative models are designed to be stochastic and
capable of producing a distribution of data. This is achieved by supplying the generator with random inputs
(i.e., latent variables), stochastically drawn from a simple distribution, such as the standard Gaussian. The
optimization process generally proceeds through mini-batches, essentially serving as point-wise approximations.
Through substantial number of update steps that involve various random latent variable inputs, the model is
trained to generalize over new random variables during the generation phase, enabling a smooth transition
from a point-wise approximation to the distribution-wise objective.

However, certain contexts may not necessitate the stochasticity nature in these models. Instead, there might
be an intentional focus on generating a small set of representative samples, a notion that resonates with
the “coreset” concept. This could involve optimizing the model over a limited, fixed set of random inputs
rather than the entire domain. We label this as point-wise optimization to distinguish it from the default
distribution-wise optimization used in training conventional generative models.

Recent studies have revealed intriguing advantages of merging insights from both these strategies, particularly
in the realm of private learning. For instance, the point-wise optimization method exhibits remarkable
compatibility with private learning primarily arises from the fact that point-wise optimization is generally
less challenging in comparison to the distribution-wise training that requires generalization, which generally
improves model convergence, and consequently enhances privacy. However, this point-wise approach has its
limitations. Unlike distribution-wise training, it does not inherently support generalization over new latent
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<latexit sha1_base64="NNROO/l45zr+acO4/pQueOX4ors=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6cVmpfUATymQySYfOTMLMRCyhn+DWfo07cevajxGcpFlo64ELh3Pu5VxOkFIileN8GbW19Y3Nrfq2ubO7t3/QODzqySQTCHdRQhMxCKDElHDcVURRPEgFhiyguB9M7gq//4SFJAl/VNMU+wzGnEQEQaWljhd3Ro2mYzslrFXiVqQJKrRHjW8vTFDGMFeIQimHrpMqP4dCEUTxzPQyiVOIJjDGQ005ZFj6efnqzDrTSmhFidDDlVWqvy9yyKScskBvMqjGctkrxH+9gC0lq+jGzwlPM4U5WgRHGbVUYhU9WCERGCk61QQiQfTvFhpDAZHSbZmmV17mRc4IJYxBHkpb4eeZqftyl9tZJb0L272yLx8um63bqrk6OAGn4By44Bq0wD1ogy5AIAYv4BXMjbnxZrwbH4vVmlHdHIM/MD5/ACZan3E=</latexit>S <latexit sha1_base64="/Qz54gTmD7P9Ed0l0UW3um28nLQ=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6ceGion1AE8pkMm2HziPMTMQS+glu7de4E7eu/RjBSZqFth64cDjnXs7lRAklSnvel1VZWV1b36hu2lvbO7t7tf2DthKpRLiFBBWyG0GFKeG4pYmmuJtIDFlEcSca3+R+5wlLRQR/1JMEhwwOORkQBLWRHoI71a/VPdcr4CwTvyR1UKLZr30HsUApw1wjCpXq+V6iwwxKTRDFUztIFU4gGsMh7hnKIcMqzIpXp86JUWJnIKQZrp1C/X2RQabUhEVmk0E9UoteLv7rRWwhWQ+uwozwJNWYo3nwIKWOFk7egxMTiZGmE0MgksT87qARlBBp05ZtB8Vlluf0kWAM8li5Gj9PbdOXv9jOMmmfuf6Fe35/Xm9cl81VwRE4BqfAB5egAW5BE7QAAkPwAl7BzJpZb9a79TFfrVjlzSH4A+vzBy6qn3Y=</latexit>L

Measurement

<latexit sha1_base64="SIQg69wHBbgf/L4zqf183WJ7A0U=">AAACHXicbVDLSsNAFJ3UV42vqks3wSLUTUmkqMuiLlxWsA9oSphMpu3QeYSZSWkJ/Qy39mvciVvxYwQnaRfaeuDC4Zx7OZcTxpQo7bpfVmFjc2t7p7hr7+0fHB6Vjk9aSiQS4SYSVMhOCBWmhOOmJpriTiwxZCHF7XB0n/ntMZaKCP6spzHuMTjgpE8Q1EbqPgR+PCQVfzy5DEplt+rmcNaJtyRlsEQjKH37kUAJw1wjCpXqem6seymUmiCKZ7afKBxDNIID3DWUQ4ZVL81fnjkXRomcvpBmuHZy9fdFCplSUxaaTQb1UK16mfivF7KVZN2/7aWEx4nGHC2C+wl1tHCyPpyISIw0nRoCkSTmdwcNoYRIm9Zs288v0ywnQIIxyCNV1Xgys01f3mo766R1VfWuq7WnWrl+t2yuCM7AOagAD9yAOngEDdAECAjwAl7B3Jpbb9a79bFYLVjLm1PwB9bnDwuUooY=</latexit>

D�(x)

Real data  
<latexit sha1_base64="CKitbbY/vXadKSoRv3lhLK20E8c=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuizqwmVF+4AmlMlkkg6dmYSZiVhCP8Gt/Rp34ta1HyM4SbPQ1gMXDufcy7mcIKVEKsf5Mmorq2vrG/VNc2t7Z3evsX/QlUkmEO6ghCaiH0CJKeG4o4iiuJ8KDFlAcS8Y3xR+7wkLSRL+qCYp9hmMOYkIgkpLD158O2w0HdspYS0TtyJNUKE9bHx7YYIyhrlCFEo5cJ1U+TkUiiCKp6aXSZxCNIYxHmjKIcPSz8tXp9aJVkIrSoQerqxS/X2RQyblhAV6k0E1koteIf7rBWwhWUVXfk54minM0Tw4yqilEqvowQqJwEjRiSYQCaJ/t9AICoiUbss0vfIyL3KGKGEM8lDaCj9PTd2Xu9jOMume2e6FfX5/3mxdV83VwRE4BqfABZegBe5AG3QAAjF4Aa9gZsyMN+Pd+Jiv1ozq5hD8gfH5Aw0Zn2I=</latexit>D

(a) GAN

Static  

Synthetic data 
<latexit sha1_base64="NNROO/l45zr+acO4/pQueOX4ors=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6cVmpfUATymQySYfOTMLMRCyhn+DWfo07cevajxGcpFlo64ELh3Pu5VxOkFIileN8GbW19Y3Nrfq2ubO7t3/QODzqySQTCHdRQhMxCKDElHDcVURRPEgFhiyguB9M7gq//4SFJAl/VNMU+wzGnEQEQaWljhd3Ro2mYzslrFXiVqQJKrRHjW8vTFDGMFeIQimHrpMqP4dCEUTxzPQyiVOIJjDGQ005ZFj6efnqzDrTSmhFidDDlVWqvy9yyKScskBvMqjGctkrxH+9gC0lq+jGzwlPM4U5WgRHGbVUYhU9WCERGCk61QQiQfTvFhpDAZHSbZmmV17mRc4IJYxBHkpb4eeZqftyl9tZJb0L272yLx8um63bqrk6OAGn4By44Bq0wD1ogy5AIAYv4BXMjbnxZrwbH4vVmlHdHIM/MD5/ACZan3E=</latexit>S <latexit sha1_base64="/Qz54gTmD7P9Ed0l0UW3um28nLQ=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6ceGion1AE8pkMm2HziPMTMQS+glu7de4E7eu/RjBSZqFth64cDjnXs7lRAklSnvel1VZWV1b36hu2lvbO7t7tf2DthKpRLiFBBWyG0GFKeG4pYmmuJtIDFlEcSca3+R+5wlLRQR/1JMEhwwOORkQBLWRHoI71a/VPdcr4CwTvyR1UKLZr30HsUApw1wjCpXq+V6iwwxKTRDFUztIFU4gGsMh7hnKIcMqzIpXp86JUWJnIKQZrp1C/X2RQabUhEVmk0E9UoteLv7rRWwhWQ+uwozwJNWYo3nwIKWOFk7egxMTiZGmE0MgksT87qARlBBp05ZtB8Vlluf0kWAM8li5Gj9PbdOXv9jOMmmfuf6Fe35/Xm9cl81VwRE4BqfAB5egAW5BE7QAAkPwAl7BzJpZb9a79TFfrVjlzSH4A+vzBy6qn3Y=</latexit>L

Measurement

<latexit sha1_base64="mXTTqJLVGzQHkYptyoikscqKUlE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZtgvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPzd+M8w==</latexit>

f

Real data  
<latexit sha1_base64="CKitbbY/vXadKSoRv3lhLK20E8c=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuizqwmVF+4AmlMlkkg6dmYSZiVhCP8Gt/Rp34ta1HyM4SbPQ1gMXDufcy7mcIKVEKsf5Mmorq2vrG/VNc2t7Z3evsX/QlUkmEO6ghCaiH0CJKeG4o4iiuJ8KDFlAcS8Y3xR+7wkLSRL+qCYp9hmMOYkIgkpLD158O2w0HdspYS0TtyJNUKE9bHx7YYIyhrlCFEo5cJ1U+TkUiiCKp6aXSZxCNIYxHmjKIcPSz8tXp9aJVkIrSoQerqxS/X2RQyblhAV6k0E1koteIf7rBWwhWUVXfk54minM0Tw4yqilEqvowQqJwEjRiSYQCaJ/t9AICoiUbss0vfIyL3KGKGEM8lDaCj9PTd2Xu9jOMume2e6FfX5/3mxdV83VwRE4BqfABZegBe5AG3QAAjF4Aa9gZsyMN+Pd+Jiv1ozq5hD8gfH5Aw0Zn2I=</latexit>D

Generator 
<latexit sha1_base64="ZehPtHmiao0m+kZnEHFHfyKFji4=">AAACH3icbVBNS8NAFNz4WeNX1aOXYBHqpSQi6rHoQY8VbCuYUDbbV7u4u4m7L2IN/R1e7a/xJl79MYLbmoO2DjwYZt5jHhOnghv0/U9nbn5hcWm5tOKurq1vbJa3tlsmyTSDJktEom9iakBwBU3kKOAm1UBlLKAd35+P/fYjaMMTdY2DFCJJ7xTvcUbRStFFJ8Q+IK2Gj88HnXLFr/kTeLMkKEiFFGh0yl9hN2GZBIVMUGNuAz/FKKcaORMwdMPMQErZPb2DW0sVlWCifPL00Nu3StfrJdqOQm+i/r7IqTRmIGO7KSn2zbQ3Fv/1YjmVjL3TKOcqzRAU+wnuZcLDxBs34nW5BoZiYAllmtvfPdanmjK0vbluOLnMxzkdlkhJVdfUEJ6Gru0rmG5nlrQOa8Fx7ejqqFI/K5orkV2yR6okICekTi5JgzQJIw/khbySkTNy3px35+Nndc4pbnbIHzif3848o3Q=</latexit>

G✓(z)

(b) Distribution matching

Measurement
Decoder 

<latexit sha1_base64="97egWNnKIebSS4Dsoh9uj7JhICg=">AAACJXicbVBNS8NAFNz4bfxq9eglWIR6KYmIeix68VjB1kJTwmb7ahd3N2H3pVpjf4pX/TXeRPDkLxHc1h60deDBMPMe85g4Fdyg7384c/MLi0vLK6vu2vrG5lahuN0wSaYZ1FkiEt2MqQHBFdSRo4BmqoHKWMB1fHs+8q/7oA1P1BUOUmhLeqN4lzOKVooKxTQKsQdIy2H//jHsPxxEhZJf8cfwZkkwISUyQS0qfIWdhGUSFDJBjWkFfortnGrkTMDQDTMDKWW39AZalioqwbTz8etDb98qHa+baDsKvbH6+yKn0piBjO2mpNgz095I/NeL5VQydk/bOVdphqDYT3A3Ex4m3qgXr8M1MBQDSyjT3P7usR7VlKFtz3XD8WU+yolYIiVVHVNBuB+6tq9gup1Z0jisBMeVo8ujUvVs0twK2SV7pEwCckKq5ILUSJ0wckeeyDN5cV6cV+fNef9ZnXMmNzvkD5zPbzrYpbw=</latexit>

p✓(x|z)
Synthetic data 

<latexit sha1_base64="NNROO/l45zr+acO4/pQueOX4ors=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6cVmpfUATymQySYfOTMLMRCyhn+DWfo07cevajxGcpFlo64ELh3Pu5VxOkFIileN8GbW19Y3Nrfq2ubO7t3/QODzqySQTCHdRQhMxCKDElHDcVURRPEgFhiyguB9M7gq//4SFJAl/VNMU+wzGnEQEQaWljhd3Ro2mYzslrFXiVqQJKrRHjW8vTFDGMFeIQimHrpMqP4dCEUTxzPQyiVOIJjDGQ005ZFj6efnqzDrTSmhFidDDlVWqvy9yyKScskBvMqjGctkrxH+9gC0lq+jGzwlPM4U5WgRHGbVUYhU9WCERGCk61QQiQfTvFhpDAZHSbZmmV17mRc4IJYxBHkpb4eeZqftyl9tZJb0L272yLx8um63bqrk6OAGn4By44Bq0wD1ogy5AIAYv4BXMjbnxZrwbH4vVmlHdHIM/MD5/ACZan3E=</latexit>S
Real data  

