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Abstract— In order to successfully perform manipulation
tasks in new environments, such as grasping, robots must be
proficient in segmenting unseen objects from the background
and/or other objects. Previous works perform unseen object
instance segmentation (UOIS) by training deep neural networks
on large-scale data to learn RGB/RGB-D feature embeddings,
where cluttered environments often result in inaccurate segmen-
tations. We build upon these methods and introduce a novel
approach to correct inaccurate segmentation, such as under-
segmentation, of static image-based UOIS masks by using robot
interaction and a designed body frame-invariant feature. We
demonstrate that the relative linear and rotational velocities
of frames randomly attached to rigid bodies due to robot
interactions can be used to identify objects and accumulate
corrected object-level segmentation masks. By introducing mo-
tion to regions of segmentation uncertainty, we are able to
drastically improve segmentation accuracy in an uncertainty-
driven manner with minimal, non-disruptive interactions (ca.
2-3 per scene). We demonstrate the effectiveness of our pro-
posed interactive perception pipeline in accurately segmenting
cluttered scenes by achieving an average object segmentation
accuracy rate of 80.7%, an increase of 28.2% when compared
with other state-of-the-art UOIS methods.

I. INTRODUCTION

In order to perform autonomous manipulation tasks, robots
must be able to robustly perceive and segment unseen
objects to gain an understanding of their environment. Thus,
competent unseen object instance segmentation (UOIS) is
imperative to a robot’s manipulation capabilities [1]–[4].

While many state-of-the-art UOIS methods leverage deep
neural networks to extract pixel-wise feature representations
to perform segmentation, under and over segmentation in
cluttered scenes remain a challenge [1], [5]. Because these
methods attempt to segment single RGB-D images, only
visual features are modeled while some essential physical
features, such as how adjacent objects move relatively to
one another, are not considered. Interactive perception is
an alternative UOIS approach in which robots physically
interact with the environment to accumulate information over
time [6]. Under interactive perception, we should aim to
gather the most sensory data from interactions with as little
amount of scene disturbance as possible.

Central to the proposed method is our designed body
frame-invariant feature (BFIF). Assuming there are two body
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Fig. 1: Interactively segmenting a cluttered scene with minimal,
non-disruptive pushes. [Top left] Initial scene and identified robot
actions. [Top right] The origins of sampled body frames with
matched BFIFs due to scene interactions, where matched body
frames share the same color. [Bottom left] Undersegmentation of
scene’s end configuration by static segmentation model. [Bottom
right] Accurate segmentation of scene by RISeg after interactions
have been completed.

frames rigidly attached to an object, we build our system on
the insight that, when this object is moving, although the
two body frames are rotating and translating differently in
space, they will have the same spatial twist as observed by
any reference frame fixed to the world [7]. Meanwhile, body
frames on different objects that are relatively moving will
typically have different spatial twists.

This work proposes the framework of Robot Interactive
Segmentation (RISeg), which leverages active robot-object
interactions and the BFIF to improve the performance of
UOIS. Rather than learning visual features via data [1], we
demonstrate that segmentation of complex, cluttered scenes
can be drastically improved by observing object motions and
grouping BFIFs throughout robot interactions (see Fig. 1).
Singulation of objects at any step of robot interaction is not
necessary for our method, which results in fewer pushes (ca.
2-3) and less disturbance to environments when compared to
prior interactive perception methods [8].

II. ROBOT INTERACTIVE OBJECT SEGMENTATION

A. Framework Overview

Our proposed interactive perception framework makes 2
main contributions in action selection and segmentation mask
correction. In Alg. 1, we describe a system in which the scene
is observed between interactions to produce more accurate
segmentation masks. After each action, at, is identified by
FINDACTION(·) and completed by INTERACT(·), a segmen-
tation mask, L̂t+1, is produced by UPDATEMASK(·) through
BFIF analysis. Once the stop condition is met, the final
segmentation mask L̂t+1 is returned which reflects a more
accurate segmentation of the scene’s end configuration after
all interactions.



Algorithm 1 RISeg
Input: I0, STATICSEG(·)
Output: L̂t+1

1: t← 0
2: Lt ← STATICSEG(It)
3: L̂t ← Lt

4: while at ← FINDACTION(It) not null do ▷ Alg. 2
5: It+1 ← INTERACT(at)
6: Lt+1 ← STATICSEG(It+1)
7: L̂t+1 ← UPDATEMASK(It, It+1, L̂t, Lt+1) ▷ Alg. 3
8: t← t+ 1
9: return L̂t+1

B. Body Frame-Invariant Feature

The proposed RISeg method is an interactive perception
method in which a designed body frame-invariant feature
(BFIF) of sampled frames within a scene are grouped with
one another based on computed feature similarities. BFIF is
based on the spatial twists of body frames attached to various
rigid bodies. The key point being that twists of moving body
frames on the same rigid body transformed into a fixed space
frame will all have the same spatial twist, no matter their
relative motion [7].

