
Under review as a conference paper at ICLR 2021

FEDERATED MIXTURE OF EXPERTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) has emerged as the predominant approach for collabora-
tive training of neural network models across multiple users, without the need to
gather the data at a central location. One of the important challenges in this set-
ting is data heterogeneity; different users have different data characteristics. For
this reason, training and using a single global model might be suboptimal when
considering the performance of each of the individual user’s data. In this work,
we tackle this problem via Federated Mixture of Experts, FedMix, a framework
that allows us to train an ensemble of specialized models. FedMix adaptively
selects and trains a user-specific selection of the ensemble members. We show
that users with similar data characteristics select the same members and therefore
share statistical strength while mitigating the effect of non-i.i.d data. Empirically,
we show through an extensive experimental evaluation that FedMix improves
performance compared to using a single global model while requiring similar or
less communication costs.

1 INTRODUCTION

Figure 1: A sliding window of the gradient
divergence (defined in Appendix D), on Ci-
far10 in the setup of Section 4 for FedAvg
and FedMix (K = 4).

An ever-increasing amount of devices are being con-
nected to the internet, sensing their environment, and
generating vast amounts of data. The term federated
learning (FL) has been established to describe the
scenario where we aim to learn from the data gener-
ated by this “federation” of devices (McMahan et al.,
2016). Not only does the number of sensing devices
increase, but also their processing power is increas-
ing continuously to the point that it becomes viable
to perform inference and training of machine learn-
ing models on device. In federated learning, the goal
is to learn from these client devices’ data without
collecting the data centrally, which naturally allows
for more private exchange of information.

Several challenges arise in the federated scenario.
Federated devices are generally resource-constrained, both in their computational capacity as well
as in communication bandwidth and latency. In a practical example, a smartphone has limited heat
dissipation capacity and must communicate via Wi-Fi. From a global perspective, devices’ pro-
cessing power and network connection can be highly heterogeneous across geographical regions
and socio-economical status of device owners, causing practical issues (Bonawitz et al., 2019) and
raising questions of fairness in FL (Li et al., 2019; Mohri et al., 2019).

One of the key challenges in FL that we aim to address in this work is the non-i.i.d nature of the
shards of data that are distributed across devices. In non-federated machine learning, assuming
independent and identically distributed data is generally justifiable and not detrimental to model
performance. In FL however, each client performs a series of parameter updates on its own data
shard to amortize the costs of communication. Over time, the direction of progress across shards
with non-i.i.d data starts diverging (as shown in Figure 1), which can set back training progress,
significantly slow down convergence and decrease model performance (Hsu et al., 2019).

To this end, we propose Federated Mixture of Experts (FedMix), an algorithm for FL that allows
for training an ensemble of specialized models instead of a single global model. In FedMix, expert

1

Under review as a conference paper at ICLR 2021

models are learning to specialize in regions of the input space such that, for a given expert, each
client’s progress on that expert is aligned. FedMix allows each client to learn which experts are
relevant for its shard and we show how it can be extended for inference on a previously unseen
client. FedMix shows competitive performance against the established standard in FL, FedAvg
(McMahan et al., 2016; Deng et al., 2020) across a range of visual classification tasks. Code will be
released upon publication.

2 FEDERATED MIXTURE OF EXPERTS

Federated learning (McMahan et al., 2016) deals with the problem of learning a server model with
parameters w, e.g., a neural network, from a datasetD = {(x1, y1), . . . , (xN , yN)} ofN datapoints
that is distributed across S shards, i.e., D = D1 ∪ · · · ∪ DS , without accessing the shard specific
datasets directly. By defining a loss function Ls(Ds;w) per shard, the total risk can be written as

arg min
w

S∑
s=1

Ns
N
Ls(Ds;w), Ls(Ds;w) :=

1

Ns

Ns∑
i=1

L(Dsi;w). (1)

It is easy to see that this objective corresponds to empirical risk minimization over the joint datasetD
with a loss L(·) for each datapoint. In federated learning one is interested in reducing the communi-
cation costs; for this reason McMahan et al. (2016) propose to do multiple gradient updates for w in
the inner optimization objective for each shard s, thus obtaining “local” models with parameters ws.
These multiple gradient updates are denoted as “local epochs”, i.e., amount of passes through the en-
tire local dataset, with an abbreviation of E. Each of the shards then communicates the local model
ws to the server and the server updates the global model at “round” t by averaging the parameters
of the local models wt =

∑
s
Ns
N wt

s. This constitutes federated averaging (FedAvg) (McMahan
et al., 2016), the standard in federated learning.

One of the main challenges in federated learning is the fact that usually the data are non-i.i.d. dis-
tributed across the shards S, that is p(D|si) 6= p(D|sj) for i 6= j. On the one hand, this can make
learning a single global model from all of the data with the classical FedAvg problematic. On the
other hand, there is one extreme that does not suffer from this issue; learning S individual models,
i.e., only optimizing ws on Ds. Although these individual models by definition do not suffer from
non-i.i.d data, clearly we should aim to do better and exchange meaningful information between
clients to learn more robust and expressive models.

2.1 THE FEDMIX ALGORITHM

y

x z

s

Figure 2: FedMix graphical model. The
generative model is depicted with solid lines
and the inference model with dashed lines.

With FedMix, we propose to strike a balance be-
tween the two aforementioned extremes; learning a
single global model and learning S individual mod-
els. For this reason, we revisit an old model for-
mulation, the Mixture of Experts (MoE). The clas-
sical formulation of a MoE model (Jacobs et al.,
1991; Jordan & Jacobs, 1994) contains a set ofK ex-
perts and a gating mechanism that is responsible for
choosing an expert for a given data-point. A MoE
model for a data point (x, y) can generally be de-
scribed by

pw1:K ,θ(y|x) =

K∑
z=1

pwz (y|x, z)pθ(z|x), (2)

where z is a categorical variable that denotes the expert, wk are the parameters of expert k and θ are
the parameters of the selection mechanism.

The MoE was proposed as a model for datasets where different subsets of the data exhibit different
relationships between input x and output y. Instead of training a single global model to fit this
relationship everywhere, each expert performs well on a different subset of the input space. The
gating function models the decision boundary between input regions, assigning data-points from
subsets of the input region to their respective experts.