<latexit sha1_base64="CKitbbY/vXadKSoRv3lhLK20E8c=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuizqwmVF+4AmlMlkkg6dmYSZiVhCP8Gt/Rp34ta1HyM4SbPQ1gMXDufcy7mcIKVEKsf5Mmorq2vrG/VNc2t7Z3evsX/QlUkmEO6ghCaiH0CJKeG4o4iiuJ8KDFlAcS8Y3xR+7wkLSRL+qCYp9hmMOYkIgkpLD158O2w0HdspYS0TtyJNUKE9bHx7YYIyhrlCFEo5cJ1U+TkUiiCKp6aXSZxCNIYxHmjKIcPSz8tXp9aJVkIrSoQerqxS/X2RQyblhAV6k0E1koteIf7rBWwhWUVXfk54minM0Tw4yqilEqvowQqJwEjRiSYQCaJ/t9AICoiUbss0vfIyL3KGKGEM8lDaCj9PTd2Xu9jOMume2e6FfX5/3mxdV83VwRE4BqfABZegBe5AG3QAAjF4Aa9gZsyMN+Pd+Jiv1ozq5hD8gfH5Aw0Zn2I=</latexit>D<latexit sha1_base64="/Qz54gTmD7P9Ed0l0UW3um28nLQ=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6ceGion1AE8pkMm2HziPMTMQS+glu7de4E7eu/RjBSZqFth64cDjnXs7lRAklSnvel1VZWV1b36hu2lvbO7t7tf2DthKpRLiFBBWyG0GFKeG4pYmmuJtIDFlEcSca3+R+5wlLRQR/1JMEhwwOORkQBLWRHoI71a/VPdcr4CwTvyR1UKLZr30HsUApw1wjCpXq+V6iwwxKTRDFUztIFU4gGsMh7hnKIcMqzIpXp86JUWJnIKQZrp1C/X2RQabUhEVmk0E9UoteLv7rRWwhWQ+uwozwJNWYo3nwIKWOFk7egxMTiZGmE0MgksT87qARlBBp05ZtB8Vlluf0kWAM8li5Gj9PbdOXv9jOMmmfuf6Fe35/Xm9cl81VwRE4BqfAB5egAW5BE7QAAkPwAl7BzJpZb9a79TFfrVjlzSH4A+vzBy6qn3Y=</latexit>L

Encoder 
<latexit sha1_base64="g7jxuHvf4WE+dmSaicm4x9zdEvM=">AAACI3icbVDLSsNAFJ34rPHRqks3wSLUTUikqMuiG5cV7AOaECbTSTt0ZhJnJqU19kvc2q9xJ25c+CmC0zYLbT1w4XDOvZzLCRNKpHKcT2NtfWNza7uwY+7u7R8US4dHTRmnAuEGimks2iGUmBKOG4ooituJwJCFFLfCwe3Mbw2xkCTmD2qcYJ/BHicRQVBpKSgVHwMv6ZOKN3x69oaj86BUdmxnDmuVuDkpgxz1oPTtdWOUMswVolDKjuskys+gUARRPDG9VOIEogHs4Y6mHDIs/Wz++MQ600rXimKhhytrrv6+yCCTcsxCvcmg6stlbyb+64VsKVlF135GeJIqzNEiOEqppWJr1orVJQIjRceaQCSI/t1CfSggUro70/Tml9ksJ0AxY5B3pa3waGLqvtzldlZJ88J2L+3qfbVcu8mbK4ATcAoqwAVXoAbuQB00AAIpeAGvYGpMjTfj3fhYrK4Z+c0x+APj6wd+faTU</latexit>

q�(z|x)

ELBO  

(c) VAE

MeasurementReverse 
Diffusion 

<latexit sha1_base64="GciYAvn+v2CMDsnbwZQ8glq/xPc=">AAACLXicbVBNS8NAFNzUrxq/qp7ES7AIerAkIupR9OJRwbaCKWGzfbVLdzdh90UssfhrvNpf40EQr/4KwU3tQasDC8O8N8zbiVPBDfr+q1Oamp6ZnSvPuwuLS8srldW1hkkyzaDOEpHo65gaEFxBHTkKuE41UBkLaMa9s2LevANteKKusJ9CS9JbxTucUbRSVNlIoxC7gHQnvLuPctwLBg8Fw92oUvVr/gjeXxKMSZWMcRFVPsN2wjIJCpmgxtwEfoqtnGrkTMDADTMDKWU9egs3lioqwbTy0RcG3rZV2l4n0fYp9EbqT0dOpTF9GdtNSbFrJmeF+O8slhPJ2Dlu5VylGYJi38GdTHiYeEU/XptrYCj6llCmub3dY12qKUPbouuGI2de5EQskZKqtqkh3A9c21cw2c5f0tivBYe1g8uD6snpuLky2SRbZIcE5IickHNyQeqEkUfyRJ7J0Bk6L86b8/69WnLGnnXyC87HF6fhqQY=</latexit>

p✓(xt�1|xt)

Synthetic data 
<latexit sha1_base64="NNROO/l45zr+acO4/pQueOX4ors=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6cVmpfUATymQySYfOTMLMRCyhn+DWfo07cevajxGcpFlo64ELh3Pu5VxOkFIileN8GbW19Y3Nrfq2ubO7t3/QODzqySQTCHdRQhMxCKDElHDcVURRPEgFhiyguB9M7gq//4SFJAl/VNMU+wzGnEQEQaWljhd3Ro2mYzslrFXiVqQJKrRHjW8vTFDGMFeIQimHrpMqP4dCEUTxzPQyiVOIJjDGQ005ZFj6efnqzDrTSmhFidDDlVWqvy9yyKScskBvMqjGctkrxH+9gC0lq+jGzwlPM4U5WgRHGbVUYhU9WCERGCk61QQiQfTvFhpDAZHSbZmmV17mRc4IJYxBHkpb4eeZqftyl9tZJb0L272yLx8um63bqrk6OAGn4By44Bq0wD1ogy5AIAYv4BXMjbnxZrwbH4vVmlHdHIM/MD5/ACZan3E=</latexit>S <latexit sha1_base64="/Qz54gTmD7P9Ed0l0UW3um28nLQ=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6ceGion1AE8pkMm2HziPMTMQS+glu7de4E7eu/RjBSZqFth64cDjnXs7lRAklSnvel1VZWV1b36hu2lvbO7t7tf2DthKpRLiFBBWyG0GFKeG4pYmmuJtIDFlEcSca3+R+5wlLRQR/1JMEhwwOORkQBLWRHoI71a/VPdcr4CwTvyR1UKLZr30HsUApw1wjCpXq+V6iwwxKTRDFUztIFU4gGsMh7hnKIcMqzIpXp86JUWJnIKQZrp1C/X2RQabUhEVmk0E9UoteLv7rRWwhWQ+uwozwJNWYo3nwIKWOFk7egxMTiZGmE0MgksT87qARlBBp05ZtB8Vlluf0kWAM8li5Gj9PbdOXv9jOMmmfuf6Fe35/Xm9cl81VwRE4BqfAB5egAW5BE7QAAkPwAl7BzJpZb9a79TFfrVjlzSH4A+vzBy6qn3Y=</latexit>L

Forward 
Diffusion 

<latexit sha1_base64="fSlq+37cebpsFEj5y6oflUx99Jo=">AAACKHicbVDLSsNAFJ3Ud3zVx85NsAh1YUlE1KXoxmUF+wBbwmQysUNnJnHmRqwx/+JWv8addOt/CE7TLrT1wjCHc+7hXE6QcKbBdYdWaW5+YXFpecVeXVvf2CxvbTd1nCpCGyTmsWoHWFPOJG0AA07biaJYBJy2gv7VSG89UqVZLG9hkNCuwPeSRYxgMJRf3n2odh6f/Azyl/F/5OWHfrni1txinFngTUAFTabul787YUxSQSUQjrW+89wEuhlWwAinud1JNU0w6eN7emegxILqblZcnzsHhgmdKFbmSXAK9rcjw0LrgQjMpsDQ09PaiPxXC8RUMkTn3YzJJAUqyTg4SrkDsTOqxgmZogT4wABMFDO3O6SHFSZgCrTtTuHMRjk+iYXAMtQ1oE+5bfryptuZBc3jmndaO7k5qVxcTppbRntoH1WRh87QBbpGddRABD2jV/SG3q1368P6tIbj1ZI18eygP2N9/QCqD6b8</latexit>

q(xt|xt�1)

Real data  
<latexit sha1_base64="CKitbbY/vXadKSoRv3lhLK20E8c=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuizqwmVF+4AmlMlkkg6dmYSZiVhCP8Gt/Rp34ta1HyM4SbPQ1gMXDufcy7mcIKVEKsf5Mmorq2vrG/VNc2t7Z3evsX/QlUkmEO6ghCaiH0CJKeG4o4iiuJ8KDFlAcS8Y3xR+7wkLSRL+qCYp9hmMOYkIgkpLD158O2w0HdspYS0TtyJNUKE9bHx7YYIyhrlCFEo5cJ1U+TkUiiCKp6aXSZxCNIYxHmjKIcPSz8tXp9aJVkIrSoQerqxS/X2RQyblhAV6k0E1koteIf7rBWwhWUVXfk54minM0Tw4yqilEqvowQqJwEjRiSYQCaJ/t9AICoiUbss0vfIyL3KGKGEM8lDaCj9PTd2Xu9jOMume2e6FfX5/3mxdV83VwRE4BqfABZegBe5AG3QAAjF4Aa9gZsyMN+Pd+Jiv1ozq5hD8gfH5Aw0Zn2I=</latexit>DELBO  

(d) Diffusion models

Measurement
Inverse 

<latexit sha1_base64="j16niEJcFL8tvlSRpenHgBv8f10=">AAACJnicbVBNS8NAFNz4WeNXrUcvwSLowZJIUY9FLx4VrBaaGjbbF7u4uwm7L9Ia+le86q/xJuLNPyK4rT1odeDBMPMe85g4E9yg7787M7Nz8wuLpSV3eWV1bb28Ubkyaa4ZNFkqUt2KqQHBFTSRo4BWpoHKWMB1fHc68q/vQRueqkscZNCR9FbxhDOKVorKlSQKsQdIb4r9YLgb3j/sReWqX/PH8P6SYEKqZILzqPwZdlOWS1DIBDWmHfgZdgqqkTMBQzfMDWSU3dFbaFuqqATTKca/D70dq3S9JNV2FHpj9edFQaUxAxnbTUmxZ6a9kfivF8upZEyOOwVXWY6g2HdwkgsPU29UjNflGhiKgSWUaW5/91iPasrQ1ue64fiyGOVELJWSqq6pIfSHru0rmG7nL7k6qAWHtfpFvdo4mTRXIltkm+ySgByRBjkj56RJGOmTR/JEnp1n58V5dd6+V2ecyc0m+QXn4ws1YaWq</latexit>

f�1
✓ (z)

Synthetic data 
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Figure 3: Diagram illustrating training process in generative models. Blue arrow: forward pass; Red
arrow: backward pass.

code inputs. This may restrict the stochastic sampling of new synthetic samples during inference. As a result,
there is a trade-off between the flexibility of use in downstream applications and improved privacy guarantees.

We do not expressly differentiate between potential optimization strategies for explicit density models within
our taxonomy in Figure 2, as such distinction is not obvious in the context of explicit density models. In
these models, the latent space is typically formulated through a transformation of the distribution within
the data space. This transformation process in turn complicates the control of stochasticity throughout the
training phase and diminishes the applicability of point-wise optimization.

Tractable vs. Approximate Density. For models defining explicit density, a key distinguishing factor that
shows practical relevance pertains to whether they allow exact likelihood computations. These models can
broadly be categorized into two types: tractable density and approximate density models. The classification
primarily stems from the model structural designs, which either enable tractable density inference or fall
within the realm of approximate density.

Existing studies have demonstrated encouraging results when conducting DP training on both types of models.
Intriguingly, the DP training mechanisms appear to exhibit minor distinctions when applied to these two
different categories. On an optimistic note, such results implies that it might be feasible to attain tractable
likelihood computations with a DP guarantee without considerable effort. However, it remains unclear as to
whether the difference in model designs will systematically influence their compatibility with DP training.

3.2 Representative Models

We provide an illustration of the operational flow of representative generative models in Figure 3. As
demonstrated, existing representative generative models can be effectively encapsulated within our unified
framework shown in Figure 1. We proceed to briefly discuss the key characteristics of each type of generative
models and their relation to potential implementations for DP training in this subsection.
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3.2.1 Implicit Density Models

As a canonical example of implicit density model, Generative Adversarial Network (GAN) (Goodfellow
et al., 2014) employs a generator, Gθ (parametrized by θ), to learn the data distribution with the aid of
a discriminator Dϕ (parametrized by ϕ) trained jointly in an adversarial manner, obviating the need for
explicit density definition. The generator’s functionality is enabled by inputting random latent variables,
z, drawn from simple distributions such as a standard Gaussian, and mapping these random inputs to
the data space. Concurrently, the discriminator is provided with both synthetic and real samples and its
training objective is to differentiate between the two. Throughout the training process, the generator and the
discriminator compete and evolve, enabling the generator to create realistic samples that can deceive the
discriminator, while the discriminator enhances its ability to distinguish between real and fake samples. The
original GAN training objective can be interpreted as optimizing the generator to produce synthetic data
that minimizes the Jensen-Shannon (JS) divergence between the synthetic and real data distributions. This
idea has been expanded in various GAN training objective extensions explored in the literature. For instance,
variants have been proposed based on generalizations to any f-divergence (Nowozin et al., 2016), Wasserstein
distance (Arjovsky et al., 2017; Gulrajani et al., 2017), maximum mean discrepancy (MMD) (Bińkowski et al.,
2018; Li et al., 2017), and Sinkhorn distance (Genevay et al., 2018).

Of particular interest to DP training is the observation that many of these divergence metrics can be
approximated without requiring the training of a discriminator network. This has led to recent research in
private generative models, which use a static function as the critic instead of a discriminator network. While
such approaches might fall short in standard (non-private) generative modeling due to a lower expressive
power compared to using learnable critic (that is adaptable to large data with diverse properties), they are
highly competitive in DP training, as a static critic can effectively speed up convergence, thereby improving
privacy guarantees.

In the case of implicit density models, the generator’s interaction with the private dataset is typically indirect
(only via the backward pass), meaning that there exists no direct link between the data source, as illustrated
in the accompanying diagrams (Figure 3). This configuration presents an opportunity to strategically position
the privacy barrier anywhere along the backpropagation path where the generator retrieves signals from the
real data, facilitating an improved signal-to-noise ratio or simplified implementation. A more comprehensive
understanding is presented in Section 4.1-4.3.

