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ABSTRACT

How does the choice of optimization algorithm shape a model’s ability to learn
features? To address this question for steepest descent methods —including sign
descent, which is closely related to Adam —we introduce steepest mirror flows as
a unifying theoretical framework. This framework reveals how optimization ge-
ometry governs learning dynamics, implicit bias, and sparsity and it provides two
explanations for why Adam and AdamW often outperform SGD in fine-tuning.
Focusing on diagonal linear networks and deep diagonal linear reparameteriza-
tions (a simplified proxy for attention), we show that steeper descent facilitates
both saddle-point escape and feature learning. In contrast, gradient descent re-
quires unrealistically large learning rates to escape saddles, an uncommon regime
in fine-tuning. Empirically, we confirm that saddle-point escape is a central chal-
lenge in fine-tuning. Furthermore, we demonstrate that decoupled weight decay,
as in AdamW, stabilizes feature learning by enforcing novel balance equations.
Together, these results highlight two mechanisms how steepest descent can aid
modern optimization.

1 INTRODUCTION
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Figure 1: Initialized close to a saddle
point, sign gradient flow (SignGF) con-
verges faster than gradient flow (GF).

Optimization is a central driver of modern machine
learning. First-order methods are particularly com-
mon in deep learning, where models are heavily over-
parameterized and trained on highly non-convex ob-
jectives populated with many saddle points and mul-
tiple global minima. In this regime, the choice of op-
timizer is not merely about convergence speed (Pas-
canu et al., 2025): different algorithms can converge
to different solutions with markedly different prop-
erties like generalization, sparsity, and robustness
(Woodworth et al., 2020; Arora et al., 2019; Jacobs
& Burkholz, 2025; Tsilivis et al., 2024).

To understand the solutions that are preferred due
to an interplay between overparameterization and the
optimization algorithm, a geometric lens has proven
especially useful. It is well known that overparam-
eterization under gradient flow (GF) can induce mirror flows, changing the effective geometry in
which optimization proceeds (Li et al., 2022). This perspective clarifies how symmetries and bal-
ance constraints are preserved, how implicit regularization emerges, and how specific design choices
– like large learning rates, stochasticity, momentum, and explicit regularization – can shape learned
solutions (Marcotte et al., 2023; Kunin et al., 2024; Gunasekar et al., 2017; Woodworth et al., 2020;
Pesme et al., 2021; Even et al., 2023; Jacobs & Burkholz, 2025; Jacobs et al., 2025b; Papazov et al.,
2024; Wang & Klabjan, 2024; Tarzanagh et al., 2023). Yet, most theories still center on gradient
descent/flow, while modern practice in fine-tuning often operates in a setting where plain (Stochas-
tic) Gradient Descent (SGD) with small learning rates underperforms. In contrast, Adam (Kingma
& Ba, 2017) or AdamW (Loshchilov & Hutter, 2017) variants routinely deliver more robust and
stronger results.
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Figure 2: Illustration of different steepest mirror flows (with varied q). On the left side, the metric
exponent is shown dependent on the associated depth. A high metric exponent increases the diffi-
culty to escape zero and the instability of the flow. The right side illustrates saddle escape by plotting
the solutions of the ODE’s corresponding to the metric exponents, dxt = xq

tdt, with x0 = 0.1 (from
the origin). Concluding, SignGF does not get stuck near saddles and still allows feature learning by
entering the green strip in the plot on the left, effectively inducing sparsity.

Why do modern adaptive methods work so well in fine-tuning, and what solutions do they favor? We
approach this question by analyzing overparameterization and steepest descent methods via their
resulting steepest mirror flows. Concretely, we study an optimizer family indexed by q ∈ [1, 2]
that interpolates between GF (q = 2) and SignGF (q = 1), where the latter closely related to
sign-based methods exhibiting Adam-like behavior. Working in this broader geometric setting is
technically more challenging than for gradient flow, as we lose the inner product structure, making
the optimization process operate in a Banach instead of a Hilbert space.

Following Nam et al. (2025)’s call for simple, analytically tractable models that nevertheless reflect
common phenomena, we focus on deep diagonal reparameterizations (a simplified diagonal proxy
for the dynamics of KQ between the K key and Q query matrices in attention at depth (L = 2))
and diagonal linear networks. Within this setting, we derive new balance equations that characterize
the induced mirror flows and the metric exponent governing dynamics as a function of depth (see
Figure 2). This reveals a significant qualitative difference for varying q: steeper descent (smaller
q, approaching SignGF) facilitates saddle-point escape and feature learning, while GF (larger q)
typically requires unrealistically large learning rates to escape saddles (Pesme & Flammarion, 2023;
Du et al., 2017), which is uncommon in fine-tuning. Here feature learning refers to induce sparsity
in the learned representation. Moreover, we show that decoupled weight decay (AdamW) controls a
different balance equation from GF, which stabilizes feature learning without driving the dynamics
into high-exponent regimes that impede saddle escape. These findings are in line with empirical
observations.

A scenario for which the implicit bias is known is classification on separable data. Recently, in this
setting, max-margin characterizations have been derived for steepest descent (Tsilivis et al., 2025)
and Adam (Zhang et al., 2024), establishing an L∞-margin for both SignGF and Adam. However,
this margin does not see the full geometry induced by overparameterization, as our analysis shows.
For diagonal deep networks, the L∞-margin would be independent of depth, whereas our findings
reveal that the margin actually depends critically on depth through the geometry that controls feature
learning by the metric exponent (see Figure 2) where a larger metric exponent leads to a sparser
representation.

We validate these predictions for linear regression and separable binary classification, demonstrat-
ing ground-truth recovery and the predicted saddle-escape behavior. Fine-tuning experiments on
standard vision tasks and LLM adaptation further corroborate the generality of our insights. Empiri-
cally, we find that Adam-like steepest flows escape saddles faster and achieve stable feature learning
at small learning rates. Decoupled vs. coupled weight decay exhibits the anticipated sparsity and
stability trade-offs, aligning with our balance-equation analysis.

Contributions.
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• Steepest mirror flows for a family of reparameterized steepest flow dynamics. We
develop a framework connecting reparameterizations to steepest mirror flows for a family
of steepest descent methods in separable settings, combining steepest descent and mirror
geometry.

• Qualitative gap between GF and SignGF. For deep diagonal reparameterizations, we
prove that steeper descent (lower q) simultaneously escapes saddles faster and supports
feature learning, whereas GF requires time rescaling / large learning rates to achieve com-
parable escape.

• Decoupled weight decay for stability and sparsity. We show that AdamW-style decou-
pled weight decay enforces distinct balance equations from GF, yielding more stable feature
learning and needs higher depth for sparsity.

• Empirical validation in fine-tuning. We corroborate our theory for diagonal linear models
by fine-tuning vision models and LLMs, highlighting (i) faster saddle escape with Adam-
like flows and (ii) the predicted differences between coupled vs. decoupled weight decay
for sparse, reparameterized training.

2 RELATED WORK

Mirror flow and reparameterizations Specific reparameterizations trained with gradient flow in-
duce a mirror flow Li et al. (2022). This finding has been used to describe the implicit regularization
induced by overparameterization (Azulay et al., 2021; Vaškevičius et al., 2019; Zhao et al., 2022; Li
et al., 2021; Gunasekar et al., 2017; Woodworth et al., 2020), explaining, why highly overparame-
terized neural networks can generalize well despite the risk of overfitting. Even the effect of large
learning rates, stochastic noise, explicit regularization, and momentum can be covered by the theory
(Pesme et al., 2021; Even et al., 2023; Jacobs & Burkholz, 2025; Jacobs et al., 2025b; Papazov et al.,
2024). Generalizing these results that apply to gradient flows, we extend the mirror flow analysis to
steepest flows. This includes sign gradient descent, which has a similar implicit bias as Adam (see
Appendix A). As a highlight, we characterize the mirror flow stability with respect to the depth and
type of descent algorithm. From a technical point of view, our derivations overcome the challenge
that, unlike gradient flows that operate in Hilbert spaces, steepest descent algorithms live in Banach
spaces. (Banach spaces have less mathematically convenient structure, as norms but not necessarily
scalar products are defined.)

Application of reparameterization to sparsity Recent work has used the implicit bias of repa-
rameterizations to induce sparsity. (Jacobs & Burkholz, 2025; Gadhikar et al., 2025; Jacobs et al.,
2025a) employ the mirror flow framework for gradient flows to guide the (re-parameterized) train-
ing dynamics, which are controlled by explicit regularization (Jacobs et al., 2025b). The analysis
is centered around vision benchmarks where stochastic gradient descent with momentum is usually
preferred over Adam. Kolb et al. (2025); Ziyin & Wang (2022) also exploit that reparameterized loss
functions with L2-regularization are equivalent to a differently regularized optimization problem in
the original parameters. Combining deep pointwise reparameterizations with weight decay, Kolb
et al. (2025) observe that higher depth leads to extreme sparsity and performance degradation. For
sign gradient descent we show that decoupled weight decay, in contrast, actually needs higher depth
to induce sparsity. This reveals a key difference between coupled and decoupled weight decay.

Steepest descent and saddles Recent studies have revisited steepest descent as a unifying lens for
understanding optimization in modern machine learning. Fan et al. (2025) and Tsilivis et al. (2025)
analyze the implicit regularization induced by different steepest descent algorithms in classification
settings with separable data, showing that the iterates approach a particular max margin solution.
Building on this line of work, Large et al. (2024) and Bernstein & Newhouse (2025) highlight how
modular duality provides a basis for steepest descent based algorithm design. A similar max margin
implicit bias characterization has been provided for adaptive algorithms, including Adam (Zhang
et al., 2024). For AdamW, the effect of decoupled weight decay on implicit bias can be expressed as
a bound on the L∞ norm for general objective functions (Li et al., 2025). The convergence of sign
gradient descent, an optimizer with implicit bias similar to Adam, has also been studied, connecting
its behavior to Lipschitz smoothness and yielding looser convergence bounds than gradient descent
(Balles et al., 2020), with comparable rates in settings with unbounded smoothness (Crawshaw et al.,
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2022). As we show, overparameterization can lead to faster convergence for sign gradient flow than
for standard gradient flow, which we attribute to better saddle point escape.

In finetuning, a small learning rate is preferred to not alter the representation to much too prevent
catastrophic forgetting (Zhou et al., 2025). This clashes with the fact that saddle point escape needs
time rescaling in gradient flow dynamics (Pesme & Flammarion, 2023). Note that different mecha-
nisms that have been shown and studied allowing for saddle point escape are large learning rate and
noise perturbation (Jin et al., 2017; Fang et al., 2020; Roy et al., 2020). In contrast, our analysis
reveals a different mechanism which only relies on the geometry of the dynamics. As we show in
experiments (Figure 5a), SGD with a small learning rate can not escape saddle points while Adam
can.

Conservation and algebraic invariance The reason why reparameterizations can induce a mirror
flow is that gradient flow satisfies symmetries that do not change during training (Marcotte et al.,
2025; 2024; 2023), i.e. so called balance equations. The scale and the relative scales of these
invariances are important. Note that the relative scale is also referred to as λ-balance (see Definition
3.3). A slight initial imbalance can support feature learning, according to (Kunin et al., 2024). The
gradient flow of deeper networks has also been studied under balanced invariance as a dynamical
system Arora et al. (2019); Gadhikar & Burkholz (2024); Gadhikar et al. (2025); Boursier et al.
(2022). Even exact solutions have been derived for two layer networks using a Ricatti equation
(Dominé et al., 2024; Saxe et al., 2014; Xu & Ziyin, 2024). Less is known about steepest descent
algorithms. We show that the relative scale for steepest descent optimizers can differ significantly,
explaining, why sign gradient descent can train relatively faster than gradient descent.

3 BACKGROUND: REPARAMETERIZATION AND MIRROR FLOW

Consider minimizing a continuously differentiable objective f ∈ C1 (Rn,R). This can be accom-
plished with gradient descent: xk+1 = xk−η∇xf(xk), x0 = xinit, where η > 0 is the learning rate.
We study the resulting flow by taking the learning rate η → 0, resulting in the differential equation:
dxt = −∇xf(xt)dt, x0 = xinit.