2

Under review as a conference paper at ICLR 2021

In this work, we show that, in the federated scenario, sub-dividing the input region through a MoE
can alleviate the consequences of non-i.i.d data by aligning gradient updates across experts (Figure
1). In Federated Mixture of Experts (FedMix) we enrich this model by conditioning the gating
mechanism on the shard assignment s. Whatever characteristics make shard s different from other
shards can manifest in learning a different, localized gating mechanism that does not need to be
communicated to the server. In choosingK = 1, FedMix recovers the standard setting of federated
averaging. K = S in combination with fixing p(z = s|x, s) = 1 recovers S independent models.

From a global perspective, we are interested in maximizing the following single objective:
S∑
s=1

Ns∑
i=1

log pw1:K ,θs(ys,i|xs,i, s)=

S∑
s=1

Ns∑
i=1

log
[K∑
z=1

pθs(z|xs,i, s)pwz (ys,i|xs,i, z)
]

(3)

Given the graphical model decomposition depicted in Figure 2, the objective in Eq. 3 corresponds
to a federated MoE, where we have omitted the generative models p(x|s). We will briefly touch
upon the role of learning generative models in Appendix F but focus on the discriminative part of
the model, i.e., the MoE, in this paper.

While it is possible to optimize Eq. 3 directly, we have found empirically that it is hard to achieve
both: avoiding collapse to a single expert, thus obtaining FedAvg, and specialization of the
experts. Instead, we propose to form a variational lower-bound on Eq. 3 with a global varia-
tional approximation qφ(z| . . .) to the true posterior p(z|x, y, s) with parameters φ. At test time,
p(y|x∗, s) =

∑K
k=1 p(y|x∗, z)p(z|x∗, s) can be readily evaluated without requiring q. This allows

us to condition qφ(z| . . .) on any available side-information at training time that might result in bet-
ter specialization in the non-i.i.d federated scenario. In this paper we mainly consider classification
tasks whose non-i.i.d nature predominantly stems from the non-i.i.d distribution of labels y. Other
or additional known sources of misalignment could be included to further improve this approxima-
tion, such as a manufacturer-id for a medical device in a medical scenario, a geographic identifier,
or general domain-specific information. We show one such additional example in 4.2. The lower
bound to be maximized in FedMix therefore is as follows:
S∑
s=1

Ns∑
i=1

logpw1:K ,θs(ys,i|xs,i, s) (4)

≥
S∑
s=1

Ns∑
i=1

K∑
z=1

qφ(z|ys,i)[log pwz (ys,i|xs,i, z)pθs(z|xs,i, s)− log qφ(z|ys,i)] (5)

=

S∑
s=1

Ns∑
i=1

(
K∑
z=1

qφ(z|ys,i)[log pwz (ys,i|xs,i, z)pθs(z|xs,i, s)]

)
+H(qφ(z|ys,i)). (6)

Figure 3: The effect of specialisation (with-
out H(q)) compared to an ensemble (with
H(q)) and FedAvg on Cifar10. The experi-
mental setup is identical to what is described
in Section 4.

Conditioning only on y allows us to efficiently pa-
rameterize the variational approximation, incurring
only a small communication overhead. While it
would be possible to condition qφ(z|y) on s, thus
having localized approximations with parameters φs
that do not need to be communicated, we found a
global approximation to help align the gating mech-
anisms across shards. A global qφ(z|y) encourages
shards that contain data with the same label to assign
them to the same expert.

Specialization of the experts is a key ingredient for
FedMix to be successful; with specialization, the
gradients for each expert become aligned across
shards (see Figure 1), the hold-out accuracy im-
proves (see Figure 3), and the communication costs
decrease as each shard may only need to access a

subset of the experts. We find that performing maximum a-posteriori (MAP) inference for z gener-
ally leads to better and more personalized models. By removing the entropy term from equation 4,
qφ(z|y) and therefore pθs(z|x, s) are encouraged to concentrate and select only one expert for a

3

Under review as a conference paper at ICLR 2021

given data point. In the extreme case where a client’s shard contains only data that is assigned to the
same expert, we can reduce communication by receiving and sending updates for that single expert
only. We show in Section 4 that communicating and evaluating experts based on thresholding the
aggregate qφ(z|s) = Ey∼Ds [qφ(z|y)] can reduce communication and computation overhead.

Figure 3 compares FedMix with and without the entropy term to standard FedAvg as a func-
tion of communication steps. With the entropy term, FedMix develops no expert specializa-
tion and collapses to an ensemble of K = 4 models. One drawback of the heavy specializa-
tion with MAP inference is that sometimes FedMix prematurely completely prunes experts, i.e.,
pθs(z = k|x, s) ≈ 0 ∀x, s. This can be undesirable as we lose model capacity that can be used for
better modeling the data. As qφ(z|y) is one of the main training signals of pθs(z|x, s), we introduce
the marginal entropy term in the server, H(Ep(y)[qφ(z|y)]), as a regularizer. Notice that this leads to
different training dynamics than locally optimizing the lower bound with the entropy included and
we, empirically, found that it alleviates premature pruning, while still leading to specialized models.
Figure 14a in Appendix H visualizes the development of qφ(z|y) over time from initially uniform to
high specialisation for the experiment depicted in Figure 3.

Server Side Updates In a general federated learning algorithm, a central server selects a subset
S′ ⊂ {1, . . . , S} of clients at time t and transmits the current estimate of the global parameters wt

to them. These clients perform a series of mini-batch gradient updates with data from their shard
Ds on a local loss function, which can come at the price of each client moving in possibly different
directions in parameter space. In generalized FedAvg (Reddi et al., 2020), the server interprets
∆t
s = wt − wt+1

s as a single-step gradient update from client s, averages those gradients and
applies an optimizer such as Adam (Kingma & Ba, 2014) to receive wt+1. In light of non-i.i.d data
across clients, this averaging strategy can result in slow progress since averaging updates in a highly
non-convex parameter space can be sub-optimal. In FedMix, this effect is mitigated since for a
given expert, the data that is used to update its parameters are aligned better across shards.

