
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEQUENCE LEARNING FROM CONTINUOUS
STREAMS OF DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Sequence data are inherently dependent, yet sequence learners (e.g., language
models) are often trained as if samples were independent and identically dis-
tributed (IID) by segmenting long streams into short, shuffled chunks, breaking
natural continuity and undermining long-range credit assignment. We formalize
multi-stream sequence learning, a continuity-preserving training framework that
presents multiple streams in their natural order, a setting that has been conflated
with solution methods and remains underexplored. To support this paradigm,
we propose Memora, a recurrent-only architecture with persistent hidden states,
making it more suitable for sequence learning than architectures trained with IID
chunking. Memora is built around our Gated Linear Recurrent Unit (GLRU), a
lightweight unit designed for efficient parallel training and robust temporal rea-
soning. It achieves effective learning on long byte-level sequences and remains
reliable even in the strict streaming setting, where data arrive online one byte at a
time. Our experiments highlight that continuity-preserving training outperforms
IID chunking, underscoring the importance of continuity in sequence learning.

1 INTRODUCTION

Modern sequence models, particularly Transformers, have achieved remarkable performance across
diverse domains by adopting the independent-and-identically-distributed (IID) training paradigm,
where long continuous data streams are partitioned into randomized, fixed-length segments. This
segmentation strategy fully exploits modern hardware, achieves high-throughput parallel processing,
and underpins state-of-the-art results in language, vision, and beyond (Brown et al. 2020, Hoffmann
et al. 2022, Touvron et al. 2023, Guo et al. 2025). Yet this very convenience comes at the expense of
severing the temporal continuity intrinsic to data streams. Natural streams (e.g., linguistic text, audio
waveforms, videos, or genomic code) may rely on dependencies that span far beyond individual
chunks. As a stopgap, practitioners extend context windows (Ding et al. 2024, Pal et al. 2023,
Wang et al. 2024b), an approach that rapidly escalates computational cost and becomes impractical
for those with limited resources (Huang et al. 2024). This tension invites a pivotal question: Does
the IID regime inherently constrain the capacity to learn genuine long-range dependencies?

The temporal segmentation not only disrupts the natural continuity of streams but also hinders the
model’s ability to capture dependencies that extend beyond segment boundaries. Transformers,
when trained on arbitrarily chunked windows, lack mechanisms to relate patterns across segments,
leaving long-range structure unmodeled. While recurrent architectures (Hochreiter and Schmidhu-
ber 1997, Arjovsky et al. 2016, Orvieto et al. 2023) are, in principle, better suited for such depen-
dencies by maintaining hidden state over time, modern variants, except for a few works (e.g., Dai
et al. 2019, Hutchins et al. 2022), typically conform to the same IID regime. In practice, they reset
hidden states at segment boundaries (e.g., Gu and Dao 2024, De et al. 2024, Beck et al. 2024), dis-
carding accumulated memory and undermining their temporal expressivity. A recurrent framework
that fully leverages persistent state across long sequences remains largely unrealized.

Motivated by the limitations of the IID training paradigm and the untapped capacity of recurrent
architectures, we formalize the multi-stream sequence learning paradigm, a training framework that
maintains temporal coherence by presenting multiple parallel data streams in their natural order and
resetting states only at sequence boundaries (e.g., end of document). Drawing on ideas from Dai
et al. (2019), we formalize the problem of preserving contextual memory across segment boundaries,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

enabling sequential updates that retain memory and support long-range dependency modeling that
extends beyond each update block. This paradigm aligns naturally with real-world applications
like online inference and real-time decision-making, including autonomous vehicles (Verma et al.
2023), video prediction (Carreira et al. 2024, Yoo et al. 2024), adaptive chatbots (Dai et al. 2025),
streaming learning (Elsayed et al. 2024), and robotics (Vasan et al. 2024), where the assumption
of independent samples does not hold. Under this setting, a recurrent architecture can maintain
a persistent state across an entire single stream to perform long-range credit assignment, unlocking
modeling capabilities that IID training inherently disrupts and revitalizing the strength of recurrence.

Realizing multi-stream sequence learning at scale requires an architecture that balances parallel
training efficiency and the ability to learn online—we propose Memora, a lightweight recurrent-
only backbone built on the Gated Linear Recurrent Unit (GLRU). GLRU employs gating mech-
anisms with a parallelizable formulation, narrowing the throughput gap with Transformers. More-
over, GLRU enables stable performance under various update strides, including a stride of 1, making
Memora adaptable to diverse training scenarios, from offline pretraining to real-time learning.

Through extensive evaluations on byte-level sequence modeling, we demonstrate that Mem-
ora trained under the multi-stream paradigm consistently surpasses models trained with the IID
paradigm. Our work contributes (1) a formalization of the multi-stream sequence learning paradigm,
(2) the Memora architecture with the GLRU cell for efficient, scalable recurrence supporting both
truncated backpropagation through-time and real-time recurrent learning, and (3) empirical evidence
in offline pretraining and online learning where continuity-aware training unlocks performance gains
on long-sequence tasks for recurrent-based models.1

2 BACKGROUND ON RECURRENT LEARNING

Let us consider a recurrent module with dynamics that can be written as ht = f(ht−1,xt,θ), where
ht ∈ Rn is the hidden-state vector, xt ∈ Rd is the input vector, and θ is a set of learnable parameters
of the recurrence function, containing the input-weight and recurrence-weight matrices. The output
is given by ŷt = g(ht,xt,ϕ), where ŷt ∈ Rm, and ϕ is a set of learnable parameters of the output
function. To learn the parameters, we need to compute ∇LW , ∀W ∈ θ and ∇LV , ∀V ∈ ϕ.
Given a target yt ∈ Rm, the gradient of the loss with respect to W , treating it as a flattened vector,
is given by

∂L(yt, ŷt)

∂W
=

(
dht

dW

)⊤
∂L
∂ht

, ∀W ∈ θ. (1)

2.1 BACKPROPAGATION THROUGH TIME (BPTT)

Note that to obtain dht

dW , we need to consider both the direct and indirect effects of changing W
on ht since there are direct and indirect gradient paths at each time step. Since we can unroll the
function ht = f(f(f(. . . f(h1,x0,θ), . . .xt−2,θ),xt−1,θ),xt,θ), we write the gradient dht

dW as
dht

dW
=

∂ht

∂W
+

∂ht

∂ht−1

dht−1

dW
, ∀W ∈ θ. (2)

We need to keep unrolling further because W again affects ht−1 through two pathways. Let us
define It

.
= dht

dW , Jt
.
= ∂ht

∂W , and Kt
.
= ∂ht

∂ht−1
. We can write the recursive relationship as follows:

It = Jt +KtIt−1

= Jt +KtJt−1 +KtKt−1It−2

=

t∑
j=1

 t∏
i=j+1

Ki

Jj +

(
t∏

i=1

Kt

)
J0

=

t∑
j=1

 t∏
i=j+1

Ki

Jj . (under the assumption that that J0 = 0) (3)

1We provide a minimal easy-to-follow implementation of Memora under the IID and multi-stream settings
through this Colab Notebook.

2

https://colab.research.google.com/drive/1ejV4gNIZrdqYwGiDbQvv0w4P3niYNRzR?usp=sharing

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

This relationship is utilized in BPTT by efficiently calculating the summation backward. Calculating
this requires storing all previous inputs and states xi,hi,∀{1, . . . , t}. In other words, we need to
backpropagate the gradient in time, starting from the current time step and going all the way back to
the first time step. The computational and memory resource grows linearly with the number of steps
because we need to go from the current step to the beginning of time for each update.

2.2 TRUNCATED-BACKPROPAGATION THROUGH TIME (T-BPTT)

We can simplify the intensive computation needed by BPTT if we truncate the backpropagation
process by going back in time up to time step t − T , where t > T . This creates the Truncated-
Backpropagation Through Time (T-BPTT) gradient (Williams and Zipser 1989):

dht

dW
≈

t∑
j=t−T

 t∏
i=j+1

∂hi

∂hi−1

 ∂hj

∂W
,∀t > T. (4)

T-BPTT needs only to store last T +1 inputs and states to approximate the gradient. Truncating the
gradient drops any interactions beyond the truncation length, which may make the learner myopic.

2.3 REAL-TIME RECURRENT LEARNING (RTRL)

Instead of relying on the rolled-out equation (Eq. 3 or Eq. 4), we can instead compute It = dht

dW ,
known also as the sensitivity matrix, incrementally using its recursive relationship. This process is
known as Real-Time Recurrent Learning (RTRL) (Williams and Peng 1990) given by

It = Jt +KtIt−1. (5)

The quantities Jt and Kt use the current input, and they can be computed easily without BPTT,
requiring only storing It−1 to compute It in an incremental fashion. RTRL computes the true
gradient without any approximation, in contrast to T-BPTT, given that the parameters remain fixed.

2.4 PARALLELIZATION WITH RECURRENT LEARNING

Unlike Transformers, parallelization in recurrent-based networks is challenging because they have
states evolving sequentially over time. Luckily, parallel scan (Blelloch 1990) can be used to re-
express certain recurrent computations as an associative scan, which for many linear (in particular
diagonal) recurrent updates reduces the time complexity of training from O(L) to O(logL), where
L is the segment length, also known as the sequence length. We provide a primer on parallel scan in
Appendix H and a primer on linear recurrent units in Appendix G. In practice, the truncation length
is set to the segment length, and the scan operation is performed on the input sequence to produce
the outputs in parallel (e.g., Gu and Dao 2024).

Although parallel scan remedies some of the challenges for a useful subclass of recurrent units (e.g.,
diagonal), it does not eliminate the fundamental cost of maintaining and differentiating through
arbitrary state dynamics. In particular, applying parallel scan to the sensitivity recurrent equation
(Eq. 5) is computationally prohibitive in general. For example, even for the diagonal units, the cost
grows as O(n3 logL) with the sensitivity matrices on the form S ∈ Rn×n. In practice, parallelizing
RTRL is typically limited to the batch dimension and to very short segments; nevertheless, its strictly
online, per-step updates make it better suited to real-time learning than large-scale parallelization.