Reparameterizations and mirror flow Training reparameterizations of x with gradient flow have
been connected to mirror flows (Li et al., 2022; Jacobs et al., 2025b). (See Appendix C for a sum-
mary). Concretely, consider the reparameterization g ∈ C1(M,Rn), assuming that M is a smooth
manifold. This corresponds to the gradient flow: dwt = −∇wf(g(wt))dt, w0 = winit. Under
suitable conditions, this can be described by a mirror flow:

d∇xR(xt) = −∇xf(xt)dt, x0 = xinit, (1)

where R : Rn → R is a Legendre function (see Definition 3.1). A mirror flow can control the
implicit bias (Sun et al., 2022; Pesme et al., 2024; Gunasekar et al., 2018), i.e. the type of solution
we converge to.
Definition 3.1. (Legendre Function, Definition 3.8 ((Li et al., 2022))) Let R : Rd → R ∪ {∞} be a
differentiable convex function. We say R is a Legendre function when the following holds: 1) R is
strictly convex on the interior of its domain int(domR). 2) For any sequence {xi}∞i=1 going to the
boundary of domR, the gradient diverges, i.e. limi→∞ ||∇xR(xi)||2L2

=∞.
Example 3.2. Let the reparameterization g : Rn × Rn → Rn be a deep diagonal linear network
g(m,w) = m ⊙ w or equivalently g(m,w) = diag(m) diag(w). Assuming |wi,init| < mi,init, the
corresponding Legendre function is:

R(x) =
1

2

∑
i∈[n]

xi arcsinh
(
xi

λi

)
−
√
x2
i + 2λ2

i − xi log
(
mi,init + wi,init

mi,init − wi,init

)
, (2)

where λi = m2
i,init − w2

i,init. This corresponds the hyperbolic entropy which interpolates between
L1-norm (λ → 0) and L2-norm (λ → ∞) implicit bias (Woodworth et al., 2020). Moreover, R is
also a Bregman function B.9, which is a property necessary for convergence

In Example 3.2, λ controls the relative scale. This is connected to the preserved balance by gradient
flow. Similar balance equations exist for products of matrices. The small scale is associated with
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sparsity and with this inducing feature learning. Furthermore, the reparameterization can be used
as a proxy for the key K and query Q matrices in attention (Tarzanagh et al., 2023; Jacobs et al.,
2025b; Marcotte et al., 2025).
Definition 3.3. A product of parameters m ∈ Rn and w ∈ Rn is called λ−balanced iff m2 −w2 =
λ1n, where we used the convention m2 = m⊙2, i.e., element-wise multiplication and 1n the all one
vector.

Marcotte et al. (2023) have shown that, if Definition 3.3 is satisfied, then balance is preserved under
gradient flow for the more general matrix case. In other words, the parameters stay λ-balanced
during training. This establishes a connection between mirror flows and the balance equation.

Implicit bias and linear regression For mirror flows, the implicit bias for linear regression tasks
can be characterized for general data sets. Let {(zi, yi)}ki=1 ⊂ Rn × R be a dataset consisting of
k samples with n features. The output of a linear model with parameters x on the i-th data is zTi x.
The goal is to solve the regression to predict the target vector Y = (y1, y2, . . . , yk)

T based on input
vector Z = (z1, z2, . . . , zk). The next theorem establishes a mirror flow in this setting.
Theorem 3.4. (Theorem 3.9 (Li et al., 2022)) Given (Z, Y ), suppose the objective f(x) is of the
form f(x) = f(Zx) for some differentiable f : Rn → R. Initialized at x0 = xinit, assume that the
mirror flow Eq. (1) converges to x∞ = limt→∞ xt, which satisfies Zx∞ = Y , then

DR(x∞, x0) = min
x∈Rn

DR(x, x0), where DR(x, x0) := R(x)−R(x0)− ⟨∇xR(x0), x− x0⟩.

DR is also known as the Bregman divergence (Definition B.8) with respect to R.

Theorem 3.4 associates the Bregman divergence DR with the limits of a mirror flow. In Example
3.2, if R is the hyperbolic entropy (Eq. (2)), a balancing constant λ → 0 induces a feature learning
regime and controls the strength of the induced sparsity bias. In conclusion, the reparameterization
and λ allow us to control the implicit bias.

Inducing sparsity with reparameterizations Reparameterizations have been used to induce spar-
sity in deep learning architectures (Ziyin & Wang, 2022; Kolb et al., 2025; Jacobs & Burkholz, 2025)
by exploiting the equivalence between the following optimization problems:

min
m,w∈Rn

f(m⊙ w) + α
(
||m||2L2

+ ||w||2L2

)
and min

x∈Rn
f(x) + 2α||x||L1

.

Hence, their local minima correspond to each other, see (Theorem 2 in (Ziyin & Wang, 2022)).

4 THEORY: STEEPEST MIRROR FLOW AND DEEP REPARAMETERIZATIONS

To characterize the difference between modern optimizers Adam (≃ SignGF) and SGD (≃ GF), we
study reparameterized steepest flows as steepest mirror flow. Our analysis is especially relevant for
the finetuning setting, where small learning rates are used.

Steepest flows We consider a class of algorithms that is based on steepest descent with respect to
the Lp norm. These are captured by the unnormalized steepest flow:

dxt = −sign (∇xf(xt))⊙ |∇xf(xt)|q−1dt, x0 = xinit, (3)

where q satisfies 1
p + 1

q = 1. Most interesting to us are gradient flow (GF) p = 2 (q = 2) and
sign gradient flow (SignGF) p = ∞ (q = 1), which is a proxy for Adam (see Appendix A). On a
technical note, we mention that the unnormalized flow is equivalent to the normalized flow up to a
time rescaling (see Appendix B). The solution to the studied ODE does not have to be unique but can
be interpreted in the Filippov sense (Filippov, 1988). In this setting, Gunasekar et al. (2018) argue
that a similar implicit bias characterization as in Theorem 3.4 is not possible, except for p = 2,
which corresponds to standard GF. Accordingly, this is also not possible for reparameterizations
trained by Eq. (3). However, we can still study the induced dynamics to analyze the feasibility of
feature learning. Our main objective is to make qualitative statements about the dynamics such as
saddle point escape, stability and the effect of decoupled weight decay.
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Steepest mirror flows Consider a Legendre function R (Definition 3.1). A steepest mirror flow
with respect to the Lp norm is given by:

d∇xR(xt) = −sign(∇xf(xt))⊙ |∇xf(xt)|q−1dt, x0 = xinit. (4)

For this class of flows, we can show convergence using the second order condition of coercivity as
in Definition 4.1, i.e. the inverse Hessian is bounded from below by a positive constant.
Definition 4.1. We call a function R ∈ C2 (Rn,R) inversely µ−coercive iff there exists a constant
µ > 0, the coercivity constant, such that for all x ∈ Rn:

xT∇2
xR

−1(x)x ≥ µ||x||2L2
.

Theorem 4.2. Let R : Rn → R be a seperable Bregman function (Definition B.9) that is inversely
µ-coercive (Definition 4.1). Moreover, assume that the set {x ∈ Dom R : min f(x)} is non-empty
and there exists a constant B > 0 such that for all t > 0, |∂if(xt)| ≤ B for all i ∈ [n]. Then the
loss decays and satisfies:∫ ∞

0

||∇xf(xt)||2L2
dt ≤ (f(x∞)− f(x0)) /

(
µBq−2

)
.

Assume that f ∈ C1(Rn,R) is strongly convex. Then for the iterates of Eq. (4) converges such that
we have limt→∞ xt = x∗ where x∗ is the unique minimizer of f with linear rate µBq−2Λ.

Proof. The proof follows from tracking the evolution of the loss f and the observation that for
strongly convex functions the sign is only zero when the minimum is reached (see Theorem E.1).

Theorem 4.2 highlights the dependence of the convergence rate on the coercivity constant. As we
will show, the coercivity will effectively correspond to how hard it is to escape the saddle point set.

Deep diagonal reparameterizations For the deep diagonal reparameterization given by x =
g(w) = ΠL

i=1wi, as in Example 3.2, we can study the steepest flow with respect to the Lp norm
with decoupled weight decay as in AdamW (Loshchilov & Hutter, 2017) with 1

p + 1
q = 1. The flow

is described for each i ∈ [L] by:

dwi,t = −sign (∇wi
f (g (wi,t)))⊙ |∇wf(g(wi,t)|q−1dt− αtwi,tdt wi,0 = wi,init. (5)

As additional result, we show that all separable steepest mirror flows have a corresponding reparam-
eterization in Appendix G.

Deep diagonal parameterization have inherent saddle points as characterized next by Theorem 4.3.
Theorem 4.3. Assume that ∇xf(0) ̸= 0. Then, in addition to the saddle points of f , the deep
diagonal reparameterization x = g(w) = ΠL

i=1wi introduces saddle points at:

S :=
{
(w1, . . . , wL) : ∀i,j∈[n], wi = wj = 0, wk ̸= 0 for k ̸= i, j and i ̸= j

}
.

Proof. Apply the saddle point condition from Definition D.1 (see Theorem D.2).

Theorem 4.3 implies that small initializations are close to the set S. Our next derivation shows
how steepest mirror flows can escape such saddle points. The escape rate depends on the following
balance equations, which are satisfied by the dynamics.
Remark 4.4. The points of the set S would not be saddle points of the regularized dynamics with
coupled or decoupled weight decay. However, as we will see, the metric would still be smaller for
larger q indicating that escaping from near the set S would be harder for GF (q = 2) than SignGF
(q = 1).

Balance equations The balance equations of the next lemma are needed to derive a mirror flow.
Lemma 4.5. Consider steepest descent with respect to Lp and weight decay, with 1

p +
1
q = 1. Then,

for a deep diagonal reparameterization, i.e., x = g(w) = ΠL
i=1, wi satisfies the following balance

equation for t ≥ 0 almost everywhere:

|wi,t|q − |wj,t|q = (|wi,0|q − |wj,0|q) exp
(
−q
∫ t

0

αsds

)
for all i, j ∈ [L]. (6)

6
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Proof. It follows from deriving the evolution of the left hand side of Equation (13) (see Lemma E.2).

Lemma 4.5 leads to the following natural extension of Definition 3.3.
Definition 4.6. A product of parameters m ∈ Rn and w ∈ Rn is λ−Lp-balanced with 1

p + 1
q = 1,

iff
|m|q − |w|q = λ1n,

where In ∈ Rn is the all-one vector.

We illustrate Def. 4.6 in Fig. 3. Observe that for smaller q, we can move faster away from the origin
in both parameters. Note, there is no analogue that holds for general deep reparameterizations, as
recently shown by Marcotte et al. (2025) for q = 1.

Remark 4.7. We focus on a fixed value λ for all x ∈ Rn. However as the analysis is pointwise,
therefore, we can have different values for λ per parameter.

Saddle escape and stability The next theorem shows that the invariances above induce a steepest
mirror flow when weight decay is turned off. This allows us to quantify the coercivity constant and
also the stability of the dynamics. Furthermore, we can derive explicit expressions for the seperable
Bregman functions by considering λ = 0 or L = 2.
Theorem 4.8. Initialize a deep diagonal reparameterization such that it is λ − Lp-balanced for a
λ > 0 with respect to the first parameter w1. Then, steepest descent satisfies a separable Lp-mirror
flow almost everywhere:

d∇xRLp,L(xt) = −sign (∇xf (xt))⊙ |∇xf(xt)|q−1
dt, x0 = xinit,

where RLp,L : Rn → Rn is a seperable Bregman and Legendre function when qL−1
L ≤ 1 completely

characterized by the balances of Lemma 4.5. For L = 2, we explicitly get

∇2
xRLp,2(x) :=

1√
4|x|q + λ2

.

0.4 0.2 0.0 0.2 0.4
m

0.4

0.2

0.0

0.2

0.4

w

q = 1 (SignGF)
q = 1.5
q = 2 (GF)

Figure 3: The balance equation for q ∈
{1, 1.5, 2} and initialization m = 0.1, w =
0. Observe that the (curved) path away
from the initialization to a point on the curve
mw = x with x = ±0.1 (in the plot) is
shorter for smaller q, indicating faster sad-
dle escape.

Proof. First, express the metric in terms of |w1|q us-
ing the derived balances. Second, use the implicit
function theorem to express |w1|q as a function of x
and λ. For L = 2, we can do this analytically using
the quadratic formula. To show RLp,L is Bregman we
use the properties of function∇2R−1

Lp,L
such as being

separable, bounded from below, asymptotic behavior
near the boundary and being an even function. (Full
proof see Theorem E.3.)
Corollary 4.9. For a λ− Lp balanced initialization,
steepest descent has coercivity constant µ = λL−1.

Corollary 4.9 allows us to directly apply Theorem 4.2
for stable configurations such that qL−1

L ≤ 1. Fur-
thermore, at face value, Corollary 4.9 could indicate
that all steepest descent methods have the same coer-
civity constant. However, the same initialization cor-
responds to very different λ values for different p.
Corollary 4.10. Initialize the reparameterization
such that w1 = 0 and wi = 1nλ > 0. Then, training
in Eq. (5) is λq − Lp balanced and µ = λq(L−1).

