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Multimodal Physiological Signals Representation Learning via
Multiscale Contrasting for Depression Recognition

Anonymous Authors

ABSTRACT
Depression recognition based on physiological signals such as func-
tional near-infrared spectroscopy (fNIRS) and electroencephalo-
gram (EEG) has made considerable progress. However, most exist-
ing studies ignore the complementarity and semantic consistency
of multimodal physiological signals under the same stimulation
task in complex spatio-temporal patterns. In this paper, we intro-
duce a multimodal physiological signals representation learning
framework using Siamese architecture via multiscale contrasting
for depression recognition (MRLMC). First, fNIRS and EEG are trans-
formed into different but correlated data based on a time-domain
data augmentation strategy. Then, we design a spatio-temporal
contrasting module to learn the representation of fNIRS and EEG
through weight-sharing multiscale spatio-temporal convolution.
Furthermore, to enhance the learning of semantic representation
associated with stimulation tasks, a semantic consistency contrast
module is proposed, aiming to maximize the semantic similarity of
fNIRS and EEG. Extensive experiments on publicly available and
self-collected multimodal physiological signals datasets indicate
that MRLMC outperforms the state-of-the-art models. Moreover,
our proposed framework is capable of transferring to multimodal
time series downstream tasks. We will release the code and weights
after review.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Cogni-
tive science; • Human-centered computing→ HCI design and
evaluation methods.

KEYWORDS
Depression Recognition, Multimodal Physiological Signals, Spatio-
temporal Contrasting, Semantic Consistency

1 INTRODUCTION
Depression is a common mental disorder, which is different from
regular mood changes and feelings about everyday life. Charac-
terized by persistent feelings of sadness, lack of interest, social
withdrawal, diminished social skills, and even physical symptoms
such as dizziness and nausea, depression significantly affects vari-
ous aspects of life, including relationships with family, friends, and
the community, as well as work and study efficiency [20, 28, 49]. It
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is estimated that about 3.8% of the population are experiencing de-
pression [33] and more than 700 thousand people die due to suicide
every year [32].

The first recurrence rate of depression reaches 50% and repeated
attacks significantly increase the disability rate. The significant
factors affecting diagnosis and treatment are lack of resources and
trained healthcare personnel. In addition, the inability to make
an accurate assessment is another factor affecting effective treat-
ment. Thus, it is urgent to enhance the accuracy of depression
recognition and assessment at early stages, aiming to diminish both
recurrence and disability rates. Currently, the recognition and as-
sessment of depression mainly depend on the experienced doctors
to perform clinical diagnosis based on professional scales such as
the Patient Health Questionnaire (PHQ-9) [22] and Beck Depres-
sion Inventory (BDI-II) [13], as well as biomarker data. However,
With the increasing number of patients, early detection is often
limited and time-consuming, and subject to individual subjective
observation and lack of real-time measurement. Recent strides in
brain science have provided critical insights for depression diag-
nosis [18, 19, 36, 51, 55], with techniques like electroencephalo-
gram (EEG) [2, 9, 31, 44] and functional near-infrared spectroscopy
(fNIRS) [3, 40, 62, 63] becoming increasingly prominent due to their
safety, portability, affordability, temporal precision, and minimal
environmental demands. Therefore, it is necessary to explore an
automatic depression recognition method based on physiological
signals to assist the clinical diagnosis of doctors and accelerate the
treatment for patients [15, 16, 30].

The wide collection and analysis of multimodal physiological
signals such as fNIRS and EEG provide more potential to combine
them to perform mental disease recognition. The distinct sampling
mechanisms of fNIRS and EEG pose challenges for direct fusion at
the data level, leading to a predominant focus on feature-level fusion
strategies in recent research. For example, Pietro et al. employed
EEG and fNIRS to classify the four symptoms of Alzheimer’s disease,
which achieved higher accuracy by integrating its complementary
characteristics comparedwith single-modal experiments [5]. Shin et
al. utilized typical eigenvalue scores and a common spatial pattern
method to fuse the fNIRS and EEG feature [46]. Similarly, Qiu et al.
proposed a multimodal feature-level fusion method, achieving good
results in the classification of brain activity induced by preference
music and neutral music [38]. Furthermore, Zhang et al. designed a
feature fusion method based on spatio-temporal alignment strategy
to obtain a significantly improved classification level in the motor
imagery paradigm compared to the non-aligned method [60]. How-
ever, focusing only on feature-level fusion for EEG and fNIRS with
time series property makes it easy to ignore the spatio-temporal
representation and multimodal complementary features. Moreover,
the existing studies have not considered the deep semantic infor-
mation reflected by physiological signals under specific stimulation
tasks, such as the activation status of brain regions.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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To address the above issues, we propose aMultimodal physio-
logical signals Representation Learning framework via Multiscale
Contrasting for depression recognition (MRLMC). This framework
employs the Siamese network architecture, which utilizes two en-
coders with the same structure and shared weights to process dif-
ferent modalities. Specifically, first, fNIRS and EEG are fed into a
time-domain data augmentation module to generate different but
correlated data. This ensures that MRLMC learns the two types
of augmented feature representation of the data. Then, we design
a multiscale spatio-temporal convolution (MSC) module to learn
the spatio-temporal representation and dynamic characteristics of
multimodal physiological signals. The spatio-temporal contrasting
module aims to minimize the differences in fNIRS and EEG feature
representations while enhancing their complementary nature. Fur-
thermore, we propose a semantic consistency module to further
mine the deep semantic information such as the activation status of
brain regions. It aims to maximize the semantic similarity of multi-
modal physiological signals. In summary, the main contributions
of this paper include:

• We propose a multimodal physiological signals representa-
tion learning framework using Siamese network architecture
via multiscale contrasting for depression recognition. This
framework presents a novel approach to handling multi-
modal physiological signals and provides an objective auxil-
iary diagnosis.

