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ABSTRACT

Large, over-parameterized models have become the dominant paradigm in ma-
chine learning, with foundation models claiming universal applicability across
diverse tasks such as time series forecasting. Yet, it remains unclear how such
models behave across the full spectrum of data complexity- as estimated by the
complexity of the generative processes that produce them. In this work, we show
that large foundation models often struggle with forecasting on simple data. We
propose a systematic benchmarking approach to evaluate models at multiple levels
of complexity, from classic statistical to foundation models, against datasets span-
ning from simple, deterministic patterns to highly stochastic processes. By eval-
uating models that range from classic statistical methods (e.g., ARIMA) through
mid-complexity deep networks to large foundational models, we show that model
effectiveness depends jointly on model complexity and data complexity. Sim-
pler, structured datasets often favor lower-capacity or classical methods, while
complex, noisy datasets generally benefit from higher-capacity machine learning
models. These results highlight the importance of task-specific model selection,
balancing data and model complexity. In contrast, foundation models often fail
on simple signals where inductive bias and parsimonious modeling are sufficient.
These findings show that “bigger” is not inherently “better,” reaffirming the clas-
sical approximation—estimation trade-offs in the zero-shot setting, and underscore
the need for data-aware model selection rather than one-size-fits-all deployment.

1 INTRODUCTION

Time series forecasting with foundation models, inspired by large language models (LLMS) and the
transformer architecture, has emerged as a leading paradigm in modern machine learning (Ansari
et al.l [2024; [Woo et al 2024} |Das et al.| 2024 Rasul et al.| [2024; Jin et al.| 2024). These mod-
els, comprising millions or billions of parameters and trained on massive heterogeneous datasets,
promise zero-shot generalization to unseen time series across healthcare, finance, energy, and cli-
mate domains. However, the benchmarking philosophy borrowed from language modeling (where
“more diverse data and larger models yield better performance”) still has not proven to be fully
aligned with the nature of time series data.

Unlike language, where even simple sentences embody complex grammatical structures and se-
mantic relationships that benefit from overparametrization, time series often originate from well-
understood dynamical processes with strong inductive biases. For example, a periodic signal like
the sine wave, governed by deterministic mathematical rules, is analogue to a standard subject-verb-
object sentence. Yet, while LLMs excel at such simple sentences, we find that time series foundation
models do not outperform classic statistical modeling on elementary signals. This discrepancy re-
veals a gap: whereas language models successfully leverage their over-parameterization to handle
both simple and complex linguistic structures, time series foundation models do not always learn
to recognize basic deterministic patterns that any human expert could immediately identify through
basic analysis.

In addition, traditional scientific modeling of complex dynamical systems has long relied on simple
functional forms such as sinusoids and polynomials. In fact, domain expertise guides model se-
lection through inductive biases: smoothness assumptions, periodicity, trend-cycle decompositions,
and physical constraints (Box et al., 2015). These intuitive choices often outperform black-box
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Table 1: Models used in study organized by model complexity
Statistical Models Deep Learning Models Foundation Models

ARIMA DeepAR  DeepState ~ Chronos
NARMA Informer  PatchTST Moirai
TimesNet TFT TimesFM
NBeats NHits
NLinear

approaches by incorporating the correct structural assumptions about the data-generating process.
Thus, the under-performance of foundation models on simple datasets highlights their limitation in
encoding simple patterns. Investigating the models’ prediction across a spectrum of data complex-
ity, from simple patterns to highly stochastic data, becomes crucial to gain understanding into their
capabilities.

In this work, we systematically evaluate how model complexity interacts with data complexity in
time series forecasting, where we define data complexity through the complexity of the underlying
generating process. Our results show that while foundation models outperform classical methods
like ARIMA on highly stochastic (complex) data, they struggle with forecasting on simple patterns
(low complexity) like sine waves and polynomial trends. These findings highlight the relevance of
the approximation-estimation trade-off from classical learning theory (Hastie et al.,|2009)) in the age
of over-parameterized models. In such cases, complex models misallocate their representational
capacity, fitting to noise that does not exist in simple data, and generalize poorly, contradicting
theoretical results like double descent (Belkin et al., [2019).