Proof. Plug into Eq. (13) in Lemma 4.5.

Corollary 4.10 indicates that, for smaller q and thus larger p, we indeed have a large coercivity con-
stant and therefore can escape the saddle set S faster. For small λ, the coercivity constant dominates
the escape rate, as shown in Figure 1.
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Remark 4.11. The case p = ∞, L = 2 corresponds to the same mirror map structure as smoothed
sign gradient descent in (Wang & Klabjan, 2024).

For deeper insights into the dynamics, we are also interested in the shape of the Bregman function
and its metric exponent, as defined next. This we can derive explicitly in case of λ = 0.

Definition 4.12. m is called metric exponent, if lim|x|→∞
∂2R−1(x)

|x|m = c for a constant c ∈ (R+)
n.

Lemma 4.13. For L ≥ 2 and λ = 0, we have:

• if m = qL−1
L = 1:

RLp,L(x) =
1

L

∑
j∈[n]

(xj log(xj)− xj − xj log(xj,0))

• if m = qL−1
L ̸= 1:

RLp,L(x) =
1

L− (L− 1) q

∑
j∈[n]

(
|xj |2−q L−1

L(
q
L − q + 2

) − xjxj,0|xj,0|q(
1
L−1)

)
.

If m = 1, RLp,L is a Bregman function with metric exponent m on the domain Rsign(x1,0) × . . . ×
Rsign(xn,0). If m < 1, the domain is Rn. Otherwise, RLp,L is not a Bregman function.

Proof. 1) Derive the inverse metric in terms |x|. 2) Integrate the metrics twice and use that
∇xR(x0) = 0. (See proof of Lemma E.4).

Theorem 4.8 and Lemma 4.13 reveal a key distinction between GF (≃ SGD) and SignGF (≃Adam).
For GF with balanced initializations at higher depth, the smoothness condition of the Bregman
function is not satisfied, but it is for SignGF. This distinction has implications for the stability of
the dynamics. Accordingly, SignGF cannot escape beyond the boundaries of the Bregman function,
making it more stable. This is captured by Corollary 4.14 and highlighted for metric exponents in
Figure 2(b), characterizing the stability of the dynamics.
Corollary 4.14. If λ ≥ 0, then for p = 2, only L = 2 is a valid Bregman function. Furthermore,
for p =∞, L ≥ 2 are all valid Bregman functions. For p < 2, there is no valid Bregman function.

Recall that λ needs to become very small for feature learning as it has to approximate the Bregman
functions in Lemma 4.13 to induce sparsity. This we can accomplish with weight decay as shown in
Lemma 4.5.

The effect of weight decay For gradient flow, the effect of explicit regularization can be integrated
into a time-varying mirror flow (Jacobs et al., 2025b). For steepest flows, we can only study the Rie-
mannian gradient flow, or, more specifically, the induced regularization on the manifold generated
by the separable metric tensor∇2

xR. This informs us how regularization is affected by the geometry.
Definition 4.15. For the regularizer h(x) =

∑
i∈[n] hi(xi) with each hi ∈ C1(R,R), the on

manifold regularizer with respect to a separable Lp steepest mirror descent characterized by R is
Mreg(x) :=

∑
i∈[n]

∫ xi ∂2
i Ri(xi)∂ihi(xi)dxi, such that we have

d∇xR(xt) = −sign (∇xf (xt))⊙ |∇xf(xt)|q−1
dt−∇xMreg(x)dt, x0 = xinit.

Theorem 4.16. Assume a) m = qL−1
L ̸= 2 or b) m = qL−1

L = 2. The manifold regularizer for
decoupled weight decay with Lp steepest descent on the manifold for a reparameterization of depth
L with balanced initialization (λ = 0) is: a) L

L(2−q)+q

∑
i∈[n] |xi|2−q L−1

L or b)
∑

i∈[n] log(|xi|).

Proof. Use∇2
xR from Corollary 4.13 and use ∂ihi(xi) = Lxi. (See Theorem E.5.) □

Example 4.17. For q = 2 (GF) and L = 2, we recover ||x||L1
as on manifold regularizer like Jacobs

& Burkholz (2025). For finite depth L, we get a || · ||L1
sparsity bias for q = L

L−1 , implying that for
q = 1 (SignGF) we get L→∞.

8
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Table 1: Comparison of the effect of cou-
pled or decoupled weight decay (Mreg) for
two reparameterization depths, namely,
(L = 2, L = ∞). Note that the infi-
nite depth would lead to a non-convex log-
arithmic regularizer (log) in the coupled
case, potentially leading to instability.

Coupled Decoupled
q = 1 (SignGF) (L1, log) (L 3

2
, L1)

q = 1.5 (L1, log) (L 5
4
, L 1

2
)

q = 2 (GF) (L1, log) (L1, log)

In Theorem 4.16, we assume a balanced initialization
(λ = 0). However, with sufficient amounts of weight
decay, we know λ → 0 ”fast enough” during training
according to Lemma 4.5. Hence, our insights generally
also apply to λ > 0.

Example 4.17 establishes for SignGF (q = 1) that we
need L→∞ to induce sparsity with explicit decoupled
weight decay. This stands in stark contrast to coupled
weight decay, which would induce extreme sparsity, as
shown in Theorem 1 by Kolb et al. (2025). Table 1
provides an overview of the effect of weight decay on
the induced regularization Mreg for L = 2 and L =∞.
Note that these results imply that the respective flow cannot correspond to a time-varying steepest
mirror flow, except for q = 2 (GF), which is covered by Jacobs et al. (2025b). This follows from
Corollary E.6 in the appendix, according to which the manifold regularizer Mreg would need to
match weight decay, which is impossible for q ̸= 2.

5 EXPERIMENTS

0 20 40 60 80 100
Features n

1

0

1
x

||x
|| L

L -margin

L -margin

L =1
L =10

Figure 4: The L∞−margin for Adam with
high and low depth L. The green region
indicates the non-zero ground truth fea-
tures. Higher depth leads to sparse ground
truth recovery in line with Corollary 4.13.

The purpose of our experiments is to substantiate our
theoretical findings. First, we verify our theoretical
predictions on deep diagonal linear networks. Next,
we show how our predictions hold in practical settings
such as reparameterized sparse training and finetuning
of vision and language models. In Appendix H, we
study the natural invariance extension of Definition 4.6
for matrices and ablate the matrix product formed by
the Q query and K key matrices in attention (as men-
tioned in Example 3.2) for a family of LLama mod-
els (Grattafiori et al., 2024). In practice, gradient flow
is implemented as gradient descent with small learning
rate (i.e. η = 0.0001 in Fig. 1 and η = 0.01 in Fig. 4).

Diagonal linear network In line with our theory, we
consider a diagonal deep network x = ΠL

i=1wi for re-
gression and binary classification with respect to the
mean squared error or exponential loss, respectively. x∗

denotes the sparse ground truth. This setting corresponds to Theorem B.10 and Theorem B.12. Our
initialization follows Corollary 4.10 for a small λ close to the saddle point set S. For the experimen-
tal details, see Appendix I and F.

In Fig. 1, we first illustrate Theorem 4.2 by reporting the overdetermined setting for linear regression
with k = 300 > n samples, n = 100 features, and depth L = 3. With high probability this ensures
the existence of a unique minimum, that is, strong convexity. We observe that it takes significant
more time for gradient descent with small learning rate to escape the saddle point initialization and
reach the global minimum. For higher depth, this effect is intensified, as can be seen in the abla-
tions in Appendix I, where we also consider coupled versus decoupled weight decay to demonstrate
Lemma 4.5 and study the effect of less data and small batch size in detail.

In the classification setting, we consider k = 80 samples and a sparse ground truth (see Appendix
F). Fig. 4 shows how higher depth leads to sparse ground truth L∞-margin recovery. This is in
line with Corollary 4.13 for SignGF (≃ Adam), where higher depth corresponds to a higher sparsity
inducing Legendre function. This geometric bias was not covered before by max-margin results, as
illustrated in Theorem F.1. Moreover, margins of SignGF and GF are compared in Appendix F.

Finetuning scenario Fig. 5(a) illustrates a mechanism by which Adam can outperform SGD in a
fine-tuning vision task, despite SGD typically achieving better performance in vision pre-training
scenarios. The top 50 eigenvalues of the Hessian spectrum were calculated with software from

9
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(a) Top 50 eigenvalues of Hessian at solution ob-
tained by SGD and Adam after finetuning on CI-
FAR10. SGD with small learning rate has difficulty
escaping the saddle point in contrast to Adam.
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(b) L1 norm of the weights during training for Adam
with coupled weight decay strength 1e − 4 and
AdamW with 1e − 1. The dashed lines correspond
to depth L = 10 and solid lines to L = 2.

Figure 5: Eigenvalue spectra in finetuning for an ImageNet pretrained ResNet-18 on CIFAR-10 (a)
and weight sparsity in reparameterized training for a ResNet-20 on CIFAR-10 (b).

(Golmant et al., 2018) for a ResNet-18 pretrained on ImageNet (Deng et al., 2009) after fine-tuning
on CIFAR-10 (Krizhevsky, 2009). They highlight how far the optimizer has moved away from the
initial saddle point. We observe that Adam exhibits fewer and weaker negative eigenvalues, indicat-
ing that it escapes saddle regions more effectively than SGD, while achieving higher performance.
In Appendix K, additional ablations are provided, including additional experiments on the Flowers
dataset (Nilsback & Zisserman, 2008). The validation accuracy is reported in Table 2, which shows
that Adam outperforms SGD with both small and large learning rate. The specific learning rates are
given in Appendix K.

Table 2: Validation accuracy for finetuning ResNet18 on CIFAR-10 and Flowers.

Metric SGD (small lr) SGD (large lr) Adam (small lr)
CIFAR-10 19.15± 2.82 93.60± 0.38 95.19± 0.21
Flowers 1.22± 0.53 62.13± 1.10 80.50± 1.38

Sparsification Next, we analyze how decoupled weight decay alters the sparsity bias in a repa-
rameterized ResNet-20 trained on CIFAR-10. As shown in Figure 5(b), AdamW exhibits a sparsity-
inducing effect only for very deep reparameterizations and sufficiently large weight decay, aligning
with Table 1. The effects of weight decay strength and reparameterization depth are reported in
Appendix J and the validation accuracy in Table 6.

6 DISCUSSION

We have studied training dynamics through a geometric lens that derives mirror flows for a fam-
ily of steepest-descent optimizers, moving beyond gradient flow into a Banach space setting. This
framework clarifies how optimizer geometry interacts with architectural choices (e.g., attention and
reparameterizations). While our analysis applies to deep diagonal reparameterizations, we corrob-
orate its relevance more broadly via fine-tuning experiments on LLM and vision tasks. The theory
yields concrete, testable predictions that match practice: Compared to gradient flow GF (≃ SGD),
sign gradient flow SignGF (≃ Adam) escapes saddles faster, is more stable at small learning rates,
and behaves differently under decoupled weight decay, as inducing sparsity with decoupled decay
requires deeper reparameterizations. These insights translate into actionable levers for efficient fine-
tuning: Select optimizer geometry to control saddle escape and tune depth to target sparsity. We
view this as a step toward co-design of optimizers and architectures, and a foundation for extending
our analysis to non-diagonal models and discrete, stochastic training.
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REPRODUCIBILITY STATEMENT

For the theory, detailed proofs have been provided for the main statements in Appendix E and
used previously known statements have been provided in Appendix B and C. Additional derived
statements are provided in Appendices D, F, and G. For the experiments, the details are provided in
Appendices F, and I, J, and K.

LLM STATEMENT

To improve fluency of the text sentence level editing has been done using large language models.
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beyond euclidean gradient flows, 2024. URL https://arxiv.org/abs/2405.12888.
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don, Wonyl Choi, Niclas Alexander Göring, and Seungjai Lee. Position: Solve layerwise linear
models first to understand neural dynamical phenomena (neural collapse, emergence, lazy/rich
regime, and grokking). In Forty-second International Conference on Machine Learning Position
Paper Track, 2025. URL https://openreview.net/forum?id=nrlGUdlo16.

Sree Harsha Nelaturu, Advait Gadhikar, and Rebekka Burkholz. TurboPrune: High-Speed
Distributed Lottery Ticket Training. URL https://github.com/nelaturuharsha/
TurboPrune.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In Indian Conference on Computer Vision, Graphics and Image Processing, Dec 2008.