• We design a spatio-temporal contrasting module to learn the
spatio-temporal representation and dynamic characteristics.
Additionally, we propose a semantic consistency module to
further learn the semantic consistency representation under
stimulation tasks.

• Extensive experiments are performed on publicly available
and self-collected multimodal physiological signals datasets
to validate the effectiveness of the MRLMC framework. The
results show the superiority of the proposed method for the
advancement of depression recognition.

2 RELATEDWORK
For EEG-based depression recognition research, Rajendra et al.
proposed a convolutional network for EEG data with 15 normal
controls and 15 depression patients to perform depression classifica-
tion and found that the signal in the right hemisphere is more active
than the signal in the left hemisphere [1]. Shah et al. proposed a
NeuCube model based on a pulse network to classify depression
and normal controls by neural circuit connections based on EEG
signals [41]. Uddin et al. captured the symptom information by
combining recurrent neural networks (RNN) with long short-term
memory (LSTM) [50]. Recently, Hashempour et al. proposed a hy-
brid convolutional and temporal-convolutional neural network to
continuously estimate the BDI score to achieve depression detec-
tion [11]. Peng et al. constructed attentive simple graph convolution
network and transformer neural network for depression detection
and characterized the alteration of relevant neural patterns in the
depressed patients [35].

For fNIRS-based depression recognition research, Liu et al. fo-
cused on stimulation tasks to investigate the advantages of fNIRS
in cognitive activation and utilized the support vector machine

Figure 1: The overview of the MRLMC framework. The
MRLMC adopts the Siamese network architecture, composed
of multimodal signals input, a spatio-temporal contrasting
module and a semantic consistency module.

classifier based on LSTM to perform classification tasks [26]. fNIRS
data has reliably reflect cognitive profiles on the brain in different
stimulation tasks [29, 39], and presents signal differences under
different stimulation task time points [57]. Wang et al. proposed a
transformer-based fNIRS classification network to explore spatial-
level and channel-level representations of fNIRS signals to improve
data utilization and feature representation [54]. Similarly, Zhang et
al. achieved mild cognitive impairment recognition by exploiting
the multidimensional features of fNIRS data including channel, tem-
poral, and spatial features [59]. Wang et al. transformed fNIRS sig-
nals into 2-D wavelet feature maps by using wavelet transform and
parallel-CNN feature fusion to diagnose depressive disorder [52].
However, these works mentioned above ignore the nonlinear and
segment characteristics of EEG and fNIRS. In addition, ignoring
the dynamic characteristics and semantic representation of neu-
ral activity under stimulation tasks results in weak classification
performance.

There are many brain-computer studies on multimodal recogni-
tion tasks based on fNIRS and EEG but less research in the area of
multimodal depression recognition. He et al. proposed a multimodal
multitask neural network model to fuse the EEG and fNIRS signals
to achieve motor imagery classification [14]. Gao et al. utilized an
EEG-informed fNIRS general linear model to extract common spa-
tial pattern features and the support vector machine was used as
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Figure 2: The input modes of multimodal signals in MRLMC,
including single modal mode and multimodal mode.

the classifier [8]. Differently, we establish a multimodal contrastive
learning framework based on the Siamese network architecture.
fNIRS and EEG are fed into the spatio-temporal contrasting module
and semantic consistency module to extract complementary fea-
tures, dynamic features and semantic consistency representations
to realize multimodal depression recognition.

3 METHODOLOGY
In this section, we describe the components of MRLMC framework
in detail. As shown in Figure 1, the MRLMC framework adopts the
Siamese network architecture to learn the feature representations of
fNIRS and EEG signals. Specifically, we first utilize the time-domain
data augmentation method to generate different but correlated
data. Then, we design a spatio-temporal contrasting module to
extract the feature representation and dynamic characteristics of
the physiological signals. Finally, a deep semantic representation of
fNIRS and EEG signals is achieved through the semantic consistency
module. This multimodal semantic representation is then fused and
fed into the classification layer to realize depression recognition.