Our benchmark highlights a limitation in foundation models and highlights the need for improve-
ments in their scientific applications, where recognizing and extrapolating simple patterns is often
more valuable than fitting complex, noisy real-world data.Indeed, the simplicity and parsimony of
governing equations as the source of data generation has largely driven scientific discovery in the
last few centuries (Kutz & Brunton, |2022). We argue that model selection for time series should
not default to the largest available model but explicitly consider the complexity of the underlying
data-generating process. Our framework provides practitioners with a systematic approach to as-
sess when foundation models offer genuine advantages versus when simple theory-backed methods
remain superior.

2 BENCHMARKING TIME FORECASTING MODELS

Our benchmarking framework classifies time forecasting models by their model complexity and
evaluate their zero-shot capability on data sets with varying data complexity. We define model
complexity by the number of parameters in the model; while, data complexity is determined by the
complexity of the underlying generating process. We measure the model’s performance by the root
mean squared error between the predicted forecast and the true time series.

2.1 MOoODEL COMPLEXITY

When using the number of parameters to measure model complexity, we can broadly categorize
forecasting models into three broad classes: statistical models, deep learning models, and founda-
tion models (Table [I)). Statistical models include classical forecasting methods like ARIMA and
NARMAX, which do not require a training phase in the conventional sense. Instead, they fit a rel-
atively small number of parameters to the historical data in order to generate a future forecast. In
contrast, deep learning models are based on machine learning architectures like convolution neural
nets (Wu et al.,[2023), recurrent neural nets (Salinas et al.| [2020; Rangapuram et al., 2023), or trans-
formers and attention mechanisms (Zhou et al., [2021; Wu et al.l 2021} [Lim et al., 2021)). Typically
comprising of hundred thousands to less than ten million parameters, these models require training
and perform best when fine-tuned for a specific task, though most claim some level of zero-shot ca-
pability. Finally, foundation models for time forecasting are commonly adapted from LLMs. They
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Table 2: Datasets used to train deep learning models

Domain Dataset Name Number of Time Series

Energy London Smart Meters 5560

Transport  Traffic 862
Uber TLC Hourly 262
Uber TLC Daily

Finance M4 Hourly 414
M4 Daily 4227
M4 Monthly 48000

Web Wiki Rolling 9535

Nature KDD Cup 2018 270

are trained on massive datasets and designed for zero-shot forecasting (Woo et al., 2024} |Ansari
et al.| 20245 Das et al.}[2024). The foundation models selected for this study - Moirai, Chronos, and
Timesfm - are comprised of 91 million, 200 million, and 500 million parameters, respectively.

2.2 DATA COMPLEXITY

We define data complexity in terms of the complexity of the process that generates the time series.
This perspective connects to foundational ideas in information theory and statistical learning, where
complexity has been formalized through notions such as Kolmogorov complexity (Kolmogorov
1965)), Minimum Description Length (MDL; Rissanen, (1978}, [1998), and measures from dynamical
systems such as statistical complexity (Crutchfield & Young} |1989), Lempel-Ziv complexity (Lem-
pel & Ziv, [2003)), and permutation entropy (Bandt & Pompe, |2002). These frameworks emphasize
that a dataset is “simple” if it can be generated or compressed by a concise rule or model, and
“complex” if it requires a longer description or encodes high-dimensional hidden dependencies.

Following this principle, we categorize datasets by the known or presumed complexity of their
generators. Synthetic datasets generated from simple, deterministic functions are considered low
complexity data. For example, sine waves, elliptic functions, and Chebyshev polynomials can be
described by a small number of parameters and exhibit regular, noise-free structure. Such signals are
well matched to statistical methods with strong inductive biases (e.g., ARIMA, Fourier methods).
Real-world datasets that retain some deterministic structure but include noise and variability are
considered medium complexity data. For instance, electricity consumption data (Jensen et al.| [2017)
is governed by predictable cycles (daily, weekly) but influenced by stochastic fluctuations (weather,
human activity). This type of data typically benefits from expert inductive biases, but might contain
hidden variables that might defy simple statistical fits. Stochastic datasets with hidden variables and
strong noise components, approximating high-dimensional systems and projected on one dimension,
are considered high complexity data. Stock market indices such as the S&P 500 are canonical
examples, where dynamics reflect the interaction of countless hidden agents and exogenous inputs
and forcings.