FedMix offers a second way to improve convergence speed by modifying the server-side updates.
In generalized FedAvg, the individual gradients returned by the subset S′ of clients are averaged
according to

∆t =

S′∑
s=1

p(s) ·∆t
s , p(s) =

Ns
NS′

. (7)

In FedMix, we can speed up convergence by considering expert-specific updates ∆t
k,s = wt

k −
wt+1
k,s . If a client s pruned away expert k from its local gating mechanism, ∆t

k,s will be zero. We
propose to normalize the effective magnitude of the resulting update ∆k by up-weighing the updates
of all other clients that do consider expert k for their local mixture:

∆t
k =

S′∑
s=1

p(s|z = k) ·∆t
k,s , p(s|z = k) ∝ p(z = k|s)p(s) , p(s) =

Ns
NS′

. (8)

Computing p(z|s) = Ex∼Ds [pθs(z|s,x)] prior to sending updates to the server involves evaluating
potentially large neural network models. Therefore we choose to approximate p(z|s) ≈ qφ(z|s) =
Ey∼Ds [qφ(z|y)], which involves just a single matrix multiplication. We discuss the implications of
sending qφ(z|s) to privacy and how these fare relative to FedAvg in Appendix C.

Pruning experts Maintaining the cheap-to-compute marginal posterior per shard offers an addi-
tional opportunity to increase computation speed during local shard iterations and reduce overall
communication costs. We propose to “prune away” experts locally from the MoE if qφ(z|s) does
not surpass a threshold η/K. In order to still optimize a valid bound, we need to re-normalize
qφ(z|y) before evaluation of the loss function (Pal et al., 2005). We evaluate the same threshold
prior to sending updates to the server in order to avoid communicating parameters that have not
changed during the client’s iterations. Once the server selects a client for another round, it provides
only those experts to the client that were updated by the client in the previous round. We empiri-
cally find that the entropy of q(z|s) decreases steadily and we prune away experts k with probability
q(z = k|s) < η/K without significant drop in performance. We explore the consequences of prun-
ing experts in the experiment section and in Appendix E. Algorithm 2 shows how FedMix can be
enriched by pruning.

4

Under review as a conference paper at ICLR 2021

Algorithm 1 The FedMix algorithm. α, β are the client
and server learning rates respectively

function SERVER SIDE
Initialize φ and K vectors W = [w1, . . . ,wK]
for round t in 1, . . . T do

S′ ← random subset of the clients
Initialize ∆t

W = 0,∆t
φ = 0

for s in S′ do
Wt

s,φ
t
s, p(z|s)← CLIENT SIDE(s,φ,W)

end for
p(s|z)← p(z|s)p(s)/

∑
s∈S′ p(z|s)p(s)

for s in S′ do
∆t

wk
+ = p(s|z = k)(wt−1

k −wt
s,k) ∀k

∆t
φ+ = Ns

NS′
(φt−1 − φts)

end for
∆t

φ− = ∇φH(
∑
cqφ(z|y=c)p(y=c))

wt+1
1:K ← ADAM(∆t

w1:K
, β)

φt+1 ← ADAM(∆t
φ, β)

end for
end function

function CLIENT SIDE(s,φ,W)
Get local parameters θs
for epoch e in 1, . . . , E do

for batch b ∈ B do
Ls ← Eqφ(z|yb)[log pwz (yb|xb, z)pθs(z|xb, s)]
φ+ = α∇φLs
W+ = α∇WLs
θs+ = α∇θsLs

end for
end for
q(z|s)← Ey∼Ds [qφ(z|y)]
return w1:K ,φ, q(z|s)

end function

Designing robust gates In the
federated scenario, Ns is often
much smaller than N and espe-
cially small in relation to the com-
plexity of the data we try to model.
Any localized parameters therefore
are prone to overfitting. On the
other hand, the global parameters
of an expert are trained using all
data-points assigned to that expert
across all shards, allowing to learn
more robust features.

We can make use of the robust-
ness of these experts’ features for
the gating mechanism by condi-
tioning on them instead of train-
ing an entirely separate model for
pθs(z|x, s). Let us define hk(x)
as intermediary features of expert
k. Since not all experts might be
used for a given shard and in order
to scale with K, we average over
the marginal posterior of the train-
ing set at that shard before applying
a linear transformation to compute
the input to the softmax gates:

hs(x) =

K∑
k=1

qφ(z = k|s)hk(x)

pθs(z|x, s) = SM
(
AT
s hs(x)+bs

)
(9)

where θs = (As,bs) are local
learnable parameters and SM rep-
resents the softmax function.

Inference at test time We consider three variants for test-time evaluation of FedMix. In the first
case, a client s that participated in training is presented with a new data point (x∗, s). Predictions can
then be straightforwardly done by selecting the y that maximizes

∑K
z=1 p(y|x∗, z)p(z|x∗, s). In the

second, more challenging, scenario a new client s∗ is introduced together with a new labelled local
data set Ds∗ . Here we propose to instantiate and train the local gating mechanism by optimizing the
parameters θs of pθs(z|x, s∗) via MAP inference at the local objective. Afterwards, predictions can
be made in a manner similar to the first case.

Finally, we consider the case in which a new client s∗ has no labelled dataset available. Without
a local gating function, simply ensembling experts exhibits almost random behaviour since experts
can be overly confident on out-of-distribution data (Snoek et al., 2019). We therefore propose to en-
semble across local gating mechanisms to compute p(z|x∗) =

∑S
s=1 pθs(z|x∗, s)p(s|x∗); a method

which works well in practice. In Appendix F we discuss results for new shard inference as well as a
more principled approach which makes use of the graphical model formulation in Figure 2.

3 RELATED WORK

FedMix has similarities to many recent works in the topic of federated learning. Two methods
closely related to ours are described in (Sattler et al., 2019; Briggs et al., 2020). The authors propose
to perform hierarchical clustering on the updates returned from each shard in order to incrementally
create separate models for groups of users, with a cluster assignment mechanism based on hand-
crafted heuristics. FedMix instead takes a different approach; it starts with a fixed set of K models

5

Under review as a conference paper at ICLR 2021

and then optimizes with gradient descent at each shard a per-datapoint model assignment mechanism
that can better fit the peculiarities of the local dataset.

Another closely related work is presented by Mansour et al. (2020), where the authors propose to
similarly create an ensemble of K-models and assign to each shard the model that achieves the
lowest training loss on the local dataset. This is closer to the assignment that happens in FedMix
with one main difference; FedMix takes into account the uncertainty in the selection mechanism
as well with p(z|x, s) instead of selecting the top performing component during training. This is
beneficial early in training where the models have not fully specialized yet. Using local and global
model parts has also been explored by Liang et al. (2020). The authors propose to have a local
feature extractor at each shard and a global classifier on top of those features as opposed to having
K-separate models and a local selection mechanism as in FedMix. This setup yields improvements
upon the vanilla federated averaging algorithm, however there are two potential drawbacks; first,
empirically, the authors had to start their procedure from a pre-trained model with FedAvg and
secondly, they have to ensemble all of the different feature extractors for predictions in new shards.
In our experiments, we omit the pre-training step and show that the ensembling strategy fails.