3.1 Multimodal Signals Input Modes
The collection of fNIRS and EEG data involves stringent condi-
tions, which present challenges due to limited medical resources
and the prevalent stigma associated with patients. Therefore, in
scenarios with limited data, the data augmentation method plays
an important role, and it is also a key part of realizing single-modal
contrasting learning. As shown in Figure 2, when only singlemodal
(either fNIRS or EEG) is available, both the raw and augmented
data are utilized as pairs. When the input is fNIRS and EEG, they
are shaped as a pair of data, with the data augmentation strategy
randomly applied to part of the data. The commonly used jitter-
and-scale strategy and permutation-and-jitter strategy data aug-
mentation methods do not consider both the collection paradigm
and the process of physiological data. Since the physiological data
for depression patients are mostly collected with specific stimula-
tion tasks, the time-domain augmentation methods including time

Figure 3: The overview of multiscale spatio-temporal convo-
lutional (MSC) network. The input raw data or augmented
data undergoes a convolution layer to generate embedding.
Then, the spatio-temporal representation is extracted bymul-
tiscale convolution.

warping and time masking [42] are utilized to generate different
but correlated data.

Given a sample 𝑥 , the time step of the time masking method
is [𝑡0, 𝑡0 + 𝑡𝑡𝑚], where 𝑡0 ∈ [0, 𝑡𝑞), and the masking parameter
𝑡𝑡𝑚 ∈ (0, 𝜆], 𝜆 ≤ 𝑡𝑞 , introducing an upper bound that the width of
the time masking cannot be larger than the response time of each
question of stimulation task. Similarly, the time step of the time
warping method is [𝑡0, 𝑡0 + 𝑡𝑡𝑤], where 𝑡0 ∈ [0, 𝑡𝑞) and the warping
parameter 𝑡𝑡𝑤 ∈ (0, 𝜆], 𝜆 ≤ 𝑡𝑞 . The augmented data is denoted as 𝑥 ′,
which has the same time scale as 𝑥 . Formally, let𝐷𝑀𝑢𝑙𝑡𝑖 = {𝐹𝑖 , 𝐸𝑖 }𝑁
be a dataset of fNIRS and EEG, such that each fNIRS sample 𝐹𝑖
corresponds to EEG sample 𝐸𝑖 . For each input sample 𝐹𝑖 and 𝐸𝑖 ,
we denote the augmented data as 𝑥𝑖 and 𝑦𝑖 , 𝐷 = {𝑥𝑖 , 𝑦𝑖 }𝑁 as the
input data. In the case of single modal inputs, 𝑥𝑖 and 𝑦𝑖 denote raw
data and augmented data respectively and the 𝑁 is the number of
samples. Multimodal data is fed into the spatio-temporal contrasting
module to extract latent representation.

3.2 Spatio-temporal Contrasting
Physiological signals, as a kind of multichannel time series data,
are characterized by spatio-temporal features that are the most
important kind of representation. Specific stimulation tasks are
usually performed to collect physiological signals. When the par-
ticipants are handling stimulation tasks, the status of the brain is
transformed from a resting state to an activated state. Regarding
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the time dimension, physiological signals have dynamic changing
characteristics. Meanwhile, the prefrontal areas of the individual
brain are associated with emotional expression, and different chan-
nels have similar but different characteristics. Therefore, we design
a spatio-temporal contrasting module, as shown in Figure 1, which
utilizes the contrastive loss to minimize the differences between
fNIRS and EEG feature representations and maximize complemen-
tarity through extracting the spatio-temporal representations of
raw data and augmented data. Figure 3 presents the MSC network,
which extracts the spatio-temporal representation and dynamic
characteristics of physiological signals.

Given an input signal 𝑥 , its dimension is 𝑁𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ×𝑇 , where
𝑁𝐶ℎ𝑎𝑛𝑛𝑒𝑙 is the number of channels of data and 𝑇 is the collec-
tion duration, which is determined by the collection device and
the data type. Then, the 𝑥 is fed into the encoder to get the latent
representation. The encoder based on the convolution layer maps
𝑥 into a latent representation 𝐶 = 𝑓𝑒𝑛𝑐 (𝑥), 𝐶 ∈ R𝑑 , where 𝑑 is
the dimension of the feature. Thus, we get 𝐶 for the feature rep-
resentation of a physiological signal, which is then fed into the
multiscale convolution layers. The 𝐶 is passed to the 𝑁𝑆𝑐𝑎𝑙𝑒 layer
multiscale convolution to extract high-dimensional representations
𝐶𝑒𝑛𝑐 . Then, the representations are fed into 𝑁𝑆𝑐𝑎𝑙𝑒 spatio-temporal
feature extraction blocks 𝑓𝑏𝑙𝑜𝑐𝑘 (·) to extract spatio-temporal repre-
sentation of physiological signals. Finally, we get spatio-temporal
representation 𝑣 of a physiological signal,

𝑣 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝜑1, 𝜑2, · · · , 𝜑𝑁𝑆𝑐𝑎𝑙𝑒
), (1)

where

𝜑𝑖 =𝑚𝑎𝑥 (𝛼 ∗ 𝑁𝑜𝑟𝑚(𝑓𝑏𝑙𝑜𝑐𝑘 (𝐶𝑒𝑛𝑐𝑖 )), 𝑁𝑜𝑟𝑚(𝑓𝑏𝑙𝑜𝑐𝑘 (𝐶𝑒𝑛𝑐𝑖 ))), (2)

which simplified to 𝑣 = [𝜑1, 𝜑2, · · · , 𝜑𝑁𝑆𝑐𝑎𝑙𝑒
], 𝑣 ∈ R𝑚 , where𝑚 =

𝑁𝑆𝑐𝑎𝑙𝑒 × 𝑁𝑂𝑢𝑡 is the dimension of feature, 𝑁𝑂𝑢𝑡 is the output
dimension of the spatio-temporal feature extraction blocks and 𝛼
is the control weight.