3 MULTI-STREAM SEQUENCE LEARNING

We propose multi-stream sequence learning, a training framework that preserves temporal continuity
across update blocks by presenting multiple data streams in their natural order. Let us consider the
block next-token prediction problem. At each iteration k, the learner receives a block of T tokens
xk:k+T−1

.
= {xk, . . . ,xk+T−1} and is tasked with predicting the conditional distribution of the

subsequent tokens xk+1:k+T = {xk+1, . . . ,xk+T } in parallel, which can be done by minimizing
the block-level negative log-likelihood Lk(θ)

.
= −

∑T
i=1 log pθ

(
xk+i |xk:k+i−1

)
, where θ is the set

of learnable parameters. In practice, we also process B of such blocks in parallel (the batch or stream

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

dimension), but we drop their index in this notation for simplicity. Let N denote the total dataset
length. In conventional IID training, the start index k is sampled uniformly from {1, T +1, . . . , N−
T}, so blocks begin at random positions. In contrast, preserving the original stream order instead
requires using sequential starts k = 1, 1+T, 1+2T, . . . up to the largest start index≤ N−T . More
generally, one may use a rolling window with stride S ≤ T , i.e. k = 1, 1+S, 1+2S, . . . , up to the
largest start index ≤ N − T , where the non-overlapping case is S = T . Unlike IID training, which
breaks temporal continuity by randomizing block starts, this multi-stream scheme treats each stream
temporally in a continuous manner and only presents a new sequence at semantically meaningful
boundaries (e.g., end of document or video).

Figure 1: Overview of multi-stream sequence learning. Four streams (B=4) each yield blocks of
length S=T=3; when an episode ends, it is immediately replaced by a new one starting at t0.

Figure 1 illustrates the workflow of the multi-stream sequence learning. The learner is presented
with B parallel streams, each containing a series of episodes (e.g., an article, a video, or a complete
conversation). When one episode ends, we dynamically swap it with a new episode that starts from
t0. Training is done by collecting a block of stride S = T from each stream, giving an effective
batch size of B×T for an update. This setup generalizes several regimes, for example, when B = 1
and T = 1, the model reduces to what is known as streaming learning (e.g., Elsayed et al. 2024). We
refer to S as the update stride, which is known as the sequence length for IID training. However, we
reserve the latter for IID training, where—unlike in multi-stream training—the sequence is broken at
the block boundary. The formulation of this framework is inspired by the ideas in Dai et al. (2019).

While each episode is randomly selected from the corpus, the temporal coherence within each
episode, which may span an entire book, is preserved. This enables the model to maintain and
evolve hidden states across update blocks, supporting long-range credit assignment and structured
memory accumulation. Recurrent architectures naturally lend themselves to this paradigm, in con-
trast to Transformer-based models. Yet, current recurrent learning paradigms do not evolve hidden
states across update blocks, as they pick the blocks IID. In contrast, update blocks in multi-stream
learning are contiguous and from the same episode unless the episode ends before a block completes.

Multi-stream sequence learning aligns closely with real-world deployment scenarios, such as online
prediction (Carreira et al. 2024), continual learning (Elsayed and Mahmood 2024), and real-time
control (Vasan et al. 2024), where the assumption of independent samples breaks down. Further-
more, it retains compatibility with modern hardware by enabling efficient parallelism across streams,
while unlocking new capabilities through temporal continuity.

4 THE MEMORA ARCHITECTURE

To study the multi-stream learning framework, we introduce the Memora architecture, a simplified
recurrent-only architecture that is compatible with the multi-stream learning paradigm. The Mem-
ora architecture depends on the Gated Linear Recurrent Unit (GLRU), which is a gated recurrent
architecture. We start by describing GLRU and explaining how it can be used with T-BPTT and
RTRL; then, we describe the components of the Memora architectural design.

4.1 LEARNING TEMPORAL STRUCTURES WITH GATED LINEAR RECURRENT UNIT (GLRU)

Recent advancements in recurrent learning (e.g., Gu and Dao 2024, De et al. 2024) demonstrated
the importance of gated recurrence in solving complex tasks such as language. In addition, gated
recurrence has been shown to be able to implement the linear attention (Katharopoulos et al. 2020)
operation (Zucchet et al. 2024, Huang et al. 2023, Dao and Gu 2024). Our design builds on previous

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

works and relies on gating both the input and the state. Specifically, GLRU builds on LRU (Orvieto
et al. 2023), which uses complex-valued, non-gated recurrence, but incorporates a real-valued, gated
recurrence instead. The GLRU recurrence formulation is given by

ht = r(xt) ◦ ht−1 + γt ◦ g(xt) ◦ (Bxt), (6)

where γt =
√
1− r2t , g(xt) = Gxt, r(xt) = e−ceν◦σ(Rxt), xt ∈ Rd, ht ∈ Rn, and G,B ∈

Rn×d. We set c to 3. We do not apply gating on the output since the Memora architecture provides
that gating, similar to the Hawk architecture (De et al. 2024). The output of the recurrence is given
by yt = ht. Learning with T-BPTT is straightforward and can be done using Algorithm 1. However,
learning with RTRL (see Algorithm 2) requires deriving the sensitivity matrices for each learnable
parameter in the recurrence equation, namely: ν,B,R,G. We provide the update equations here
and defer the full derivation to Appendix E. The RTRL sensitivity update equations are given by

Sν
t = r(xt) ◦ Sν

t−1 − ceν ◦ σ(Rxt) ◦ r(xt) ◦ ht−1 + c
r(xt)

2

γ
◦ eν ◦ σ(Rxt) ◦ g(xt) ◦ (Bxt),

SB
t = Diag (r(xt))S

B
t−1 + (γ ◦ g(xt))x

⊤
t ,

SG
t = Diag (r(xt))S

G
t−1 + (γ ◦ (Bxt))x

⊤
t ,

SR
t = Diag(r(xt))S

R
r +

(
d ◦
(
ht−1 −

r(xt)

γ
◦ g(xt) ◦ (Bxt)

))
x⊤
t ,

where d = cr(xt) ◦ eν ◦ σ(Rxt) ◦ (1− σ′(Rxt)), and the division is performed element-wise.

Learning with RTRL allows learning in real-time from the samples as they arrive. It is compatible
with our multi-stream learning paradigm and can achieve efficient learning with T = 1. One fun-
damental limitation of RTRL is that its parallelization with parallel scan (when T > 1) is expensive
since the sensitivity equations are based on matrices. Therefore, we limit the usage to the case where
T = 1 with B parallel streams.

Finally, we place GLRU in the landscape of recurrent units in Table 1. Notably, our GLRU allows for
state expansion since the input xt can be expanded to a larger space using B, similar to the LRU unit
and unlike RG-LRU. Additionally, our design allows for efficient RTRL implementation, which is
facilitated by the element-wise input and output gating. RG-LRU design, in principle, also allows for
efficient RTRL. In contrast, the RTRL mode of GRU (Chung et al. 2014) is intractable and requires
computational complexity of O(n4). The RTRL mode of RG-LRU is not introduced in the literature,
so we derive its RTRL mode in Appendix E to compare it with GLRU in the experiments and skip
comparing with the RTRL mode of Mamba due to its derivation and implementation complexity.

Gated LRU
(Ours)

RG-LRU
(De et al. 2024)

LRU
(Orvieto et al. 2023)

GRU
(Chung et al. 2014)

State expansion Yes No Yes Yes
RTRL mode Efficient Efficient Efficient Intractable

Gated/Selective Yes Yes No Yes
T-BPTT Scan Efficient Efficient Efficient Intractable

Table 1: Comparison of Gated LRU, RG-LRU, LRU, and GRU. Gated LRU is the first gated recur-
rent unit that supports different modes of training: efficient parallelization with T-BPTT, and fast
real-time learning with RTRL.

4.2 ARCHITECTURAL DESIGN

Memora is a recurrent-only architecture with two main components: 1) a residual normalized gated
recurrent block, followed by 2) a residual normalized gated MLP block. This design follows the
general Transformer architecture outline, where the first block captures the temporal relations and
the other learns representations (see Touvron et al. 2023). We apply pre-normalization using RM-
SNorm (Zhang and Sennrich 2019) on each block with learnable parameters. Each block employs
the gated linear unit design (Shazeer 2020), where the input is expanded then contracted using the
block linear maps. This design is common across many architectures (e.g., De et al. 2024, Gu and
Dao (2024)). We propose a new variation where we use layer norm (Ba et al. 2016) without learn-
able parameters after each linear mapping and also after each element-wise multiplication. Our

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

gated recurrent block is very close to the gated MLP, and instead of using a linear map in one of the
GLU branches, we replace it with GLRU. Lastly, the activation σ we use is GeLU (Hendrycks and
Gimpel 2016). Figure 2 outlines the Memora architecture and its two main components.

Gated RNN

RN

LN

+

Gated MLP

RN

+

R
e

p
e

a
t
N

 t
im

e
s

Embedding

Linear + Softmax

(a) Memora

Linear Map

Linear Map

Linear Map

LN

LN

LN

×

(b) Gated MLP

Linear Map

Linear Map

Recurrent
Unit

LN

LN

LN

×

(c) Gated Recurrence

Figure 2: The Memora architecture. Filled blocks represent components with learnable parameters.
LN/RN denotes LayerNorm/RMSNorm. M is the model dimension and S is the state dimension.

5 EXPERIMENTS

In this section, we start by studying long-range memory capabilities and selective attention under
high memory demand using the selective copying task (Gu and Dao 2024). Then we study the effect
of varying sequence lengths for IID or update strides for multi-stream on the quality of byte-level
language modeling with TinyStories (Eldan and Li 2023). After that, we study how Memora scales
with the number of parameters using byte-level language modeling with FineWebEdu (Penedo et al.
2024) and DNA modeling with the human genome dataset (HG38, Schneider et al. 2017). We
then study learning from one sample at a time with RTRL and 1-step BPTT. Finally, we consider
GLRU alternatives to show the performance gain with GLRU when used with Memora compared
to other baselines. Here, we focus on the key results and experimental details and provide the full
experimental details and configurations in Appendix F.

5.1 SELECTIVE COPYING

The selective copying task is a variation of the original copying task (Arjovsky et al. 2016), where
the learner must memorize tokens at varying positions within a sequence. This task demands
context-aware reasoning and effectively differentiates models that use gating mechanisms from those
that do not. Gating enables models to selectively retain or discard information, making this task eas-
ier to solve. Our experimental setup follows Gu and Dao (2024) but with a reduced training budget
of 50, 000 iterations instead of 200, 000, allowing us to study training efficiency under limited com-
pute. For simplicity, we let each model see the full episode—full BPTT is used instead of T-BPTT.