This framing allows us to construct a benchmark where models of varying complexity are tested
against datasets whose complexity is controlled, or at least qualitatively understood. Unlike most
existing benchmarks, which emphasize performance on heterogeneous real-world data, our approach
directly probes the relationship between model complexity and data complexity. In doing so, we
highlight when increased model capacity is advantageous and when it fails on deceptively simple
signals.

3 METHODS

3.1 TRAINING DEEP LEARNING MODELS

To enable comparison on zero-shot forecasting, it is necessary to train the deep learning models on
a dataset similar to the training corpora used for foundation models. We compiled training datasets
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Figure 1: RMSE (root mean squared error) of selected time forecasting models for low complexity
data: elliptic functions (left) and Chebyshev polynomials (right).

across five domains: energy, transportation, finance, web, and nature, which overlap with those used
to train the selected foundation models. The specific datasets for each domain are detailed in table
2] While some of these datasets are explicitly included in the training corpora for a few foundation
models, some are only domain-aligned but not identical. All datasets are publicly available through
the GluonTS repository (Alexandrov et al.,[2020). Deep learning models were retrieved from Nixtla
and trained in all instances of the training data set (Table [2).

3.2 HYPERPARAMETERS FOR STATISTICAL MODELS

While the statistical models like ARIMA and NARMAX are fitted to a given context, the choice
of hyperparameters, such as the number of lags, order of difference, and degree of polynomial
basis, can improve the model performance. To this end, for each dataset to zero-shot forecast, we
subjected ARIMA and NARMA to a grid search for the best set of hyperparameters using a held
out time series from the same dataset. The collection of hyperparameters that achieved the lowest
RMSE was chosen to perform zero shot forecasting on the unseen test set.

4 RESULTS

Our statistical models typically performed better for low complexity data (figure [T). The statisti-
cal models performed strongly on elliptic functions, which are a generalization of purely sinusoidal
behavior, and achieved almost zero RMSE on Chebyshev polynomials (see table [3). Among the
foundation models, Chronos and TimesFM performed almost as well as the statistical models on the
elliptic functions, but lagged behind ARIMA and NARMA on the Chebyshev polynomials. Mean-
while, some deep learning models, such as DeepState and TimesNet, were able to outperform Moirai
on elliptic data but also struggled on the Chebyshev polynomials. The deep learning models gener-
ally did as well as the foundation models on the Chebyshev polynomials but achieved better results
at the higher degrees. Notably, forecasting became more difficult for Moirai and TimesFM with
higher elliptic constants k, and similarly, their performance degraded as the degree of Chebyshev
polynomials increased. We show some of these forecasts explicitly in figures 2]and 3]

In contrast, the foundation models generally outperformed the statistical models on real-world data
(figure ). Chronos and TimesFM achieved the lowest RMSE on the electric grid data even though
Moirai was still outperformed by several deep learning models, such as temporal fusion transformer
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Figure 2: Jacobian elliptic forecasts from ARIMA, Chronos, Moirai, and TimesFM (top to bottom
row respectively). The 80% confidence interval is shown for Chronos and Moirai. From left to right,
the free parameter on the Jacobian elliptic function, k, increases in value between 0 and 1.
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Figure 3: Chebyshev polynomial forecasts from ARIMA, Chronos, Moirai, and TimesFM (top to
bottom row respectively). The 80% confidence interval is shown for Chronos and Moirai. From left
to right, the degree of the Chebyshev polynomial is increased from 1 to 4.