Through the spatio-temporal contrasting module, the multi-
modal data generate spatio-temporal representations 𝑣 and𝑢, where
𝑢 is generated from anothermodal or augmented data. Given a batch
of input samples denoted as 𝑁 = 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 , we get 2𝑁 items from
fNIRS and EEG. For a 𝑢 item, we denote 𝑢+ as the positive sample
for 𝑣 , and thus (𝑣,𝑢+) are considered as the positive pair. The other
(2𝑁 − 2) items in the same batch are considered negative samples
for 𝑣 , then 𝑣 forms negative pairs with (2𝑁 − 2) negative samples.
Therefore, we can define the spatio-temporal contrasting loss to
maximize the similarity between positive pairs and the difference
between negative pairs.

Given the 𝑣 and 𝑢 items, we compare the similarity of positive
pair (𝑣, 𝑛+) with the similarity of (2𝑁 −2) negative pairs, the spatio-
temporal contrasting loss L𝑀𝑆𝐶 is defined as follows:

L𝑀𝑆𝐶 = − log
𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑣,𝑢+)/𝜏)

𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑣,𝑢+)/𝜏) +∑2𝑁−2
𝑗=1 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑣,𝑢 𝑗 )/𝜏)

,

(3)
where 𝑠𝑖𝑚(·) denotes cosine similarity,

𝑠𝑖𝑚(𝑣,𝑢) = 𝑣𝑇𝑢

∥𝑣 ∥ ∥𝑢∥ , (4)

where 𝜏 is a temperature parameter. Through the spatio-temporal
contrasting loss L𝑀𝑆𝐶 , the differences of feature representations

Figure 4: The architecture of transformer unit in semantic
consistency module.

between fNIRS and EEG could be minimized, which also maximizes
the complementarity of these two representations. And then the
spatio-temporal representations are fed into the semantic consis-
tency module to further learn deep semantic information.

3.3 Semantic Consistency
The depression patients are characterized by persistent low mood,
pleasure deficit, and cognitive impairment, which presents the dif-
ference with the control group on the brain activity level and ac-
tivation state when performing the stimulation task [42]. fNIRS
and EEG reflect brain activation state by detecting slight changes
in brain activity, so it is necessary to mine deeper semantic in-
formation that can reflect brain activation state. We propose a
semantic consistency module to maximize the semantic similarity
of multimodal physiological signals and further mine deep semantic
information such as brain activation state.

We utilize the transformer unit as the semantic feature extraction
model because of its context-awareness. The architecture of the
transformer unit is shown in Figure 4, which mainly consists of
successive blocks of multi-head attention (MHAttn) and MLP. The
MLP block consists of two fully connected layers and a non-linear
ReLU. The transformer unit is defined by the following equations:

𝑀𝐻𝐴𝑡𝑡𝑛(𝑄,𝐾,𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐻𝑒𝑎𝑑1, 𝐻𝑒𝑎𝑑2, · · · , 𝐻𝑒𝑎𝑑𝑁𝐻𝑒𝑎𝑑
)W𝑂

(5)
where 𝑄 represents the input feature vector, 𝐾 represents the key
vector,𝑉 denotes the value vector, 𝑁𝐻𝑒𝑎𝑑 represents the number of
heads, and W𝑂 denotes the final output weights. 𝐻𝑒𝑎𝑑𝑖 is defined
as follows:

𝐻𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄W𝑄

𝑖
, 𝐾W𝐾

𝑖 ,𝑉W
𝑉
𝑖 ) (6)

whereW𝑄

𝑖
,W𝐾

𝑖
,W𝑉

𝑖
denote the weight matrics of𝑄,𝐾,𝑉 , respec-

tively. 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(·) is define as

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇√︁
𝑑𝐾

)𝑉 (7)

where𝑑𝐾 denotes the dimentional size of vector𝐾 . Given the spatio-
temporal representations 𝑣 , we pass it through the transformer unit
as follows:

𝜓𝑖 = 𝑀𝐻𝐴𝑡𝑡𝑛(𝑁𝑜𝑟𝑚(𝑣𝑖−1)) +𝜓𝑖−1, 1 ≤ 𝑖 ≤ 𝑁𝑇𝑟𝑎𝑛𝑠 , (8)

and then the𝜓𝑖 is input to the MLP block:

𝑧𝑖 = 𝑀𝐿𝑃 (𝑁𝑜𝑟𝑚(𝜓𝑖 )) +𝜓𝑖 , 1 ≤ 𝑖 ≤ 𝑁𝑇𝑟𝑎𝑛𝑠 , (9)

where 𝑁𝑇𝑟𝑎𝑛𝑠 denotes the number layers stacked to generate the
final feature 𝑧.