Federated learning in the non-i.i.d setting can also be improved upon in other ways. Li et al. (2018)
propose to employ a proximal regularizer at the shard level in order to prevent the local models
from drifting too far from the global model, thus making federated learning more robust. Jiang
et al. (2019) notice that FedAvg and Reptile (Nichol et al., 2018), a meta-learning algorithm, are
essentially the same algorithm and thus propose fine tuning with Reptile in order to improve the
personalized performance of the global model. In a similar vein, there are promising new works
that explore the meta-learning view of federated learning (Chen et al., 2018; Khodak et al., 2019;
Fallah et al., 2020). Improving the personalized performance of the global model has also been
done without meta-learning in works such as by Deng et al. (2020); Mansour et al. (2020). In
general, such improvements are complementary to FedMix and can be used to further enhance its
performance. We refer the interested readers to the recent surveys by (Kairouz et al., 2019; Kulkarni
et al., 2020).

4 EXPERIMENTS

We evaluate FedMix on three datasets: Cifar10, Cifar100 (Krizhevsky et al., 2009) and Femnist
(Caldas et al., 2018), a 62-way image classification problem on hand-written digits and letters that
is naturally non-i.i.d due to different writing styles of 3500 users. In Appendix A we detail the
experimental setup and provide additional ablation studies in Appendix E.

4.1 PERFORMANCE VS. COMMUNICATION

We compare FedMix along several dimensions to baselines such as (generalized) FedAvg (Reddi
et al., 2020), biased FedAvg, and the Local/Global approach of Liang et al. (2020). In biased
FedAvg, we allow each client to learn a personalized bias vector bs of its output layer. This will
allow biased FedAvg to model the label skew at each client but, fundamentally, cannot model
any other form of non-i.i.d-ness. Similarly, Liang et al. (2020) propose to split the model into
local and global components by having local feature extractors and learning the upper layers of the
neural network via FedAvg. We experimented with splitting LeNet-5 at every intermediate layer
and report results with the best performing split: keeping the input layer local. For ResNet-20,
splitting after the first block performed best. First, we show that training with FedMix achieves
higher global model accuracy. Second, we show that for a given communication budget, FedMix
can be competitive against baselines. Table 1 contains test set results for Cifar10, evaluated after
2k communication steps and Femnist averaged over the last 2k steps. Figures 4d, 4f reveal that
the models have converged at that point. For Cifar100, we observe no overfitting and report test-set
accuracies averaged over the last 10 evaluations. Figure 4 shows learning curves for different settings
of FedMix. All of these results were obtained by using the server version of the global parameters;
the results with additional local fine-tuning at the client level are discussed in Appendix G.

For Cifar10 we can see that except for the initial training phase, FedMix improves over FedAvg
for a given communication budget. For the same communication costs per communication round,
FedMix offers better performance than FedAvg, as can be seen in comparing FedMix (K = 2) to

6

Under review as a conference paper at ICLR 2021

FedAvg LeNet-5 with 61 channels and FedMix (K = 4) to FedAvg LeNet-5 with 113 channels.
The channel count has been chosen such that the model size approximates 2 and 4 separate standard
LeNet experts respectively. Against biased FedAvg and Local/Global Liang et al. (2020), FedMix
can improve significantly in terms of inference on a new shard (Figure 12 in Appendix F). When
endowing FedMixwith the ability to learn a single personalized bias vector bs across all experts, we
can harness some of the advantages of biased FedAvg for inference on a new shard while retaining
FedMix’ advantage when performing inference on a new shard.

For Cifar100, we can see that learning progresses much faster for FedMix in terms of communi-
cation rounds than FedAvg. Against FedAvg, we can see that FedMix improves with both K=4
and K=10 on a per round progression, and with K=10 and expert pruning, it eventually provides a
better accuracy and communication trade-off than FedAvg. Biased FedAvg seems to be the better
inductive bias in this task, although one should be weary that its usefulness is limited to label skew
and does not generalize to other sources of non-i.i.d.ness (see section 4.2). This is in contrast to
FedMix which is designed to handle any type of explicit non-i.i.d.ness.

For Femnist we compare against FedAvg and observe that generally FedMix is more prone to
overfitting due to the extra amount of model parameters and expert specialization. For this reason,
we learn the parameters of the local gating networks via FedAvg across all clients. The gating
network is still localized through the use of q(z|s) in pooling of hk(x) (equation 9). We see that
increasing K improves the performance of FedMix. Since FedMix effectively requires the model
to first identify the right expert, followed by evaluating that expert’s prediction, compounding errors
can lead to FedMix being outperformed by FedAvg, such as forK = 2. Biased FedAvg performs
similar to standard FedAvg since the non-i.i.d-ness does not predominantly stem from label-skew.

(a) Cifar10 (b) Cifar100 (c) Femnist

(d) Cifar10 (e) Cifar100 (f) Femnist

Figure 4: Average accuracy across all clients (y-axis) as a function of the amount of GB commu-
nicated (top row) and as a function of communication rounds (bottom row). Cifar 10 models are
trained on the standard 45k training split. x-axes have been truncated for improved visibility. Best
viewed in color.

4.2 ROTATED MNIST

Figure 5: Only rotation Figure 6: Rotation and labels

To show that FedMix is not lim-
ited to label-skew, we create a
federated rotated MNIST dataset
with 100 clients. Instead of la-
bel skew, each client randomly
chooses a multiple of 45 degrees

7

Under review as a conference paper at ICLR 2021

Table 1: Average test-set accuracies across clients and communication costs (rounds and GB) for
Cifar10, Cifar100 and Femnist. For Cifar10 we report the performance after 2k rounds, for Cifar100
we report the average over the last 10 evaluations at the end of training and for Femnist we report
the average over the last 2k communication rounds.

Method Cifar 10 Cifar 100 Femnist
Acc. Comm. Acc. Comm. Acc. Comm.