Hristo Papazov, Scott Pesme, and Nicolas Flammarion. Leveraging continuous time to understand
momentum when training diagonal linear networks. In AISTATS, pp. 3556–3564, 2024. URL
https://proceedings.mlr.press/v238/papazov24a.html.

Razvan Pascanu, Clare Lyle, Ionut-Vlad Modoranu, Naima Elosegui Borras, Dan Alistarh, Petar
Velickovic, Sarath Chandar, Soham De, and James Martens. Optimizers qualitatively alter solu-
tions and we should leverage this, 2025. URL https://arxiv.org/abs/2507.12224.

Scott Pesme and Nicolas Flammarion. Saddle-to-saddle dynamics in diagonal linear networks. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=iuqCXg1Gng.

Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of SGD for diagonal
linear networks: a provable benefit of stochasticity. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=vvi7KqHQiA.

Scott Pesme, Radu-Alexandru Dragomir, and Nicolas Flammarion. Implicit bias of mirror flow
on separable data. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=wiMaws0FWB.

Jesus Rios, Pierre Dognin, Ronny Luss, and Karthikeyan N. Ramamurthy. Sparsity may be all you
need: Sparse random parameter adaptation, 2025.

Abhishek Roy, Krishnakumar Balasubramanian, Saeed Ghadimi, and Pragyya Mohapatra. Escap-
ing saddle-point faster under interpolation-like conditions. In Advances in Neural Information
Processing Systems, volume 33, pp. 12414–12425, 2020.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear dy-
namics of learning in deep linear neural networks, 2014. URL https://arxiv.org/abs/
1312.6120.

Haoyuan Sun, Kwangjun Ahn, Christos Thrampoulidis, and Navid Azizan. Mirror descent maxi-
mizes generalized margin and can be implemented efficiently. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Sys-
tems, 2022. URL https://openreview.net/forum?id=0SVOleKNRAU.

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers
as support vector machines. In NeurIPS 2023 Workshop on Mathematics of Modern Machine
Learning, 2023. URL https://openreview.net/forum?id=gLwzzmh79K.

Nikolaos Tsilivis, Natalie S. Frank, Nathan Srebro, and Julia Kempe. The price of im-
plicit bias in adversarially robust generalization. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural In-
formation Processing Systems, volume 37, pp. 58023–58057. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/6ad7e3de1776ba5ed1a6aadc9c1724a5-Paper-Conference.pdf.

Nikolaos Tsilivis, Gal Vardi, and Julia Kempe. Flavors of margin: Implicit bias of steepest de-
scent in homogeneous neural networks. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=BEpaPHDl9r.

14

https://openreview.net/forum?id=nrlGUdlo16
https://github.com/nelaturuharsha/TurboPrune
https://github.com/nelaturuharsha/TurboPrune
https://proceedings.mlr.press/v238/papazov24a.html
https://arxiv.org/abs/2507.12224
https://openreview.net/forum?id=iuqCXg1Gng
https://openreview.net/forum?id=iuqCXg1Gng
https://openreview.net/forum?id=vvi7KqHQiA
https://openreview.net/forum?id=wiMaws0FWB
https://arxiv.org/abs/1312.6120
https://arxiv.org/abs/1312.6120
https://openreview.net/forum?id=0SVOleKNRAU
https://openreview.net/forum?id=gLwzzmh79K
https://proceedings.neurips.cc/paper_files/paper/2024/file/6ad7e3de1776ba5ed1a6aadc9c1724a5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/6ad7e3de1776ba5ed1a6aadc9c1724a5-Paper-Conference.pdf
https://openreview.net/forum?id=BEpaPHDl9r


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026
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A EQUIVALENCE BETWEEN SIGNGD AND ADAM

We recall the optimization algorithms Adam (Kingma & Ba, 2017) and SignGD here to highlight
their connection. Moreover the equivalence SignGD with coupled and decoupled weight decay is
mentioned. We can set ϵ = 0 and β1 = β2 = 0 in Algorithm 1, then we recover Algorithm 2.
Similarly we recover the equivalence of AdamW (Loshchilov & Hutter, 2017) and SignGD with
decoupled weight decay. Note that just setting ϵ = 0 already gives us a sign like update as well.
Note another related optimizer is LION which is sign gradient descent with momentum (Chen et al.,
2023).

Algorithm 1 Adam with Coupled (α1) and Decoupled (α2) Weight Decay

1: Input: parameters x0, learning rate η, decay rates β1, β2, ϵ for stability, weight decay coeffi-
cients α1, α2

2: Initialize m0 ← 0, v0 ← 0, t← 0
3: while not converged do
4: t← t+ 1
5: Compute gradient:

gt ← ∇xf(xt−1) + α1xt−1

6: mt ← β1mt−1 + (1− β1)gt
7: vt ← β2vt−1 + (1− β2)g

2
t

8: m̂t ← mt/(1− βt
1)

9: v̂t ← vt/(1− βt
2)

10: Update rules:
11: Coupled (Adam + α1):

xt ← xt−1 − η
m̂t√
v̂t + ϵ

12: Decoupled (AdamW + α2):

xt ← xt−1 − η
m̂t√
v̂t + ϵ

− ηα2xt−1

13: end while

Algorithm 2 SignGD with Coupled (α1) and Decoupled (α2) Weight Decay

1: Input: parameters x0, learning rate η, weight decay coefficients α1, α2

2: t← 0
3: while not converged do
4: t← t+ 1
5: Compute gradient (with coupled α1):

gt ← ∇xf(xt−1) + α1xt−1

6: Update rules:
7: Coupled (SignSGD + α1):

xt ← xt−1 − η sign(gt)

8: Decoupled (SignSGD + α2):

xt ← xt−1 − η sign(∇xf(xt−1))− ηα2xt−1

9: end while
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B CONVEX ANALYSIS, LINEAR REGRESSION, AND CLASSIFICATION

In this section we recall definitions from convex analysis and known results from the implicit bias
literature.

Convexity an PL inequality For convergence to a minimizer the objective function needs to sat-
isfy some condition. Two common ones are convexity and the PL-inequality. Note that strong
convexity implies both.
Definition B.1 (Convex Function). A function f : Rn → R is convex if for all x, y ∈ Rn and
θ ∈ [0, 1],

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

Definition B.2 (Polyak–Łojasiewicz (PL) Condition). A differentiable function f satisfies the PL
condition with parameter Λ > 0 if

1

2
∥∇xf(x)∥22 ≥ Λ

(
f(x)− f⋆

)
for all x,

where f⋆ = infx f(x).

Steepest descent The family of steepest descent algorithms generalizes classical gradient descent
to arbitrary normed optimization geometries. We consider the same setting as in (Tsilivis et al.,
2025). Given a norm ∥ · ∥ with dual norm ∥ · ∥⋆, the steepest descent update for loss f(x) is defined
as

xt+1 = xt + ηt∆xt, where ∆xt = arg min
∥u∥≤∥∇xf(xt)∥⋆

⟨u,∇xf(xt)⟩. (7)

When ∥·∥ = ∥·∥2, this reduces to the familiar gradient descent method. More generally, the steepest
flow in continuous time is given by

dx

dt
∈

{
arg min

∥u∥≤∥gt∥⋆

⟨u, gt⟩ : gt ∈ ∂f(xt)

}
, (8)

where ∂g(θt) denotes Clarke’s subdifferential (Definition B.4) to allow for non-differentiable acti-
vations such as ReLU. For the Lp norm this reduces to:

dxt = − sign(∇xf(xt))⊙ |∇xf(xt)|q−1||∇xf(xt)||2−q
Lq

dt x0 = xinit,

where q satisfies 1
p + 1

q = 1. Now define a time rescaling τ =
∫ t

0
||∇xf(xs)||2−q

Lq
ds giving:

dxτ = − sign(∇xf(xτ ))⊙ |∇xf(xτ )|q−1dτ x0 = xinit.

This recovers the flow investigated in the main text.

Differential inclusion In order to study these flows we need to introduce what a Clarke subdiffer-
ential is and a differential inclusion. This is needed as the flow can not be interpreted in the classic
sense where there exists a unique solution. Instead we can use a set valued interpretation.
Definition B.3 (Differential Inclusion). A differential inclusion is a generalized ODE:

dxt

dt
∈ F (xt), t ≥ 0,

where F : Rn ⇒ Rn is set-valued.
Definition B.4 (Clarke Subdifferential). For a locally Lipschitz function f : Rn → R, the Clarke
subdifferential at x is

∂◦f(x) = conv
{
lim
k→∞

∇xf(xk) : xk → x, f differentiable at xk

}
.

Remark B.5. Gradient flows for nonsmooth convex functions can be written as ẋ(t) ∈ −∂f(x(t))
(using the convex subdifferential), and more generally for Lipschitz functions using the Clarke sub-
differential.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Remark B.6 (Clarke subdifferential viewpoint on sign descent). Let g(u) = ∥u∥1. Its Clarke subd-
ifferential is

∂◦g(u) =
{
s ∈ Rn : si = sign(ui) if ui ̸= 0, si ∈ [−1, 1] if ui = 0

}
.

Hence, for any differentiable f , the set-valued sign map satisfies

sign
(
∇xf(x)

)
= ∂◦∥∇xf(x) ∥1.

Consequently, the sign gradient flow can be written as the differential inclusion

dxt

dt
∈ − ∂◦∥∥∇xf

(
xt

) ∥∥
1
,

which is well-posed in the sense of Filippov for locally Lipschitz right-hand sides (Clarke, 1990;
Filippov, 1988).

To avoid notation overload, we will use the classical notation for steepest descent and write:

dxt = −sign(∇xf(xt))⊙ |∇xf(xt)|q−1dt, x0 = xinit.

Mirror flow A mirror flow can be defined in the classical sense:

d∇xR(xt) = −∇xf(xt)dt, x0 = xinit. (9)

where R is a Legendre function (Defintion B.7). The overparameterization in deep linear networks
can be interpreted as mirror flow as we will see in Appendix C.
Definition B.7. (Legendre function Definition 3.8 ((Li et al., 2022))) Let R : Rn → R ∪ {∞} be a
differentiable convex function. We say R is a Legendre function when the following holds:

• R is strictly convex on int(domR).

• For any sequence {xi}∞i=1 going to the boundary of domR, limi→∞ ||∇xR(xi)||2L2
=∞.

For convergence of the itterates of the mirror flow as in Theorem 4.14 of (Li et al., 2022) the function
R also needs to be a Bregman divergence and function, which we define in Definitions B.8 and B.9.
Definition B.8. A Bregman divergence for a generator function R : Rn → R is defined for two
points x1, x2 ∈ domR:

DR(x1, x2) = R(x1)−R(x2)− ⟨∇xR(x2), x1 − x2⟩

Definition B.9. (Bregman function Definition 4.1 (Alvarez et al., 2004)) A function R is called a
Bregman function if it satisfies the following properties:

• domR is closed. R is strictly convex and continuous on domR. R is C1 on int(domR)).

• For any x ∈ domR and γ ∈ R, {y ∈ domR|DR(x, y) ≤ γ} is bounded.

• For any x ∈ domR and sequence {xi}∞i=1 ⊂ int(domR) such that limi→∞ xi = x, it holds
that limi→∞ DR(x, xi)→ 0.

Implicit bias in linear regression We recall a known result for the linear regression setup as also
highlighted in Theorem B.10. We denote the data matrix with Z and outputs with Y . This includes,
gradient flow, sign gradient flow and mirror flow. Note the mirror flow case covers the gradient flow
case as it corresponds to R(x) := 1

2 ||x||
2
L2

.
Theorem B.10 (Implicit bias of gradient and mirror flow). (Gunasekar et al., 2018) Let R be a
Legendre function and initialize x0 = xinit. Assume that the set {x ∈ domR : Zx = Y } is non-
empty and that f : Rn → R is convex and or satisfies the PL-inequality. Among interpolants, the
mirror-flow limit (when it exists) minimizes Bregman divergence to xinit:

x⋆ = argminDR(x, xinit) such that Zx = Y.

Remark B.11. As shown in (Gunasekar et al., 2017) steepest descent algorithms do not nessecary
allows a similar characterization for linear regression as in Theorem B.10.
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Implicit bias for classification For steepest descent there is a recent result on seperable data
for binary classification (Tsilivis et al., 2025). Similarly a result for general mirror flow exists
(Pesme et al., 2024), not steepest mirror flows. We focus on the steepest descent result here as
this includes our steepest descent reparameterization as well (it is a homogeneous network). By
exploiting invariances, we can show that the margin has to satisfy additional constraints for deep
diagonal networks. Their analysis relies on the following assumptions, which are satisfied by many
practical neural network architectures and our reparameterization:

1. Local Lipschitzness: For any zi ∈ Rd, the mapping x 7→ f(zi;x) is locally Lipschitz.
2. L-Homogeneity: The network f is homogeneous of degree L, i.e. f(·; cx) = cLf(·;x)

for any c > 0.
3. Realizability: There exists t0 > 0 such that L(xt0) < 1, ensuring that perfect training

accuracy is eventually achieved.