Model Arch. Type Accuracy Parameter Count
Llama2 Transformer 98.5200%± 0.8701 888, 768

Hawk Recurrent + Temp. Conv. 99.0120%± 0.4391 438, 080

Mamba2 Recurrent + Temp. Conv. 99.4280%± 0.3646 553, 828

Memora w/ MinGRU Recurrent-only 53.8280%± 12.5294 206, 080

Memora w/ LRU Recurrent-only 11.0160%± 0.6581 304, 896

Memora w/ GLRU Recurrent-only 99.5620%± 0.1918 239, 360

Table 2: Validation Accuracy on the Selective Copying Task. Each model is trained for 50K itera-
tions. Each episode has a length of 4096 with only 16 numbers to remember with varying positions.
The results are averaged over 5 independent runs, and we show the standard error.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2 reports validation performance for Llama2 Transformer, Hawk, Mamba2 models, and Mem-
ora variants, each with two layers. Both Memora with GLRU and Hawk quickly solve the task with
relatively few parameters, using model dimensionality of 64 and state dimensionality of 256. In
contrast, Transformer and Mamba require increased model dimensionality to achieve comparable
results within the same number of iterations. Notably, Memora with GLRU attains the highest
accuracy with the fewest parameters, relying solely on its recurrent architecture without temporal
convolutions. Lastly, replacing GLRU with another gated unit (MinGRU) or a non-gated unit (LRU)
leads to a significant performance drop, underscoring the superior memory capacity of GLRU.

5.2 BYTE-LEVEL MODELING WITH VARYING SEQUENCE LENGTHS OR UPDATE STRIDES

We study byte-level language modeling on the TinyStories dataset (Eldan and Li 2023), focusing
on how performance scales with sequence length for IID and with update stride for multi-stream,
while keeping the effective batch size BT fixed. In the multi-stream setup, sequences are presented
in natural order, which we hypothesize favors recurrent models. In contrast, we do not expect
Transformers to benefit from this structure due to their lack of persistent memory, but we still add
multi-stream Transformer (Llama2) to the experiment.

Stream Gap

Figure 3: Performance scaling with sequence length (for the IID setting) or update stride (for the
multi-stream setting). We show the final performance of different baselines trained on TinyStories
using the IID and multi-stream settings. The average document size is 895.60, which means models
with sequence lengths of 1024 may contain an entire document in an update block.

Figure 3 shows the performance of Mamba2, Llama2, Hawk, and Memora in the IID setting, and
compares them with Memora in the multi-stream setting. We also adapt Hawk and Llama2 to the
multi-stream setup, representing existing recurrent-based and Transformer-based models, respec-
tively. Sequence length (or update stride) is varied from 2 to 1024. In the IID setting, all models per-
form similarly but degrade significantly at shorter sequence lengths—as expected, because shorter
contexts reduce temporal credit assignment. In contrast, both Memora and Hawk perform well in
the multi-stream setting even with an update stride of 2. Note that multi-stream Llama2 showed no
advantage over IID training due to the lack of states. This suggests that maintaining a persistent state
across update blocks helps recurrent models recover long-range dependencies lost in the IID setting.
We further evaluate Memora in the multi-stream setting with reduced training iterations (half and
quarter). Even with limited training, Memora consistently outperforms IID-trained models across
nearly all sequence lengths, further emphasizing its superior memory capabilities in multi-stream.

5.3 DNA MODELING

DNA sequences are naturally long, presenting a challenge for modern sequence models. For in-
stance, human chromosome 2 contains approximately 250 million base pairs (Hillier et al. 2005).
We use the human genome dataset (HG38; Schneider et al. 2017) with the train-validation splits
defined by Avsec et al. (2021). The sequences span up to 131, 072 base pairs, making this a strong
benchmark for evaluating long-range dependency modeling.

In Figure 4a, we compare the performance of Llama2, Hawk, and Mamba2 in the IID setting, and
contrast them with Memora and Hawk in the multi-stream setting. In IID training, Llama2 outper-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

221 222 223 224 225 226

Number of Parameters

2.75

2.80

2.85

2.90

2.95

3.00

3.05

P
er

pl
ex

it
y

Multi-stream Memora

Multi-stream Hawk

IID Hawk

IID Llama

IID Mamba-2

(a) HG38 DNA

226 227 228 229 230

Number of Parameters

0.75

0.80

0.85

0.90

0.95

1.00

1.05

B
it

s
p

er
B

yt
e

Multi-stream Memora

Multi-stream Hawk

IID Hawk

IID Llama

IID Mamba-2

(b) Deduplicated FineWebEdu

Figure 4: (A) Validation Perplexity scaling with number of parameters on the HG38 DNA
dataset. (b) Validation Bits-Per-Byte scaling with the number of parameters on the de-duplicated
FineWebEdu dataset. The segment length or the update stride is 1024.

forms both Hawk and Mamba2, demonstrating the strength of Transformer architectures. However,
in the multi-stream setting, where a persistent state is maintained, Hawk surpasses Llama2 at most
scales. Memora achieves the best overall performance, despite its simpler, recurrent-only design and
lack of temporal convolutions, highlighting its memory capacity for capturing long-range structure.

5.4 BYTE-LEVEL LANGUAGE MODELING WITH FINEWEBEDU

Next, we study byte-level language modeling using a deduplicated version of the FineWebEdu
dataset (Penedo et al. 2024), released as part of the SmolLM dataset (Allal et al. 2025). Byte-level
modeling enables flexible, modality-agnostic sequence learning across domains like text, audio, and
genomics by operating directly on raw bytes, removing the need for tokenization or domain-specific
preprocessing. This approach can also improve generalization by avoiding biases introduced by
methods like subword tokenization (Wang et al. 2024a). In Figure 4b, we present the performance
of models trained for 150B bytes, and we show their model size scaling up to 1.2B parameters for
multi-stream Memora, multi-stream Hawk, IID Llama2, IID Mamba2, and IID Hawk. We observe
trends similar to the previous task, where multi-stream Hawk and Memora outperform IID Mamba2
in all scales, with Memora slightly outperforming Hawk. However, we notice that IID Llama2 starts
to diverge when scaling up with byte-level data, indicating that standard Transformers struggle with
raw bytes and may require additional components (e.g., Yu et al. 2023, Pagnoni et al. 2024).

5.5 LEARNING FROM ONE BYTE AT A TIME

Next, we study the challenging problem of learning language models using one sample (e.g., a
character) at a time in an online fashion, the canonical learning mode of RTRL. Specifically, we
consider a multi-stream setting in which the model receives one data point per time step from B
parallel streams and investigate the cases of B = 1024 and B = 1.

In Figure 5a, we evaluate language modeling performance using a single update stride with 1024
parallel streams. We compare Hawk and Memora, each tested under two modes: RTRL and 1-
step BPTT. We find that both modes of Memora outperform their Hawk counterparts. Moreover,
Memora performs better with RTRL than with 1-step BPTT, presumably because RTRL is able to
assign credit over longer temporal dependencies, making it more effective for real-time learning.

Lastly, we investigate streaming sequence learning, where the model is updated at every time step
with an update stride of 1 and using a single continuous stream of data. This streaming setting,
commonly explored in prior work (e.g., Goyal et al. 2009, Elsayed et al. 2024), is particularly
suited for on-device learning and real-time adaptation to non-stationary inputs, such as fine-tuning a
pretrained model during deployment. Here, we tackle the challenging setting of streaming learning
from scratch using byte-level inputs to demonstrate the viability of Memora.

Figure 5b compares the performance of Memora trained with RTRL against 1-step BPTT over
20M iterations. Both methods reduce the validation loss, but RTRL consistently outperforms 1-step
BPTT. We note here that we train both systems for 20M bytes, where the dataset is about 2B bytes,
which means both systems are severely undertrained. Nonetheless, to our knowledge, this is the first

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250

Iteration (x103)

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

V
al

id
at

io
n

L
os

s

Memora (RTRL)

Memora (1-step BPTT)

Hawk (RTRL)

Hawk (1-step BPTT)

(a) Using 1024 parallel streams

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Iteration (x106)

0.8

1.0

1.2

1.4

1.6

1.8

V
al

id
at

io
n

L
os

s

Memora (RTRL)

Memora (1-step BPTT)

(b) Using a single stream (Streaming Learning)

Figure 5: Learning from one byte at a time with a stride of S=T=1 using the TinyStories dataset,
comparing Hawk and Memora under the multi-stream setting with RTRL against 1-step BPTT.

successful demonstration of deep sequence learning under strict streaming constraints. This result
underscores the strong capacity of Memora to learn under stringent online learning constraints.

5.6 CONSIDERING GLRU ALTERNATIVES

0 5 10 15 20 25

Iteration (x1000)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

V
al

id
at

io
n

L
os

s

Complex LRU

Complex LRU Restricted

Complex GLRU

Complex GLRU Restricted

MinGRU

Real LRU

Real GLRU

Figure 6: Performance of Memora with dif-
ferent recurrent units, including real-valued,
complex-valued, gated, and non-gated.

Lastly, we assess the importance of our GLRU unit
on a language modeling task using the TinyStories
dataset with models of approximately 50M parame-
ters. Since GLRU is a real-valued recurrent unit, we
introduce a complex-valued variant by incorporating
complex-valued gating in the recurrence, referred to
as complex GLRU. We also compare against complex
LRU (Orvieto et al. 2023) and its real-valued coun-
terpart, real LRU, as well as MinGRU (Feng et al.
2024). We also evaluate restricted variants of com-
plex GLRU and complex LRU, where the complex
values are constrained as conjugate pairs (see Ap-
pendix D and G.5 for more details).

Figure 6 presents validation performance across all baselines. Our model, real GLRU, consistently
outperforms both gated (e.g., MinGRU) and non-gated (e.g., LRU) alternatives. We also find that
constraining complex values to be conjugate pairs offers no performance benefit. Our findings align
with observations by Gu and Dao (2024), where real-valued gated units surpass complex-valued
ones on language tasks, further validating our results in this setting.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

This paper challenged the IID training paradigm for sequence learning and introduced multi-stream
sequence modeling, a framework that preserves temporal continuity by presenting data in natural or-
der and resetting only at meaningful boundaries (e.g., end of document). To support this paradigm,
we proposed Memora, a lightweight recurrent architecture designed to maintain a persistent state
across long sequences. Our results demonstrated that Memora under the multi-stream setting ef-
fectively models long-range dependencies and uniquely supports learning at extremely short update
strides, including stride of 1. Within the sub-1.2B parameter regime, Memora consistently out-
performs strong baselines, including Transformers, highlighting the potential of continuity-aware
training and recurrence as a viable alternative to IID-based approaches.