FedAvg 69.36% 2k, 137.3GB 49.58% 30k, 608GB 85.73% 6k, 272GB

biased FedAvg 83.9% 2k, 130.92GB 56.14% 6k, 123.1GB 85.82% 6k, 272GB

Liang et al. (2020) 83.16% 2k, 129.93GB 41.09% 6k, 116.7GB 86.75% 6k, 271, 8GB

FedMix K=2 72.25% 2k, 261.4GB 48.29% 30k, 1130GB 84.02% 6k, 544.4GB
FedMix K=4 79.88% 2k, 522.5GB 48.55% 24k, 1972GB 86.11% 6k, 1089GB
FedMix K=10 80.00% 2k, 1304.1GB 52.59% 6k, 1130GB 87.21% 6k, 2724GB

from a different probability distribution over 8 possible rotation angles to rotate a digit with. Each
client’s distribution is drawn from Dir(α = 1.0). At test time, each data-point is randomly rotated
according to the client’s distribution. Additionally, we create a dataset where instead of uniform
sampling of labels, we replicate the non-i.i.d label skew described for Cifar10 above and combine it
with the rotation non-i.i.d-ness. We compare FedMix where q is conditioned on y or on the degrees
of rotation for a data-point against baselines. Figures 5 and 6 show that biased FedAvg can improve
in the presence of label skew but collapses to standard FedAvg for rotation non-i.i.d-ness. FedMix
on the other hand has an advantage in both cases. Furthermore, in presence of both sources of non-
i.i.d-ness, FedMix with q(z|y) can outperform biased FedAvg. In the presence of only rotation
(Figure 5), conditioning FedMix on the true source of non-i.i.d-ness is advantageous.

4.3 LABEL PERMUTATIONS

Figure 7: Ground truth
and q(z|s) after 10
rounds. Greyscale rep-
resents probabilities
(white: 0; black: 1)

Apart from non-i.i.d-ness in p(y) and p(x), we can expect the mapping
p(y|x) itself to be different between clients. We replicate the experimental
setup of (Sattler et al., 2019) with 20 clients for Cifar10, C = 1.0 and
E = 3, albeit with LeNet-5. Each client is randomly assigned one of
4 different permutations of its labels, determining the cluster assignment
q(z|s) that FedMix has to learn. Although FedMix is designed to dis-
tinguish different regions of the input space, we show that it can perform
user clustering. The gating function p(z|x, s) learns to correctly identify,
for each datapoint, the expert corresponding to the permutation of s, thus
recovering the original clustering; Figure 7 illustrates this effect (please
note that the ordering of columns is arbitrary). It should be mentioned,
that FedMix converges very quickly compared to the results in (Sattler
et al., 2019), as this result was obtained after only 10 rounds. After this
point, FedMix essentially trains 4 independent models on the respective
i.i.d subsets of the data that have the same label permutation. Appendix B
contains additional discussions for K 6= 4 and experimental details.

5 DISCUSSION

With FedMix we have introduced a federated learning algorithm that explicitly takes the non-i.i.d
characteristics of a federated dataset into account. Clients can learn to align specialized experts
on sub-regions of the data space and achieve higher performance compared to FedAvg, especially
in situations where the source of the non-i.i.d nature is known. This assumption is very strong in
real-world federated scenarios and we expect a more flexible alignment process than a global q(z|y)
to be the most interesting avenue for future research. We show encouraging results on experiments
with non-i.i.d-ness in p(y|x) (permutation) and p(x) (rotation). In the future, we will explore ways
to perform automatic selection of K as well as automatic selection of architecture elements to share
between experts, trading-off gradient alignment and communication budgets.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konecny, Stefano Mazzocchi, H Brendan McMahan, et al. Towards
federated learning at scale: System design. arXiv preprint arXiv:1902.01046, 2019.

Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical clustering
of local updates to improve training on non-iid data. arXiv preprint arXiv:2004.11791, 2020.

Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMahan, Virginia Smith, and
Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv preprint arXiv:1812.01097,
2018.

Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated meta-learning with
fast convergence and efficient communication. arXiv preprint arXiv:1802.07876, 2018.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948, 2020.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving federated learning per-
sonalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181–214, 1994.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Mikhail Khodak, Maria-Florina F Balcan, and Ameet S Talwalkar. Adaptive gradient-based meta-
learning methods. In Advances in Neural Information Processing Systems, pp. 5915–5926, 2019.

Heejae Kim, Taewoo Kim, and Chan-Hyun Youn. On federated learning of deep networks from
non-{iid} data: Parameter divergence and the effects of hyperparametric methods, 2020. URL
https://openreview.net/forum?id=SJeOAJStwB.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. Survey of personalization techniques for
federated learning. arXiv preprint arXiv:2003.08673, 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. 2010.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127, 2018.

Tian Li, Maziar Sanjabi, and Virginia Smith. Fair resource allocation in federated learning. arXiv
preprint arXiv:1905.10497, 2019.

9

https://openreview.net/forum?id=SJeOAJStwB

Under review as a conference paper at ICLR 2021

Paul Pu Liang, Terrance Liu, Liu Ziyin, Ruslan Salakhutdinov, and Louis-Philippe Morency. Think
locally, act globally: Federated learning with local and global representations. arXiv preprint
arXiv:2001.01523, 2020.

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. Communication-efficient
learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629, 2016.

Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. arXiv
preprint arXiv:1902.00146, 2019.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do
deep generative models know what they don’t know? arXiv preprint arXiv:1810.09136, 2018.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Chris Pal, Charles Sutton, and Andrew McCallum. Fast inference and learning with sparse belief
propagation. Advances in Neural Information Processing Systems (NIPS), 2005.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning:
Model-agnostic distributed multi-task optimization under privacy constraints. arXiv preprint
arXiv:1910.01991, 2019.

Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji Lakshminarayanan, Sebastian Nowozin, D Scul-
ley, Joshua Dillon, Jie Ren, and Zachary Nado. Can you trust your model’s uncertainty? eval-
uating predictive uncertainty under dataset shift. In Advances in Neural Information Processing
Systems, pp. 13969–13980, 2019.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 3–19, 2018.