We now recall the main result of the paper regarding the implicit bias of steepest descent.
Theorem B.12 (Convergence to KKT Points (Tsilivis et al., 2025, Theorem 3.4)). Under assump-
tions (1)–(3), consider steepest flow with respect to a norm ∥ · ∥ on the exponential loss

L(x) =
∑
i∈[m]

e−yif(zi;x).

Then, any limit point x̄ of the normalized trajectory
{

xt

∥xt∥
}
t≥0

lies in the direction of a
Karush–Kuhn–Tucker (KKT) point of the margin maximization problem

min
x∈Rp

1
2∥x∥

2 s.t. yif(zi;x) ≥ 1, ∀i ∈ [m]. (10)

This theorem establishes that steepest descent algorithms implicitly bias the solution towards maxi-
mizing a geometry-dependent margin.
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C REPARAMETERIZATIONS AS MIRROR FLOW

This section recaps the general results for reparameterizations and mirror flows and is based on
Appendix A in (Jacobs et al., 2025b). For gradient flow we present the existing results for the
mirror flow framework and time varying mirror flow framework. Consider an objective function
f : Rn → R

min
x∈Rn

f(x).

We can use the implicit bias framework to study the effect of overparameterization. An overparame-
terization can be accomplished by introducing a function g : M → Rn, with M a smooth manifold.
For particular g, the reparameterization of the loss function f leads to a mirror flow. The general
framework is given in (Li et al., 2022) and extended in (Jacobs et al., 2025b) to study the implicit
bias in terms of a mirror flow. (Li et al., 2022) provide a sufficient condition for the reparameter-
ization g such that it induces a mirror flow Eq. (9). The Legendre function R, see Definition B.7,
controls the implicit bias and steers the trajectory of the dynamics.

In order to recover the convergence result in Theorem 4.14 in (Li et al., 2022) the function R also
needs to be a Bregman function, which is defined in Definition B.9. For a reparameterization to
induce a mirror flow with a corresponding Legendre function we first have to give two definitions.
Furthermore, we define ∂g as the Jacobian of the function g.
Definition C.1. (Regular Parmeterization Definition 3.4 (Li et al., 2022)) Let M be a smooth sub-
manifold of RD. A regular parameterization g : M → Rn is a C1 parameterization such that ∂G(w)
is of rank n for all w ∈M .

For the second definition, we first need to define what a Lie bracket is.
Definition C.2. (Lie bracket Definition 3.4 (Li et al., 2022)) Let M be a smooth submanifold of RD.
Given two C1 vector fields X,Y on M , we define the Lie Bracket of X and Y as [X,Y ](w) :=
∂Y (w)X(w)− ∂X(w)Y (w).
Definition C.3. (Commuting Parameterization Definition 4.1 (Li et al., 2022)) Let M be a smooth
submanifold of RD. A C2 parameterization g : M → Rd is commuting in a subset S ⊂ M iff
for any i, j ∈ [n], the Lie bracket

[
∇wgi,∇wgj

]
(w) = 0 for all w ∈ S. Moreover, we call g a

commuting parameterization if it is commuting in the entire M .

One additional assumption is need ed on the flow of the solution. We define the solution of the
gradient (descent) flow of a function f : M → Rn initialized at x ∈M

dxt = −∇xf(xt)dt x0 = x (11)

as xt = ϕt
x(x) which is well defined if the solution exists. Using this we can make the following

assumption.
Assumption C.4. (Assumption 3.5 (Li et al., 2022)) Let M be a smooth submanifold of RD and
g : M → Rn be a reparameterization. We assume that for any w ∈ M and i ∈ [n], ϕt

gi(w) is well-
defined for t ∈ (T−, T+) such that either limt→T+

||ϕt
gi(w)||L2

= ∞ or T+ = ∞ and similarly
for T−. Also, we assume that for any w ∈ M and i, j ∈ [n], it holds that for (t, s) ∈ R2 that
ϕs
gi ◦ ϕ

t
gj (w) is well-defined iff ϕt

gj ◦ ϕ
s
gi(w)

Using these definitions we state the known result for mirror flow.
Theorem C.5. (Theorem 4.9 (Li et al., 2022)) Let M be a smooth submanifold of RD and g : M →
Rn be a commuting and regular parameterization satisfying Assumption C.4. For any initialization
winit ∈M , consider the gradient flow for any objective f : Rn → R:

dwt = −∇wf(g(wt))dt, w0 = winit.

Define xt = g(wt) for all t ≥ 0, then the dynamics of xt is a mirror flow with respect to the Legendre
function R given by Lemma 4.8 in (Li et al., 2022), i.e.,

d∇xR(xt) = −∇xf(xt)dt, x0 = g(winit).

Moreover, this R only depends on the initialization winit and the reparameterization g, and is inde-
pendent of the loss function Lt.
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Explicit regularization The above framework got extended recently in (Jacobs et al., 2025b) in-
cluding explicit regularization. Consider the optimization problem:

min
w∈M

f(g(w)) + αh(w).

Then the dynamics becomes a time varying mirror flow as described in Theorem C.6.
Theorem C.6. Let (g, h): M → Rn+1 be regular and commuting reparameterization satisfying
Assumption C.4. Then there exists a time-dependent Legendre function Ra such that

d∇xRat
(xt) = −∇xf(xt)dt, x0 = g(winit), (12)

where at = −
∫ t

0
αsds. Moreover, Rat only depends on the initialization winit and the reparameter-

ization g and regularization h, and is independent of the loss function f .

The deep diagonal linear reparameterizations do not satisfy a time varying steep mirror flow as
shown in Corollary E.6.
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D DEEP DIAGONAL LINEAR REPARAMETERIZATIONS AND SADDLE POINTS

We characterize the saddle points induced by the deep diagonal linear reparameterization. For this
we first define what a saddle points is in Definition D.1.
Definition D.1. A saddle point x ∈ Rn of an objective function f ∈ C2(Rn,R) is characterized by:

∇xf(x) = 0 and ∇2
xf(x) ≱ 0

i.e. it is a critical point while the Hessian is not positive semidefinite.

Consider the product of parameters, w1, . . . , wL ∈ Rn as in the main text. Then the loss landscape
of an objective function f(x) with x = ΠL

i=1wi has additional saddle points as characterized by the
set S in Theorem D.2.
Theorem D.2. Assume that ∇xf(0) ̸= 0. Then, in addition to the saddle points of f , the deep
diagonal reparameterization x = g(w) = ΠL

i=1wi introduces saddle points at:

S :=
{
(w1, . . . , wL) : ∀i,j∈[n], wi = wj = 0, wk ̸= 0 for k ̸= i, j and i ̸= j

}
.

First we calculate the resulting gradient and Hessian using the chain rule:

∇wf(x) =

∑
i∈[L]

Πj ̸=iwj

∇xf(x).

This implies that at least two wi = 0 to induce a critical point. Assume now that exactly two are
indeed zero, then for the Hessian term depending∇2

xf does not contribute and we get

∇2
wf(0) = ∇xf(0)⊗Hx

where Hx is Hessian of x = ΠL
i=1wi i.e. block matrices for every coordinate of x.

Every block matrix has two nonzero entries i.e. we have:

Hx,k,m :=

{
Πℓ̸=i,jwℓ if (k,m) = (i, j) or (j, i)
0 else

This matrix is indefinite with eigenvalues ±
√
Πℓ̸=i,jwℓ. Since ∇xf(0) ̸= 0 there is at least one

negative eigen value. □

Theorem D.2 highlights that if already one coordinate vector wi for i ∈ [L] is zero, the model is
already close to a saddle point. This highlights that for the λ−balance, for small λ, we are very close
to a saddle point.
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E MAIN RESULTS: STEEP MIRROR FLOW AND INVARIANCE

We provide proofs here for the main results in the main text. The correspondence is:

• Theorem E.1 is Theorem 4.2.
• Lemma E.2 is Lemma 4.5.
• Theorem E.3 is Theorem 4.8.
• Corollary E.4 is Corollary 4.13.
• Theorem E.5 is Theorem 4.16.

Theorem E.1. Let R : Rn → R be a seperable Bregman function such that ∇2
xR

−1 is inversely
µ-coercive. Moreover, assume that the set {x ∈ Dom R : min f(x)} is non-empty and there exists
a constant B > 0 such that for all t > 0, |∂if(xt)| ≤ B for all i ∈ [n]. Then the loss decays and
satisfies: ∫ ∞

0

||∇xf(xt)||2L2
dt ≤ (f(x∞)− f(x0)) /

(
µBq−2

)
.

Assume that f ∈ C1(Rn,R) is strongly convex. Then for the iterates of Eq. (4) converges such that
we have limt→∞ xt = x∗ where x∗ is the unique minimizer of f with linear rate µBq−2Λ.

Proof. The proof follows from tracking the evolution of the loss f and the observation that for
strongly convex functions the sign is only zero when the minimum is reached.

First note the loss is decreasing:
df(xt) = −⟨∇xf(xt),∇2

xR
−1(xt) sign(∇xf(xt))|∇xf(xt)|q−1⟩dt

≤ −µ||∇xf(xt)||qLq
dt

≤ 0

where we used that ∇2
xR

−1 is µ−coercive and that it is separable. Rewriting the above equation
gives us: ∫ ∞

0

||∇xf(xt)||qLq
≤ (f(x∞)− f(x0)) /µ <∞.

This resembles the classic sufficient descent lemma for L−smooth functions. Moreover we have
that: ∫ ∞

0

||∇xf(xt)||2L2
dt ≤

∫ ∞

0

Bq−2||∇xf(xt)||qLq
dt

implying that ∫ ∞

0

||∇xf(xt)||2L2
dt ≤ (f(x∞)− f(x0)) /

(
µBq−2

)
Note that if f is strongly convex then it satisfies the PL-inequality and we have:

df(xt) = −⟨∇xf(xt),∇2
xR

−1(xt) sign(∇xf(xt))|∇xf(xt)|q−1⟩dt
≤ −µ||∇xf(xt)||qLq

dt

≤ −µBq−2||∇xf(xt)||2L2
dt

≤ −µBq−2Λ (f(xt)− f(x∗)) dt

where we use the bounded gradients and the fact that yq ≥ Bq−2yq for for y ∈ R. Then by Grönwall
Lemma we have that:

f(xt)− f(x∗) ≤ (f(x0)− f(x∗)) exp
(
−tµBq−2Λ

)
,

recovering linear convergence depending on µ and Λ. We now can use that for Λ-strongly convex
functions we have for all x ∈ Rn and the unique minimizer x∗:

||x− x∗||2L2
≤ Λ

2
(f(x)− f(x∗)) ,

using this we also have:

||xt − x∗||2L2
≤ Λ

2
exp

(
−tµBq−2Λ

)
This concludes the proof. □
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Lemma E.2. Consider steepest descent with respect to Lp and weight decay, with 1
p +

1
q = 1. Then,

for a deep diagonal reparameterization, i.e., x = g(w) = ΠL
i=1, wi satisfies the following balance

equation for t ≥ 0 almost everywhere:

|wi,t|q − |wj,t|q = (|wi,0|q − |wj,0|q) exp
(
−q
∫ t

0

αsds

)
for all i, j ∈ [L]. (13)

Proof. This can be checked by deriving the flow of the left hand side:

d (|wi,t|q − |wj,t|q) = q sign(wi,t)|wi,t|q−1dwi,t − q sign(wj,t)|wj,t|q−1dwj,t

= −sign(wi,t)|wi,t|q−1sign (∇wi
f(xt)) |∇wi

f(xt)|q−1dt

+ sign(wj,t)|wj,t|q−1sign
(
∇wjf(xt)

)
|∇wjf(xt)|q−1dt

− q αt (|wi,t|q − |wj,t|q) dt

It remains to be shown that the first terms cancel out. We can use the decompositions of signs and
absolute values i.e. sign (ab) = sign (a) sign (b) and |ab| = |a||b|. Using this we get for all i ∈ [L]:

sign(wi,t)|wi,t|q−1sign (∇wi
f(xt)) |∇wi

f(xt)|q−1 =

sign(wi,t)sign
(
Πj∈[L]\{i}wj,t

)
|Πj∈[L]\{i}wj,t|q−1sign (∇xf(xt)) =

sign(xt)|xt|q−1sign (∇xf(xt)) |∇xf(xt)|q−1,

which holds for all absolutely continuous solutions wt. Therefore, we have that the evolution is
given by:

d (|wi,t|q − |wj,t|q) = −q αt (|wi,t|q − |wj,t|q) dt.