C. Action Selection

As detailed in Alg. 2, we introduce a heuristic-based
approach to finding minimal, non-disruptive robot actions.
Given an RGB-D image It, static segmentation model
MSMFORMER(·) [5] returns segmentation mask Lt and
uncertainty heatmap Ut. Heatmap Ut gives pixel-wise con-
fidence values for each pixel belonging to an object, where
pixels with larger values are more likely to belong to an
object. In lines 2 and 3 of Alg. 2, we use heatmap Ut

to identify cluster centers via k-means clustering for pixels
we are “certain” (superscript c) to be part of an object,
{Cc

m}Mm=1 as well as cluster centers for pixels we are
“uncertain” (superscript u) to be part of an object, {Cu

n}Nn=1.

Algorithm 2 FindAction
Input: It
Output: at
1: Lt, Ut ← MSMFORMER(It)
2: {Cc

m}Mm=1 ← KMEANS(U i,j
t ∈ Ut : ℓu ≤ U i,j

t )

3: {Cu
n}Nn=1 ← KMEANS(U i,j

t ∈ Ut : ℓl ≤ U i,j
t < ℓu)

4: (i∗, j∗)← argmin
(i,j)∈{1,...,M}

∥Cc
i − Cc

j ∥

s.t. i ̸= j,
∥Cc

i − Cc
j ∥ ≤ da,

min
n∈{1,...,N}

DIST(Cu
n , C

c
iC

c
j }) ≤ db

5: if (i∗, j∗) exists then
6: {Pi∗} ← BOUNDARY(Cc

i∗ )
7: P ∗ ← RAND({Pi ∈ {Pi∗} : PiCc

i∗ ⊥ Cc
i∗C

c
j∗})

8: at ← (P ∗,
−−−−→
P ∗Cc

i∗ , dpush)
9: return at

10: else
11: return null

Fig. 2 shows how a specific robot action is selected
after obtaining the “certain” and “uncertain” clusters from
uncertainty heatmap Ut. In line 4 of Alg. 2, we describe
consideration of all pairs (i, j) of cluster centers in {Cc

m}
where i ̸= j and the distance between Cc

i and Cc
j is

P*C
i*
c

C
j*
c

C*
u

Fig. 2: Visualization of FindAction(·). [Top] “Certain” clusters
shown in red and dark green. “Uncertain” clusters shown in purple
and light green. [Bottom] “Certain” cluster centers (Cc

m) are shown
in yellow. White, dashed line segments connect “certain” cluster
centers (Cc

iC
c
j ). “Uncertain” cluster centers (Cu

n ) are shown in red.
Action at, defined by chosen push point P ∗ and direction

−−−−→
P ∗Cc

i∗ ,
is shown in blue. “Uncertain” cluster center Cu

∗ is used to choose
Cc

i∗ and Cc
j∗ due to having minimum distance to Cc

i∗C
c
j∗ .

Algorithm 3 UpdateMask
Input: It, It+1, L̂t, Lt+1

Output: L̂t+1

1: Ot ← RAFT(It, It+1) ▷ Optical Flow
2: {F i

t }, {F i
t+1} ← CREATEFRAMES(L̂t, Ot)

3: {Vi
t} ← CALCBFIFS({F i

t }, {F i
t+1})

4: FGt ← GROUPBFIFS({Vi
t}, L̂t)

5: L̂t+1 ← CORRECTMASK(FGt, L̂t, Lt+1, Ot)
6: return L̂t+1

less than some distance da. For each (Cc
i , Cc

j ) pair under
consideration, we construct a line segment connecting the
cluster center pair, and select the pair of interest (Cc

i∗ , Cc
j∗ )

for which an “uncertain” cluster center Cu
n is closest to.

The distance between “uncertain” cluster center Cu
n and line

segment Cc
iC

c
j must be at most db. If no “certain” cluster

centers (Cc
i∗ , Cc

j∗ ) exist to satisfy these constraints, then a
null action will be returned.

With a valid (Cc
i∗ , Cc

j∗ ), action at is identified by selecting
a push point P ∗ and direction (see Fig 2). Push point P ∗

is chosen by first obtaining pixels {Pi∗} from the cluster
boundary of cluster center Cc

i∗ via BOUNDARY(·). Then, a
point P ∗ that forms a line segment P ∗Cc

i∗ perpendicular
to line segment Cc

i∗C
c
j∗ is chosen at random via line 7 of

Alg. 2. Action at is now defined as a push from point P ∗

in direction
−−−−→
P ∗Cc

i∗ for short constant distance dpush. Once
action at is executed, and new image It+1 and segmentation
mask Lt+1 are captured.

D. Segmentation Mask Correction

1) Sample Body Frames and Compute BFIFs: Since a
main motivation of our method is to improve segmentation
through non-disruptive interactions, mask Lt+1 is likely to
have similar segmentation inaccuracies as Lt, such as under
segmentation. In Alg. 3, we describe how even without object
singulation in It+1, we are able to produce a more accurate,
refined segmentation mask L̂t+1 for the current scene state.
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Fig. 3: RISeg and MSMFormer segmentations of a cluttered table-
top scene throughout the interactive perception pipeline. The scene’s
initial state is shown after label “0”. Scene configurations and
segmentation masks after push numbers 1, 2, and 3 follow the
corresponding arrows. Pushes are minimal and non-disruptive.