10

Under review as a conference paper at ICLR 2021

A EXPERIMENTAL SETUP

For Cifar10, we replicate the federated data split of Hsu et al. (2019). The dataset is split across
100 clients, whose data-points are drawn according to their label from a Dir(α = 1.0) distribution
without replacement. For the base model, we use a LeNet-5 architecture (LeCun et al., 1998).
We use a SGD optimizer with a learning rate of 0.05 and a batch size B = 64 locally and the
Adam (Kingma & Ba, 2014) optimizer with its default hyperparameters at the server by interpreting
the difference of the local from the global model as a gradient (Reddi et al., 2020). We sample
10 clients without replacement on each round (but with replacement across rounds) and train for
E = 1 local epochs. For Cifar100 we replicate the data split of Reddi et al. (2020). The dataset
is split into 500 clients by using a hierarchical model over the coarse and fine labels, with the
same hyperparameters as the ones provided by Reddi et al. (2020). The other hyperparameters are
the same as Cifar10 with the exception of the batch size, where we use B = 20, as well as the
architecture, where we use a ResNet-20 with group normalization (Wu & He, 2018) layers instead
of batch normalization (Ioffe & Szegedy, 2015). We augment the data by random cropping from a 4
pixel padded image and horizontal flipping. Finally, for the Femnist dataset, we similarly followed
the setup of Reddi et al. (2020) with the same LeNet-5 architecture and hyperparameters of Cifar10
with the exception of the batch size where we used B = 20. hk(x) is defined as the input to an
expert’s output layer.

B PERMUTATION EXPERIMENTS

For the experiments in Section 4.3, we train FedMix with K = 4 and a base LeNet-5 model.
The optimization hyperparameters are chosen identically to what is described in A, except for the
optimization of q(z|s). The local objective in this case is

Ls :=

Ns∑
i=1

K∑
z=1

[qπ(z|s) log p(ys,i, z|xs,i)− βqπ(z|s) log qπ(z|s)] . (10)

In order to speed up convergence, we found it beneficial to not perform gradient ascent and instead
solve it directly using Lagrange multiplies, i.e.,∇π,λLs(Ds,w, qπ) + λ(

∑K
k=1 πk − 1) = 0.

The solution for πk = q(z = k|s) at client s takes the form of

πk =

(
Ns∏
i=1

p(ys,i, z = k|xs,i)
1

Nsβ

)
/

(
K∑
z=1

Ns∏
i=1

p(ys,i, z = k|xs,i)
1

Nsβ

)
. (11)

For these permutation experiments, FedMix is tasked to recover a cluster-assignment, as opposed
to a partitioning of the input space. We have found it unnecessary to change β from its default value
of 1. For an approximation of πk with a mini-batch of size M , we approximate

log πk =
1

Ns

Ns∑
i=1

log p(ys,i, z = k|xs,i)− log

K∑
z=1

exp
1

Ns

Ns∑
i=1

log p(ys,i, z = k|xs,i) (12)

≈ 1

M

M∑
i=1

log p(ys,i, z = k|xs,i)− log

K∑
z=1

exp
1

M

M∑
i=1

log p(ys,i, z = k|xs,i) (13)

and perform dampening πt = α · πt−1 + (1 − α) · π. We found our initial pick of α = 0.75 to
perform well.

B.1 MODIFYING K

In Section 4.3, we choose K = 4 a-priori as the number of experts that fits the data generating
process with 4 clusters. in Figure 8, we plot q(z|y) in case we miss-specify K and choose K = 3
and K = 5. In this plot, we can consider K = 4 as the ground truth for the correct cluster
assignment. Please note that ordering of the columns is arbitrary and can be different across the
three experiments. Comparing K = 4 with K = 5, we see that FedMix assigns two experts to the
same cluster, while still correctly disentangling all clients. For K = 3, FedMix correctly identifies
two clusters while being forced to mix together the other two clusters into one expert.

11

Under review as a conference paper at ICLR 2021

Figure 8: q(z|s) at convergence for different number of experts K. Greyscale corresponds to prob-
abilities (white: 0; black: 1)

C PRIVACY IMPLICATIONS

Privacy is one of the key motivations for research and deployment of Federated Learning. Even
though privacy is not a focus of this paper, we briefly discuss some implications of making explicit
use of q(y|s) in FedMix. The update rule described in equation 8 requires access to the marginal
q(z|s) =

∑
y p(y|s)qφ(z|y) at the server. At the same time, the server has access to the parameters

φ that were used in computing p(z|s) before being sent to the server. Therefore, in principle, it
could solve q(z|s) =

∑
y p(y|s)qφ(z|y) with respect to p(y|s) and thus obtain the marginal label

distribution at the client. In practice this is not as straightforward to do as (a) the probability matrix
qφ(z|y) is not always invertible and (b) solutions that use the pseudo-inverse, empirically, are not
very accurate in capturing the entire distribution. With the additional constraints that the marginal
needs to sum to one contains only positive elements and that Ns · p(y|s) ∈ Z, in some cases, a
reconstruction can become possible. As the number of classes exceeds the number of experts, this
reconstruction becomes more unlikely. We leave a thorough characterization of these properties to
future work.

Irrespective of FedMix, we want to shine light on the possibility to reconstruct p(y|s) at the server-
side in standard FedAvg. Assume a randomly initialized model being sent to a client s, where the
client performs a single full data set update step on the output layer’s bias vector bs. Assuming a
softmax cross-entropy loss Ls, the average gradient with respect to a the k-th entry bk takes the form
of

∂Ls
∂bk

=
1

Ns

Ns∑
i=1

1[yi,k = yi,true]− πi,k, (14)

where 1 is the indicator function and πi,k is the softmax probability of class k of datapoint i. With
a randomly initialized model, these softmax probabilities can be assumed to be uniform, leading to
an average gradient of

∂Ls
∂bk

=
Ns,k
Ns
− 1

Nc
= p(y|s)− 1

Nc
, (15)

where Nc is the number of classes. Upon sending the updated bias vector bs = b − α∂Ls∂bk
to the

server, it can easily reconstruct the marginal label distribution.

Figure 9 shows, for every client in our Cifar10 setup (Appendix A), in red the true marginal p(y|s)
and in blue the reconstructed marginal based on (the same) randomly initialized model being sent
to each client. Clearly, we have high congruence. In Figure 10, we investigate the more realistic
setup of E = 1 with mini-batch stochastic gradient descent at the client level. In order to avoid
reconstructing the multi-step update, we simply normalize the difference (b − bs) and interpret it

12

Under review as a conference paper at ICLR 2021

as marginal label distribution. We see that multiple updates (on average: 8) reduce the congruence
between the true and reconstructed marginal, however the information leakage is still remarkable.