Given the multimodal spatio-temporal representations 𝑣 and
𝑢, a multilayer stacked transformer unit is utilized to extract the
semantic feature 𝑧 𝑓 and 𝑧𝑒 . The dimension size of 𝑧 𝑓 and 𝑧𝑒 are
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the same as 𝑣 and 𝑢. We utilize cosine similarity as the semantic
consistency loss to maximize the semantic similarity of multimodal
physiological signals. The semantic consistency loss can be denoted
as follows:

L𝑆𝐶 = 𝑠𝑖𝑚(𝑧 𝑓 , 𝑧𝑒 ). (10)

3.4 Depression Recognition
Ultimately, 𝑧 𝑓 and 𝑧𝑒 are concatenated and fed into the classifi-
cation layer for depression recognition, which includes two fully
connected layers and the ReLU layer. In real healthcare scenarios,
the collected dataset exists the class imbalance problem, so the focal
loss function is utilized to perform depression recognition, which
is defined as follows:

L𝐹𝐿 = −𝛼 (1 − 𝑃)𝛾 𝑙𝑜𝑔(𝑃), (11)

where 𝑃 denotes the predictive probability of the model, 𝛼 is the
weighting factor to balance the positive and negative samples, and
𝛾 is the adjustable parameter. The adjustment factor (1 − 𝑃)𝛾 can
be adjusted adaptively according to the difficulty of the sample.
In instances where samples are inherently easier to classify, the
parameter 𝑃 is larger, causing the adjustment factor to tend to zero.
Consequently, this results in a reduced impact on the loss function,
prompting the model to focus more on samples that are difficult to
classify. The overall loss is the combination of the spatio-temporal
contrasting loss, semantic consistency loss, and classification loss
as follows:

L = 𝜆1L𝑀𝑆𝐶 + 𝜆2L𝑆𝐶 + L𝐹𝐿, (12)
where 𝜆1 and 𝜆2 are fixed scalar hyperparameters denoting the
relative weight of each loss.

4 EXPERIMENTS
The datasets and implementation details are first presented in this
section. We then conducted extensive experiments to validate the
effectiveness of the MRLMC framework.

4.1 Datasets Description
To evaluate the performance of our proposed method, we conduct
a series of experiments on two datasets.

MODMA dataset [25] is a publicly available dataset, and we
only use event-related EEG data, including 53 participants (24 out-
patients diagnosed with depression and 29 healthy controls). It uses
a Dot-probe stimulation task to record EEG signals. The Dot-probe
is composed of facial pictures from the standardized native Chinese
Facial Affective Picture System [27]. The facial pictures are classi-
fied into four sets as fear, sad, happy, and neutral emotions based on
their valence. Any two facial images of different valences appear on
the screen. During the experiment, participants were asked to focus
on the screen and watch freely with their eyes. When the dot ap-
peared, they were asked to press the button quickly and accurately
without making any body movements, including head or legs, and
as much as possible without making unnecessary eye movements,
glances and blinks. Continuous EEG signals were recorded using a
128-channel device. The sampling frequency was 250 Hz.

fNIRS-EEG dataset is a self-collected multimodal physiological
signals dataset, including fNIRS and EEG signals. We utilize a verbal
fluency stimulation task to record data, including 96 participants

Figure 5: The channel location of fNIRS and EEG. Among
them, orange is 16 NIR emitters, blue is 16 NIR receivers,
green is 53 fNIRS channels, and purple is 16 EEG channels.

(79 depression patients and 17 healthy controls) for only fNIRS, and
64 participants (52 depression patients and 12 healthy controls) for
both fNIRS and EEG. During the data collection process, doctors
helped participants wear the device to ensure the probe was tightly
attached to the scalp until the channel pass rate reached 80%. The
entire stimulation task includes a pre-task silence period, a task
period and a post-task silence period. The silent period required
participants to sit up straight in front of the computer, remain calm,
and not shake their bodies. During the task period, three questions
appear on the computer screen, and participants are asked to name
the fruits, appliances and vegetables they can associate with the
questions. As shown in Figure 5, the near-infrared device used in
this study has 16 near-infrared (NIR) emission probes and receiving
probes, and a total of 53 channels are connected. The detector
emits near-infrared light at 690nm and 830nm. Throughout the test
period, the NIR device collected the intensity of the emitted light
at two wavelengths at a sampling frequency of 100hz. Through the
test, each participant had data of 150×100×53×2, where 150 is the
duration of the test, 100 is the data collection frequency, 53 is the
number of channels and 2 is the number of wavelengths. The EEG
device used in this study has 16 channels, and the electrode-wearing
method follows the 10-20 lead system standard. The EEG device
collects electrical signals at a sampling frequency of 1000hz, with
data for each participant of 150×1000×16, where 150 is the duration
of the test, 1000 is the data collection frequency, 16 is the number
of channels.

4.2 Implementation Details
4.2.1 Experimental Setup. The entire dataset is randomly split into
training set, testing set and validation set for each training phase.
The final modal used in testing is the one that exhibits the best
performance on the validation set. For the evaluation of depression
diagnosis, the macro Accuracy, Precision, Recall and F1-score are
used as evaluation indicators for the performance of the model.
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Table 1: Model configuration parameters.