While this work demonstrates the effectiveness of multi-stream sequence learning and the Memora
architecture on long-range language modeling tasks, several limitations remain. Our experiments
are limited to models with up to 1.2B parameters due to computational constraints typical in aca-
demic research settings, and it remains an open question whether the observed gains persist at larger
scales. The scope of our evaluation is also restricted to byte-level language modeling; extending
the paradigm to other modalities such as audio, video, or vision is an important direction for fu-
ture work. Finally, we focus exclusively on next-byte prediction with cross-entropy loss, leaving
the application of multi-stream training to settings requiring long-range credit assignment, such as
reinforcement learning, for future research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Allal, L. B., Lozhkov, A., Bakouch, E., Blázquez, G. M., Penedo, G., Tunstall, L., Marafioti, A.,
Kydlı́ček, H., Lajarı́n, A. P., Srivastav, V., et al. (2025). Smollm2: When smol goes big–data-
centric training of a small language model. arXiv preprint arXiv:2502.02737.

Arjovsky, M., Shah, A., and Bengio, Y. (2016). Unitary evolution recurrent neural networks. In
International conference on machine learning, pages 1120–1128. PMLR.

Avsec, Ž., Agarwal, V., Visentin, D., Ledsam, J. R., Grabska-Barwinska, A., Taylor, K. R., Assael,
Y., Jumper, J., Kohli, P., and Kelley, D. R. (2021). Effective gene expression prediction from
sequence by integrating long-range interactions. Nature methods, 18(10):1196–1203.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.

Beck, M., Pöppel, K., Spanring, M., Auer, A., Prudnikova, O., Kopp, M., Klambauer, G., Brandstet-
ter, J., and Hochreiter, S. (2024). xlstm: Extended long short-term memory. Advances in Neural
Information Processing Systems, 37:107547–107603.

Blelloch, G. E. (1990). Prefix sums and their applications. Technical Report CMU-CS-90-190,
School of Computer Science, Carnegie Mellon University.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in
neural information processing systems, 33:1877–1901.

Carreira, J., King, M., Patraucean, V., Gokay, D., Ionescu, C., Yang, Y., Zoran, D., Heyward, J.,
Doersch, C., Aytar, Y., et al. (2024). Learning from one continuous video stream. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 28751–28761.

Cho, K. (2014). On the properties of neural machine translation: Encoder-decoder approaches.
arXiv preprint arXiv:1409.1259.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Dai, X., Xie, Y., Liu, M., Wang, X., Li, Z., Wang, H., and Lui, J. (2025). Multi-agent conversational
online learning for adaptive llm response identification. arXiv preprint arXiv:2501.01849.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and Salakhutdinov, R. (2019). Transformer-xl:
Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860.

Dao, T. and Gu, A. (2024). Transformers are SSMs: Generalized models and efficient algorithms
through structured state space duality. In Forty-first International Conference on Machine Learn-
ing.

De, S., Smith, S. L., Fernando, A., Botev, A., Cristian-Muraru, G., Gu, A., Haroun, R., Berrada,
L., Chen, Y., Srinivasan, S., et al. (2024). Griffin: Mixing gated linear recurrences with local
attention for efficient language models. arXiv preprint arXiv:2402.19427.

Ding, Y., Zhang, L. L., Zhang, C., Xu, Y., Shang, N., Xu, J., Yang, F., and Yang, M. (2024). Lon-
grope: Extending llm context window beyond 2 million tokens. arXiv preprint arXiv:2402.13753.

Eldan, R. and Li, Y. (2023). Tinystories: How small can language models be and still speak coherent
english? arXiv preprint arXiv:2305.07759.

Elelimy, E., White, A., Bowling, M., and White, M. (2024). Real-time recurrent learning using trace
units in reinforcement learning. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Elsayed, M. and Mahmood, A. R. (2024). Addressing loss of plasticity and catastrophic forgetting
in continual learning. In The Twelfth International Conference on Learning Representations.

Elsayed, M., Vasan, G., and Mahmood, A. R. (2024). Streaming deep reinforcement learning finally
works. arXiv preprint arXiv:2410.14606.

Feng, L., Tung, F., Ahmed, M. O., Bengio, Y., and Hajimirsadegh, H. (2024). Were rnns all we
needed? arXiv preprint arXiv:2410.01201.

Goyal, A., Daumé III, H., and Venkatasubramanian, S. (2009). Streaming for large scale nlp: Lan-
guage modeling. In Proceedings of Human Language Technologies: The 2009 Annual Conference
of the North American Chapter of the Association for Computational Linguistics, pages 512–520.

Gu, A. and Dao, T. (2024). Mamba: Linear-time sequence modeling with selective state spaces. In
First Conference on Language Modeling.

Gu, A., Goel, K., and Ré, C. (2021). Efficiently modeling long sequences with structured state
spaces. arXiv preprint arXiv:2111.00396.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X., et al.
(2025). Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948.

Han, T., Gokay, D., Heyward, J., Zhang, C., Zoran, D., Pătrăucean, V., Carreira, J., Damen, D., and
Zisserman, A. (2025). Learning from streaming video with orthogonal gradients. arXiv preprint
arXiv:2504.01961.

Hayes, T. L., Cahill, N. D., and Kanan, C. (2019). Memory efficient experience replay for streaming
learning. In 2019 International Conference on Robotics and Automation (ICRA), pages 9769–
9776. IEEE.

Hayes, T. L. and Kanan, C. (2022). Online continual learning for embedded devices. arXiv preprint
arXiv:2203.10681.

Hendrycks, D. and Gimpel, K. (2016). Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Hillier, L. W., Graves, T. A., Fulton, R. S., Fulton, L. A., Pepin, K. H., Minx, P., Wagner-McPherson,
C., Layman, D., Wylie, K., Sekhon, M., et al. (2005). Generation and annotation of the dna
sequences of human chromosomes 2 and 4. Nature, 434(7034):724–731.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8):1735–1780.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., Casas, D. d. L.,
Hendricks, L. A., Welbl, J., Clark, A., et al. (2022). Training compute-optimal large language
models. arXiv preprint arXiv:2203.15556.

Huang, C., Zhu, G., Wang, X., Luo, Y., Ge, G., Chen, H., Yi, D., and Wang, J. (2024). Re-
current context compression: Efficiently expanding the context window of llm. arXiv preprint
arXiv:2406.06110.

Huang, F., Lu, K., CAI, Y., Qin, Z., Fang, Y., Tian, G., and Li, G. (2023). Encoding recurrence into
transformers. In The Eleventh International Conference on Learning Representations.

Hutchins, D., Schlag, I., Wu, Y., Dyer, E., and Neyshabur, B. (2022). Block-recurrent transformers.
Advances in neural information processing systems, 35:33248–33261.

Irie, K., Gopalakrishnan, A., and Schmidhuber, J. (2024). Exploring the promise and limits of real-
time recurrent learning. In The Twelfth International Conference on Learning Representations.

Javed, K., Shah, H., Sutton, R. S., and White, M. (2023). Scalable real-time recurrent learning
using columnar-constructive networks. The Journal of Machine Learning Research, 24(1):12024–
12057.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F. (2020). Transformers are rnns: Fast au-
toregressive transformers with linear attention. In International conference on machine learning,
pages 5156–5165. PMLR.

Kyrylov, V. (2024). Accelerated Scan.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R. (2012). Efficient BackProp, pages 9–48.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Lieber, O., Lenz, B., Bata, H., Cohen, G., Osin, J., Dalmedigos, I., Safahi, E., Meirom, S., Belinkov,
Y., Shalev-Shwartz, S., et al. (2024). Jamba: A hybrid transformer-mamba language model. arXiv
preprint arXiv:2403.19887.

Orvieto, A., Smith, S. L., Gu, A., Fernando, A., Gulcehre, C., Pascanu, R., and De, S. (2023). Res-
urrecting recurrent neural networks for long sequences. In International Conference on Machine
Learning, pages 26670–26698. PMLR.

Pagnoni, A., Pasunuru, R., Rodriguez, P., Nguyen, J., Muller, B., Li, M., Zhou, C., Yu, L., Weston,
J., Zettlemoyer, L., et al. (2024). Byte latent transformer: Patches scale better than tokens. arXiv
preprint arXiv:2412.09871.

Pal, A., Karkhanis, D., Roberts, M., Dooley, S., Sundararajan, A., and Naidu, S. (2023). Giraffe:
Adventures in expanding context lengths in llms. arXiv preprint arXiv:2308.10882.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-
amkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative
style, high-performance deep learning library. In Wallach, H., Larochelle, H., Beygelzimer, A.,
d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Penedo, G., Kydlı́ček, H., allal, L. B., Lozhkov, A., Mitchell, M., Raffel, C., Werra, L. V., and
Wolf, T. (2024). The fineweb datasets: Decanting the web for the finest text data at scale. In The
Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks
Track.

Press, O. and Wolf, L. (2016). Using the output embedding to improve language models. arXiv
preprint arXiv:1608.05859.

Qian, R., Dong, X., Zhang, P., Zang, Y., Ding, S., Lin, D., and Wang, J. (2024). Streaming long
video understanding with large language models. Advances in Neural Information Processing
Systems, 37:119336–119360.

Qin, Z., Yang, S., Sun, W., Shen, X., Li, D., Sun, W., and Zhong, Y. (2024). HGRN2: Gated linear
RNNs with state expansion. In First Conference on Language Modeling.

Saran, A., Yousefi, S., Krishnamurthy, A., Langford, J., and Ash, J. T. (2023). Streaming active
learning with deep neural networks. In International Conference on Machine Learning, pages
30005–30021. PMLR.

Schneider, V. A., Graves-Lindsay, T., Howe, K., Bouk, N., Chen, H.-C., Kitts, P. A., Murphy, T. D.,
Pruitt, K. D., Thibaud-Nissen, F., Albracht, D., et al. (2017). Evaluation of grch38 and de novo
haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome
research, 27(5):849–864.

Shazeer, N. (2020). Glu variants improve transformer. arXiv preprint arXiv:2002.05202.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal,
N., Hambro, E., Azhar, F., et al. (2023). Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Vasan, G., Elsayed, M., Azimi, A., He, J., Shariar, F., Bellinger, C., White, M., and Mahmood, A. R.
(2024). Deep policy gradient methods without batch updates, target networks, or replay buffers.
In Globerson, A., Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak, J., and Zhang, C.,
editors, Advances in Neural Information Processing Systems, volume 37, pages 845–891. Curran
Associates, Inc.

Verma, V., Maimone, M. W., Gaines, D. M., Francis, R., Estlin, T. A., Kuhn, S. R., Rabideau,
G. R., Chien, S. A., McHenry, M. M., Graser, E. J., et al. (2023). Autonomous robotics is driving
perseverance rover’s progress on mars. Science Robotics, 8(80):eadi3099.

Wang, J., Gangavarapu, T., Yan, J. N., and Rush, A. M. (2024a). Mambabyte: Token-free selective
state space model. In First Conference on Language Modeling.