To track motions caused by robot interactions, we use an
optical flow model RAFT(·) [9]. To compute the BFIFs
of objects between scene images It and It+1, we must
create body frames attached to rigid bodies in It and
track their motion through to It+1, using optical flow Ot.
CREATEFRAMES(·) thus creates body frames {F i

t } from It
and a corresponding set of body frames {F i

t+1} from It+1.
We then compute a set of BFIFs {Vi

t} represented in
the space frame {s} in CALCBFIFS(·). Remember that
BFIFs in {Vi

t} will theoretically be equal if they belong to
body frames on the same rigid body. Then, GROUPBFIFS(·)
creates groups of body frames FGt that share similar BFIFs
while statistically filtering out noise from optical flow Ot.

2) Segmentation Mask Correction: Once we have identi-
fied body frame groups FGt, we can correct segmentation
inaccuracies in Lt+1, via line 5 of Alg. 3 CORRECTMASK(·),
and return L̂t+1. To do so, we first project L̂t object
segmentations onto corresponding objects in L̂t+1, and then
use the grouped body frames FGt with similar BFIFs to
correct L̂t+1.

By using the most recent RISeg segmentation mask L̂t

as an accumulation of previous mask corrections, we first
bring the current RISeg mask L̂t+1 to the same level of seg-
mentation accuracy as L̂t, which will reflect the information
gained from all previous interactions at−1, at−2, . . .. Once
L̂t+1 reflects the segmentation masks of L̂t by using Ot,
we can use the grouped body frames FGt to correct L̂t+1,
which will reflect the information gained from interaction at.

Each set fgi ∈ FGt represents a group of body frames
identified to have the same BFIF. Therefore, each body frame
in set fgi should be segmented as part of the same object
with object ID ℓi. For each body frame in fgi, we reassign
its corresponding pixel in L̂t+1 to ℓi, along with similarly
moving neighboring points via Breadth First Search.

III. EXPERIMENT AND CONCLUSION

A. Implementation and Dataset

Experiment objects are placed on a flat, white tabletop and
come from a set of play food toys for kids due to similarity in
shape and color to one another. These objects are particularly
difficult to segment in cluttered environments. Because there
is no standard interactive perception dataset, we manually
evaluate our proposed pipeline by creating 23 tabletop scenes
in which 4-6 objects are placed in close proximity to one
another, often touching.
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Fig. 4: Percentage of objects correctly segmented as measured by
the Overlap F-measure ≥ 75%.

Method Push # Overlap Boundary
P R F P R F

MSMFormer [5]

0 53.7 55.4 52.3 44.6 50.6 40.0
1 66.6 62.4 64.3 62.1 52.4 56.8
2 72.8 68.6 70.5 69.0 61.1 64.7
3 73.2 67.6 70.1 70.0 62.5 65.9

RISeg

0 53.7 55.4 52.3 44.6 50.6 40.0
1 74.1 69.6 71.6 69.0 61.5 64.9
2 85.8 81.1 83.3 79.4 76.0 77.6
3 88.1 79.6 83.3 82.4 77.4 79.6

Table 1. Segmentation results of MSMFormer and RISeg across
scene configurations resulting from robot actions.

B. Evaluation Metrics

For each scene, we evaluate the segmentation accuracy
at each scene configuration, using precision, recall and F-
measure [1], [10]. Fig. 4 shows the percentage of objects
segmented with a high accuracy throughout scene con-
figurations, which is the percentage of segmented objects
with Overlap F-measure ≥ 75%. Fig 3 shows a qualitative
comparison of segmentation results between MSMFormer
and RISeg.

C. Discussion of Results

In Table I and Fig. 4, we compare segmentation results of
our RISeg method with state-of-the-art UOIS model MSM-
Former. Push 0 indicates the scene’s initial configuration,
in which both methods have the same segmentation results
because RISeg uses MSMFormer for base segmentation
masks. Each push number indicates average segmentation
statistics across all scenes after that numbered interaction
has been completed, regardless of total number of pushes
for each individual scene. With each robot-scene interaction,
both methods see object segmentation accuracy increases
for all metrics, though to different degrees. On average,
MSMFormer object segmentation accuracy increases because
some object singulation results from interactions. However,
RISeg object segmentation accuracy increases drastically
faster and sees a higher peak when compared to MSMFormer
because analysis of BFIFs results in robust segmentations
even with minimal object displacements and no object singu-
lation. After all robot interactions, RISeg is able to accurately
segment 80.7% of objects in the scene’s end configuration
while MSMFormer is still only able to segment 52.5% of
objects. Overlap and Boundary P/R/F metrics also increase
with each robot interaction. Overlap precision metrics peak
after interaction number 3 is completed, with 88.1% for
RISeg and 73.2% for MSMFormer.
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