Figure 9: Histogram representation of p(y|s) as well as its server-side reconstruction for every client
s for the Cifar10 setup described in Appendix A. The x-axis per sub-plot enumerates the 10 classes.
For every class c, the left bar in red represents p(y = c|s) and the right bar in blue represents its
reconstruction. Each client performed a single full data-set update step.

13

Under review as a conference paper at ICLR 2021

Figure 10: Histogram representation of p(y|s) as well as its server-side reconstruction for every
client s for the Cifar10 setup described in Appendix A. The x-axis per sub-plot enumerates the 10
classes. For every class c, the left bar in red represents p(y = c|s) and the right bar in blue represents
its reconstruction. Each client performed multiple mini-batch update steps (on average 8).

D GRADIENT DIVERGENCE

We aim to track the divergence of updates for a subset S′ of shards at the server at time step t for
FedMix and FedAvg. Therefore we define a metric inspired by Kim et al. (2020); Sattler et al.
(2019) to define divergence of gradients ∆t

k,i = ωtk − ω
t+1
k,i for some subset ωk of the parameters

wk of expert k as

GD(∆t
k) =

S′∑
i=1

S′∑
j=1

p(s = i|z = k)p(s = j|z = k) · 0.5 ·

(
1−

∆t
k,i ·∆t

k,j

||∆t
k,j || · ||∆t

k,i||

)
. (16)

For FedAvg, the above metric collapses to

GD(∆t) =

S′∑
i=1

S′∑
j=1

p(s = i)p(s = j) · 0.5 ·

(
1−

∆t
i ·∆t

j

||∆t
j || · ||∆t

i||

)
. (17)

In Figure 1 in the main text, we plot the sum of GD(∆t
k) across all parametersωk (i.e., convolutional

kernels, weights and biases) of the LeNet-5 experts in comparison to ω for FedAvg.

14

Under review as a conference paper at ICLR 2021

E ABLATION STUDIES

We investigate the characteristics of FedMix by varying the number of experts K for Cifar10, as
well as by selecting different levels η for pruning experts. Figures 11a and 11c show learning curves
of several values ofK. We can see that a higher number of experts has the potential to achieve higher
accuracies at the cost of more required communication. With increasing K, the modeling task for a
single expert becomes progressively easier and the challenge is moved towards identifying the right
expert for a given data-point. This could subsequently lead to overfitting in the federated setting if
not for the shared feature extractor h(x) (Eq. equation 9). In case we choose K to be equal to the
number of classes, we observe that FedMix assigns one cluster to each class and the p(z|x, s) is
reminiscent of Liang et al. (2020). In case we further increase K, we observe marginally improved
performance by multiple experts being assigned to the same label.

Figures 11b and 11d depict the influence of different pruning levels η on the communication effi-
ciency and final performance FedMix with K = 4. We can see that higher levels of pruning do
reduce communication significantly, however they cause some loss of performance.

(a) (b)

(c) (d)

Figure 11: Ablation studies on the effect of K on the average local accuracy (a) and new shard
accuracy (c) as well as on the influence on local (b) and new shard (d) accuracy of the threshold for
pruning experts before communication for K = 4.

F NEW SHARD INFERENCE

In the main text, we discussed performance of the individual algorithms when evaluating new data
on a shard that took part in training and therefore has access to trained local model parameters. This
is the case for all considered methods except FedAvg, for which there exist no localized parameters.
For inference on a new shard, we use the sum of all local validation sets as a proxy. Liang et al.
(2020) propose to ensemble the representations of the local feature extractors across clients before
evaluating the global part of the network. We find this approach to work quite poorly in practice.
Presumably pretraining the local feature extractors with FedAvg ameliorates this behaviour. In

15

Under review as a conference paper at ICLR 2021

biased FedAvg, we ensemble the individual local biases across clients to receive a single global
bias. For FedMix, we marginalize the local gating predictions to achieve a global gating prediction
p(z|x∗) =

∑S
s=1 pθs(z|x∗, s)p(s). Predictions can then be made by marginalizing across experts

using this global gating function: p(y|x∗) =
∑K
z=1 pwk(y|x∗, z)p(z|x∗).

Interestingly, Cifar10 and Cifar100 display different behaviours when comparing FedMix to the
baselines. For Cifar10, biased FedAvg performs much worse compared to FedAvgwhile FedMix
performs well. For Cifar100, biased FedAvg is indistinguishable from FedAvg, outperforming
FedMix. We leave the investigation of these discrepeancies to future work.

(a) Cifar10 (b) Cifar100

(c) Cifar10 (d) Cifar100

Figure 12: Accuracy on a new client (y-axis) as a function of the amount of GB communicated (top
row) and as a function of communication rounds (bottom row). Cifar 10 models are trained on the
standard 45k training split. x-axes have been truncated for improved visibility. Best viewed in color.

As an alternative to marginalizing the local gate predictions using p(s), investigating the graphical
model in Figure 2 reveals the possibility for marginalization with p(s|x∗):

p(z|x∗) =

S∑
s=1

pθs(z|x∗, s)p(s|x∗), p(s|x∗) ∝ p(x∗|s)p(s). (18)

It is for this third evaluation case that training local generative models p(x|s) for each client becomes
interesting, as they allow to compute the responsibilities p(s|x∗) at test time. In practice, however,
the success of this approach depends heavily on the correctness of p(s|x∗), which in turn depends
on the ability of the local generative models p(x|s) to assign high probability to data that resembles
Ds and low probability to out-of-distribution data. Training and calibrating generative models for
this task is in itself an active area of research (Nalisnick et al., 2018) and investigating how clients
in a federated setting might exchange information to facilitate this process is not yet explored. We

16

Under review as a conference paper at ICLR 2021

therefore leave a thorough evaluation of this case to future work and only present here a MNIST
(LeCun et al., 2010) experiment.

We train FedMix with K = 4 and experts of two hidden layer ReLU MLP with 200 hidden
units on MNIST. We split the dataset into S = 100 clients according to the procedure described
in Liang et al. (2020). FedMix achieves 97.7% average validation accuracy compared to 97.0%
with FedAvg after 600 communication steps. Independently for each client, we train a small vari-
ational autoencoder with a 32-dimensional latent space using a two-layer MLP with 512 and 256
hidden units respectively as encoder and mirrored decoder structure. We optimize the VAEs using
Adam with standard hyper parameters, B = 10 and perform early stopping on the local validation
sets after no improvement for three epochs. After training, each client communicates their VAE
to the server, where we evaluate p(s|x∗) to marginalize over the local gating functions according
to p(z|x∗) =

∑S
s=1 p(z|x∗, s)p(s|x∗). With this procedure, FedMix achieves 95.9% test set ac-

curacy, compared to FedAvg with 96.9%. Marginalizing with p(s) instead of p(s|x∗) achieves
96.63%, showing the limitation of the approach in that any error in p(s|x∗) propagates into the ex-
pert assignment. Reliable out-of-distribution detection capabilities in the individual estimators for
p(x|s) are therefore necessary.