Wang, X., Salmani, M., Omidi, P., Ren, X., Rezagholizadeh, M., and Eshaghi, A. (2024b). Beyond
the limits: A survey of techniques to extend the context length in large language models. arXiv
preprint arXiv:2402.02244.

Williams, R. J. and Peng, J. (1990). An efficient gradient-based algorithm for on-line training of
recurrent network trajectories. Neural Computation, 2(4):490–501.

Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually running fully recurrent
neural networks. Neural Computation, 1(2):270–280.

Xue, L., Barua, A., Constant, N., Al-Rfou, R., Narang, S., Kale, M., Roberts, A., and Raffel, C.
(2022). Byt5: Towards a token-free future with pre-trained byte-to-byte models. Transactions of
the Association for Computational Linguistics, 10:291–306.

Yoo, J., He, Y., Naderiparizi, S., Green, D., van de Ven, G. M., Pleiss, G., and Wood, F.
(2024). Lifelong learning of video diffusion models from a single video stream. arXiv preprint
arXiv:2406.04814.

Yu, L., Simig, D., Flaherty, C., Aghajanyan, A., Zettlemoyer, L., and Lewis, M. (2023). Megabyte:
Predicting million-byte sequences with multiscale transformers. Advances in Neural Information
Processing Systems, 36:78808–78823.

Zhang, B. and Sennrich, R. (2019). Root mean square layer normalization. Advances in Neural
Information Processing Systems, 32.

Zucchet, N., Kobayashi, S., Akram, Y., Oswald, J. V., Larcher, M., Steger, A., and Sacramento, J.
(2024). Gated recurrent neural networks discover attention.

Zucchet, N., Meier, R., Schug, S., Mujika, A., and Sacramento, J. (2023). Online learning of long-
range dependencies. In Thirty-seventh Conference on Neural Information Processing Systems.

Zucchet, N. and Orvieto, A. (2024). Recurrent neural networks: vanishing and exploding gradients
are not the end of the story. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems.

A RELATED WORKS

Streaming learning. Standard deep learning methods often assume access to the entire dataset;
however, real-world applications require continuous data streams. There are a few supervised deep
learning methods that work under the streaming learning setting (Hayes et al. 2019, Saran et al.
2023, Hayes and Kanan 2022), and additional efforts have adapted reinforcement learning (Elsayed
et al. 2024, Vasan et al. 2024), language models (Goyal et al. 2009), and video predictors (Carreira
et al. 2024, Qian et al. 2024, Han et al. 2025) to work under this setting. In our paper, we consider
the multi-stream setting where there is more than one stream to process in parallel. Future work is
needed to make Memora work with a single stream and a single update stride.

Attention-free models. To avoid the quadratic training cost and linear inference cost of attention
on long histories, recent methods employ linear recurrence for fixed-size state memory, achieving
linear training cost and constant inference cost. Mamba1 (Gu and Dao 2024), an approach that

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

combines a state-space approach (e.g., Gu et al. 2021) with temporal convolution (Bai et al. 2018),
was the first method to be used in large-scale systems (Lieber et al. 2024), followed by Mamba2
(Dao and Gu 2024) and Hawk (De et al. 2024), which was based on the LRU recurrent unit (Orvieto
et al. 2023). These architectures, however, still use IID chunking. In contrast, Memora is purely
recurrent, preserving stream continuity to rival Transformers on long-sequence tasks.

Byte-level data modeling. Byte-level sequence modeling offers a flexible, domain-agnostic ap-
proach across text, audio, and genomics by operating directly on raw bytes, removing the need for
preprocessing or tokenization. This can improve generalization and robustness to morphological
variations like typos or character-level reasoning (Xue et al. 2022). However, it also introduces
challenges due to longer, noisier, and less structured sequences. While recent works have improved
byte-level modeling through architectural innovations (Wang et al. 2024a, Yu et al. 2023), many
still rely on static chunking and overlook the temporal dynamics of streaming data. In contrast,
our approach enhances byte-level modeling by processing streams in their natural order, improving
memory and temporal reasoning capabilities critical for long, unsegmented byte sequences.

B THE T-BPTT ALGORITHM UNDER MULTI-STREAM SEQUENCE LEARNING

Algorithm 1 Truncated BPTT with multi-stream sequence learning
1: Require: Number of Streams B, Learning update stride T
2: Require: Recurrent function fθ with parameters θ
3: Require: Output function gϕ with parameters ϕ
4: Require: Data streams Dk, ∀k ∈ {1, . . . , B}, step size α
5: Initialize: θ,ϕ, hidden state h0 ← 0
6: for tu = 1 . . .∞ do ▷ Update loop
7: for k = 1 . . . B do ▷ Go over streams (parallelizable due to independence)
8: δW ← 0, ∀W ∈ θ, δV ← 0, ∀V ∈ ϕ, δh ← 0
9: Bk ← ∅ ▷ Buffer to store (ht−1,xt,ht)

10: for t = 1 upto T do ▷ Block item loop (parallelizable with parallel scan)
11: xt,yt,reset← Dk

12: if reset then
13: ht−1 ← 0

14: ht ← fθ(ht−1,xt) ▷ Forward pass
15: ŷt ← gϕ(ht,xt)
16: Compute Lt = L(ŷt,yt)

17: δV ← δV +
(
∂ŷt
∂V

)⊤ ∂Lt
∂ŷt

, V ∈ ϕ

18: δh ← δh +
(

∂ŷt
∂ht

)⊤
∂Lt
∂ŷt

19: Append (ht−1,xt,ht) to Bk

20: for i = t downto 1 do ▷ Truncation loop (parallelizable with parallel scan)
21: Retrieve (hi−1,xi,hi) from Bk

22: δW ← δW +
(

∂hi
∂W

)⊤
δh·, W ∈ θ

23: δh ←
(

∂hi
∂hi−1

)⊤
δh

24: W ←W − 1
BT

α δW , W ∈ θ ▷ One update after processing B streams
25: V ← V − 1

BT
α δV , V ∈ ϕ

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C THE RTRL ALGORITHM UNDER MULTI-STREAM SEQUENCE LEARNING

Algorithm 2 RTRL with multi-stream sequence learning

1: Require: Number of streams B
2: Require: Recurrent function fθ with parameters θ
3: Require: Output function gϕ with parameters ϕ
4: Require: Data streams Dk,∀k ∈ {1, . . . , B}, step size α
5: Initialize: θ,ϕ, hidden state h0 ← 0
6: Initialize: Sensitivity matrix IW

0 ← 0,∀W ∈ θ ▷ IW
0 = dh0

dW
7: for t = 1 . . .∞ do
8: δV ← 0,∀V ∈ ϕ, δW ← 0,∀V ∈ θ
9: for k = 1 . . . B do ▷ Go over streams

10: xt,yt,reset← Dk,t

11: if reset then
12: ht−1 ← 0

13: ht ← fθ(ht−1,xt) ▷ Forward pass
14: Update sensitivity: IW

t ← ∂ht

∂W + ∂ht

∂ht−1
IW
t−1, ∀W ∈ θ

15: ŷt ← gϕ(ht,xt)
16: Compute Lt = L(ŷt,yt)

17: δV ← δV + 1
B

(
∂ŷt

∂V

)⊤
∂Lt

∂ŷt
, ∀V ∈ ϕ ▷ Gradient for ϕ

18: δW ← δW + 1
B

(
IW
t

)⊤ (∂ŷt

∂ht

)⊤
∂Lt

∂ŷt
, ∀W ∈ θ ▷ Gradient for θ

19: W ←W − α δW , ∀W ∈ θ ▷ Parameter update for θ
20: V ← V − α δV , ∀V ∈ ϕ ▷ Parameter update for ϕ

D COMPLEX-VALUED GATED LINEAR RECURRENT UNIT

Here, we describe the complex-valued GLRU unit. We replace our real-valued recurrent gating and
input gating with their complex counterparts.

ht = λ(xt) ◦ ht−1 + γt ◦ g(xt) ◦ (Bxt)

yt = ℜ[Cht],

where λ(xt)
.
= r(xt) ◦ eiθt , γt =

√
1− |λt|, g(xt) = Gxt, and r(xt) = e−ceν◦σ(Rxt). The

vector θt ∈ Rn contains the phase information of the complex-valued system. We need to learn
complex-valued matrices, B ∈ Cn×d, G ∈ Cn×d, and C ∈ Cm×n. Note that R ∈ Rn×n and
ν ∈ Rn are still real-valued. We have to use yt = ℜ[Cht] instead of yt = ℜ[ht] to have no gradient
bias. We refer the reader to Elelimy et al. (2024) and Orvieto et al. (2023) for more discussion
about gradient bias. We implement complex-valued GLRU using the cosine representation with
real-valued systems, and we refer the reader to Appendix G.4 for the details on how to convert the
system from exponential representation form to cosine representation.

E RTRL MODE OF GLRU AND RG-LRU RECURRENT UNITS

Here, we derive the RTRL sensitivity update equations for GLRU and RG-LRU units. We show that
in both, their sensitivity tensors are diagonal and can be stored and computed efficiently.

E.1 GLRU RTRL SENSITIVITY EQUATIONS

The recurrence equation of GLRU is given by

ht = r(xt) ◦ ht−1 + γt ◦ g(xt) ◦ (Bxt)

yt = ht

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where γt =
√

1− r2t , g(xt) = Gxt, and r(xt) = e−ceν◦σ(Rxt). Now, we can derive the sensitiv-
ity update equation for the vector ν using index notations as follows:

Sν
t,i,j =

∂ht,i

∂νj
=

∂

∂νj

(
riht−1,i + γigi

(∑
m

Bi,mxt,m

))

=
∂ri
∂νj

ht−1,i + riS
ν
t−1,i,j +

∂γi
∂νj

gi

(∑
m

Bi,mxt,m

)

= −cδi,jeνiσ

(∑
k

Ri,mxt,m

)
riht−1,i + riS

ν
t−1,i,j

+ cδi,j
r2i
γi

eνiσ

(∑
k

Ri,mxt,m

)
gi

(∑
m

Bi,mxt,m

)
Note how the structure coming from δi,j forces all off-diagonal elements where i ̸= j to be zero.
Hence, we can store the sensitivity elements in a vector instead of a matrix.

We can also write the recursive relationship using the reduced sensitivity for ν as follows:

Sν
t =

∂

∂ν
(r(xt) ◦ ht−1 + γ ◦ g(xt) ◦ (Bxt))

= r(xt) ◦ Sν
t−1 − ceν ◦ σ(Rxt) ◦ r(xt) ◦ ht−1 + c

r(xt)
2

γ
◦ eν ◦ σ(Rxt) ◦ g(xt) ◦ (Bxt)

where [Sν
t]i

.
=
[
Sν
t,i,j

]
i,j=1

.