Parameters Values

Learning rate 1𝑒 − 3
Batch size 16
Dropout 0.1
𝑁𝑆𝑐𝑎𝑙𝑒 5
𝑁𝑇𝑟𝑎𝑛𝑠 1
𝑁𝐻𝑒𝑎𝑑 16

Multiple experiments were conducted to take the average value of
the evaluation indicators.

4.2.2 Data Preprocessing. For the MODMA dataset, we utilized
the EEGLAB toolkit [6] within the MATLAB platform for EEG
denoising. We applied a bandpass filter with a frequency range
of 1-40 Hz to the raw EEG signal. Then, we utilized the extended
ICA algorithm to obtain multiple independent EEG components to
eliminate artifacts and noise components, such as electrooculogram
(EOG), ECG, EMG, and eye movement. Finally, the ICLabel plugin
was used to remove the identified artifacts and noise components.
Additionally, we only selected part of the channel data from the
prefrontal brain area, which processes emotional expression.

For the fNIRS-EEG dataset, we first utilized the near-infrared
data analysis tools for fNIRS data preprocessing. The preprocess-
ing steps begin with the elimination of motion artifacts unrelated
to the raw data using the temporal derivative distribution repair
method. Subsequently, the light intensity signal was converted
into an optical density profile, which was then filtered using the
finite impulse response band-pass filter with 0.01-0.08Hz to elimi-
nate noise caused by physiological fluctuations such as pulse and
respiration and baseline drift caused by environmental and temper-
ature changes. Finally, the optical density data were converted to
concentration change of oxygenated hemoglobin (HbO) and deoxy-
hemoglobin (HbR) using a modified Beer-Lambert method. Based
on fNIRS-based research [3, 10, 63], this study also deliberately fo-
cused on the HbO concentration change data in subsequent method
design. Additionally, we only selected part of the channels, which
are the red font channels shown in Figure 5. For the EEG signals,
the same preprocessing method as the MODMA dataset was imple-
mented. Specifically, resampling was implemented for both fNIRS
and EEG data.

4.2.3 Model Configuration. The model is constructed using the
Pytorch framework and optimized using the RMSprop optimizer.
The learning rate, batch size and other parameters are shown in
Table 6.

4.3 Experimental Results
4.3.1 EEG Depression Recognition. To demonstrate the effective-
ness of the MRLMC model and its applicability on single modal
modes, we first conducted sufficient experiments on the MODMA
dataset. The benchmark algorithms include EEGNet [23], STGCN [56],
DGCNN [48], HGP-SL [61], SAGE [24], SST-Emotionnet [17], SGP-
SL [4], CGIPool [34], SGP-SL [4], TSception [7], CLG [43], dFL [45]
and 1DEEG-Transformer [37] for comparison. All models utilize

Table 2: Comparison of MRLMC model with baseline meth-
ods on MODMA dataset.

Model Acc. Prec. Rec. F1.

EEGNet [23] 0.568 - 0.668 0.600
STGCN [56] 0.588 - 0.577 0.596
DGCNN [48] 0.597 - 0.459 0.552
HGP-SL [61] 0.585 0.536 0.625 0.577
SAGE [24] 0.679 0.640 0.667 0.653

SST-Emotionnet [17] 0.736 0.692 0.750 0.720
CGIPool [34] 0.736 0.692 0.750 0.720
SGP-SL [4] 0.849 0.808 0.875 0.840

TSception [7] 0.544 - 0.445 0.486
CLG [43] 0.765 - 0.757 0.759
dFL [45] 0.750 - 0.614 -
1DEEG-

Transformer [37] 0.782 0.784 0.692 0.749

MRLMC 0.867 0.875 0.875 0.864

the raw EEG signals. Table 2 exhibits the evaluation indicators for
each model. For EEG-based depression recognition, the MRLMC
model attains the most superior performance with 0.867, 0.875,
0.875, and 0.864 in accuracy, precision, recall, and F1-score, re-
spectively. Specifically, the highest recognition accuracy 0.867 was
obtained by MRLMC. EEGNet is the most classic convolutional
neural network for processing EEG signals, which uses tempo-
ral and spatial convolution to extract data features. The CLG and
1DEEG-Transformer stack back and forth the convolutional lay-
ers and long short term memory network to extract temporal and
spatial features. Differently, the MRLMC model designs an MSC
network to extract the spatio-temporal representation and learns
effective feature based on the contrastive loss function, thereby
achieving the most advanced classification performance. Compared
with SGP-SL, the recognition accuracy of the MRLMC model is
improved by 2%. With the latest research such as the CLG and
1DEEG-Transformer, the recognition accuracy is improved by 11%.
In addition, the DGCNN and CGIPool models construct the ex-
tracted features into a graph structure and mine the relationships
between the channels of data. Based on existing research, it has
been shown that the prefrontal lobe area of the brain performs emo-
tional expression, which is gradually activated when a stimulation
task is performed. Therefore, we implemented a channel selection
process before feature extraction. Compared to the DGCNN and
CGIPool networks, the MRLMCmodel improves by 18% in accuracy
since the proposed MSC module can also extract channel features.
Especially, we also mine the deep semantic information of the data,
aiming to mine semantic features such as brain activation levels,
andmaximize the semantic representation of multimodal data based
on consistency loss.