G LOCAL FINE-TUNING

In the main text we have compared algorithms by evaluating local data-sets on the server-provided
global parameters. For biased FedAvg, Local/Global and FedMix those parameters were made
complete with the client-specific local parameters. In Appendix F we have discussed the perfor-
mance of FedMix when evaluating on a new shard. Here, we discuss the evaluation when using
locally fine-tuned models. Figure 13 shows the learning curves of Cifar10 when evaluating the
validation set on parameters just before communication to the server. This corresponds to local
fine-tuning for E = 1 epochs on the local data-set. This form of model personalization is an option
for all federated learning methods. Due to the relatively small size of the local data-sets, this form
of personalization can cause significant levels of overfitting, as is evident from Figure 13. Since
regularization with respect to this form of personalization adds another level of complexity to the
experimental design and hyperparameter tuning, we leave a thorough evaluation to future work.

Figure 13: Average accuracy of models evaluated after E = 1 local epochs of fine-tuning

17

Under review as a conference paper at ICLR 2021

H SPECIALIZATION

In Figure 14a we see how qφ(z|y) changes over time. The entropy of qφ(z|y = c), i.e. the weight
with which each expert is assigned to a specific label c decreases over time until each label is as-
signed exactly one expert with probability 1. The original MoE formulation, however, quickly
collapses to a single expert, as can be see in Figure 14b. In the federated learning scenario, this
corresponds to performing standard FedAvg on the single surviving expert.

(a) Visualization of qφ(z|y) at different communication rounds t for
FedMix with K = 4 on Cifar10. Greyscale corresponds to probabili-
ties; white corresponds to zero and black corresponds to one. Probabil-
ities sum to one across experts (horizontally).

(b) Visualization of
∑N
i=1 p(z|xi)

for the original mixture of experts
formulation (equation 3 with S =
1) after the first epoch of training.
The mixture collapses to a single
expert.

Figure 14: Expert specialisation

I FEDMIX WITH EXPERT PRUNING

The FedMix algorithm (Algorithm 1) can be extended to ignore the communication of experts
between server and client if, for this given client, that particular expert is not updated during training.
If qφ(z = k|s) = Ep(y|s)[qφ(z = k|y)] = 0 for an expert k on client s, then parameters of that expert
observe no gradient and the expert is effectively pruned from the local library of available experts.
Since the parameterization of qφ(z|s) does not allow for exact values of zero, we introduce η, such
that if qφ(z = k|s) < η/K, we consider expert k to be pruned. Since the value of qφ(z = k|s)
during local optimization at the client is subject to change, it is possible that qφ(z = k|s) briefly
lies above the threshold even though it had just been pruned away. Therefore the server considers
expert k pruned for a given client s′ only if qφ(z = k|s = s′) < 0.9 · η/K. Algorithm 2 details
this approach. Note that we write p(z|s) = Ex∼Ds [pθs(z|x, s)], i.e. the true marginal, however in
practice we make use of the cheap to compute marginal approximation qφ(z|s) = Ey∼Ds [qφ(z|y)].

18

Under review as a conference paper at ICLR 2021

Algorithm 2 The FedMix algorithm. α, β are the client and server
learning rates respectively, η ∈ [0, 1] is the pruning threshold

function SERVER SIDE
Initialize φ and K vectors W = [w1, . . . ,wK]
for round t in 1, . . . T do

S′ ← random subset of the clients
Initialize ∆t

W = 0,∆t
φ = 0

Initialize p(z|s) = 1/K∀s
for s in S′ do

W′ ← [wk | p(z = k|s) ≥ 0.9 · η/K]
Wt

s,φ
t
s, p(z|s)← CLIENT SIDE(s,φ,W′)

Store p(z|s)
end for
p(s|z)← p(z|s)p(s)/

∑
s∈S′ p(z|s)p(s)

for s in S′ do
∆t

wk
+ = p(s|z = k)(wt−1

k −wt
s,k) ∀k

∆t
φ+ = Ns

NS′
(φt−1 − φts)

end for
∆t

φ− = ∇φH(
∑
cqφ(z|y=c)p(y=c))

wt+1
1:K ← ADAM(∆t

w1:K
, β)

φt+1 ← ADAM(∆t
φ, β)

end for
end function

function CLIENT SIDE(s,φ,W)
Get local parameters θs
for epoch e in 1, . . . , E do

for batch b ∈ B do
q′φ(z|s), qφ(z|s)← Ey∼Ds [qφ(z|y)]

q′φ(z = k|s) = 0 if qφ(z = k|s) < η/K

q′φ(z|s)← q′φ(z|s)/
∑
k q
′
φ(z = k|s)

q′φ(z|y)← qφ(z|y)

q′φ(z = k|y) = 0 if qφ(z = k|s) < η/K

q′φ(z|y)← q′φ(z|y)/
∑
k q
′
φ(z = k|y)

Ls ← Eq′φ(z|yb)[log pwz (yb|xb, z)]+
Eqφ(z|yb)[log pθs(z|xb, s)]

φ+ = α∇φLs
W+ = α∇WLs
θs+ = α∇θsLs

end for
end for
q(z|s)← Ey∼Ds [qφ(z|y)]
W′ ← [wk|q(z = k|s) ≥ η/K]
q′(z|s)← q(z|s)
q′(z = k|s) = 0 if q(z = k|s) < η/K
q′(z|s)← q′(z|s)/

∑
k q
′(z = k|s) . Renormalization

return W′;φ; q′(z|s)
end function

19

	Introduction
	Federated Mixture of Experts
	The FedMix algorithm

	Related Work
	Experiments
	Performance vs. communication
	Rotated MNIST
	Label Permutations

	Discussion
	Experimental Setup
	Permutation Experiments
	Modifying K

	Privacy Implications
	Gradient Divergence
	Ablation studies
	New shard inference
	Local Fine-tuning
	Specialization
	FedMix with expert pruning