Next, we derive the sensitivity equation for the matrix B as follows:

SG
t,i,j,k =

∂ht,i

∂Gj,k
=

∂

∂Gj,k

(
riht−1,i + γibi

∑
m

Gi,mxt,m

)
= riS

G
t−1,i,j,kδi,j + γibiδi,jxt,k,

where we use bi =
∑

k Bi,kxt,k. Note how the structure coming from δi,j forces all off-diagonal
elements where i ̸= j to be zero. Hence, we can store the sensitivity elements in a matrix instead
of a 3-tensor. We can also write the recursive relationship using the reduced sensitivity objects as
follows:

SG
t =

∂

∂G
(r(xt) ◦ ht−1 + γ ◦ g(xt) ◦ (Gxt))

= Diag(r(xt)) ◦ SG
t−1 + (γ ◦Bxt)x

⊤
t ,

where
[
SG
t

]
i,j

.
=
[
SG
t,i,j,k

]
i,j,k=1

.

Next, we derive the sensitivity equation for the matrix B as follows:

SB
t,i,j,k =

∂ht,i

∂Bj,k
=

∂

∂Bj,k

(
riht−1,i + γigi

∑
m

Bi,mxt,m

)
= riS

B
t−1,i,j,kδi,j + γigi

∑
m

δi,jδk,mxt,m

= riS
B
t−1,i,j,kδi,j + γigiδi,jxt,k.

Note how the structure coming from δi,j forces all off-diagonal elements where i ̸= j to be zero.
Hence, we can store the sensitivity elements in a matrix instead of a 3-tensor. We can also write the
recursive relationship using the reduced sensitivity objects as follows:

SB
t =

∂

∂B
(r(xt) ◦ ht−1 + γ ◦ g(xt) ◦ (Bxt))

= Diag(r(xt)) ◦ SB
t−1 + (γ ◦ g(xt))x

⊤
t ,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where
[
SB
t

]
i,j

.
=
[
SB
t,i,j,k

]
i,j,k=1

.

Finally, we derive the sensitivity equation for the matrix R as follows:

SR
t,i,j,k =

∂ht,i

∂Rj,k
=

∂

∂Rj,k

(
riht−1,i + γigi

∑
m

Bi,mxt,m

)

= δi,jriS
R
t−1,i,j +

∂ri
∂Rj,k

ht−1,i

= δi,jriS
R
t−1,i,j − cδi,jrie

νiσ

(∑
k

Ri,mxt,m

)(
1− σ′

(∑
k

Ri,mxt,m

))
ht−1,ixt,k

− cδi,jrie
νiσ

(∑
k

Ri,mxt,m

)(
1− σ′

(∑
k

Ri,mxt,m

))
ri
γi
gi

(∑
m

Bi,mxt,m

)
xt,k

= δi,jriS
R
t−1,i,j − δi,jdi

(
ht−1,i −

ri
γi
gi
∑
m

Bi,mxt,m

)
xt,k,

where di = crie
νiσ (

∑
k Ri,mxt,m) (1− σ′ (

∑
k Ri,mxt,m)). Note how the structure coming from

δi,j forces all off-diagonal elements where i ̸= j to be zero. Hence, we can store the sensitivity
elements in a matrix instead of a 3-tensor. We can also write the recursive relationship using the
reduced sensitivity objects as follows:

SR
t =

∂

∂R
(r(xt) ◦ ht−1 + γ ◦ g(xt) ◦ (Bxt))

= Diag(r(xt))S
R
r +

(
d ◦
(
ht−1 −

r(xt)

γ
◦ g(xt) ◦ (Bxt)

))
x⊤
t .

where d = cr(xt) ◦ eν ◦ σ(Rxt) ◦ (1− σ′(Rxt)) and
[
SR
t

]
i,j

.
=
[
SR
t,i,j,k

]
i,j,k=1

.

E.2 RG-LRU RTRL SENSITIVITY EQUATIONS

The RG-LRU unit was introduced by De et al. (2024) and is typically used with T-BPTT. Here, we
derive its RTRL mode. We start by writing the RG-LRU unit in the same notation we use in this
paper. The RG-LRU unit is given by

ht = r(xt) ◦ ht−1 + γt ◦ g(xt) ◦ xt

yt = ht

where γt =
√
1− r2t , g(xt) = σ(Gxt), r(xt) = e−c log(1+eν)◦σ(Rxt)

The sensitivity update equation for the vector ν are given by:

Sν
t,i,j =

∂ht,i

∂νj
=

∂

∂νj

(
riht−1,i + γigi

(∑
m

Bi,mxt,m

))

=
∂ri
∂νj

ht−1,i + riS
ν
t−1,i,j +

∂γi
∂νj

gi

(∑
m

Bi,mxt,m

)

= −cδi,jσ(νi)σ

(∑
k

Ri,mxt,m

)
riht−1,i + riS

ν
t−1,i,j

+ cδi,j
r2i
γi

σ(νi)σ

(∑
k

Ri,mxt,m

)
gixt,i

Note how the structure coming from δi,j forces all off-diagonal elements where i ̸= j to be zero.
Hence, we can store the sensitivity elements in a vector instead of a matrix.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We can also write the recursive relationship using the reduced sensitivity for ν as follows:

Sν
t =

∂

∂ν
(r(xt) ◦ ht−1 + γ ◦ g(xt) ◦ xt)

= r(xt) ◦ Sν
t−1 − cσ(ν) ◦ σ(Rxt) ◦ r(xt) ◦ ht−1 + c

r(xt)
2

γ
◦ σ(ν) ◦ σ(Rxt) ◦ g(xt) ◦ xt,

where [Sν
t]i

.
=
[
Sν
t,i,j

]
i,j=1

.

Next, we derive the sensitivity equation for the matrix G as follows:

SG
t,i,j,k =

∂ht,i

∂Gj,k
=

∂

∂Gj,k

(
riht−1,i + γixi

∑
m

Gi,mxt,m

)
= riS

G
t−1,i,j,kδi,j + γixiδi,jxt,k,

Note how the structure coming from δi,j forces all off-diagonal elements where i ̸= j to be zero.
Hence, we can store the sensitivity elements in a matrix instead of a 3-tensor. We can also write the
recursive relationship using the reduced sensitivity objects as follows:

SG
t =

∂

∂G
(r(xt) ◦ ht−1 + γ ◦ g(xt) ◦ xt)

= Diag(r(xt)) ◦ SG
t−1 + (γ ◦ xt)x

⊤
t .

where
[
SG
t

]
i,j

.
=
[
SG
t,i,j,k

]
i,j,k=1

.

Finally, we derive the sensitivity equation for the matrix R as follows:

SR
t,i,j,k =

∂ht,i

∂Rj,k
=

∂

∂Rj,k
(riht−1,i + γigixt,i)

= δi,jriS
R
t−1,i,j +

∂ri
∂Rj,k

ht−1,i

= δi,jriS
R
t−1,i,j − cδi,jri log(1 + eνi)σ

(∑
k

Ri,mxt,m

)(
1− σ′

(∑
k

Ri,mxt,m

))
ht−1,ixt,k

− cδi,jri log(1 + eνi)σ

(∑
k

Ri,mxt,m

)(
1− σ′

(∑
k

Ri,mxt,m

))
ri
γi
gixt,ixt,k

= δi,jriS
R
t−1,i,j − δi,jdi

(
ht−1,i −

ri
γi
gixt,i

)
xt,k,

where di = cri log(1 + eνi)σ (
∑

k Ri,mxt,m) (1− σ′ (
∑

k Ri,mxt,m)). Note how the structure
coming from δi,j forces all off-diagonal elements where i ̸= j to be zero. Hence, we can store the
sensitivity elements in a matrix instead of a 3-tensor. We can also write the recursive relationship
using the reduced sensitivity objects as follows:

SR
t =

∂

∂R
(r(xt) ◦ ht−1 + γ ◦ g(xt) ◦ (Bxt))

= Diag(r(xt))S
R
r +

(
d ◦
(
ht−1 −

r(xt)

γ
◦ g(xt) ◦ xt

))
x⊤
t .

where d = cr(xt) ◦ log(1 + eν) ◦ σ(Rxt) ◦ (1− σ′(Rxt)) and
[
SR
t

]
i,j

.
=
[
SR
t,i,j,k

]
i,j,k=1

.

F EXPERIMENTAL DETAILS

We use Python and Pytorch (Paszke et al. 2019) to implement our algorithms using automatic dif-
ferentiation to backpropagate gradients with T-BPTT and RTRL. Additionally, we used the parallel
scan implementation by Kyrylov (2024).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

We used LeCun initialization (LeCun et al. 2012) to initialize all weights except for the weights
used for contracting the input (see Figure 2), which we initialize it Wi,j ∼ N (0, 1/

√
2× E ×N),

where N is the number of layers in the model. Additionally, we use the ring initialization (Orvieto
et al. 2023) in both RG-LRU and GLRU, using rmin = 0.9, rmax = 0.999, which is given as:
νinit ← log(−0.5 log(u(r2max − r2min) + r2min), where ui ∼ U [0, 1],∀i. In our experiments, the
truncation length in recurrent-based models is always equal to the segment length.

In Figure 3, we list the common training configurations we used in all experiments. We then describe
the specific details for each experiment in the next sections.

Configuration Value

Optimizer AdamW
Optimizer parameters β1 = 0.9, β2 = 0.95

Weight decay 0.1
Bias No

Dropout No
Gradient Clipping 1.0

Floating-point precision Bfloat16
GPU used NVIDIA L40/H100

Automatic mixed precision Yes
Embedding Weight Tying (Press and Wolf 2016) Yes

Table 3: The common training configuration shared in all experiments and baselines.

F.1 SELECTIVE COPYING

We trained all models for 50, 000 iterations using a batch size of 64 and a constant learning rate of 3×
10−4, evaluating performance on 5, 000 randomly generated examples. Each model consists of two
layers. The Memora variants—GLRU, MinGRU, and LRU—share the same configuration: a model
dimension of 64, state dimension of 256, and a gated MLP with an expansion ratio of 3. Hawk uses
a similar setup to Memora, with the addition of a convolution kernel size of 4. Llama2, by contrast,
is configured with a larger model dimension of 192, three attention heads, and an MLP expansion
ratio of 4. Mamba2 also adopts a model dimension of 192 but differs with a state dimension of 128,
a head dimension of 64, an MLP expansion ratio of 2, and a convolution kernel size of 4. We report
the average of 5 independent runs and report the standard error.