3.2.2 Explicit Density Models

Several prominent explicit density models have been developed in literature, each with distinct characteristics:

• The Variational Autoencoder (VAE) (Kingma & Welling, 2014) is trained to maximize the Evidence Lower
Bound (ELBO), a lower bound of the log-likelihood, which typically simplifies to ℓ1/ℓ2 losses on the data
sample and its reconstruction under standard Laplacian/Gaussian noise modeling assumptions. The model
comprises trainable encoder and decoder modules. Encoding is conducted through the encoder qϕ, which
maps observed data to its corresponding latent variables, denoted as x

qϕ→ z. The dimensions of these
latent variables are typically smaller than the data dimension d, embodying the concept of an information
bottleneck (Tishby et al., 1999; Shwartz-Ziv & Tishby, 2017). The decoder module is responsible for
data reconstruction or generation, i.e., z

pθ→ x. Additionally, VAE imposes regularization on the latent
distributions to match the pre-defined prior, thereby enabling the generation of valid novel samples during
inference.

• Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) operate similarly
to VAEs in terms of maximizing the ELBO. However, instead of using a trainable encoder to map data
to latent variables, diffusion models transform the data iteratively through a linear Gaussian operation,
represented as x

q→ ...
q→ xt−1

q→ xt
q→ xT . This procedure causes the latent variables at the final step

xT to form a standard Gaussian distribution and maintain the same dimensionality as the data. The
generation process is executed by reversing the diffusion operation, which means iteratively applying
pθ(xt−1|xt) for all time steps t ∈ [T ]. The trainable component of diffusion models resides in the reverse
diffusion process, while the forward process is pre-defined and does not require training.
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• Flow-based models (Rezende & Mohamed, 2015; Kingma & Dhariwal, 2018), in contrast, minimize the
Negative Log-Likelihood (NLL) directly. Uniquely, flow-based models employ the same invertible model

for both encoding (x fθ→ z) and generation (z
f−1

θ→ x), by executing either the flow or its inverse. Due to the
invertibility demanded by the model construction, the dimensions of the latent variables z are identical to
those of the data.

• Autoregressive models (Larochelle & Murray, 2011; Oord et al., 2016; Van Den Oord et al., 2016; Van den
Oord et al., 2016), as another instance of model with tractable density, are also designed to minimize the
NLL. Unlike some other models, they accomplish this without the need for explicit latent variables or
an encoding mechanism. Instead, these models utilize partially observed data, denoted as x1:i−1, where
each sample is regarded as a high-dimensional vector with observations up to the (i− 1)th element. The
model is then trained to predict potential values for the subsequent element, xi. Data generation is
conducted through an iterative autoregressive process, where elements of each data vector is predicted
one-by-one, starting from initial seeds. This can be represented as x0

pθ→ ...
pθ→ x1:i−1

pθ→ x1:i
pθ→ ...

pθ→ x1:d.
The component subject to training is the autoregressive model itself. Its parameters, denoted by θ, are
optimized to best predict the next elements in the sequence based on previously observed values.

As illustrated in Figure 3, all these models require real data or derived quantities (such as latent variables)
as inputs to the generator during the training phase. This necessitates a significant difference in the DP
training of these models compared to implicit density models, which only need indirect data access through
the backward pass. In the context of typical explicit density models, DP constraints must be accounted for,
given the access to real data in both the forward and backward pass. This typically results in privacy barriers
being directly integrated into the update process of the generator module, as further discussed in Section 4.4.

3.2.3 Extensions

Our diagram has been consciously designed to encompass future developments, including potential hybrid
variants of generative models. It facilitates systematic analysis of the modifications required to transition the
original training pipeline to a privacy preserving one. Specifically, to train a DP variant of such a model, one
could follow the following steps: (1) Illustrate the model components and information flows using diagrams
analogous to those shown in Figure 3. (2) Determine the component(s) that will be provided with DP
guarantees, taking into account practical use requirements and a feasible privacy-utility trade-off. (3) Establish
the privacy barrier to ensure the privacy of the targeted component, which will later be made accessible for
potential threat exposure. This step should consider all access paths between the target component and the
data source. (4) Calculate and bound the sensitivity. (5) Implement the DP mechanism and calculate the
accumulated privacy cost of the entire training process.

4 Taxonomy

Accompanied by a comprehensive diagram encapsulating the complete spectrum of potential design choices
for deep generative models, we put forth a classification system for current DP generative methods. This
system is predicated on the positioning of the privacy barrier within the diagram (Figure 1). Specifically, for
explanatory purposes, we consider the key components within our diagram (the Generator, Synthetic data,
Measurement, and Real data), resulting in following options for positioning the privacy barrier:

• B1: Between Real data and Measurement

• B2: Within Measurement

• B3: Between Measurement and Synthetic data

• B4: Within Generator

B1 through B4 are introduced sequentially, demonstrating the systematic transition of the privacy barrier
from the real data source towards the generator end. The data-processing theorem 2.1 ensures that the DP
guarantee is upheld as long as the data is “sanitized” through a DP mechanism prior to exposure to potential
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adversaries. In this context, if a DP training algorithm safeguards against threats introduced by B1, then it
also provides the same protective guarantee against attackers defined by B2 through B4.

The generator end typically represents the smallest unit necessary for preserving the full functionality of the
model, implying that the privacy barrier cannot be shifted further without compromising the operational
capabilities of the generative model. Moreover, we reserve a more detailed discussion on the threat model
(privacy barrier) integrated within the adopted DP mechanism (not specifically relevant to generative models)
for later sections, where individual approaches will be introduced.

4.1 B1: Between Real Data and Measurement

Threat Model. Establishing a privacy barrier between the Real data and the Measurement entails using a
DP mechanism to directly sanitize the data (features), thereby obtaining statistics that characterize the real
data distribution for subsequent operations like computing the loss L as a Measurement that serves as the
training objective for the generator. This approach provides protection against attackers who might gain
access to the sanitized data features or any resultant statistics derived from the sanitized features, such as
the loss measured on the sanitized data, any gradient vectors for updating the generator, and the generator’s
model parameters.

General Formulation. Methods within this category typically adopt the distribution matching framework
(illustrated in Figure 3(b)), which aims to minimize the statistical distance between real and synthetic
data distributions (Harder et al., 2021; Rakotomamonjy & Liva, 2021; Vinaroz et al., 2022). This distance
is assessed with a static, unlearnable function, typically applying a data-independent feature extraction
function ψ to project the data samples into a lower-dimensional embedding space and subsequently calculating
the (Euclidean) distance between the resulting embeddings of real and synthetic data. The generator is
optimized to reduce the disparity between the mean embeddings of synthetic and real data, which can be
interpreted as minimizing the maximum mean discrepancy (MMD) between the real and synthetic data
distributions (Bińkowski et al., 2018; Li et al., 2017).

During DP training of these models, data points xi or feature vectors ψ(xi) are first clipped or normalized (by
norm) to ensure bounded sensitivity. Subsequently, random noise is injected into the mean features derived
from the real samples, e.g., via Gaussian mechanism (Definition 2.4). The objectives can be formulated as
follows:

Non-private: min
θ

∥∥∥ 1
|D|

|D|∑
i=1

ψ(xi)−
1
|S|

|S|∑
i=1

ψ(Gθ(zi))
∥∥∥2

2
= min

θ

∥∥∥µ̂D − µ̂S

∥∥∥2

2
(3)

DP: min
θ

∥∥∥µ̃D − µ̂S

∥∥∥2

2
with µ̃D = µ̂D +N (0,∆2

µ̂D
σ2I) (4)

with µ̂D = 1
|D|

∑|D|
i=1 ψ(xi) and µ̂S = 1

|S|
∑|S|

i=1 ψ(Gθ(zi)) representing the mean features of the real and
synthetic data, respectively. Meanwhile, µ̃D denotes the DP-sanitized mean real data embedding with ∆2

µ̂D
being the sensitivity value that characterizes the influence of each real data point on the mean embedding. A
visual illustration can be found in Figure 4.

Representative Methods. While all methods in this category adhere to the same general formulation, they
primarily diverge in their construction of the feature extraction function ψ and the objective function that
forms the training loss L for the generator. DP-Merf (Harder et al., 2021) employs the MMD minimization
approach, optimizing a generator to minimize the difference between synthetic and real data embeddings, using
random Fourier features (Rahimi & Recht, 2007) for the embedding function ψ. DP-SWD (Rakotomamonjy
& Liva, 2021) instead employs random projections u ∈ Sd−1 for feature extraction. Specifically, DP-SWD
uniformly samples k random directions for data projection, thereby enabling tractable computation of
one-dimensional Wasserstein distances along each projection direction. The Sliced Wasserstein Distance
(SWD) (Rabin et al., 2012; Bonneel et al., 2015), which is determined as the mean of one-dimensional
Wasserstein distances over DP-sanitized projections, serves as the training objective for the generator. Similar
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Figure 4: Diagram illustrating the general training procedure of methods under B1.

to DP-Merf, PEARL (Liew et al., 2021) employs the Fourier transform as the feature extraction function
while offering an alternative interpretation of describing the data distribution using the characteristic function
with the characteristic function distance as the objective. Furthermore, PEARL proposes learning a re-
weighting function for the embedding features, placing greater emphasis on the discriminative features, in
order to enhance the expressiveness of the plain Fourier features employed in the DP-Merf approach.

Recent research efforts have primarily focused on identifying informative features that can efficiently capture
the underlying characteristics of the data distribution. Specifically, DP-HP (Vinaroz et al., 2022) employs
Hermite polynomials as the feature embedding function. This choice of embedding function reduces the
required feature dimension, which consequently decreases the effective sensitivity of the data mean embedding
and leads to an improved signal-to-noise ratio in the DP training. Harder et al. (2022) further propose
utilizing feature extraction layers from pre-trained classification networks that capture general concepts
learned on large-scale public datasets. Additionally, DP-NTK (Yang et al., 2023) introduces the use of the
Neural Tangent Kernel (NTK) to represent data, resulting in the gradient of the neural network function
serving as the feature map, i.e., ψ(x) = ∇θf(x; θ).

Privacy Analysis. The privacy analysis for methods in this category involves computing the sensitivity and
applying the privacy analysis of associated noise mechanisms, such as the Gaussian mechanism (Definition 2.4).
The sensitivity represents the maximum effect of an individual data point on the mean embedding:

∆2 = max
D,D′

∥µ̂D − µ̂D′∥2 =
∥∥∥ 1
|D|

|D|∑
i=1

ψ(xi)−
1
|D′|

|D′|∑
i=1

ψ(x′
i)

∥∥∥
2

(5)

In existing literature, the replace-one privacy notion is commonly used to compute the sensitivity value
∆2, resulting in an upper bound of 2

|D| when the feature vector by construction has a norm equal to 1
or is normalized with a maximum norm of 1, i.e., ∥ψ(x)∥2 ≤ 1. Deriving the sensitivity value for the
add-or-remove-one notion is slightly more technically involved, but applying existing techniques used for
the replace-one notion leads to a conservative bound of 2

|D|+1 (See Appendix). This implies two things:
first, the sensitivity value decreases inversely proportional to the size of the dataset, showing the beneficial
effect of the “mean” operation over large datasets, which smooths out individual effects through population
aggregation. Second, there is a minor difference in the computed sensitivity between the two privacy notions:

2
|D|+1 versus 2

|D| . This means that the current comparison results hold with negligible effect when the
dataset size is sufficiently large. While achieving a tighter bound for the sensitivity value is possible with the
add-or-remove-one privacy notion, it may require additional assumptions.

In contrast to other studies that compute the (worst-case) global sensitivity (Definition 2.3), the sensitivity
in DP-SWD represents a form of expected value, accompanied by a sufficiently small failure probability.
This efficiently harnesses the characteristics of random projections to achieve a tight sensitivity bound, but
requires careful comparison to other methods. When combining this sensitivity definition with mechanisms
that offer (ε, δ)-DP (i.e., the relaxed DP notion), the final privacy guarantee will be weaker than (ε, δ), due
to the additional failure probability derived from the sensitivity itself.
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Figure 5: Diagram illustrating the training pipeline of DP-GAN with a (vertical) privacy barrier of type
B2 as shown.
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data-independent sensitive DP

Figure 6: Diagram illustrating the training pipeline of PATE-GAN with a (horizontal) privacy barrier of
type B2 as shown. Lstu and Ltea denote the student and teacher training losses respectively, while Dstu is
the student discriminator and D1, ..., Dk represent the teacher discriminators.

Analysis, Insights, Implications. Methods under this category present several strengths. Firstly, the
“mean” operation adopted during the extraction of descriptive feature embeddings significantly reduces the
impact of each individual. This leads to a lower sensitivity value that scales in inverse proportion to the
number of data points being aggregated through the “mean” operation. As a result, a strong privacy guarantee
can be ensured with less randomness required from the DP mechanism. Moreover, they are straightforward
to implement, typically necessitating just one instance of sanitization on the computed mean feature (known
as “one-shot sanitization”) throughout the training process, which further saves the privacy consumption in
comparison to iterative methods. These methods also converge quickly and can yield acceptable results even
under a low privacy budget, given the ease of fitting the static target, i.e., the noisy mean.

Nevertheless, they come with certain drawbacks. The static feature might not be sufficiently discriminative or
informative, lacking the expressiveness found in methods that employ trainable models as critics. Furthermore,
the “mean” operation could potentially induce unintended mode collapse in the generated distributions,
trading off generation diversity for privacy protection. This situation warrants attention in future works,
particularly in optimizing the trade-off between the expressiveness of the feature extraction method in the
critic and the privacy cost of achieving such expressiveness. A promising direction could be to exploit
knowledge from public non-sensitive data and/or pre-trained models that better describe data without
compromising the privacy of the sensitive data.