This is linear ODE of the form dzt = −q αtztdt which has solution zt = z0 exp
(
−q
∫ t

0
αsds

)
.

Plugging in zt := |wi,t|q − |wj,t|q yields the result. Note that this result has to be interpreted in the
Filippov sense i.e. for all absolutely continuous solutions this holds almost everywhere. □

Theorem E.3. Initialize a deep diagonal reparameterization such that it is λ − Lp-balanced for a
λ ≥ 0 with respect to the first parameter w1. Then, steepest descent satisfies a separable Lp-mirror
flow almost everywhere:

d∇xRLp,L(xt) = −sign (∇xf (xt))⊙ |∇xf(xt)|q−1
dt, x0 = xinit,

where ∇xRLp,L(x) is a seperable Bregman function completely characterized by the balances of
Lemma 4.5. For L = 2, we explicitly get

∇2
xRLp,2(x) :=

1√
4|x|q + λ2

.

Proof. First we derive an expression for the metric in terms of wi for i ∈ [L]. We then use Lemma
4.5 to characterize∇2

xR
−1(x). From the chain rule and decomposition of signs and absolute values

it follows that:

dxt = −

∑
i∈[L]

|Πj∈[L]\{i}wj |q
 sign (∇xf(xt)) |∇xf(xt)|q−1dt.

Now using the invariance and balance assumption with respect to the first parameter w1 that holds
a.e.:

|wj,t|q − |w1,t|q = λ for all j ∈ [L] \ {1},
we can express the inverse metric in terms of |w1,t|q and λ:

∇2
xR

−1(x) = diag
(
(|w1|q + λ)

L−1
+ (L− 1)|w1|q (|w1|q + λ)

L−2
)

(14)

This is a continuous differentiable function in |w1|q . Moreover, we have that:

|x|q = |w1|q (|w1|q + λ)
L−1
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By the implicit function theorem from calculus we know there exists a continuous function w1(x, λ)
for all x ∈ Rn and λ > 0. For this we need to have that there exists a unique positive solution to the
polynomial equation of the form:

|x|q = z(z + λ)L−1,

where the left hand side is a non-negative constant. We can show that the right hand side is increasing
for z ≥ 0 implying a unique solution:

d

dz

(
z(z + λ)L−1

)
= (z + λ)L−1 + (L− 1)z(z + λ)L−2 > 0

for λ > 0. Thus there is a unique solution. In case λ = 0 we have that

z = |x|
q
L .

Therefore in the case λ > 0 we can guarantee using the implicit function theorem that we can
express w1 in terms of x and λ. Moreover, for λ = 0 an explicit expression is available. Plugging
this into Eq. (14) yields the result.

For L = 2 we have that
|x|q = |w1|q (|w1|q + λ) .

This is a quadratic equation in terms of |w1|q . We need to select the sole nonnegative solution,
giving:

|w1|q =
−λ+

√
λ2 + 4|x|q
2

.

We can plug this into∇2
xR

−1(x) giving

∇2
xR

−1(x) = 2|w1|q + λ =
√
λ2 + |x|q.

This concludes the first part.

It remains to be shown that the implicit constructed mirror map is a separable Bregman function.
We will use the connection between Legendre functions and Bregman functions to show this. We
use that if the domain of a Legendre functions R is Rn and its convex dual R∗ has this as its domain
as well then R is a Bregman function according to Theorem 4.7 in (Alvarez et al., 2004). Therefore,
we need to show RLp,L is a Legendre function and characterize the domains.

We first note that it separable by construction. This allows us to focus on the one dimensional
case. By construction, we know that ∇2

iR
−1
Lp,L

has domain R and range [λq(L−1),∞). Therefore,
∇2

iRLp,L has domain R and range (0, λ−q(L−1)]. This holds for all i ∈ [n]. This implies that
R is strictly convex and C2(Rn, (0, λ−q(L−1)]n) proving the first condition of being a Legendre
function. For the essential smooth condition, we can use the asymptotic behavior near the boundary
of the domain of ∇2

iRLp,L. This provides a lower bound on |∇iRLp,L|. Concretely we use the
triangle inequality and lower bound the growth of∇2

iRLp,L:

|∇iRLp,L(x)|2 =

∣∣∣∣∫ xi

∇2
iRLp,L(y)dy

∣∣∣∣2
≥
(∫ xi

|∇2
iRLp,L(y)|dy

)2

≥
(∫ xi

|y|−q L−1
L dy

)2

=

(
1

1− qL−1
L

)2

|xi|2−2q L−1
L

The right hand side only diverges if and only if qL−1
L ≤ 1. Hence RLp,L is a Legendre function. In

order to show RLp,L is Bregman we use the following two observations. 1) The anti-derivative of
an even function is odd 2) ∇2

iR
−1
Lp,L

is an even function. It follows from 2) that also the reciprocal
∇2

iRLp,L is even. Now we integrate and this implies that∇iRLp,L is odd. Now using continuity and
essential smoothness imply that the range of ∇iRLp,L is R. Therefore, the domain of the ∇iR

∗
Lp,L

is R. This implies R∗
Lp,L

has domain Rn. Hence RLp,L is a Bregman function accordingly. □
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Lemma E.4. For L ≥ 2 and λ = 0, candidates for the Legendre function are given by:

• if m = qL−1
L = 1:

RLp,L(x) =
1

L

∑
j∈[n]

(xj log(xj)− xj − xj log(xj,0))

• if m = qL−1
L ̸= 1:

RLp,L(x) =
1

L− (L− 1) q

∑
j∈[n]

(
|xj |2−q L−1

L(
q
L − q + 2

) − xjxj,0|xj,0|q(
1
L−1)

)
.

If m = 1, RLp,L is a Legendre function with metric exponent m on the domain Rsign(x1,0) × . . . ×
Rsign(xn,0). If m < 1, the domain is Rn. Otherwise, RLp,L is not a Legendre function.

Proof. Plug in λ = 0 and calculate w1(x, 0). This gives an explicit expression for the inverse metric:

∇2
xR

−1(x) = L|x|q
L−1
L .

We now integrate the metric to get the Legendre function, to keep notation clean we omit the sum-
ming over xi ∈ [n] as the calculation is the same for all. Integrating the inverse twice and using that
∇xR(x0) = 0 gives: If qL−1

L = 1 we have that∫ x ∫ u

∇2
xR(v)dvdu =

∫ x ∫ u 1

L|v|
dvdu

=
1

L

∫ x

log(u)− log(x0)du

=
1

L
(xlog(x)− x− xlog(x0)) .

Moreover, if qL−1
L ̸= 1 we have that:∫ x ∫ u

∇2
xR(v)dvdu =

∫ x ∫ u 1

L
|v|−q L−1

L dvdu

=

∫ x

− u |u|
q
L−q

(L− 1) q − L
+

x0 |x0|
q
L−q

(L− 1) q − L
du

= − |x|
q
L−q+2(

q
L − q + 2

)
((L− 1) q − L)

+ x
x0 |x0|

q
L−q

(L− 1) q − L

=
1

L− (L− 1) q

(
|x|q(

1
L−1)+2(

q
L − q + 2

) − xx0|x0|q(
1
L−1)

)
This concludes the result. In order for RLp,L to be strictly convex we need qL−1

L < 1 the other
conditions to be Legendre function such as essentially smooth are then also satisfied. The domains
follow from the derived Legendre function cases. □
Theorem E.5. Assume a) m = qL−1

L ̸= 2 or b) m = qL−1
L = 2. The manifold regularizer for

decoupled weight decay with Lp steepest descent on the manifold for a reparameterization of depth
L with balanced initialization (λ = 0) is: a) L

L(2−q)+q

∑
i∈[n] |xi|2−q L−1

L or b)
∑

i∈[n] log(|xi|).

Proof. The regularization rebalances the balance equation leading to the balance with λ = 0. We
can use Corollary 4.13 to derive the metric. A key difference now is that the regularization is still on
so we have a dynamics of the form:

dxt = −L|xt|q
L−1
L

(
sign(∇xf(xt))⊙ |∇xf(xt)|q−1

)
− Lxtdt, x0 = xinit.

This can be equivalently written as:

dxt = −L|xt|q
L−1
L

(
sign(∇xf(xt))⊙ |∇xf(xt)|q−1 + xt|xt|−q L−1

L

)
dt, x0 = xinit.
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Similarly this can written as the mirror flow due to the equivalence of Riemannian GF and mirror
flow:

d∇xRLp,L(xt) = −
(
sign(∇xf(xt))⊙ |∇xf(xt)|q−1 + xt|xt|−q L−1

L

)
dt

Therefore, the on manifold regularization is the Mreg(x):

Mreg(x) =
∑
i∈[n]

∫ xi

|xi|−q L−1
L xidxi =

{
L

L(2−q)+q

∑
i∈[n] |xi|2−q L−1

L if qL−1
L ̸= 2∑

i∈[n] log(|xi|) if qL−1
L = 2.

This concludes the result.□
Corollary E.6. Iff q = 2, weight decay is equal to the on manifold regularization Mreg for λ = 0.

Proof. Since λ = 0, the weight decay is given by

1

2
||w||2L2

=
L

2

∑
i∈[n]

|xi|
2
L

We can match this with Mreg(x). For this we need to have:

L

2
=

L

L(2− q) + q
⇔ L(2− q) + q = 2⇔ q(1− L) = 2(1− L)

which is true if and only if q = 2. □

Corollary E.6 highlights that Theorem C.6 can not be extended directly to steeper flows. This is
due to the fact that the possible limiting regularization Mreg on the manifold mismatches with the
weight decay i.e. λ = 0, so in the end of training the time-varying mirror flow has to break down.
Furthermore, the result Theorem C.6 already breaks for L > 2 as mentioned in (Jacobs et al., 2025b).
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F IMPLICIT BIAS OF STEEP MIRROR DESCENT FOR BINARY SEPARABLE
CLASSIFICATION

We present a margin characterization for SignGF using a recent result from (Tsilivis et al., 2025). We
observe that the margin should be independent of depth L. The margin now becomes dependent on
maximum of |xℓ|

2
L but this is an increasing function with the magnitudes as input thus the maximum

would not change. In other words, the margin does not see what happens at zero. However, our
mirror flow analysis suggests that the movement speed of the parameters near initialization will
influence the solution reached by slowing down movement near zero and accelerating it further
away. This helps with sparse ground truth recovery.
Theorem F.1. Consider a λ-balanced deep diagonal linear networks trained in the linear separable
classification setting as in Theorem B.12 with sign descent then x̃t :=

xt

||xt||L∞
limit point lies in the

direction of a KKT point of margin maximization problem:

min
x∈Rn

max
ℓ∈[d]
|xℓ|

2
L such that yj⟨x, zi⟩ ≥ 1 for all i ∈ [k]

Proof.

It follows from Theorem B.12 that w̃t :=
wt

||wt||L∞
is in the direction of a KKT point:

min
w1,...,wL∈Rn

1

2
||w1, . . . , wL||2L∞

such that yj⟨g(w), zi⟩ ≥ 1 for all i ∈ [k]

where g(w) = ΠL
j=1wj . In addition, we know the iterates ||w||L∞ → ∞. Combining this with

Lemma 4.5 it follows that for all i, j ∈ [L]:

|w̃t,i| − |w̃t,j | =
λ

||w||L∞

→ 0

These additional constraints reduce the optimization problem to:

min
w1,...,wL∈Rn:ΠL

j=1wj=x

1

2
max
ℓ∈[d]
|xℓ|

2
L such that yj⟨x, zi⟩ ≥ 1 for all i ∈ [k]

It is easy to show that x̃t =
xt

||xt||L∞
satisfies the KKT conditions above as well by using that in the

limit ||w||L∞ = max |x| 1L and ΠL
j=1wj = x we have that:

lim
t→∞

x̃t := lim
t→∞

xt

||xt||L∞

= lim
t→∞

ΠL
j=1wj,t

||wt||LL∞

= lim
t→∞

ΠL
j=1w̃j,t,

where the middle equality follows from the invariance relationship. This concludes the proof. □

Experimental illustration We conduct an experiment on binary classification with an exponential
loss as described above. The main goal is to illustrate the effect of depth which would not have an
influence according to Theorem F.1. However, our dynamics description would predict that higher
depth will lead to a relative slow down near zero of the dynamics effectively creating a sparsity bias.