F.2 BYTE-LEVEL LANGUAGE MODELING WITH TINYSTORIES

We use an effective batch size of BT = 131,072 and vary the sequence length in the IID setting
or the update stride in the multi-stream setting with values T ∈ {2, 8, 32, 128, 512, 1024}. All
models are trained for 2 epochs using a constant learning rate of 3 × 10−4, and are configured to
have approximately 60 million parameters. We used the UTF-8 character encoding that represents
each character with one to four bytes. The Mamba2 model uses a model dimension of 768, a state
dimension of 128, a head dimension of 128, 16 layers, a convolutional kernel size of 4, and an MLP
expansion ratio of 2, totaling 60,294,464 parameters. The Hawk model is configured with a model
dimension of 512, a state dimension of 768, 14 layers, a gated MLP expansion ratio of 3, and a
convolutional kernel size of 4, totaling 66, 259, 968 parameters. The Memora model uses a model
dimension of 512, a state dimension of 768, 14 layers, and an MLP expansion ratio of 3, totaling
60,711,424 parameters. Finally, the Llama2 baseline has a model dimension of 512, 8 attention
heads, 18 layers, and an MLP expansion ratio of 4, totaling 61,491,712 parameters. We report the
average of 3 runs (the error bars are very small, so we do not display them to reduce clutter and
enhance visibility).

F.3 DNA MODELING

We use an effective batch size of BT = 524, 288 with a batch size of B = 512 and trained for
4 epochs. We used a learning rate warm-up for 10% of the total iterations, followed by cosine

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

annealing with a minimum of 10−5 and a maximum of 10−3. We compare Memora, Mamba2,
Hawk, and Llama2, each of which use 5 different model sizes in each method (sizes with prefixes
S0, S1, S2, S3, S4). We list the model configurations in Table 4.

In Mamba2 and Hawk, the temporal convolutional kernel size is 4. In Hawk and Memora, we use
MLP expansion factor of 3 in the gated MLP blocks (by setting E = 3 × M in Figure 2). In
Mamba2, the expansion factor is set to 2. In Llama2, the MlP expansion factor is set to 4. We report
the average of 3 runs (the error bars are too small to be visible in the figure).

F.4 BYTE-LEVEL LANGUAGE MODELING WITH FINEWEBEDU

We use an effective batch size of BT = 524, 288 with a batch size of B = 512 and trained for
286, 500 iterations. We used a learning rate warm-up for 1% of the total iterations, followed by
cosine annealing with a minimum of 3× 10−5 and a maximum of 3× 10−4. We compare Memora,
Mamba2, Hawk, and Llama2, each of which use 5 different model sizes in each method (sizes with
prefixes S4, S5, S6, S7, S8). We list the model configurations in Table 4. We use the same other
model parameters mentioned in the previous section.

F.5 LEARNING FROM ONE SAMPLE AT A TIME WITH RTRL AND 1-STEP BPTT

For both Memora and Hawk, we use a model dimension of 384, a state dimension of 512, six layers,
and a gated MLP expansion factor of 3. Training is conducted over 1024 parallel data streams with
a single update stride for two epochs. We employ a constant learning rate and tune each method by
selecting the best learning rate from the set {3× 10−4, 3× 10−5, 3× 10−6, 3× 10−7, 3× 10−8}.
The optimal learning rate was found to be 3× 10−5 for Memora (both RTRL and 1-BPTT variants)
and 3× 10−7 for Hawk (for both RTRL and 1-BPTT). We report the average of 3 runs.

F.6 MEMORA WITH STREAMING LEARNING

We use an effective batch size of BT = T = B = 1 and train for 20M iterations with a constant
learning rate of 3 × 10−5 for RTRL and 3 × 10−7 for 1-step BPTT which was selected based on
searching in {3× 10−4, 3× 10−5, 3× 10−6, 3× 10−7}. We used a model dimension of 512, a state
dimension of 768, a gated MLP expansion factor of 3, and 6 Memora layers. We used RMSProp
with β2 = 0.9999 with no weight decay nor gradient clipping. We report the average of 3 runs.

F.7 MEMORA WITH GLRU ALTERNATIVES

We use an effective batch size of BT = 131,072, with a batch size of B = 256. We train for
2 epochs using a constant learning rate of 3 × 10−4. We use a model dimension of 512, a state
dimension of 768, 12 layers, and an MLP expansion factor of 3. We report the average of 3 runs.

G PRIMER ON LINEAR RECURRENT UNITS

The learner usually observes the environment partially; thus, it is required to construct its learner
state, some internal representation of what the state of the environment might be. We denote the
state construction function f : Rn × Rd → Rn given by ht = f(ht−1,xt), where ht ∈ Rn and
xt ∈ Rd are the learner state and observation at time step t. The learner state is considered the
learner’s best ability to construct a compact history of the past. The output construction function
g : Rd × Rn → Rm maps the learner state into some usable output yt ∈ Rm for prediction and is
given by yt = g(ht,xt). The evolution of the system is fully described using the following:

ht = f(ht−1,xt),

yt = g(ht,xt).

In the simple case of a linear system, the equations can be formulated as

ht = Aht−1 +Bxt

yt = Cht +Dxt,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Model Params Model Dim State Dim Heads Head Dim Layers (N)

Memora-S8 1,151,980,544 2048 2560 – – 18
Memora-S7 444,002,304 1536 2048 – – 12
Memora-S6 207,923,200 1024 1536 – – 12
Memora-S5 111,114,240 768 1024 – – 12
Memora-S4 52,057,088 512 768 – – 12
Memora-S3 13,966,848 384 512 – – 6
Memora-S2 6,495,232 256 384 – – 6
Memora-S1 3,470,400 192 256 – – 6
Memora-S0 1,625,600 128 192 – – 6

Hawk-S8 1,199,352,832 2048 2560 – – 18
Hawk-S7 469,267,968 1536 2048 – – 12
Hawk-S6 226,872,320 1024 1536 – – 12
Hawk-S5 117,455,616 768 1024 – – 12
Hawk-S4 56,813,056 512 768 – – 12
Hawk-S3 14,765,952 384 512 – – 6
Hawk-S2 7,094,528 256 384 – – 6
Hawk-S1 3,673,344 192 256 – – 6
Hawk-S0 1,777,792 128 192 – – 6

Llama2-S8 906,493,952 2048 – 16 – 18
Llama2-S7 340,170,240 1536 – 16 – 12
Llama2-S6 154,428,416 1024 – 16 – 12
Llama2-S5 85,150,464 768 – 12 – 12
Llama2-S4 41,038,336 512 – 8 – 12
Llama2-S3 10,720,128 384 – 6 – 6
Llama2-S2 5,116,928 256 – 4 – 6
Llama2-S1 2,658,048 192 – 4 – 6
Llama2-S0 1,575,424 128 – 4 – 6

Mamba2-S8 724,556,000 2560 128 – 64 18
Mamba2-S7 310,717,696 2048 128 – 64 12
Mamba2-S6 176,124,096 1536 128 – 64 12
Mamba2-S5 79,475,840 1024 128 – 64 12
Mamba2-S4 45,381,216 768 128 – 64 12
Mamba2-S3 20,772,928 512 128 – 64 12
Mamba2-S2 6,062,424 384 128 – 64 6
Mamba2-S1 2,858,384 256 128 – 64 6
Mamba2-S0 1,625,600 192 128 – 64 6

Table 4: Model configurations of Memora, Hawk, Llama2, and Mamba2 models used in the DNA
modeling and de-duplicated FineWebEdu experiments

where A ∈ Rn×n, B ∈ Rn×d, C ∈ Rn×m, and D ∈ Rd×m.

We can write the square matrix A using its eigenvalue decomposition as A = P−1ΛP , where P ∈
Cn×n contains the eigenvectors and Λ ∈ Cn×n is a diagonal matrix containing the corresponding
eigenvalues. Orvieto et al. (2023) showed that we can rewrite the linear recurrent equation as:

ht = P−1ΛPht−1 +Bxt =⇒ Pht = ΛPht−1 + PBxt.

By defining h̃
.
= Ph and B̃

.
= PB, we can write the new recurrence equation as follows:

h̃t = Λh̃t−1 + B̃xt.

Since Λ is a diagonal matrix, we can utilize its diagonal λ .
= diag(Λ). The recurrent equation can

be further simplified as:

h̃t = λ ◦ h̃t−1 + B̃xt (7)

yt = ℜ[Ch̃t] +Dxt

which is referred to as an independent recurrent module (Zucchet et al. 2023) because each element
in the new state does not depend on any interaction with the other elements. Some instantiation

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

of independent recurrent modules with different details and assumptions are LRU (Orvieto et al.
2023), Online LRU Zucchet et al. (2023), eLSTM (Irie et al. 2024), RTU (Elelimy et al. 2024),
Hawk (De et al. 2024), HGRN (Qin et al. 2024), MinGRU/MinLSTM (Feng et al. 2024), and
columnar networks (Javed et al. 2023). It is worth mentioning that, in our analysis, we have not
made any assumptions so far other than the linearity of f and g. Thus, the equation with a complex-
valued diagonal recurrence matrix is representationally equivalent to the original equation with a
real-valued dense recurrence matrix.

G.1 OPTIMIZATION ISSUES WITH RECURRENT LEARNING

One issue with the product term
∏t

i=j+1
∂hi

∂hi−1
in Eq. 3 and Eq. 4 is that it can vanish if the mag-

nitude of the eigenvalues are less than 1 and explode if they are greater than 1. T-BPTT is less
sensitive to this issue than BPTT. Further efforts include gating mechanisms to prevent vanishing or
exploding gradients from excessive multiplication, like LSTM (Hochreiter and Schmidhuber 1997)
and GRU (Cho 2014). Other efforts also restricted the eigenvalues of the product matrix to always
be close to but less than 1 (e.g., Arjovsky et al. 2016). Recently, it was noticed that if the recurrent
unit is restricted to be linear, controlling its eigenvalues becomes much easier, and thus optimiza-
tion becomes more efficient (Zucchet and Orvieto 2024), which is what powers modern large-scale
recurrent learning methods (e.g., Gu and Dao 2024, De et al. 2024, Dao and Gu 2024).

G.2 NECESSITY OF COMPLEX NUMBERS LEARNING

The nature of input signals can vary from discrete to continuous based on the application. For
example, they can be discrete, like language text, or continuous, like audio. Empirically, prior
research (Gu and Dao 2024) showed that the recurrent system benefits from having complex-valued
states in cases where the input signal is continuous and with little to no gain in the case of the
discrete input (e.g., language). Thus, the recent recurrent systems with language models usually
assume real-valued state ht ∈ Rn,∀t. In this primer, we focus on the general case where the state is
complex-valued.