4.2 B2: Within Measurement

Threat Model. The previous category focuses on a static, sanitized statistical summary, derived from
a data-independent function, as a replacement for real data when training generative models. However,
learnable functions that are able to adapt to diverse data distribution may offer superior expressive power. In
this regard, a logical strategy is to incorporate DP into the measurement process, particularly by training a
DP critic. This privacy barrier sits “within Measurement” and safeguards against adversaries with access to
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the critic and subsequent quantities, including information flows to the generator. If gradient sanitization
techniques like DP-SGD are employed for updating the critic, the DP mechanism further protects against
attacks targeting all intermediate gradients w.r.t. the critic’s parameters during the training phase.

General Formulation. Methods in this category follow two main principles: Firstly, they use a learnable
critic (feature extraction function) that dynamically adapts to the private dataset, necessitating a boundary
on the potential privacy leakage of such critic. Secondly, the generator is prohibited from accessing private
real data directly, its access limited to indirect interaction through the backward pass. This ensures the
generator’s update signals are fully derived from the learnable critic. As such, developing a DP critic is
sufficient to assure DP for the generator module (and the entire model) for privacy-preserving generation.
GAN models (depicted in Figure 3(a)) meet these criteria and serve as a foundational framework that most
existing DP methods in this category generally conform to.

Representative Methods. The implementation of the privacy barrier within the Measurement block is
exemplified in DP-GAN (Zhang et al., 2018; Xie et al., 2018) and concurrent studies (Beaulieu-Jones et al.,
2017; Triastcyn & Faltings, 2018; Alzantot & Srivastava, 2019; Xu et al., 2019; Torkzadehmahani et al., 2019;
Frigerio et al., 2019). In this context, the discriminator, acting as the learnable critic model, is trained via
DP-SGD (Section 2.1.1). The privacy of the generator is ensured by the post-processing theorem. As per
the public timestamp of paper releases, this approach can be traced back to Beaulieu-Jones et al. (2017),
who proposed training an ACGAN (Auxiliary Classifier GAN) (Odena et al., 2017) in a DP manner to
conditionally generate samples for downstream analysis tasks on medical data. The training pipeline can be
formalized as follows, with the illustration shown in Figure 5:

g
(t)
D = ∇ϕL(Gθ, Dϕ) (Discriminator gradient) (6)

g
(t)
G = ∇θL(Gθ, Dϕ) (Generator gradient) (7)

g̃
(t)
D =Mσ,C(g(t)

D ) = clip(g(t)
D , C) +N (0, σ2C2I) (Apply DP sanitization) (8)

ϕ(t+1) = ϕ(t) − ηD · g̃(t)
D (Discriminator update) (9)

θ(t+1) = θ(t) − ηG · g(t)
G (Generator update) (10)

The generator Gθ and discriminator Dϕ are parameterized by θ and ϕ, respectively, with ηG and ηD denoting
their learning rates. Mσ,C refers to the Gaussian mechanism in DP-SGD, with σ representing the noise scale
and C indicating the gradient clipping bound. Although we have omitted the sample index in the above
equations for the sake of brevity, it should be noted that the clipping function in Equation 8 is expected
to take per-example gradients as inputs, adhering to the standard procedure of DP-SGD (Section 2.1.1).
Specifically, it suffices to apply the sanitization only to the gradients that depend on the real data samples,
including indirect usage of real samples, such as through gradient penalty terms (Gulrajani et al., 2017).

Unlike DP-GAN that employs DP-SGD for training the DP discriminator, PATE-GAN (Yoon et al., 2019)
leverages the PATE framework (Section 2.1.2) to train its DP (student) discriminator. PATE-GAN comprises
three main components that are jointly trained throughout the process: multiple (non-private) teacher
discriminators, a DP student discriminator, and a DP generator. Similar to the original PATE framework,
PATE-GAN starts by partitioning the real dataset into disjoint subsets, which subsequently serve to train
the teacher discriminators independently. In each training iteration, PATE-GAN follows a sequence of steps:
(1) independently updating the teacher discriminators using mini-batch samples from real data partitions and
synthetic samples drawn from the generator; (2) querying the teacher discriminators with a set of synthetic
samples; (3) the teacher discriminators then engage in a voting process on the real/fake predictions for the
synthetic samples they have received, and apply DP noise to the results of the vote; (4) training the student
discriminator with the query synthetic samples as input and the DP aggregation of teacher predictions as the
label; (5) finally, jointly updating the generator and the student discriminator, with the generator querying
the student discriminator with new synthetic samples and obtaining update gradient signals from the DP
student discriminator. A visual illustration is presented in Figure 6.

While the discriminator in the GAN framework aims to distinguish between two distributions, recent research
uncovered intriguing results when the learnable critic is designed to target specific downstream tasks, such as
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classification. Specifically, Private-Set (Chen et al., 2022a) employs a classification network as a learnable
feature extractor, which is trained with DP-SGD. This learnable feature extractor, combined with the
alignment in the gradients serving as the critic, encourages the synthetic data to emulate the training
trajectories of the real data during the training process within a classification network, making the synthetic
data useful for training downstream classifiers and safe for public release due to the DP guarantees embedded
within the measurement process.

Privacy Analysis. Methods in this category inherit the privacy notion and sensitivity computation from
their respective framework for training the DP critic (See Section 2.1.1-Section 2.1.2), while also inheriting the
need for careful consideration regarding the application of data-dependent privacy analysis or adherence to
privacy notion constraints to ensure comparable results. For methods grounded by DP-SGD, this results in a
noticeable disparity between the replace-one and add-or-remove-one DP notions, as illustrated by the doubled
sensitivity value when transitioning from the default add-or-remove-one to the replace-one notion, i.e., C
versus 2C with C denoting the gradient clipping bound. Consequently, a doubled noise scale is required to
achieve an ostensibly identical privacy guarantee, inevitably resulting in utility degradation and unfavorable
comparison outcomes under the replace-one notion.

Analysis, Insights, Implications. While this training paradigm enjoys several advantages, such as ease
of implementation and representative features for characterizing the difference between distributions, several
challenges persist when applying such a paradigm in practice. Firstly, the joint training of a generator
alongside a critic, which typically necessitates an adversarial approach, is inherently unstable due to the
difficulty in maintaining equilibrium between these two components. This instability can be further amplified
by the incorporation of gradient clipping and noise addition operations introduced by DP-SGD, or the
additional fitting process involved in transferring knowledge from the teacher discriminators to the student
one through the PATE framework. Moreover, the DP training of the critic often impedes its convergence,
resulting in a sub-optimal critic that may not effectively guide the generator.

Recent studies have investigated various strategies to alleviate these challenges, particularly in the context of
GANs. These include warm-starting the GAN discriminator by pre-training on public data (Zhang et al.,
2018), dynamically adjusting the gradient clipping bounds during the training process (Zhang et al., 2018),
re-balancing the discriminator and generator updates to restore parity to a discriminator weakened by DP
noise (Bie et al., 2023), and exploiting public pre-trained GANs while restricting private modeling to the latent
space (Chen et al., 2021). In the Private-Set (Chen et al., 2022a) framework that optimizes for downstream
classification task, it is reported that optimizing the generator in a point-wise manner (as discussed in
Section 3) or directly optimizing the synthetic set instead of the generator model can empirically lead to
faster convergence and preferable when strong privacy guarantee is required. In this regard, we anticipate
promising outcomes from the future development of new variants of DP-compliant training pipelines and
objectives that offer improved convergence and, consequently, enhanced privacy guarantees.

4.3 B3: Between Measurement and Synthetic Data

Threat Model. In response to challenges associated with training the DP critic (Section 4.2), recent
studies have proposed shifting the privacy focus from the Measurement to the sanitization of the intermediate
signal that backpropagates to update the generator, i.e., between Measurement and Synthetic data. The goal
is to preserve the critic’s training stability and its utility for accurately comparing synthetic and real data,
thereby guiding the generator’s training effectively. This strategy ensures privacy when revealing sanitized
intermediate gradients exchanged between the generator and the critic during the backward pass, as well as
guarantees DP for the generator, which is updated with sanitized gradients. However, this scheme does not
provide privacy guarantees for the release of the critics, since their training is conducted non-privately.

General Formulation. Similar to the case outlined in Section 4.2, the backbone generative models for this
category are typically implicit density models. This restriction is in place as these models do not invoke direct
interaction between the real data and the generator during the forward pass, which means that sanitizing
the intermediate signals transmitted between the Measurement and Synthetic data is sufficient for ensuring
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Real data

 DP   
sanitization

Generator 
<latexit sha1_base64="+1FL27z5R+GXlmZq//Mrw6bDGQE=">AAACGnicbVDLSgNBEJyNr7i+oh69LAbBU9iVoB6DHvQYwTwgCWF20kmGzMwuM71iWPITXs3XeBOvXvwYwdkkB00saCiquqmmwlhwg77/5eTW1jc2t/Lb7s7u3v5B4fCobqJEM6ixSES6GVIDgiuoIUcBzVgDlaGARji6zfzGE2jDI/WI4xg6kg4U73NG0UrNu24bh4C0Wyj6JX8Gb5UEC1IkC1S7he92L2KJBIVMUGNagR9jJ6UaORMwcduJgZiyER1Ay1JFJZhOOvt34p1Zpef1I21HoTdTf1+kVBozlqHdlBSHZtnLxH+9UC4lY/+6k3IVJwiKzYP7ifAw8rIyvB7XwFCMLaFMc/u7x4ZUU4a2Mtdtzy7TLKfLIimp6pkSwvPEtX0Fy+2skvpFKbgslR/KxcrNork8OSGn5JwE5IpUyD2pkhphRJAX8kqmztR5c96dj/lqzlncHJM/cD5/AEqFoaU=</latexit>

G✓

<latexit sha1_base64="UKhGgDNfpc81p7txywBOAzlHv1E=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4CokUdVl047KifUATymQyaYfOTMLMpFhDP8Gt/Rp34ta1HyM4SbPQ1gMXDufcy7mcIKFEKsf5Mipr6xubW9Vtc2d3b/+gdnjUkXEqEG6jmMaiF0CJKeG4rYiiuJcIDFlAcTcY3+Z+d4KFJDF/VNME+wwOOYkIgkpLD97keVCrO7ZTwFolbknqoERrUPv2whilDHOFKJSy7zqJ8jMoFEEUz0wvlTiBaAyHuK8phwxLPytenVlnWgmtKBZ6uLIK9fdFBpmUUxboTQbVSC57ufivF7ClZBVd+xnhSaowR4vgKKWWiq28ByskAiNFp5pAJIj+3UIjKCBSui3T9IrLLM8ZoJgxyENpK/w0M3Vf7nI7q6RzYbuXduO+UW/elM1VwQk4BefABVegCe5AC7QBAkPwAl7B3Jgbb8a78bFYrRjlzTH4A+PzB4FTn6c=</latexit>z

<latexit sha1_base64="pInG9l59uFQNYrRtBfw8mSyijEc=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4CokUdVl047KifUATymQyaYfOTMLMpLSEfoJb+zXuxK1rP0ZwkmahrQcuHM65l3M5QUKJVI7zZVQ2Nre2d6q75t7+weFR7fikI+NUINxGMY1FL4ASU8JxWxFFcS8RGLKA4m4wvs/97gQLSWL+rGYJ9hkcchIRBJWWnrzJdFCrO7ZTwFonbknqoERrUPv2whilDHOFKJSy7zqJ8jMoFEEUz00vlTiBaAyHuK8phwxLPytenVsXWgmtKBZ6uLIK9fdFBpmUMxboTQbVSK56ufivF7CVZBXd+hnhSaowR8vgKKWWiq28ByskAiNFZ5pAJIj+3UIjKCBSui3T9IrLLM8ZoJgxyENpKzydm7ovd7WdddK5st1ru/HYqDfvyuaq4Aycg0vgghvQBA+gBdoAgSF4Aa9gYSyMN+Pd+FiuVozy5hT8gfH5A331n6U=</latexit>x

<latexit sha1_base64="ZehPtHmiao0m+kZnEHFHfyKFji4=">AAACH3icbVBNS8NAFNz4WeNX1aOXYBHqpSQi6rHoQY8VbCuYUDbbV7u4u4m7L2IN/R1e7a/xJl79MYLbmoO2DjwYZt5jHhOnghv0/U9nbn5hcWm5tOKurq1vbJa3tlsmyTSDJktEom9iakBwBU3kKOAm1UBlLKAd35+P/fYjaMMTdY2DFCJJ7xTvcUbRStFFJ8Q+IK2Gj88HnXLFr/kTeLMkKEiFFGh0yl9hN2GZBIVMUGNuAz/FKKcaORMwdMPMQErZPb2DW0sVlWCifPL00Nu3StfrJdqOQm+i/r7IqTRmIGO7KSn2zbQ3Fv/1YjmVjL3TKOcqzRAU+wnuZcLDxBs34nW5BoZiYAllmtvfPdanmjK0vbluOLnMxzkdlkhJVdfUEJ6Gru0rmG5nlrQOa8Fx7ejqqFI/K5orkV2yR6okICekTi5JgzQJIw/khbySkTNy3px35+Nndc4pbnbIHzif3848o3Q=</latexit>

G✓(z)