We generate a sparse ground truth x∗ = (1, 1, 0, . . . , 0) ∈ R100 and k = 80 data samples from a
random Gaussian such that Zi,j ∼ N(0, 1) with i, j ∈ [100, 80]. The labels are then determined by
the classifier groundtruth i.e. yj := sign(zTj x

∗). Then we initialize at zero with λ = 0.1. We train
for 10000 steps with learning rate η = 0.01. The optimizers used are SignGD, GD and Adam.

We report the final margin in Figure 6. Observe that for higher depth the margin is much sparser than
for low depth. This highlights a new implicit bias mechanism caused by depth, leading to feature
learning. Note that for GD depth L = 10, did not converge, as expected. This explains the spiky
nature of the L∞ margin.
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Figure 6: Resulting L∞ margins for optimizers SignGD, Adam and GD, where the green strip
indicates the contributing ground truth features. Observe the similarity between Adam and SignGD
for all depth.

G SEPARABLE MIRROR REPARAMETERIZATION CONSTRUCTION

For completeness, we show how each separable steepest mirror flow can be seen as a reparameteri-
zation of steepest gradient flow. This is done by construction.
Theorem G.1. Consider a one dimensional steepest mirror flow with Legendre function R and is
µ-coercive. Then there exists a reparameterization g : R→ R such that we have x = g(w).

Proof. We can show this by construction in the one dimensional case.

A valid invertible reparameterization is (using µ-coercive):

z =

∫ x (
∂2R(x)

) 1
q dx,

to see this we can calculate the evolution of z:

dzt = −
(
∂2R(x)

) 1
q dxt = −

(
∂2R(x)

) 1
q−1

sign (∂xf(xt)) |∂xf(xt)|q−1dt.

Now we use the implicit function theorem for the derivative of f with respect to z:

∂zf(x) =
(
∂2R(x)

)− 1
q ∂xf(x).

Plugging this in gives us:

dzt = −
(
∂2R(x)

) 1
q−1− q−1

q sign (∂zf(xt)) |∂zf(xt)|q−1dt = −sign (∂zf(xt)) |∂zf(xt)|q−1dt.

Therefore x can be seen as the inverse of z. Hence there exists a steep gradient flow with respect to
the reparameterization z−1 that corresponds to a chosen mirror flow by construction. □
Remark G.2. The proof in the one-dimensional case is quite simple as it is by construction. How-
ever, the proof in higher dimensions for standard mirror flow already relies on the Nash embedding
theorem (Li et al., 2022) which is not constructive.
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Table 3: Parameter sign flips per group type, overall, and average L1/L2 differences for LLaMA
models. We also indicate with < % the percentage of the layers that have a negative delta

Model Q (%) K (%) Total (%) Avg ∆L1 < %, L1 Avg ∆L2 < %, L2

LLaMA-3.1 8B 1.25 0.87 1.57 -624.13 100 -20.28 100
LLaMA-3.2 3B 4.37 3.50 5.04 -1757.04 100 -101.71 100
LLaMA-3.2 1B 4.73 3.24 6.11 -891.76 100 -66.15 100

H INVARIANCE ISSUE FOR STEEPEST DESCENT FOR MATRIX INVARIANCES

The main hurdle for a more general balance equation to hold is that the sign operator does not
distribute over matrices. In other words for two matrices W1 and W2 we do not have

sign (W1W2) = sign (W1) sign (W2)

If this condition would hold plus the same condition with respect to the gradient then we would
expect for a reparameterization g(W1,W2) = W1W2 trained with a sign gradient flow the following
to hold during training:

||W1,t||L1
− ||W2,t||L1

= (||W1,0||L1
− ||W2,0||L1

) exp

(
−
∫ t

0

αsds

)
This would then hold instead of the balance equation for gradient flow:

||W1,t||2L2
− ||W2,t||2L2

=
(
||W1,0||2L2

− ||W2,0||2L2

)
exp

(
−2
∫ t

0

αsds

)
,

which is known to hold for gradient flow. To see this, we compare for a family of LLama models the
base version with their tuned instruct version. Their tuning (partially) has been done with AdamW.
Even tough, sign flips occur during training, effectively ruining the balance for wider reparameteri-
zations. We empirically observe that for finetuning a setting with small learning rate, less sign flips
occur, making the insights from our example potentially relevant to larger scale finetuning. We track
the direct generalization of the balance as in Definition 4.6 for the matix product of the Q query and
K key matices in the attention mechanism:

∆Lp :=
∣∣∣||Qft||qLq

− ||Kft||qLq

∣∣∣− ∣∣∣||Qpre||qLq
− ||Kpre||qLq

∣∣∣ .
In Table H we observe that indeed the L1 balance is minimized more than the L2 balance which
is an indication that our balance result might be able to generalize to the fine tuning setting where
AdamW is used. In addition, we observe for finetuning scenarios, that the signs of parameters
change minimally. This we can capture by Definition H.1, which could lead to a bound on the
invariance. However, this needs further assumptions on the nature of the gradients and how they
evolve.
Definition H.1. Let g : Rn×m×Rm×k → Rn×k be a reparameterization defined by g(W1,W2) :=
W1W2. Then it is called sign stable during training if for t ≥ 0,

sign(Wℓ,t) = sign(Wℓ,0) for ℓ ∈ [2].
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I ADDITIONAL EXPERIMENTS ON DIAGONAL DEEP LINEAR NETWORKS

For linear regression with mean squared error we set the groundtruth to (1, 1, 1, 1, 1, 0, . . . , 0) ∈
R100 and sample Zi,j ∼ N(0, 1) for i ∈ [100], j ∈ [k]. For our experiments we will train with
steepest descent i.e. the discretization of Eq. (3) and train with learning rate η = 1e− 4 for 1e+ 6
steps. For our experiments in the main text we will set w0 = 0 and wi = λ for i ∈ [L] \ {1}, with
λ = 0.1. This ensures we start close to a saddle point as described in Appendix D. Moreover, we
vary the parameters q ∈ [1, 1.5, 2], k ∈ [300, 80], L ∈ [1, 2, 3, 10], and study the effect of coupled
and decoupled weight decay.

First we consider the underdetermined case with k = 80, to illustrate the different implicit biases at
each depth L. In Figure 7 we see that for high depth (L = 10) sign gradient descent recovers the
sparse ground truth and gradient flow can not escape the saddle, which is in line with our dynamical
description. Moreover, for L = 2, we see that gradient flow gets close to the ground truth which is
in line with the implicit bias of the hyperbolic entropy see Example 3.2.

100 101 102

Time (t)

10 3

10 2

10 1

100

101

||x
t

x
* |

|2 L 2

Depth L=1

100 101 102

Time (t)

Depth L=2

100 101 102

Time (t)

Depth L=10

q = 1, (SignGF) q = 1.5 q = 2 (GF)

Figure 7: Underdetermined linear regression (k = 80), for depth L = 1 we do net get close to
the ground truth in all cases, for L = 2 gradient flow gets close to the ground truth as in line with
Theorem B.10 and in for higher depth L = 10 the sign gradient flow (SignGF) converges close to
ground truth which we would expect based on the dynamic reformulation.

Next we observe in Figure 8 and 10 that smaller batch size is beneficial for feature learning when
the depth L plus steepest descent method q leads close to an L1 bias. Furthermore, in Figure 9 with
less data, the implicit bias argument does not prevail and we do not observe feature learning. This
highlight that there is no guarantee for feature learning. However, it seems to be possible to remedy
it with smaller batch size.

Moreover, we conduct an additional experiment for sign gradient descent with coupled and decou-
pled weight decay of which the results are reported in Table 4. We use the same setting as described
in the main text with k = 80 data samples and the same ground truth. We report the average L1

distance to the theoretical predict balance value at the end of training which denote with Balance
Distance. Observe that for coupled weight decay (α2) the distance increases while for decoupled
weight decay (α1) we stay close to the theoretical predicted value. To add to this, high depth and
decoupled regularization leads to recovering the ground truth the best.

The benefit of noise The benefit of noise for feature learning could be seen from re-purposing the
majority voting interpretation in (Bernstein et al., 2019) where it is used for convergence guarantees.
If a parameter needs to be zero to reach the ground truth and starts at zero, the gradient is poten-
tially small, however, it still has a sign direction which might pull it away from the ground truth.
Nevertheless, if we train with stochastic estimates we might be equally moved in either direction.
This is captured by the following thought experiment, consider the gradient and stochastic gradient
estimate:

∇f(x) = 0.01 and g(x) =

{
−0.01 w.p. 1

2

0.03 w.p. 1
2

.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

These estimators would have the same gradient expectation but the sign expectation is different i.e.
we have

sign(∇f(x)) = 1 and E [sign(g(x))] = 0.

This indicates we need a stronger pull away from zero to actually move in the stochastic case. In
other words, a larger majority of the gradients need to vote for a certain direction.
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Figure 8: Recovering the ground truth with small batch size 5 for underdetermined regression with
k = 80.
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Figure 9: Recovering the ground truth with full batch for underdetermined regression with k = 40.
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Figure 10: Recovering the ground truth with small batch size 5 for underdetermined regression with
k = 40.
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Table 4: Effect of Regularization Strengths on theoretical balance according to Lemma 4.5 and the
distance the ground truth. For the decoupled weight decay (α1) indeed stays close the theoretical
predicted balance.

Depth L α1 α2 Balance Dist. Groundtruth Dist.

1 0 1e-4 0 7.1
1e-4 0 0 7.0

0 1e-3 0 7.1
1e-3 0 0 5.8

0 1e-2 0 7.1
1e-2 0 0 1.0

0 0 0 7.1

2 0 1e-4 5.3e-4 4.8e-1
1e-4 0 7.3e-5 4.7e-1

0 1e-3 5.1e-3 4.7e-1
1e-3 0 1.8e-3 4.1e-1

0 1e-2 3.5e-2 4.7e-1
1e-2 0 6.7e-4 4.8e-1

0 0 1.1e-4 4.8e-1

10 0 1e-4 1.2e-1 2.5e-4
1e-4 0 1.5e-4 1.4e-4

0 1e-3 3.9e-1 2.9e-4
1e-3 0 2.9e-4 4.9e-5

0 1e-2 7.8e-1 3.0e-3
1e-2 0 1.6e-3 7.9e-6

0 0 1.5e-4 2.1e-4

J SPARSITY EXPERIMENT

In this section we provide additional experiments for the reparameterized sparsity bias. More-
over, we provide additional experimental details in Table 5. The tunable parameters are depth
L ∈ {2, 4, 10} and weight decay strength α ∈ {1e − 1, 1e − 4}. In the case for coupled weight
decay we are effectively optimizing:

min
w1,...,wL∈Rn

f(ΠL
i=1wi) + α

∑
i∈[L]

||wi||2L2

or equivalently
min
x∈Rn

f(x) + Lα
∑
i∈[L]

||x||2/LL2/L

see Theorem 1 in (Kolb et al., 2025). The code used is based on Turboprune (Nelaturu et al.). The
initialization of the depth 2 reparameterization is based on (Gadhikar et al., 2025) and for deeper
reparameterizations we use the balancing equation to inform our initialization i.e. we use w1 = x
and wi = 1 for i ̸= 1. This is closely related to the closed form formula for initialization of depth 2:

m0 =
v + γ

v√
2

and w0 =
v − γ

v√
2

where v =
√
x+

√
x2 + γ2 with γ = 1

2 . We can see this from a Taylor approximation around

x = 0. Then we have v ≃ 1√
2

(
1 + x+ x2

2

)
and then 1/v ≃

√
2
(
1− x+ x2

2

)
, putting this

together give:

m0 = 1 +
x2

2
and w0 = x.

So when x2 is negligible it matches our proposed initialization for deeper reparameterization.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

In Figure 11 and 12, we show the L1 norm during training for Adam with coupled weight decay
and AdamW. Observe that for coupled weight decay we see that for both little and strong weight
decay, the sparsity bias becomes more when the depth increases. In contrast, with less weight decay,
AdamW for higher depth, the L1-norm increases more. This is in line with the prediction for SignGF,
which has the stationarity condition ||x||L∞ ≤ 1

α . Therefore, the parameter x can move more freely
and the geometry has less effect. However when the weight decay is increased we observe the
opposite: we see a higher sparsity bias for deeper reparameterization. Furthermore, we report the
corresponding validation accuracies in Table 6. Observe the significant accuracy drops for Adam
with coupled weight decay for increasing the regularization, an indication for extreme sparsity.