G.3 STABILITY OF RECURRENT LEARNING

In Eq. 7, any entry in h̃t can increase without bound if its corresponding eigenvalue is greater than
or equal to 1, which makes the system unstable. To maintain stability, λ entries are restricted to have
a magnitude less than 1. If rectangular representation, a+ ib, is used, then

√
a2 + b2 < 1 maintains

stability. If trigonometric representation, r(cos(θ) + i sin(θ)), or exponential representation, reiθ,
are used, then r < 1 maintains stability (Zucchet and Orvieto 2024, Elelimy et al. 2024). Further,
if an entry i in λ has a magnitude close to one, |λi| ≈ 1, this might cause instability if the input
contribution, B̃,xt is large (Orvieto et al. 2023). Thus, we can dampen the contribution of the input
proportionally to the eigenvalue magnitude via multiplication by

√
1− |λ|. The resultant recurrence

equation becomes h̃t = λ ◦ h̃t−1 +γ ◦ B̃xt, where γ =
√

1− |λ|. In the following, we skip these
stability modifications to have simpler derivations.

G.4 SEPARATING COMPLEX INTO REAL AND IMAGINARY COMPONENTS

The linear recurrent unit in Eq. 7 can be implemented and used with automatic differentiation li-
braries as shown in LRU (Orvieto et al. 2023) and online LRU (Zucchet et al. 2023). However,
automatic differentiation with complex numbers in existing software libraries is tricky and might
give unexpected results (Elelimy et al. 2024) due to lack of adoption and support. Thus, it is better
to separate the complex numbers into their real and imaginary components so that we have real equa-
tions and imaginary equations. The values of both components are real-valued, and the automatic
differentiation libraries can deal with them more easily.

Let us separate the complex recurrence equation into two equations: real and imaginary. We define
h̃t = h̃R

t + ih̃I
t , where h̃R

t is the real part of the state vector and h̃I
t is the imaginary part. We do

the same trick for λ and B̃: λ = λR + iλI and B̃ = B̃R + iB̃I

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The recurrence equation is written as:

h̃R
t + ih̃I

t = (λR + iλI) ◦ (h̃R
t−1 + ih̃I

t−1) + (B̃R + iB̃I)xt

= λR ◦ h̃R
t−1 + iλR ◦ h̃I

t−1 + iλI ◦ h̃R
t−1 − λI ◦ h̃I

t−1 + B̃Rxt + iB̃Ixt

Let us separate the real components from the imaginary ones:

h̃R
t = λR ◦ h̃R

t−1 − λI ◦ h̃I
t−1 + B̃Rxt

ih̃I
t = iλR ◦ h̃I

t−1 + iλI ◦ h̃R
t−1 + iB̃Ixt

Note how we can drop i from both sides of the imaginary equations and retain a real-valued equation.

The recurrent state of such a separated system can be seen as h̃combined
t = [h̃R

t ; h̃
I
t] ∈ R2n. One

advantage of such a view is that we no longer need to learn a complex-valued C matrix. The output
yt is given by ycombined

t = h̃combined
t Ccombined, where Ccombined ∈ Rm×2n. This is representationally

equivalent to learning a complex-valued state h̃t ∈ Rn and C ∈ Cm×n where the output is given

as yt = ℜ[Ch̃t]. This is because ycombined =

[
h̃R
t

h̃I
t

]
[C1 C2] = C1h̃

R
t + C2h̃

I
t , where C1,C2 ∈

Rm×n. On the other hand, yt = ℜ[Ch̃t] = ℜ[(CR + iCI)(h̃
R
t + ih̃I

t)] = CRh̃
R
t −CI h̃

I
t . If we

set CR = C1 and CI = −C2, then we get yt = ycombined
t .

The cosine representation is better than the rectangular representation for learning (Elelimy et al.
2024) since we can directly restrict the magnitude of Λ eigenvalues. Utilizing the cosine represen-
tation of complex numbers: a+ ib = r cos(θ)+ i sin(θ), we can write the two equations differently.
We define λR = r cos(θ), λI = r sin(θ). The resultant recurrence equations are given by:

h̃R
t = r ◦ cos(θ) ◦ h̃R

t−1 − r ◦ sin(θ) ◦ h̃I
t−1 + B̃Rxt,

h̃I
t = r ◦ cos(θ) ◦ h̃I

t−1 + r ◦ sin(θ) ◦ h̃R
t−1 + B̃Ixt,

which recovers RTU unit (Elelimy et al. 2024).

G.5 ENFORCING CONJUGATE PAIRS LEARNING

Since the recurrent unit matrices are real, A ∈ Rn×n, B ∈ Rn×d, and C ∈ Rn×m, then Λ must
contain complex conjugate pairs. It might be beneficial to enforce conjugate pairs in the learning
process. We tie the weights of Λ ∈ Cn×n enforce conjugate pairs and write it as

Λrestricted =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
. . . · · ·

...
0 0 0 λ∗

2n−1 0
0 0 0 · · · λ∗

2n

 =

[
Λoriginal

0

]
+

[
0

Λconjugate

]
,

where Λoriginal,Λconjugate ∈ Cn
2 ×n

2 . Here, λk, λ
∗
k,∀k are conjugate pairs representing complex

eigenvalues. We call recurrent units with this restriction as restricted complex-valued recurrence.

G.6 LEARNING WITH RTRL

To be able to learn with RTRL and the complex recurrent unit, h̃t = λ ◦ h̃t−1 + B̃xt, we need
to compute the sensitivity matrices for λ, and B̃. We denote Sλ .

= ∂ht

∂λ and SB̃ .
= ∂ht

∂B̃
to the

sensitivity matrices for λ, and B̃, respectively. We refer the reader to Zucchet et al. (2023) for
full derivation and analysis for RTRL for complex-valued LRU. In addition, we refer the reader to
Elelimy et al. (2024) for a derivation for complex-based LRU using a real-valued system. Here,
we provide the derivation for completeness. The sensitivity matrices update equation is given as
follows:

Sλ
t,i,j =

∂ht,i

∂λj
=

∂

∂λj

(
λih̃t−1,i +

∑
m

B̃i,mxt,m

)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

= δi,j h̃t−1,i + δi,jλiS
λ
t−1,i,j

SB̃
t,i,j,k =

∂ht,i

∂Bj,k
=

∂

∂Bj,k

(
λih̃t−1,i +

∑
m

B̃i,mxt,m

)
= λiS

B̃
t−1,i,j,kδi,j +

∑
m

δi,jδk,mxt,m

= λiS
B̃
t−1,i,j,kδi,j + δi,jxt,k.

We can also write the recursive relationship using the reduced sensitivity objects as follows:

Sλ
t =

∂

∂λ

(
λ ◦ h̃t−1 + B̃xt

)
= λ ◦ Sλ

t−1 + h̃t−1

SB̃
t =

∂

∂B̃

(
λ ◦ h̃t−1 + B̃xt

)
= Diag(λ)SB̃

t−1 + 1x⊤
t

where ◦ denotes element-wise product. Note how the matrix Sλ
t reduces to a vector since δi,j =

0,∀i ̸= j. Similarly, the 3d tensor SB̃
t reduces to a 2d matrix. This structure in the sensitivity objects

is a result of the structure of the independent recurrent module.

H PRIMER ON PARALLEL SCAN

Parallel scan (Blelloch 1990) is an operation that applies a binary associative operator • on a number
of elements L in a certain way. Let us consider the linear recurrence hk+1 = Akhk +Bkxk. For
a sequence of length L, we can write the elements belonging to each step k as ck = (Ak,Bkxk).
The elements {c1, . . . , cL} are precomputed before applying the parallel scan operator. The binary
associative operator • of this recurrence is given by qi•qj

.
= (qj,1□qi,1, qj,1♢qi,2+qk,2), where qi,1

is the 1st entry of the ith element, qi,2 is the 2nd entry of the ith element, □ denotes matrix-matrix
multiplication, ♢ denotes matrix-vector multiplication, and + denotes element-wise addition.

First, we perform the upsweep, where we recursively combine adjacent pairs of elements to build a
binary tree. At the bottom level, we combine (c1, c2), (c3, c4), . . . , (cL−1, cL). Each pair is com-
bined using •, and the resulting values form the next level. This process continues until we reach the
root. For example, a node covering c3, c4, c5, c6 will store c3 • c4 • c5 • c6. These values are reused
in the next phase. Second, we perform the downsweep to turn these tree values into the actual cumu-
lative products. Starting from the root node then traversing the tree, we pass the value of the node
to its children where the right child gets the value of the parent combined with the left child’s value
and the left child gets the same value as the parent. After this process is complete, each leaf node k
contains the cumulative product sk = c1 • · · · • ck−1, containing all hidden states {h1, . . . , hL}.
Because both upsweep and downsweep take O(logL) depth (by combining or distributing pairs in
parallel), all hidden states are produced in O(logL) parallel time. The computational complex-
ity is O(M logL), where M is the cost of matrix-matrix multiplication. Specifically, the cost is
O(n3 logL) using dense recurrence matrix A ∈ Rn×n and O(n logL) for diagonal A.

24

	Introduction
	Background on Recurrent Learning
	Backpropagation Through Time (BPTT)
	Truncated-Backpropagation Through Time (T-BPTT)
	Real-time Recurrent Learning (RTRL)
	Parallelization with Recurrent Learning

	Multi-stream Sequence Learning
	The Memora Architecture
	Learning Temporal Structures with Gated Linear Recurrent Unit (GLRU)
	Architectural Design

	Experiments
	Selective Copying
	Byte-level modeling with varying sequence lengths or update strides
	DNA modeling
	Byte-level language modeling with FineWebEdu
	Learning from one byte at a time
	Considering GLRU alternatives

	Conclusion, limitations, and future works
	Related Works
	The T-BPTT Algorithm under multi-stream sequence learning
	The RTRL Algorithm under multi-stream sequence learning
	Complex-valued Gated Linear Recurrent Unit
	RTRL mode of GLRU and RG-LRU recurrent units
	GLRU RTRL Sensitivity Equations
	RG-LRU RTRL Sensitivity Equations

	Experimental Details
	Selective Copying
	Byte-level language modeling with TinyStories
	DNA modeling
	Byte-level language modeling with FineWebEdu
	Learning from one sample at a time with RTRL and 1-step BPTT
	Memora with streaming learning
	Memora with GLRU alternatives

	Primer on Linear Recurrent Units
	Optimization issues with recurrent learning
	Necessity of complex numbers learning
	Stability of Recurrent Learning
	Separating complex into real and imaginary components
	Enforcing Conjugate Pairs Learning
	Learning with RTRL

	Primer on Parallel Scan