Synthetic  
data

Privacy barrier
publicly accessible publicly inaccessible

Measurement
<latexit sha1_base64="/Qz54gTmD7P9Ed0l0UW3um28nLQ=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6ceGion1AE8pkMm2HziPMTMQS+glu7de4E7eu/RjBSZqFth64cDjnXs7lRAklSnvel1VZWV1b36hu2lvbO7t7tf2DthKpRLiFBBWyG0GFKeG4pYmmuJtIDFlEcSca3+R+5wlLRQR/1JMEhwwOORkQBLWRHoI71a/VPdcr4CwTvyR1UKLZr30HsUApw1wjCpXq+V6iwwxKTRDFUztIFU4gGsMh7hnKIcMqzIpXp86JUWJnIKQZrp1C/X2RQabUhEVmk0E9UoteLv7rRWwhWQ+uwozwJNWYo3nwIKWOFk7egxMTiZGmE0MgksT87qARlBBp05ZtB8Vlluf0kWAM8li5Gj9PbdOXv9jOMmmfuf6Fe35/Xm9cl81VwRE4BqfAB5egAW5BE7QAAkPwAl7BzJpZb9a79TFfrVjlzSH4A+vzBy6qn3Y=</latexit>L<latexit sha1_base64="t4YUM2SoIcGXiJYXvjwe4CrcPCI=">AAACGHicbVDLSsNAFJ3UV42vqks3wSK4CokUdVnUhcsK9gFNCJPJpB07MwkzE7GE/oNb+zXuxK07P0Zwkmah1QMXDufcy7mcMKVEKsf5NGorq2vrG/VNc2t7Z3evsX/Qk0kmEO6ihCZiEEKJKeG4q4iieJAKDFlIcT+cXBd+/xELSRJ+r6Yp9hkccRITBJWWejeBl45J0Gg6tlPC+kvcijRBhU7Q+PKiBGUMc4UolHLoOqnycygUQRTPTC+TOIVoAkd4qCmHDEs/L7+dWSdaiaw4EXq4skr150UOmZRTFupNBtVYLnuF+K8XsqVkFV/6OeFppjBHi+A4o5ZKrKIKKyICI0WnmkAkiP7dQmMoIFK6MNP0ysu8yAlQwhjkkbQVfpqZui93uZ2/pHdmu+d2667VbF9VzdXBETgGp8AFF6ANbkEHdAECD+AZvIC5MTdejTfjfbFaM6qbQ/ALxsc3j3qguQ==</latexit>

D�

Critic

<latexit sha1_base64="clqiPu9Rpa33m90oEZ4lh9NzHbk=">AAACF3icbVBNS8NAFNzUrxq/qh69BIvgKSQi6rGoB48VTFtoQthstu3S3U3Y3RRL6G/wan+NN/Hq0R8juElz0NaBB8PMe8xjopQSqRzny6itrW9sbtW3zZ3dvf2DxuFRRyaZQNhDCU1EL4ISU8Kxp4iiuJcKDFlEcTca3xV+d4KFJAl/UtMUBwwOORkQBJWWPH8yDO/DRtOxnRLWKnEr0gQV2mHj248TlDHMFaJQyr7rpCrIoVAEUTwz/UziFKIxHOK+phwyLIO8fHZmnWkltgaJ0MOVVaq/L3LIpJyySG8yqEZy2SvEf72ILSWrwU2QE55mCnO0CB5k1FKJVTRhxURgpOhUE4gE0b9baAQFREr3ZZp+eZkXOSFKGIM8lrbCzzNT9+Uut7NKOhe2e2VfPl42W7dVc3VwAk7BOXDBNWiBB9AGHkCAgBfwCubG3Hgz3o2PxWrNqG6OwR8Ynz/Ay6BL</latexit>gD

data-independent sensitive DP

<latexit sha1_base64="QIOPsZCQY2dmy1rq0u4sYbm/ZOQ=">AAACMXicbVBNS8NAFNz4WeNX1aMIwSJ4KokU9Sh60KOCVcHUsNm81sXdTdh9UUvIyV/j1f4ab+LV3yC4qT1odWBhmHmPeTtxJrhB3391Jianpmdma3Pu/MLi0nJ9ZfXCpLlm0GapSPVVTA0IrqCNHAVcZRqojAVcxndHlX95D9rwVJ1jP4OOpD3Fu5xRtFJU3wgfeALIRQJFeN8ro+ObUFK81bLIszKqN/ymP4T3lwQj0iAjnEb1zzBJWS5BIRPUmOvAz7BTUI2cCSjdMDeQUXZHe3BtqaISTKcYfqP0tqySeN1U26fQG6o/NwoqjenL2E5WJ5pxrxL/9WI5lozd/U7BVZYjKPYd3M2Fh6lXdeQlXAND0beEMs3t7R67pZoytE26bjjcLKqciKVSUpWYJsJj6dq+gvF2/pKLnWaw22ydtRoHh6PmamSdbJJtEpA9ckBOyClpE0aeyDN5IQNn4Lw6b8779+iEM9pZI7/gfHwBiUyrng==</latexit>

egup
G

<latexit sha1_base64="Is4T8cP/PoXB6KvH2Td9XwsnwKU=">AAACJXicbVDLSsNAFJ3UV42vVpdugkVwFRIp6rLoQpcV7AOaGibTSTt0ZhJmJtUS+ilu7de4E8GVXyI4SbPQ1gMXDufew7mcIKZEKsf5NEpr6xubW+Vtc2d3b/+gUj1syygRCLdQRCPRDaDElHDcUkRR3I0FhiyguBOMb7J9Z4KFJBF/UNMY9xkcchISBJWW/ErVmwz920ePQTUSLE3imV+pObaTw1olbkFqoEDTr3x7gwglDHOFKJSy5zqx6qdQKIIonpleInEM0RgOcU9TDhmW/TR/fWadamVghZHQw5WVq78dKWRSTlmgL7MX5fIuE//dBWwpWYVX/ZTwOFGYo0VwmFBLRVbWizUgAiNFp5pAJIj+3UIjKCBSuj3T9HJnmuX4KGIM8oG0FX6embovd7mdVdI+t90Lu35frzWui+bK4BicgDPggkvQAHegCVoAgSfwAl7B3Jgbb8a78bE4LRmF5wj8gfH1A9Nlphc=</latexit>

gup
G

Figure 7: The diagram illustrates the general training process of methods incorporating the privacy barrier
B3. In the figure, gup

G and g̃up
G denote the upstream gradient (referenced as gupstream

G in Equation 12) and its
sanitized variant, respectively. Note that variations exist in the formulation of critics and their corresponding
training paradigms.

privacy protection. Methods in this category adhere to the gradient sanitization scheme, which introduces a
DP perturbation into the gradients communicated between the critic and generator during the backward
pass. This can be formulated as follows:

g
(t)
G = ∇θLG(θ(t)) = ∇Gθ(z)LG(θ(t)) · JθGθ(z) (11)

g̃
(t)
G =M

(
∇Gθ(z)LG(θ(t))︸ ︷︷ ︸

gupstream
G

)
· JθGθ(z)︸ ︷︷ ︸

J local
G

(12)

Here, LG represents the generator’s loss (originating from a critic), andM denotes a potential DP sanitization
mechanism on gupstream

G —the gradient information backpropagating from the critic to the generator. This can
be considered as the gradient of the objective with respect to the current synthetic samples. It is important to
note that the second term (J local

G ), i.e., the local generator Jacobian, is computed independently of training
data and thus does not require sanitization. The generator is subsequently updated with the DP sanitized
gradient, i.e., θ(t+1) = θ(t)− ηG · g̃(t)

G . Meanwhile, the critic, if learnable, is updated normally (non-privately).
A visual illustration is presented in Figure 7.

Representative Methods. Existing methods explored various choices for the critic and different DP
mechanisms to sanitize the upstream gradients gupstream

G . GS-WGAN (Chen et al., 2020a) adopts the
Gaussian mechanism for sanitization and capitalizes on the inherent bounding of the gradient norm. This
follows from the Lipschitz property when employing the Wasserstein distance with gradient penalty (Arjovsky
et al., 2017; Gulrajani et al., 2017) as the objective when training a GAN. In contrast, G-PATE (Long
et al., 2021) incorporates the PATE framework as its sanitization mechanism. This approach discretizes the
gradients and allows multiple teacher discriminator models to vote on these discretized gradient values. The
DP noisy argmax is then transferred to the generator. DataLens (Wang et al., 2021) further improves the
signal-to-noise ratio in the PATE sanitization by employing top-K dimension compression.

In a different vein, DP-Sinkhorn (Cao et al., 2021) presents compelling results using a nonparametric
critic. Specifically, DP-Sinkhorn estimates the Sinkhorn divergence grounded on ℓ1 and ℓ2 losses in the
data space, adhering to the distribution matching generative framework as depicted in Figure 3(b). This
use of a data-independent critic contributes stability to the training process and capitalizes on the privacy
enhancement brought by subsampling.

Privacy Analysis. The privacy analysis for this method category largely aligns with the established
unit sanitization mechanisms, denoted as M, which function on upstream gradients gupstream

G . Nevertheless,
specific attention is necessary given that these intermediate gradients do not directly originate from real data
samples. This scenario noticeably influences the sensitivity computation, defined formally by:

∆2 = max
D,D′

∥f(gupstream
G )− f(g′

G
upstream)∥2 (13)
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In this equation, f encapsulates the operations required to set bounds on the sensitivity and to render the
associated sanitization mechanism applicable. gG

upstream and g′
G

upstream symbolize the intermediate upstream
gradients originating from neighboring datasets D and D′ respectively. Specifically, f performs distinct roles
according to the method employed: For GS-WGAN and DP-Sinkhorn, f signifies the operation of norm
clipping; In G-PATE, f encompasses the processes of dimension reduction and gradient discretization, and the
computation of teacher voting histograms based on these discretized gradients; In the context of DataLens,
rather than employing random projection and discretization as in G-PATE, f adopts a top-k stochastic sign
quantization of the gradients. Subsequent to this operation, the teacher voting histograms are also calculated.

A direct application of the triangle inequality reveals that ∆2 equals 2C (with C representing the gradient
clipping bound) in both GS-WGAN and DP-Sinkhorn for both the replace-one and add-or-remove-one notions,
while C is further guaranteed to be 1 in GS-WGAN by the nature of the adopted Wasserstein objective.
This is notably different from the substantial disparity between the two privacy notions in the standard
DP-SGD framework. In G-PATE, the voting histogram diverges by a maximum of 2 entries for each gradient
dimension, which are processed independently via DP aggregation. As for the DataLens approch, the change
of one data point will at most reverse all the signs of the top-k elements of gradients originated from one
teacher model, leading to ∆2 = 2

√
k (See Appendix for details).

Typically, the total privacy cost is calculated based on the RDP accountant (Theorem 2.2). Notably, each
synthetic sample in a mini-batch constitutes one execution of the sanitization mechanism for the DP-SGD
framework, or one query in the PATE framework. In other words, performing an update step with a mini-batch
of synthetic samples on the generator can be regarded as a composition of batch size times its unit sanitization
mechanism.

Analysis, Insights, Implications. Compared to previous categories (Section 4.1-4.2), shifting the privacy
barrier away from the Measurement process itself offers several benefits. These include: (1) the flexibility
to employ a powerful critic, thereby effectively guiding the generator towards capturing the characteristics
of the data distribution; (2) seamless support for different privacy notions (as discussed in privacy analysis
above); (3) practically simpler to properly bound the sensitivity. This can be achieved by exploiting the
intrinsic properties of the objective (Chen et al., 2020a), or through the usage of the PATE framework (Long
et al., 2021; Wang et al., 2021). This is particularly beneficial when compared to the previous scenario of
learnable critics that typically necessitate a laborious and fragile hyperparameter search for a reasonable
gradient clipping bound.

However, the increased expressive capacity comes with the trade-off of relatively high privacy consumption.
The accumulation of privacy cost across iterations is notably faster in this scenario than in standard DP-SGD
training of a single model: each DP update on the generator in this category equates to a batch size number
of calls to the Gaussian mechanism, possibly without the advantage of subsampling, as detailed in the
preceding privacy analysis section. This markedly contrasts with the standard DP-SGD training on a single
discriminator, as mentioned in the previous category (refer to Section 4.2), where each individual DP gradient
update equates to a single execution of the (subsampled) Gaussian mechanism.

Fortunately, this drawback has been partially mitigated through the use of data-dependent privacy analysis
(as demonstrated in PATE-based methods like G-PATE and DataLens) that provides analytically tighter
results that lead to stronger DP guarantees, or a data-independent critic (as in DP-Sinkhorn) that offers
smooth compatibility with subsampling and better convergence. Looking forward, we anticipate further
developments from refining this training paradigm, particularly through the utilization of strong backbone
discriminators (and generators) trained on external non-private data, thereby optimizing privacy consumption.