4.3.2 fNIRS Depression Recognition. Table 3 shows the perfor-
mance of the MRLMC model on fNIRS data in the fNIRS-EEG
dataset. To evaluate the superiority of our method, the baseline
methods selected are Logistic Regression (LR), K-Nearest Neighbor
(KNN), Support Vector Machine (SVM) [47], AlexNet [21], Residual
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Table 3: Comparison of MRLMC model with baseline meth-
ods on fNIRS-EEG dataset (only fNIRS).

Model Acc. Prec. Rec. F1.

LR 0.813 0.300 0.583 0.355
KNN 0.729 0.188 0.219 0.188

SVM [47] 0.823 0.000 0.000 0.000
AlexNet [21] 0.830 0.790 0.830 0.800
ResNet [12] 0.720 0.670 0.720 0.700
RF [63] 0.833 0.625 0.175 0.267
XGB [63] 0.833 0.525 0.413 0.446

Corr-AlexNet [53] 0.900 0.910 0.900 0.880
GCN [58] 0.854 0.700 0.488 0.563

Diffpool [58] 0.875 0.750 0.475 0.571

MRLMC 0.913 0.827 0.908 0.834

Table 4: Extensive experiments of MRLMC model on fNIRS-
EEG dataset.

fNIRS EEG Aug. Acc. Prec. Rec. F1.

✓ × ✓ 0.907 0.816 0.839 0.802
× ✓ ✓ 0.875 0.834 0.822 0.771
✓ ✓ × 0.907 0.836 0.875 0.816
✓ ✓ ✓ 0.917 0.850 0.881 0.831

Network (ResNet) [12], Random Forest (RF) [63], XGB [63], Corr-
AlexNet [53], GCN [58] and Diffpool [58]. Our proposed method
achieved 0.913, 0.827, 0.908 and 0.834 in accuracy, precision, recall
and F1-score, respectively, which are satisfactory results. The ac-
curacy of traditional machine learning methods such as LR, KNN
and SVM is not satisfactory, while the accuracy of deep learning
algorithms such as AlexNet is relatively improved, which highlights
the superior performance of deep learning algorithms in depression
recognition based on physiological signals. The Corr-AlexNet, GCN
and Diffpool networks compared to traditional machine learning
improve the accuracy by about 8%. These methods rely on manu-
ally extracted features for learning and lack deep exploration of
spatio-temporal representation, dynamic features, and semantic
representation. The MRLMC model extracts the spatio-temporal
representation and dynamic features of the data through the spatio-
temporal contrasting module. Additionally, the main symptoms
of patients with depression include low mood and slow thinking,
which causes their brains to be activated differently when perform-
ing stimulating tasks. The MRLMC model utilizes the semantic
consistency module to dig deep into the semantic representation to
reflect brain activation states. Compared with traditional machine
learning, the accuracy is improved by about 11%, and compared
with the method of manually extracting features for recognition,
the accuracy is improved by about 1.5%. Overall, based on task-state
physiological data, extracting spatio-temporal representation and
semantic representation can achieve higher recognition accuracy.

4.3.3 Multimodal Depression Recognition. Table 4 exhibits the recog-
nition results of the MRLMC model on the fNIRS-EEG dataset. The

Figure 6: The visualization of the distribution of features
extracted by each module of the proposed model. (a) and (b)
are the representations of fNIRS and EEG extracted by the
spatio-temporal contrasting module. (c) and (d) are the se-
mantic features of fNIRS and EEG extracted by the semantic
consistency module.

excellent results were achieved based on both fNIRS and EEG, with
accuracy, precision, recall and F1-score reaching 0.917, 0.850, 0.881
and 0.831, respectively. When only based on fNIRS or EEG, the
recognition accuracy reaches 0.907 and 0.875 respectively. Relying
on single modal physiological signal for depression recognition, the
recognition accuracy is limited by the available feature representa-
tions of data. When utilizing multimodal physiological signals, the
classification performance improves by 3%. When continuing to
perform the data augmentation method, the evaluation indicators
all improved. fNIRS collects HbO concentration change data and
EEG is an electric signal, and there are complementary features be-
tween them. The MRLMC model utilizes spatio-temporal contrast-
ing module to learn the complementary feature representations of
multimodal data. Subsequently, the proposed semantic consistency
module extracts the semantic features of multimodal physiological
signals, such as the degree of brain activation, which are jointly
learned through consistency loss. Considering the challenge of
class imbalance in real diagnosis and treatment environments, we
use the focal loss function to construct a classification network,
which enhances the robustness of the network to achieve higher
recognition accuracy. The MRLMC model proved effective even for
small-scale datasets.

To intuitively demonstrate the effectiveness and feature repre-
sentation capabilities of the various modules in the MRLMC model,
Figure 6 displays the distribution of features extracted by each
module on fNIRS-EEG dataset. Figure 6 (a) and (b) demonstrate
the distribution of representations of fNIRS and EEG extracted by
the spatio-temporal contrasting module, albeit not completely sep-
arable. Figure 6 (a) and (b) represent the distribution of semantic
features extracted by the semantic consistency module, at which
point the MRLMC model can accomplish depression recognition.