We conduct the same experiment for a ResNet-50 on Imagenet (Deng et al., 2009). We report for
depth L = 2, 10 the L1 norm during training for both Adam with coupled weight decay and AdamW
in Figures 13 and 14. Moreover, we compare them directly in Figure 15. Validation accuracy values
are reported in Table 7. We observe the same behavior as for ResNet-20 on CIFAR-10, coupled
weight decay leads to sparsity faster and with that a drop in generalization performance.

Table 5: Training details for all experiments presented on sparse reparameterizations.

Dataset Model LR Epochs Batch Size Optim Schedule
CIFAR-10 ResNet-20 0.001 150 512 Adam, AdamW Triangular
Imagenet ResNet-50 0.001 100 1024 Adam, AdamW Triangular

0 50 100 150
Epochs

102

103

104

L 1

0 50 100 150
Epochs

L=2 L=4 L=10

Figure 11: Adam with coupled weight decay trained with various depth reparameterizations for
ResNet-20 on CIFAR-10. On the left is high regularization 1e − 1 and on the right is less regular-
ization 1e− 4.
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Figure 12: AdamW (decoupled weight decay) trained with various depth reparameterizations for
ResNet-20 on CIFAR-10. On the left is high regularization 1e − 1 and on the right is less regular-
ization 1e− 4.

Table 6: Test Accuracy (%) ± 95% CI for AdamW and Adam+wd across depths and weight decays
training a ResNet-20 on CIFAR-10.

Optimizer Depth Weight Decay Accuracy ± CI
AdamW 2 1e−1 89.75± 0.20

Adam+wd 2 1e−1 64.36± 2.70
AdamW 2 1e−4 89.29± 0.28

Adam+wd 2 1e−4 88.27± 0.08
AdamW 4 1e−1 89.73± 0.18

Adam+wd 4 1e−1 58.23± 4.98
AdamW 4 1e−4 89.38± 0.35

Adam+wd 4 1e−4 86.55± 0.25
AdamW 10 1e−1 89.33± 0.23

Adam+wd 10 1e−1 43.13± 3.73
AdamW 10 1e−4 89.49± 0.06

Adam+wd 10 1e−4 81.99± 0.05
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100
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Figure 13: Adam with coupled weight decay trained with various depth reparameterizations for
ResNet-50 on Imagenet. On the left is high regularization 1e−1 and on the right is less regularization
1e− 4.
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Figure 15: L1 norm of the weights during training for Adam with coupled weight decay strength
1e − 4 and AdamW with 1e − 1. The dashed lines correspond to depth L = 10 and solid lines to
L = 2. The training setup is ResNet-50 on Imagenet
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Figure 14: AdamW (decoupled weight decay) trained with various depth reparameterizations for
ResNet-50 on Imagenet. On the left is high regularization 1e−1 and on the right is less regularization
1e− 4.

Table 7: Test Accuracy (%) ± 95% CI for AdamW and Adam+wd across depths and weight decays
training a Resnet 50 on Imagenet.

Optimizer Depth Weight Decay Accuracy ± CI
AdamW 2 1e−1 76.23± 0.07

Adam+wd 2 1e−1 1.95± 0.48
AdamW 2 1e−4 73.32± 0.11

Adam+wd 2 1e−4 73.35± 0.05
AdamW 10 1e−1 62.20± 0.25

Adam+wd 10 1e−1 0.58± 0.06
AdamW 10 1e−4 73.19± 0.04

Adam+wd 10 1e−4 9.78± 0.94

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

K SADDLE ESCAPE FOR FINETUNING

In this section we present the saddle escape experiment for finetuning. We finetune a ResNet-18
that was pretrained on ImageNet on CIFAR-10 and Flowers. To do this, we have to replace the
classifier layer with a new randomly initialized one. We finetune the model with two different
optimizers: SGD and Adam. Both cases are run for 15 epochs with the best learning rate selected
after a sweep for both Adam and SGD. The learning rates are selected from a preliminary sweep
for Adam η ∈ {8e − 4, 1e − 3, 2e − 3, 3e − 3} and SGD η ∈ {1e − 2, 5e − 2, 1e − 1, 2e −
1, 3e − 1, 4e − 1, 5e − 1, 6e − 1, 7e − 1, 8e − 1, 9e − 1}. We also run the best learning rate
for Adam for SGD to illustrate our main of the saddle point escape. Note that for vision tasks, SGD
usually outperforms Adam. However, in finetuning we observe the opposite. We track the top-50
largest eigenvalues during finetuning. For the experiment presented in the main text, we show the
final eigenvalue distribution for the corresponding best validation accuracy.

In Table 8 and 9, the validation accuracy for both the CIFAR-10 and Flowers finetuning scenario are
reported. Observe that Adam outperforms SGD in both cases. In addition, we report the distance
traveled by all parameters (including the classification layer) in terms of the L1 and L2 norm. Adam
has a much larger L1 norm indicating more uniform movement of the parameters. In other words,
the adaptiveness of Adam allows all parameters to move more, which is as expected. In Figures 17,
18 ,19, and 20 we report the top 50 eigenvalues for each seed, not normalized and similar for the
Flowers finetuning in Figures 21, 22 ,23, and 24. We observe that the difference between the seeds is
quite large. We believe that this is due to the randomly initialized classification layer. Furthermore,
we report the normalized eigenvalues for each best seed also for Flowers finetuning in Figure 16.
We observe less negative eigen values for Adam. Note that here we used standard SGD and Adam,
that is, we are not using parameter efficient versions such as in (Zhou et al., 2025; Modoranu et al.,
2024; Rios et al., 2025).

Table 8: Validation accuracy and parameter distance traveled in terms of L1 and L2 norm for fine-
tuning ResNet18 on CIFAR-10.

Metric SGD (η = 0.001) SGD (η = 0.8) Adam (η = 0.001)
Val Acc 19.15± 2.82 93.60± 0.38 95.19± 0.21
L1 424911.48± 34308.92 477750.60± 10343.88 693101.67± 13509.59
L2 29640.98± 985.56 28409.58± 219.53 27833.50± 494.50

Table 9: Validation accuracy and parameter distance traveled in terms of L1 and L2 norm for fine-
tuning ResNet18 on Flowers.

Metric SGD (η − 0.002) SGD (η = 0.4) Adam (η = 0.002)
Val Acc 1.22± 0.53 62.13± 1.10 80.50± 1.38
L1 206325.76± 1327.51 173882.76± 2967.69 618592.47± 3445.18
L2 10124.38± 76.52 7015.04± 226.30 11432.11± 350.38

K.1 ADDITIONAL VISION FINETUNING EXPERIMENTS

We now present finetuning experiments using a large-scale transformer architecture, ViT-Large. We
finetune a ViT-Large pretrained on ImageNet on CIFAR-10 for 30 epochs and on Flowers for 15
epochs. As is standard in finetuning, the original classifier head is replaced with a newly initialized
one. We evaluate two optimizers—SGD and Adam—with learning rates selected via a sweep: η ∈
{9e− 5, 1e− 4, 1e− 4, 5e− 4} for Adam and η ∈ {1e− 3, 5e− 3, 1e− 2, 5e− 2, 1e− 1} for SGD.
Additionally, we run SGD with the best Adam learning rate to further illustrate our observations on
saddle escape. All experiments use batch size 128, weight decay 0, cosine annealing learning rate
scheduling, and label smoothing of 0.1. Because of the large model size and limited compute, we
track only the top-25 eigenvalues. Table. 10 and 11 report the validation accuracy on CIFAR-10
and Flowers, along with the L1 and L2 parameter distance traveled (including the classifier layer).
Adam consistently achieves higher validation accuracy than SGD on both tasks. As in our earlier
experiments, Adam induces a larger L1 parameter shift, reflecting its more uniform adaptive updates.
Figure. 25, 26, 27, 28, 29, 30 show the eigenvalue spectra across seeds and tasks. We additionally
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Figure 16: Normalized top-50 eigenvalues for a ResNet-18 finetuned on Flowers.
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Figure 17: The eigen value evolution for seed 123 on CIFAR-10.
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Figure 18: The eigen value evolution for seed 456 on CIFAR-10.
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Figure 19: The eigen value evolution for seed 789 on CIFAR-10.
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Figure 20: The eigen value evolution for seed 1000 on CIFAR-10.
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Figure 21: The eigen value evolution for seed 123 on Flowers.
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Figure 22: The eigen value evolution for seed 456 on Flowers.
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Figure 23: The eigen value evolution for seed 789 on Flowers.
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Figure 24: The eigen value evolution for seed 1000 on Flowers.

provide unnormalized and normalized spectra in Figure 31 and Figure 32 for different tasks. In
the unnormalized CIFAR-10 spectra (Figure. 31a), SGD with a learning rate of 1e − 4 produces
substantially larger eigenvalues than the other configurations, obscuring the trends for Adam and
SGD with 1e − 2. Removing this outlier (Figure. 31b) reveals that Adam exhibits fewer negative
eigenvalues. The same behavior holds for finetuning ViT-Large on Flowers.

Table 10: Validation accuracy and parameter distance traveled in terms of L1 and L2 norm for
finetuning ViT-Large on CIFAR-10.

Metric SGD (η = 0.0001) SGD (η = 0.01) Adam (η = 0.0001)
Val Acc 73.27± 3.68 99.07± 0.35 99.28± 0.07
L1 460.47± 219.86 24617.83± 14406.4 453934.906± 22278.43
L2 0.48± 0.059 6.25± 4.29 39.47± 1.01

Table 11: Validation accuracy and parameter distance traveled in terms of L1 and L2 norm for
finetuning ViT-Large on Flowers.

Metric SGD (η = 0.0001) SGD (η = 0.01) Adam (η = 0.0001)
Val Acc 1.03± 0.82 98.94± 0.05 99.37± 0.08
L1 25.71± 30.48 4655.83± 576.49 108583.62± 2078.48
L2 0.04± 0.02 1.50± 0.12 8.35± 0.16

K.2 ADDITIONAL LANGUAGE FINETUNING EXPERIMENTS

In addition to our experiments on vision tasks, we conduct a parallel study on language models.
Specifically, we fine-tune a pretrained BERT-base model on the MRPC task from the GLUE bench-
mark, following the setup in Zhou et al. (2025). The model is fine-tuned for 5 epochs using both
SGD and Adam. Learning rates are selected via a sweep: η ∈ {5× 10−5, 7× 10−5, 9× 10−5} for
Adam, and η ∈ {10−2, 5× 10−2, 10−1, 5× 10−1} for SGD. We additionally evaluate SGD using
the best learning rate obtained for Adam. As before, we track the top-50 eigenvalues throughout
training. Table 12 reports the validation accuracy along with the parameter displacement measured
in L1 and L2 norms. Figures 33, 34, and 35 show the evolution of eigenvalues across different ran-
dom seeds. Figure 36 presents the unnormalized and normalized eigenvalue spectra for the model
achieving the best validation performance. The conclusions mirror those observed in our vision
experiments.
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Figure 25: The eigen value evolution for seed 7 on finetuning ViT-Large on CIFAR-10.
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Figure 26: The eigen value evolution for seed 42 on finetuning ViT-Large on CIFAR-10.
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Figure 27: The eigen value evolution for seed 1234 on finetuning ViT-Large on CIFAR-10.
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Figure 28: The eigen value evolution for seed 7 on finetuning ViT-Large on Flowers.
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Figure 29: The eigen value evolution for seed 42 on finetuning ViT-Large on Flowers.
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Figure 30: The eigen value evolution for seed 1234 on finetuning ViT-Large on Flowers.
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Figure 31: Top 25 eigenvalues of Hessian at solution obtained by SGD and Adam after finetuning
ViT-Large on CIFAR10.
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Figure 32: Top 25 eigenvalues of Hessian at solution obtained by SGD and Adam after finetuning
ViT-Large on Flowers.
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Figure 33: The eigen value evolution for seed 7 on finetuning Bert-base on MRPC.
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Figure 34: The eigen value evolution for seed 42 on finetuning Bert-base on MRPC.
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Figure 35: The eigen value evolution for seed 1234 on finetuning Bert-base on MRPC.
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Figure 36: Top 50 eigenvalues of Hessian at solution obtained by SGD and Adam after finetuning
Bert-base on MRPC.
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Table 12: Validation accuracy and parameter distance traveled in terms of L1 and L2 norm for
finetuning Bert-base on MRPC.

Metric SGD (η = 7e− 5) SGD (η = 0.1) Adam (η = 7e− 5)
Val Acc 43.87± 24.02 84.80± 1.00 85.95± 0.64
L1 5002.44± 0.0 6066.93± 34.33 31079.54± 754.26
L2 0.73± 0.00 1.26± 0.01 5.57± 0.24
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