4.4 B4: Within Generator

Threat Model. DP can be directly integrated into the training or deployment of a generator, the minimal
unit within the generative models pipeline essential for maintaining the full generation functionality for future
use. Generally, the privacy barrier safeguards against attackers who have access to the trained generator
model while a more fine-grained distinguishment between the type of access (e.g., white-box or black-box)
may be required depending on the application scenarios and the adopted DP mechanism. If the gradient
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Real data

<latexit sha1_base64="6FzAp2rJ0l6kokwYi+AzGMasStM=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6cSNUtA9oQplMJunQmUmYmYgl9BPc2q9xJ25d+zGCkzQLbT1w4XDOvZzLCVJKpHKcL6O2srq2vlHfNLe2d3b3GvsHXZlkAuEOSmgi+gGUmBKOO4ooivupwJAFFPeC8U3h956wkCThj2qSYp/BmJOIIKi09ODFd8NG07GdEtYycSvSBBXaw8a3FyYoY5grRKGUA9dJlZ9DoQiieGp6mcQpRGMY44GmHDIs/bx8dWqdaCW0okTo4coq1d8XOWRSTligNxlUI7noFeK/XsAWklV05eeEp5nCHM2Do4xaKrGKHqyQCIwUnWgCkSD6dwuNoIBI6bZM0ysv8yJniBLGIA+lrfDz1NR9uYvtLJPume1e2Of3583WddVcHRyBY3AKXHAJWuAWtEEHIBCDF/AKZsbMeDPejY/5as2obg7BHxifPxxAn2s=</latexit>M
 DP   

sanitization

Generator 
<latexit sha1_base64="97egWNnKIebSS4Dsoh9uj7JhICg=">AAACJXicbVBNS8NAFNz4bfxq9eglWIR6KYmIeix68VjB1kJTwmb7ahd3N2H3pVpjf4pX/TXeRPDkLxHc1h60deDBMPMe85g4Fdyg7384c/MLi0vLK6vu2vrG5lahuN0wSaYZ1FkiEt2MqQHBFdSRo4BmqoHKWMB1fHs+8q/7oA1P1BUOUmhLeqN4lzOKVooKxTQKsQdIy2H//jHsPxxEhZJf8cfwZkkwISUyQS0qfIWdhGUSFDJBjWkFfortnGrkTMDQDTMDKWW39AZalioqwbTz8etDb98qHa+baDsKvbH6+yKn0piBjO2mpNgz095I/NeL5VQydk/bOVdphqDYT3A3Ex4m3qgXr8M1MBQDSyjT3P7usR7VlKFtz3XD8WU+yolYIiVVHVNBuB+6tq9gup1Z0jisBMeVo8ujUvVs0twK2SV7pEwCckKq5ILUSJ0wckeeyDN5cV6cV+fNef9ZnXMmNzvkD5zPbzrYpbw=</latexit>

p✓(x|z)

<latexit sha1_base64="pInG9l59uFQNYrRtBfw8mSyijEc=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4CokUdVl047KifUATymQyaYfOTMLMpLSEfoJb+zXuxK1rP0ZwkmahrQcuHM65l3M5QUKJVI7zZVQ2Nre2d6q75t7+weFR7fikI+NUINxGMY1FL4ASU8JxWxFFcS8RGLKA4m4wvs/97gQLSWL+rGYJ9hkcchIRBJWWnrzJdFCrO7ZTwFonbknqoERrUPv2whilDHOFKJSy7zqJ8jMoFEEUz00vlTiBaAyHuK8phwxLPytenVsXWgmtKBZ6uLIK9fdFBpmUMxboTQbVSK56ufivF7CVZBXd+hnhSaowR8vgKKWWiq28ByskAiNFZ5pAJIj+3UIjKCBSui3T9IrLLM8ZoJgxyENpKzydm7ovd7WdddK5st1ru/HYqDfvyuaq4Aycg0vgghvQBA+gBdoAgSF4Aa9gYSyMN+Pd+FiuVozy5hT8gfH5A331n6U=</latexit>x
Synthetic  

data

Privacy barrier

Measurement

<latexit sha1_base64="/Qz54gTmD7P9Ed0l0UW3um28nLQ=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6ceGion1AE8pkMm2HziPMTMQS+glu7de4E7eu/RjBSZqFth64cDjnXs7lRAklSnvel1VZWV1b36hu2lvbO7t7tf2DthKpRLiFBBWyG0GFKeG4pYmmuJtIDFlEcSca3+R+5wlLRQR/1JMEhwwOORkQBLWRHoI71a/VPdcr4CwTvyR1UKLZr30HsUApw1wjCpXq+V6iwwxKTRDFUztIFU4gGsMh7hnKIcMqzIpXp86JUWJnIKQZrp1C/X2RQabUhEVmk0E9UoteLv7rRWwhWQ+uwozwJNWYo3nwIKWOFk7egxMTiZGmE0MgksT87qARlBBp05ZtB8Vlluf0kWAM8li5Gj9PbdOXv9jOMmmfuf6Fe35/Xm9cl81VwRE4BqfAB5egAW5BE7QAAkPwAl7BzJpZb9a79TFfrVjlzSH4A+vzBy6qn3Y=</latexit>L
Encoder 

<latexit sha1_base64="g7jxuHvf4WE+dmSaicm4x9zdEvM=">AAACI3icbVDLSsNAFJ34rPHRqks3wSLUTUikqMuiG5cV7AOaECbTSTt0ZhJnJqU19kvc2q9xJ25c+CmC0zYLbT1w4XDOvZzLCRNKpHKcT2NtfWNza7uwY+7u7R8US4dHTRmnAuEGimks2iGUmBKOG4ooituJwJCFFLfCwe3Mbw2xkCTmD2qcYJ/BHicRQVBpKSgVHwMv6ZOKN3x69oaj86BUdmxnDmuVuDkpgxz1oPTtdWOUMswVolDKjuskys+gUARRPDG9VOIEogHs4Y6mHDIs/Wz++MQ600rXimKhhytrrv6+yCCTcsxCvcmg6stlbyb+64VsKVlF135GeJIqzNEiOEqppWJr1orVJQIjRceaQCSI/t1CfSggUro70/Tml9ksJ0AxY5B3pa3waGLqvtzldlZJ88J2L+3qfbVcu8mbK4ATcAoqwAVXoAbuQB00AAIpeAGvYGpMjTfj3fhYrK4Z+c0x+APj6wd+faTU</latexit>

q�(z|x)
<latexit sha1_base64="6dnBWcCIHbjaYnhsz2YfJuEo29o=">AAACH3icbVBNS8NAFNzUrxq/qh69BIvgqSQi6rHoxWMFawUTymbzapfubuLuS7WE/g6v+mu8iVd/jOA27UGrAw+GmfeYx8SZ4AZ9/9OpLCwuLa9UV9219Y3Nrdr2zo1Jc82gzVKR6tuYGhBcQRs5CrjNNFAZC+jEg4uJ3xmCNjxV1zjKIJL0XvEeZxStFIWPPIE+xSIcPo27tbrf8Et4f0kwI3UyQ6tb+wqTlOUSFDJBjbkL/AyjgmrkTMDYDXMDGWUDeg93lioqwURF+fTYO7BK4vVSbUehV6o/LwoqjRnJ2G5Kin0z703Ef71YziVj7ywquMpyBMWmwb1ceJh6k0a8hGtgKEaWUKa5/d1jfaopQ9ub64blZTHJ6bJUSqoS00B4Gru2r2C+nb/k5qgRnDSOr47rzfNZc1WyR/bJIQnIKWmSS9IibcLIA3kmL+TVeXXenHfnY7pacWY3u+QXnM9vLgWkQw==</latexit>bx
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Figure 8: Diagram showcasing the DP training of a VAE (Section 3.2.2). This representation is also
applicable to other DP model training scenarios conforming to privacy barrier B4, e.g., by replacing the
trainable encoder with a non-trainable module.

sanitization scheme is adopted, it can protect against adversaries who can access the white-box generator
(and possibly other trainable components subject to DP sanitization) and the intermediate sanitized gradients
during the whole training process.

General Formulation. In this context, the training pipeline can be generally simplified to the standard
process of training DP classification models. This process, as exemplified by the commonly used DP-SGD
framework, entails bounding sensitivity through gradient clipping and subsequently injecting randomness
into the generator’s gradients. In contrast to category B3, where the upstream gradient gupstream

G undergoes
sanitization, in this case, it is the final generator gradient g

(t)
G (refer to Equation 11) that is being sanitized.

This results in a difference equivalent to the multiplicator of the local generator Jacobian (refer to Equation 12).
Special attention should be paid when implementing DP-SGD here, as additional model components (e.g.,
the encoder in a VAE) alongside the generator could compromise the transparency of the privacy analysis.
It is crucial to ensure that the gradient clipping operation is executed accurately to effectively limit each
individual real sample’s influence on the generator. The presence of an additional model component may
disperse individual effects across multiple gradients within a mini-batch, rendering standard per-example
gradient clipping inadequate (refer to the discussion in the privacy analysis below). Moreover, to optimize
model utility, it is necessary to precisely define the scope of gradient clipping and perturbation to ensure that
the implementation does not introduce unnecessary noise exceeding the desired privacy guarantee.

Representative Methods. Existing works have realized such privacy barrier for various types of generative
models, particularly those within the explicit density category. Examples include DP Normalizing
Flow (Waites & Cummings, 2021; Jiang & Sun, 2023), DP VAE (Chen et al., 2018; Acs et al., 2018; Abay
et al., 2019; Takagi et al., 2021; Pfitzner & Arnrich, 2022), DP Diffusion models (Dockhorn et al., 2022;
Ghalebikesabi et al., 2023; Lyu et al., 2023), and DP training of language models (McMahan et al., 2018; Li
et al., 2022; Mattern et al., 2022; Yue et al., 2023), which collectively illustrate the extensive potential of DP
generators across numerous applications such as natural language generation, density estimation, high-quality
image generation, training downstream models, and model selection. In particular, Ghalebikesabi et al. (2023)
highlighted that certain training techniques advantageous for DP classification models (De et al., 2022), such
as pre-training, utilization of large batch sizes, and augmentation multiplicity (Fort et al., 2021; De et al.,
2022), also show effectiveness when applied to training DP generators in diffusion models. Furthermore,
the work by Jiang & Sun (2023) underscores the potential efficacy of training a DP Flow model within a
compressed, lower-dimensional latent space. This strategy not only circumvents the substantial computational
demands (Rombach et al., 2022), but also synergizes well with DP protocols, given the direct correlation
between the DP noise-to-signal-ratio and the model’s dimensionality.

Privacy Analysis. The privacy analysis follows from the adopted DP mechanism for training the generators,
similar to the standard case of training a DP classifier. A key consideration lies in the correct implementation
and analysis of the privacy cost when the models comprise multiple trainable components, such as the
encoder and decoder in the VAE. In such cases, simply incorporating the DP-SGD into the generator module
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and conducting a standard privacy accountant is inappropriate. This is due to the fact that each training
example’s influence is assimilated into the encoder’s parameters. Consequently, every training example,
even those absent from the current mini-batch, can affect all latent variables (which serve as inputs to
the generator/decoder) in each iteration, rendering the per-example gradient clipping itself insufficient for
bounding the sensitivity. A proper implementation would require either enforcing DP also on the encoder
(i.e., applying DP-SGD on both the encoder and decoder) or factoring this into the privacy cost computation
(i.e., the DP-SGD step on the decoder should be counted as full batch Gaussian mechanism instead of a
subsampled one). Moreover, in situations where each sample in a mini-batch is used more than once, such as
their use over multiple time steps when training diffusion models, the cost must be accounted for every such
occurrence. To deal with this, one can refer to the multiplicity technique (Fort et al., 2021; De et al., 2022;
Ghalebikesabi et al., 2023; Dockhorn et al., 2022), which averages all gradients resulting from each unique
training sample before clipping them.

Analysis, Insights, Implications. Methods in this category are generally easy to implement, particularly
for models with only a generator as the learnable component. This reduces training to the standard
classification cases, demonstrating significant potential and achieving state-of-the-art generation quality when
adapted to the latest generative modeling techniques (Dockhorn et al., 2022; Ghalebikesabi et al., 2023).
However, this privacy barrier setting may not be fully compatible with models containing multiple trainable
components. The reason for this lies in the potential integration of training samples’ effects into the parameters
of components other than the generator (e.g., the encoder in VAEs, the discriminator in GANs), which
substantially complicates the implementation of DP mechanisms and may lead to unexpectedly high privacy
consumption. Moreover, DP methods are bounded by the expressive capability of the underlying generative
model. Particularly in this category, which predominantly relies on explicit density models, the usage of
simple critics (like static ℓ1 or ℓ2 loss functions) tends to restrict the capture of fine details, often delivering
less desirable outcomes compared to trainable critics. For instance, VAEs have commonly produced blurrier
images, whereas GANs pioneered the production of high-resolution photorealistic generations. While recent
advancements in explicit density models have significantly improved their capabilities, particularly through
innovative designs that enable training on extensive datasets, there is a potential limitation concerning their
practical utility. This limitation primarily arises from the substantial need for sensitive training data, which
is essential to achieve a satisfactory performance level with the resulting DP model in real-world applications.
Looking forward, we envision future advancement on balancing the data efficiency and generation performance
could largely improve the practicability of the DP methods under this category.

5 Discussion

5.1 Connection to Related Fields

While the data generation methods investigated in this work are mostly designed to capture the entire
data distribution for general purposes, intriguing results are observed when the generator is intentionally
guided towards enhancing its downstream utility for specific target tasks such as training neural network
classifiers (Chen et al., 2022a) and answering linear queries (Liu et al., 2021). This can be achieved by
employing objectives tailored for downstream tasks, rather than relying solely on general distribution
divergence measures. If downstream tasks can be executed on a specific set of samples and do not require a
complete understanding of the distribution, problem complexity can be further reduced by directly optimizing
the synthetic samples instead of the generative models. This strategy, which trade-off the generality of
general-purpose generative modeling for downstream utility, might be particularly beneficial considering the
high complexity inherent to DP generation. Moreover, such framework naturally aligns with broader fields
such as coreset generation, private query release, private Bayesian inference. In these scenarios, a set of
synthetic data can be optimized to resemble real data for specific tasks (Wang et al., 2018; Bachem et al.,
2017), substitute real data for answering queries to conserve the privacy budget under DP (Hardt & Rothblum,
2010; Hardt et al., 2012), or support privacy-preserving computation of the posterior distribution (Manousakas
et al., 2020; Savitsky et al., 2022).
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5.2 Relation to Other Summary Papers

Several related summary papers complement our work by focusing on different aspects. For instance, Tao
et al. (2021) benchmark multiple DP models for tabular data; Fan (2020) and Cai et al. (2021) discuss early
DP GANs; Jordon et al. (2022) and De Cristofaro (2023) provide high-level overviews of DP synthetic data
generation for non-expert audiences; Hu et al. (2023) covers broad classes of DP data generation methods
without focusing on the technical part of deep generative modeling; Lastly, Ponomareva et al. (2023) offer a
comprehensive summary of developing and deploying general DP ML models, supplementing our focus on the
technical aspects of DP generative modeling.