4.3.4 Ablation Analysis. To verify the effectiveness of different
modules in our proposed model, we conduct additional ablation
experiments on the fNIRS-EEG dataset, as shown in Table 5. L𝑀𝑆𝐶
and L𝑆𝐶 are the loss functions applied by the spatio-temporal
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Table 5: Results of loss terms ablation experiments in each
proposed module.

L𝑀𝑆𝐶 L𝑆𝐶 L𝐹𝐿 Acc. Prec. Rec. F1.

× × ✓ 0.800 0.527 0.543 0.533
✓ × ✓ 0.891 0.777 0.723 0.740
× ✓ ✓ 0.875 0.770 0.714 0.723
✓ ✓ ✓ 0.917 0.850 0.881 0.831

Table 6: Performance of MRLMC model with different pa-
rameters on fNIRS-EEG dataset.

𝑁𝑆𝑐𝑎𝑙𝑒 𝑁𝑇𝑟𝑎𝑛𝑠 𝑁𝐻𝑒𝑎𝑑 Acc. Prec. Rec. F1.

4 1 16 0.907 0.815 0.839 0.806
5 1 16 0.917 0.850 0.881 0.831
6 1 16 0.917 0.838 0.809 0.804
5 2 16 0.891 0.786 0.777 0.764
5 3 16 0.875 0.530 0.571 0.549
5 1 4 0.792 0.661 0.738 0.657
5 1 8 0.900 0.795 0.814 0.787
5 1 32 0.896 0.781 0.798 0.775

contrasting and semantic consistency modules respectively. L𝐹𝐿 is
the depression recognition loss, which is utilized in all experiments.
The results indicate that satisfactory performance is obtained when
utilizing all losses. The performance of using L𝑀𝑆𝐶 or L𝑆𝐶 alone
is better than using only recognition loss. This proves that our
proposed L𝑀𝑆𝐶 and L𝑆𝐶 can help the model obtain useful spatio-
temporal representation and semantic information. This means that
the spatio-temporal contrasting and semantic consistency modules
are effective for multi-modal physiological signals for depression
recognition.

4.3.5 Parameter Analysis. To further investigate theMRLMCmodel,
we analyze in detail the impact of several important parameters
of the model on performance in this section. Table 6 exhibits the
performance of the MRLMC model with different parameters on
the fNIRS-EEG dataset. The first three rows of indicators verify
the effects of the number of spatio-temporal convolution blocks
on model performance, the middle two rows verify the effects of
the number of transformer units, and the last two rows verify the
effects of multi-head attention. The results show that different pa-
rameters have different effects on the model. When the number of
convolution blocks is 5 or 6, the recognition accuracy reaches excel-
lent results. The number of transformer encoder units has a slightly
greater impact on the performance of depression recognition. As
the number of units increases, the network complexity increases,
which causes overfitting of the model. In addition, information may
be lost or confused during the transmission process, making it diffi-
cult for the network to learn useful semantic information. When
the number of multihead attention is 8 or 16, the model achieves
superior performance.

Figure 7 shows the performance of the MRLMC model with dif-
ferent number of spatio-temporal convolution blocks on the fNIRS-
EEG dataset. As the number of convolution blocks increases, the

Figure 7: Performance of MRLMC model with the differ-
ent number of spatio-temporal convolution block on fNIRS-
EEG dataset. The shadow part represents the superior per-
formance.

recognition accuracy decreases, which proves that spatiotemporal
representation has a great impact on the recognition performance
for small-scale datasets. The increased number of blocks means
that the complexity of the model increases. The main characteris-
tics of multimodal physiological signals are their spatio-temporal
representation and dynamic variability, and their key information
is often hidden in local sequence patterns and global temporal
dependence. Networks with high complexity may fail to capture
these key information, making it difficult to learn effective spatio-
temporal representation. Therefore, for the small-scale fNIRS-EEG
dataset, the results of spatio-temporal convolution blocks of 5 or
6 are most excellent. If the MRLMC model is to be transferred to
other downstream tasks of multimodal time series, the number of
spatio-temporal convolution blocks needs to be determined based
on the characteristics of the data.

5 CONCLUSION
In this paper, we propose a multimodal physiological signals rep-
resentation learning framework via multiscale contrasting for de-
pression recognition. The Siamese network architecture is utilized
to maximize the complementarity between multimodal data. We
design multiscale spatio-temporal convolution to obtain more dis-
criminative spatio-temporal representations and dynamic features.
The spatio-temporal contrasting module aims to minimize the fea-
ture representation and maximize the complementarity of fNIRS
and EEG. Meanwhile, the semantic consistency module captures
contextual information and the deep semantic information of the
data to maximize the semantic representation of multimodal data
based on semantic consistency loss. Extensive experiments are im-
plemented on MODMA and fNIRS-EEG datasets, and our proposed
model achieves state-of-the-art performance on both singlemodal
and multimodal data. Moreover, the analysis of the feature distribu-
tion and key parameters of each module shows that each module
plays an important role in mining spatio-temporal representations
and semantic features. Notably, the proposed model is a generalized
architecture based on multichannel physiological signals, which
can be extended to other mental disorders and cognitive ability
recognition in the future.
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