5.3 Challenges and Future Directions

Public Knowledge. A promising future direction which holds significant practical relevance is the
exploitation of public data/knowledge in training DP generative models. Recent studies have demonstrated
promising improvements in DP generation introduced by leveraging public data (Chen et al., 2021; Liu et al.,
2021; Harder et al., 2022; Lyu et al., 2023) and reported high-quality generation (Ghalebikesabi et al., 2023;
Lin et al., 2023) with the aid of such resources. A prevalent method for leveraging public knowledge involves
utilizing large foundation models, initially pre-trained on public datasets, and subsequently fine-tuned to align
with private data distributions for various applications. This approach is particularly relevant in the field of
natural language processing (NLP), where the widespread availability of foundation models and the typically
significant semantic overlap between public and private data renders DP fine-tuning relatively effective (Li
et al., 2022). Additionally, the rapid growth of efficient fine-tuning techniques also show great potential for
facilitating DP learning (Yu et al., 2021; Duan et al., 2023). While these advancements are particularly
notable in the NLP domain, exploring the specific benefits and most effective strategies for applying these
techniques to other data modalities is a topic that warrants further research. Furthermore, challenges that
are generally associated with private learning on public data (Tramèr et al., 2022) call for further investigation.
In particular, the unique difficulties specific to generative modeling, such as a small tolerance for distribution
shift between the public and private data distributions, warrant additional exploration.

Task-specific Generation. There exists a principled trade-off between the flexibility offered by general-
purpose generative modeling and the utility of task-specific data generation. In particular, capturing
a complete high-dimensional data distribution is a difficult task. This task becomes even harder when
considering the privacy constraints, thus making the models highly data-demanding and almost impossible for
DP model to achieve reasonable performance in practice. It has also been recently questioned to what extend
a well-performing general-purpose DP generative model can be realized at all (Stadler et al., 2022; Stadler
& Troncoso, 2022). While it is difficult to predict how these trade-off develop in the future, task-specific
(or task-guided) data generation can greatly relax the objectives, leading to real-world useful DP synthetic
data (see examples discussed in Section 5.1). On the other hand, such task-specific generation is particularly
advantageous for scenarios where the synthetic data is intentionally designed to be useful only for specific
(benign) tasks, thereby preventing potential unauthorized data misuse.

Conditional Generation. While the formulas presented throughout Section 4 are illustrated through
unconditional generation for simplicity and clarity, in practice, DP generation is typically executed in a
conditional manner, whereby samples are generated given specific input conditions. Although implementing
conditional generation is technically straightforward for all generative network backbones (Mirza & Osindero,
2014; Sohn et al., 2015; Odena et al., 2017; Winkler et al., 2019), it might necessitate additional consideration
with respect to the privacy analysis. For instance, when modeling the class-conditional data feature
distribution, an additional privacy budget may be allocated to learn the class label occurrence ratio for
addressing class imbalance (Harder et al., 2021), contrasting with other methodologies that typically employ
a data-independent uniform class-label distribution. Moreover, certain situations necessitate meticulous
investigation into privacy implications and performance. Firstly, when the training process employs conditional
(e.g., per-label class) sampling, additional consideration for privacy cost is imperative, as this contradicts the
requirements of random sub-sampling incorporated in standard privacy cost computations. Secondly, some
generative modules may integrate such conditional information in non-trivial ways (e.g., being embedded into

20



Published in Transactions on Machine Learning Research (04/2024)

the module parameters beyond mere gradients (Karras et al., 2020)). This integration can mean that the
conditional input might no longer be protected under DP guarantees via a vanilla DP sanitization scheme.
These scenarios necessitate further exploration to ensure the reliability of privacy protections and to facilitate
the development of more effective utility-preserving DP generative models.

Federated Learning. DP data generation models have also shown promising potential in applications
related to federated training (Augenstein et al., 2019; Xin et al., 2020; Zhang et al., 2021; Triastcyn & Faltings,
2020), facilitating tasks such as privacy-preserving data inspection and debugging that were previously
infeasible due to privacy constraints. Specifically, Augenstein et al. (2019) incorporated DP-SGD into the
training of a GAN in a federated setting, where each client maintains a local GAN model and communicates
the gradients to the server during each communication round, with the gradients being sanitized under DP
noise. Moreover, Chen et al. (2020a) illustrated that the privacy barrier B3 (Section 4.3) is seamlessly
compatible with the federated training setting. In this context, only the upstream gradient (Equation 12)
needs to be communicated, offering additional benefits such as improved communication efficiency. More
recently, task-specific DP generation has proven particularly advantageous in alleviating non-iid challenges
and enhancing convergence speed for federated learning (Xiong et al., 2023; Wang et al., 2023). Although
these approaches might still require a substantial amount of client local data and computational resources,
the future development of efficient algorithms is anticipated to yield fruitful outcomes.

Evaluation and Auditing. Evaluating generative models has historically posed a significant challenge (Lucic
et al., 2018), and the same holds true for DP generation methods. While evaluating them based on specific
downstream tasks has been a common approach in existing literature, it has become evident that relying
solely on a single metric may be inadequate. This limitation arises from the general lack of alignment among
various aspects, including downstream utility, statistical properties, and visual appearance (Alaa et al., 2022;
Stadler & Troncoso, 2022; Chen et al., 2022a; Ganev et al., 2022). Consequently, there arises a need for
future investigations into comprehensive metrics that consider mixed objectives to more effectively address a
wide range of potential practical applications.

Furthermore, assessing the privacy guarantees of DP generators against real-world attacks (i.e., “audit-
ing” (Jagielski et al., 2020; Nasr et al., 2023)), and quantifying the privacy risk associated with synthetic
data (Stadler & Troncoso, 2022; Houssiau et al., 2022), presents a particularly intricate challenge for generative
models. This complexity primarily arises from two key factors. Firstly, the measurement of privacy risks
often conflicts with the primary objective of maximum likelihood, which aims to precisely fit the training data.
While achieving an exact alignment with the training data aligns with training objectives, it raises a debatable
question about compromising privacy protection. Deciding whether an exact match should be regarded as a
privacy breach in such cases remains a matter of debate. Secondly, generative models typically exhibit low
sensitivity to privacy attacks (Hayes et al., 2017; Chen et al., 2020b), which diminishes the informativeness of
computed auditing scores. These challenges highlight the need for dedicated design tailored to the auditing
of DP generative models.

6 Conclusion

In summary, we introduce a unified view coupled with a novel taxonomy that effectively characterizes existing
approaches in DP deep generative modeling. Our taxonomy, which encompasses critical aspects such as
threat models, general formulation, detailed descriptions, privacy analysis, as well as insights and broader
implications, provides a consolidated platform for systematically exploring potential innovative methodologies
while leveraging the strengths of existing techniques. Furthermore, we present a comprehensive introduction
to the core principles of DP and generative modeling, accompanied by substantial insights and discussions
regarding essential considerations for future research in this area.
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Appendix

A Summary of Existing Works

Approach Privacy Privacy Sensitivity Generative DP Code
barrier notion type framework framework

DP-Merf (Harder et al., 2021) B1 Replace-one Global Distribution matching Gaussian 1

DP-SWD (Rakotomamonjy & Liva, 2021) B1 Replace-one Smooth Distribution matching Gaussian 2

PEARL (Liew et al., 2021) B1 Replace-one Global Distribution matching Gaussian 3

DP-HP Vinaroz et al. (2022) B1 Replace-one Global Distribution matching Gaussian 4

DP-GEN (Chen et al., 2022b) ∼B1 – – Energy-based model – 5

Harder et al. (2022) B1 Replace-one Global Distribution matching Gaussian 6

DP-NTK (Yang et al., 2023) B1 Replace-one Global Distribution matching Gaussian 7

DPSDA (Lin et al., 2023) B1 Add-or-remove-one Global Diffusion Gaussian 8

SPRINT-gan (Beaulieu-Jones et al., 2017) B2 Add-or-remove-one Global GAN DP-SGD 9

dp-GAN (Zhang et al., 2018) B2 Add-or-remove-one Global GAN DP-SGD 10

DPGAN Xie et al. (2018) B2 Add-or-remove-one Global GAN DP-SGD 11

Triastcyn & Faltings (2018) B2 Add-or-remove-one – GAN empirical DP –
PATE-GAN (Yoon et al., 2019) B2 Both Local GAN PATE 12

Alzantot & Srivastava (2019) B2 Add-or-remove-one Global GAN DP-SGD 13

Xu et al. (2019) B2 Add-or-remove-one Global GAN DP-SGD –
DP-CGAN (Torkzadehmahani et al., 2019) B2 Add-or-remove-one Global GAN DP-SGD 14

Frigerio et al. (2019) B2 Add-or-remove-one Global GAN DP-SGD 15

DPMI (Chen et al., 2021) B2 Add-or-remove-one Global GAN DP-SGD –
DPautoGAN (Tantipongpipat et al., 2021) B2 Add-or-remove-one Global GAN DP-SGD 16

Private-Set (Chen et al., 2022a) B2 Add-or-remove-one Global Distribution matching DP-SGD 17

Bie et al. (2023) B2 Add-or-remove-one Global GAN DP-SGD –
GS-WGAN (Chen et al., 2020a) B3 Both Global GAN DP-SGD 18

G-PATE (Long et al., 2021) B3 Both Local GAN PATE 19

DataLens (Wang et al., 2021) B3 Both Global/Local GAN PATE 20

DP-Sinkhorn (Cao et al., 2021) B3 Both Global Distribution matching DP-SGD 21

DP-GM (Acs et al., 2018) B4 Add-or-remove-one Global VAE DP-SGD –
DP-VaeGM (Chen et al., 2018) B4 Add-or-remove-one Global VAE , AE+ DP-SGD –
DP-SYN (Abay et al., 2019) B4 Add-or-remove-one Global AE+ DP-SGD –
P3GM (Takagi et al., 2021) B4 Add-or-remove-one Global VAE DP-SGD 22

DP-NF (Waites & Cummings, 2021) B4 Add-or-remove-one Global Flow DP-SGD 23

DP2-VAE (Jiang et al., 2022) B4 Add-or-remove-one Global VAE DP-SGD –
DPDM (Dockhorn et al., 2022) B4 Add-or-remove-one Global Diffusion DP-SGD 24

Ghalebikesabi et al. (2023) B4 Add-or-remove-one Global Diffusion DP-SGD –
DP-LDM (Lyu et al., 2023) B4 Add-or-remove-one Global Diffusion DP-SGD 25

DP-LFlow Jiang & Sun (2023) B4 Add-or-remove-one Global Flow DP-SGD 26

Table 1: Table summary of existing works most relevant to our contributions. The shaded area corresponds
to approaches that require public data features.
1 https://github.com/ParkLabML/DP-MERF
2 https://github.com/arakotom/dp_swd
3 https://github.com/spliew/pearl
4 https://github.com/parklabml/dp-hp
5 https://github.com/chiamuyu/DPGEN
6 https://github.com/ParkLabML/DP-MERF
7 https://github.com/FreddieNeverLeft/DP-NTK
8 https://github.com/microsoft/DPSDA
9 https://github.com/greenelab/SPRINT_gan
10 https://github.com/alps-lab/dpgan
11 https://github.com/illidanlab/dpgan
12 https://github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/pategan
13 https://github.com/nesl/nist_differential_privacy_synthetic_data_challenge/
14 https://github.com/reihaneh-torkzadehmahani/DP-CGAN
15 https://github.com/SAP-samples/security-research-differentially-private-generative-models
16 https://github.com/DPautoGAN/DPautoGAN
17 https://github.com/DingfanChen/Private-Set
18 https://github.com/DingfanChen/GS-WGAN
19 https://github.com/AI-secure/G-PATE
20 https://github.com/AI-secure/DataLens
21 https://github.com/nv-tlabs/DP-Sinkhorn_code
22 https://github.com/tkgsn/P3GM
23 https://github.com/ChrisWaites/jax-flows/tree/master/research/dp-flows
24 https://github.com/nv-tlabs/DPDM
25 https://github.com/SaiyueLyu/DP-LDM
26 https://github.com/dihjiang/DP-LFlow
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Note that the DP training of language models typically falls within DP generative modeling and can be
categorized as the “within generator” category in our taxonomy. However, the training strategies adopted
are more akin to the DP training of general (discriminative) models, which is not the primary focus of our
work. Hence, these approaches are not exhaustively mentioned in the table above.

B Additional Notes on Potential Methods with Privacy Barrier B1

In the DP deep generative modeling literature, existing approaches with privacy barrier between Real data and
Measurement (Section 4.1) typically release sanitized features in a condensed and aggregated form. In this
sense, recent approaches, which may deviate from the general “mean embedding” formulation (as shown in
Equation 3-4), but still publish a sanitized statistical summary of the private dataset, such as DPSDA (Lin
et al., 2023), fall into this category. Specifically, DPSDA sanitizes a count histogram that summarizes the
distribution of real data and employs it as a measurement to refine the synthetic data distribution, thereby
rendering it more similar to the real private data distribution.

However, one might wonder if it is feasible to release a DP database in the original form of the real data, prior
to the training of a generative model. A positive example of this idea can be found in the Small Database
Mechanism (SmallDB) in the context of private query release, introduced in Section 4.1 of Dwork et al.
(2014). This mechanism outputs a sanitized database in the same form as the original data, by selecting
the database (from all possible sets of the data universe) via the exponential mechanism with a utility
function of the negative error to the query release problem (difference in the query answer on the synthetic
versus the real database). However, as the name suggests, the use of such an algorithm is largely limited
to small (low-dimensional) datasets. This is mainly due to the exponential growth of the data universe
with dimensionality, which drastically increases the computational burden and undermines the accuracy
guarantees.

While DP-GEN (Chen et al., 2022b) attempted to apply a similar idea to deep generative models, the
output space of their generation method only supports (has non-zero probability) combinations of its input
private dataset (See detailed proofs in Appendix B of Dockhorn et al. (2022)), instead of the entire data
universe. This invalidates their claimed privacy guarantee, and the performance of a proper implementation
of such a “direct database release” approach on high-dimensional data remains unclear.

C Additional Sensitivity Analysis

C.1 Privacy barrier B1

Sensitivity of DP-Merf (Harder et al., 2021) and the General Formulation in Section 4.1. It can
be clearly seen that the ℓ2-sensitivity for the replace-one notion is 2

m , where m = |D| represents the size of
the private dataset, as demonstrated in the original paper. Subsequently, we proceed to derive a conservative
bound for the sensitivity value in the DP-Merf method under the add-or-remove-one DP notion, which can be
generalized to other approaches within the same category (Section 4.1), including Liew et al. (2021); Vinaroz
et al. (2022); Harder et al. (2022); Yang et al. (2023). For the add-one case, we let m = |D| and assume,
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without loss of generality, that D′ = D ∪ {x′
m+1} and x′

i = xi for all i = 1, ...,m.
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where A =
∑m

i=1 ϕ(xi) for brevity. The inequalities follow from the triangle inequality and the fact that
∥ϕ(·)∥2 = 1

Similarly, for the remove-one case, we let m = |D|, D′ ∪ {xm} = D and x′
i = xi for all i = 1, ...,m− 1.

∆2 = max
D,D′

∥∥∥ 1
m− 1

m−1∑
i=1

ϕ(x′
i)−

1
m

m∑
i=1

ϕ(xi)
∥∥∥

2

= max
xm,A

∥∥∥ 1
m− 1A− 1

m
(A + ϕ(xm))

∥∥∥
2

= max
xm,A

∥∥∥ 1
(m− 1)mA− 1

m
ϕ(xm)

∥∥∥
2

≤ max
A

∥∥∥ 1
(m− 1)mA

∥∥∥
2

+ max
xm

∥∥∥ 1
m
ϕ(xm)

∥∥∥
2

≤ 1
(m− 1)m (m− 1) + 1

m
= 2
m

with A =
∑m−1

i=1 ϕ(xi). The inequalities follow from the triangle inequality and the fact that ∥ϕ(·)∥2 = 1

Sensitivity of DP-SWD (Rakotomamonjy & Liva, 2021). The sensitivity is calculated as the maximum
difference over two embeddings, determined after performing random projections on two neighboring datasets.
The "replace-one" notion is adopted to simplify the analysis. With a probability of at least 1− δ, it can be
shown that:

∥XU −X ′U∥2
F ≤ w(k, δ)

with w(k, δ) = k
d + 2

3 ln 1
δ + 2

d

√
k d−1

d+2 ln 1
δ . Here X,X ′ denote data matrices in R|D|×d for neighboring datasets

D,D′ under the bounded-DP notion, while U ∈ Rd×k represents the random projection matrix with each
column independently drawn from Sd−1. Additionally, it is ensured that ∥Xi,: −X ′

i,:∥2 ≤ 1 for all i by
pre-processing the dataset, making each sample record have unit norm. To prove the desired result, the
sensitivity is first transformed into a summation of k i.i.d random variables following the beta distribution
B(1/2, (d − 1)/2), which then allows the application of Bernstein’s inequality to establish concentration
bounds for the summation. For a more detailed proof, please refer to Appendix 8.1-8.2 in Rakotomamonjy &
Liva (2021).

Sensitivity of DPSDA (Lin et al., 2023). The core component of DPSDA is the method of constructing
a nearest neighbors histogram that describes the real data distribution while providing DP guarantees (refer
to Algorithm 2 in Lin et al. (2023)). Specifically, for every real sample xi in the private dataset D, the
algorithm identifies its nearest synthetic counterparts and constructs a histogram. This histogram represents
the frequency of each existing synthetic sample sk being the closest to the real samples. Given a synthetic
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dataset consisting of n samples {sk}n
k=1 and let m = |D|:

hj =
∣∣i : i ∈ [m], j = arg min

k∈[n]
d(xi, sk)

∣∣ for j = 1, ..., n

where h = (h1, ..., hn) builds up the histogram with each hj reflecting the number of real samples for which
the corresponding synthetic sample sj is the nearest neighbor, based on the distance metric d. Subsequently,
DP Gaussian noise is added to the histogram for providing privacy guarantees: h = h +N (0, σI).

For the add-or-remove-one notion, we can assume that w.l.o.g. the neighboring datasets D,D′ satisfy
D′ ∪ {xm} = D (or D′ = D ∪ {xm}). Let sj be the closest synthetic sample to xm and h,h′ represent the
histograms on D and D′ respectively. The ℓ2-sensitivity is then given by:

∆2 = max
D,D′

∥(h1, · · · , hn)− (h′
1, · · · , h′

n)∥2

= max
hj ,h′

j

∥(0, ..., 0, hj − h′
j , 0, ..., 0)∥2

= 1

For the replace-one notion, we define neighboring datasets D,D′ to satisfy D′ ∪ {xm} = D ∪ {x′
m} with

xm ̸= x′
m. The ℓ2-sensitivity is defined by:

∆2 = max
D,D′

∥(h1, · · · , hn)− (h′
1, · · · , h′

n)∥2

= max
hj ,h′

j
,hk,h′

k

∥(0, ..., 0, hj − h′
j , 0, ..., 0, hk − h′

k, 0, ..., 0)∥2

=
√

12 + 12 =
√

2

where sj and sk are the closet synthetic samples to xm and x′
m respectively, while w.l.o.g. j < k.

C.2 Privacy barrier B2

The sensitivity analysis for methods in this category inherits the approach used in the DP-SGD and the
PATE framework, which is presented below.

Sensitivity of DP-SGD (Section 2.1.1). The main component of the DP-SGD algorithm can be
formalized as follows:

Clip: ḡt(xi)← gt(xi)/max
(

1, ∥gt(xi)∥2

C

)
Add noise: g̃t ←

1
B

( ∑
i

ḡt(xi) +N (0, σ2C2I)
)

where gt(xi) = ∇θt
L(θt,xi) denotes the gradient on sample xi at iteration t, C represents the clipping

bound, B is the batch size, σ is the noise scale, and the summation is taken over all samples in the batch.
The sensitivity in DP-SGD is computed as:

∆2 = max
D,D′

∥
∑

i

ḡt(xi)−
∑

i

ḡt(x′
i)∥2

For the add-or-remove-one DP notion, let D′,D only differ in the existence of x′
i, i.e., D′ = D ∪ {x′

i}, it is
easy to see that

∆2 = max
x′

i

∥ḡt(x′
i)∥2 ≤ C

For the replace-one DP notion, w.l.o.g. let D′ ∪ {x′
i} = D ∪ {xi}, thus

∆2 = max
x′

i
,xi

∥ḡt(xi)− ḡt(x′
i)∥2 ≤ 2C
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due to the triangle inequality.

Sensitivity of PATE (Section 2.1.2). Given m teachers, c possible label classes and an input vector x,
the “votes” of teachers that assign class j to a query input x̄ is denoted as:

nj(x̄) = |i : i ∈ [m], fi(x̄) = j| for j = 1, ..., c

with fi denotes the i-th teacher model. And the histogram of the teachers’ vote histogram is:

n̄(x̄) = (n1, · · · , nc) ∈ Nc

As each training data sample only influences a single teacher due to the disjoint partitioning, changing one
data sample in the training dataset—whether it’s removal, addition, or replacement—will at most alter the
votes (by 1) for two classes, denoted here as classes i and j, on any possible query sample x̄. Let the vote
histograms resulting from neighboring datasets D,D′ be (n1, · · · , nc) and (n′

1, · · · , n′
c) respectively, the global

sensitivity can be represented as:

∆1 = max
D,D′

∥(n1, · · · , nc)− (n′
1, · · · , n′

c)∥1

= max
ni,n′

i
,nj ,n′

j

∥(0, ..., 0, ni − n′
i, 0, ..., 0, nj − n′

j , 0, ..., 0)∥1

= max
ni,n′

i

|ni − n′
i|+ max

nj ,n′
j

|nj − n′
j | ≤ 2

∆2 = max
ni,n′

i
,nj ,n′

j

∥(0, ..., 0, ni − n′
i, 0, ..., 0, nj − n′

j , 0, ..., 0)∥2

= max
ni,n′

i
,nj ,n′

j

√
(ni − n′

i)2 + (nj − n′
j)2 ≤

√
2

This holds for all possible query samples x̄.

The ℓ1- and ℓ2-sensitivities calibrate the two variants of noise mechanisms used in PATE: the Gaussian
NoisyMax (GNMax) and the max-of-Laplacian (LNMax). The GNMax is defined as:

PATEσ(x̄) = arg max
j∈[c]

{nj(x̄) +N (0, σ2)}

and the LNMax as:
PATEγ(x̄) = arg max

j∈[c]
{nj(x̄) + Lap(1/γ)}

C.3 Privacy barrier B3

Sensitivity of GS-WGAN (Chen et al., 2020a) and DP-Sinkhorn (Cao et al., 2021). The
sensitivity for both GS-WGAN and DP-Sinkhorn can be derived via triangle inequality:

∆2 = max
D,D′

∥f(gupstream
G )− f(g′

G
upstream)∥2

≤ max
D
∥f(gupstream

G )∥2 + max
D′
∥f(g′

G
upstream)∥2

≤ 2C

with f denoting the gradient clipping operation and C the clipping bound. Notably, no matter which privacy
notion is used, both terms (maxD ∥f(gupstream

G )∥2 and maxD′ ∥f(g′
G

upstream)∥2) are upper-bounded by the
gradient clipping bound C.
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Sensitivity of DataLens (Wang et al., 2021). Given m teachers, the d-dimensional gradients yielded
from each teacher i after applying top-k sign quantization take the following form (refer to Algorithm 2 in
Wang et al. (2021)):

ĝi ∈ {0, 1,−1}d with ∥ĝi∥1 = k and ∥ĝi∥2 =
√
k

In other words, gi contains exactly k non-zero elements, with the non-zero elements taking values of either 1
or −1, depending on the sign of the original upstream gradient.

Consider gradient sets {ĝi}m
i=1 and {ĝ′

i}m
i=1 which originate from neighboring datasets D and D′ respectively.

As the influence of each data point is limited to a single teacher model, these gradient sets differ by at most
one element. Without loss of generality, let’s assume they diverge in the i-th element. The ℓ2-sensitivity is
then computed as follows:

∆2 = max
D,D′

∥∥∥ m∑
i=1

ĝi −
m∑

i=1
ĝ′

i

∥∥∥
2

= max
ĝi,ĝ′

i

∥∥ĝi − ĝ′
i

∥∥
2

≤ ∥ĝi∥2 + ∥ĝ′
i∥2 = 2

√
k

C.4 Privacy barrier B4

The sensitivity analysis for methods in this category adheres to the DP-SGD framework. While special
considerations may be required to ensure the implementation correctly adheres to this framework, these
considerations typically do not alter the sensitivity analysis itself.

D Additional Background on Privacy Cost Accumulation

Theorem 2.2 (presented in Section 2) provides a straightforward method for calculating the aggregated privacy
cost when composing multiple (potentially heterogeneous) DP mechanisms. In this section, we present more
details regarding determining the accumulated privacy cost over multiple executions of sampled Gaussian
mechanisms (Definition D.1).
Definition D.1 (Sampled Gaussian Mechanism (SGM) (Abadi et al., 2016; Mironov et al., 2019)). Let f be
an arbitrary function mapping subsets of D to Rd. The sampled Gaussian mechanism (SGM) parametrized
with the sampling rate 0 < q ≤ 1 and the noise multiplier σ > 0 is defined as

SGq,σ
∆= f ({x : x ∈ D is sampled with probability q}) +N (0, σ2Id)

where each element of D is sampled independently at random with probability q without replacement.

The sampled Gaussian mechanism consists of adding i.i.d Gaussian noise with zero mean and variance σ2

to each coordinate of the true output of f , i.e., SGq,σ injects random vectors from a multivariate isotropic
Gaussian distribution N (0, σ2Id) and into the true output, where Id is written as I if unambiguous in the
given context.
Theorem D.1. (Mironov et al., 2019) Let SGq,σ be the sampled Gaussian mechanism for some function f
with ∆2

f ≤ 1 for any adjacent D,D′ under the add-or-remove-one notion. Then SGq,σ satisfies (α, ρ)-RDP if

ρ ≤ Dα

(
N (0, σ2)

∥∥ (1− q)N (0, σ2) + qN (1, σ2)
)

and ρ ≤ Dα

(
(1− q)N (0, σ2) + qN (1, σ2)

∥∥N (0, σ2)
)

Theorem D.1 reduce the problem of proving the RDP bound for SGq,σ to a simple special case of a mixture
of one-dimensional Gaussians.
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Theorem D.2. (Mironov et al., 2019) Let SGq,σ be the sampled Gaussian mechanism for some function
f and under the assumption ∆2

f ≤ 1 for any adjacent D,D′ under the add-or-remove-one notion. Let µ0
denote the pdf of N (0, σ2), µ1 denote the pdf of N (1, σ2), and let µ be the mixture of two Gaussians
µ = (1− q)µ0 + qµ1. Then SGq,σ satisfies (α, ρ)-RDP if

ρ ≤ 1
α− 1 log (max{Aα, Bα})

where

Aα
∆= Ez∼µ0 [(µ(z)/µ0(z))α]

Bα
∆= Ez∼µ[(µ0(z)/µ(z))α]

Theorem D.2 states that applying SGM to a function of sensitivity (Equation 2.3) at most 1 satisfies (α, ρ)-
RDP if ρ ≤ 1

α−1 log(max{Aα, Bα}). Thus, analyzing RDP properties of SGM is equivalent to upper bounding
Aα and Bα.
Corollary D.1. (Mironov et al., 2019) Aα ≥ Bα for any α ≥ 1.

This allows reformulation of the RDP bound as

ρ ≤ 1
α− 1 logAα

The Aα can be calculated for a range of α values using the numerically stable computation approach presented
in Section 3.3 of Mironov et al. (2019), which is implemented in standard DP packages such as Opacus27 and
Tensorflow-privacy28. Then, the smallest Aα (tightest bound) is used to upper bound ρ and later the RDP
privacy cost is converted to (ε, δ)-DP via Theorem 2.3. Notably, this approach generalizes previous results
such as moment accountant (Abadi et al., 2016) (See Table 1 in Mironov et al. (2019) for a summary).

27 https://opacus.ai/
28 https://github.com/tensorflow/privacy
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