(TFT), TimesNet, and DeepState. Suprisingly, ARIMA and NARMA remained competitive on
this dataset, outperforming the deep learning models. On the highly complex S&P 500 dataset,
the statistical models performed poorly and ranked near the bottom (figure ). Notably, the three
foundation models and most of the deep learning models performed similarly, but figure 5] shows
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Figure 4: RMSE (root mean squared error) of time forecasting models for (left) moderate complexity
data, hourly electric grid consumption over 21 days, and (right) high complexity data, closing prices
of S&P 500 over 300 days in 2022.
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Figure 5: (from left to right) ARIMA, Chronos, Moirai, and TimesFM forecasting on the hourly
electric grid consumption over 21 days (top row) and the closing prices of the S&P 500 over 300
days in 2022. (bottom row)

that the probabilistic forecast from Chronos and Moirai does highlight their potential in capturing
noisy data accurately. Two of the deep learning model, Informer and DeepAR, failed dramatically
on the electric grid and the S&P 500 datasets respectively, indicating instability in their model and
possible overfitting. The complete results in tables [3| @] and [5] also show that Informer achieved
some of the worst performance for most datasets.

5 DISCUSSION

In our systematic evaluation of time series forecasting models against datasets of varying data com-
plexity, we see that large foundation models have an advantage on noisy complex data but do not
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Table 3: Zero shot RMSE of statistical and foundation models

Dataset Statistical Models Foundation Models
ARIMA NARMA Chronos Moirai TimesFM

Elliptic 0 0.0440 0.0440 0.0780 0.4300 0.0490
0.9 0.0520 0.0520 0.0490 0.5500 0.0810
099  0.0610 0.0610 0.0380 0.6700 0.1200
0.999 0.0640 0.0700 0.0490 0.8500 0.1700
Chebyshev 1 4.3e-16 4.3e-16 0.1300 0.7700 0.0065

2 3.4e-14 3.3e-14 0.6300 1.3000 0.0280

3 7.1e-13 1.0e-12 0.9000 0.8700 0.2500

4 2.1e-11 3.4e-11 0.6100 3.3000 2.1000
Electric Grid 2.9000 2.6000 1.2000 4.4000 1.4000
S&P 500 400.0000  610.0000 230.0000 240.0000 280.0000

Table 4: Zero shot RMSE of deep learning models (part 1)

Dataset DeepAR  DeepState Informer KAN NBeats
Elliptic 0 0.7400 0.2100 5.4102 0.4809 0.6948
0.9 0.7900 0.2600 5.3360 0.5643 0.8876
0.99  1.1000 0.2900 5.5830 0.6158 0.9601
0.999  1.7000 0.3300 5.6758 0.6496 0.9931
Chebyshev 1 0.5500 0.6000 3.6185 8.0345 0.2947
2 0.6200 0.9100 5.7404 1.0074 0.6502
3 0.7100 0.8900 5.7353 1.0646 0.9630
4 0.8900 1.2000 5.1878 2.9148 1.5811
Electric Grid 17.0000 2.9000 108.8479  6.6422 9.6530
S&P 500 3400.0000 230.0000  261.2190 237.1523 239.4084

necessarily outperform simpler models on low complexity data. Their advantage on noisy data can
be explained by their extensive training on a large and diverse corpus of real world data. Their under-
performance on simple data, however, suggest a limited ability to capture or exploit the underlying
structure and smoothness of such signals.

This phenomenon can be explained by the approximation-estimate trade-off. Since foundation mod-
els are designed with high representation capacity in order to enable low approximation error across
a range of problems, they struggle when the problem given is highly structured, resulting in a higher
estimation error. When it comes to deterministic time series, which have strong inductive biases
and low variance, simpler models can achieve lower total error by having a smaller capacity. For
example, Chronos and TimesFM achieved a smaller RMSE than the statistical models on the electric
grid data; yet, they, especially TimesFM, did not consistently outperform ARIMA or NARMA on
the elliptic data, despite both exhibiting cyclical patterns. The key difference lies in the noise level,
where the electric grid data is noisy and irregular, while the elliptic functions are smooth and de-
terministic. This disparity in performance suggests their over-parametrization architecture obscures
their ability to recognize structural patterns.

Our results also recognize that model performance differed from dataset to dataset. Informer was ter-
ribly unstable for forecasting on the electric grid data but performed average for S&P 500. TimesFM,
Chronos, TimesNet, and DeepState all seem to forecast well for cyclical data (elliptic functions and
electric grid) but do not achieve the best results for noncyclic data.

Some of the limitations of foundation models can be explained by their architectural biases. For
example, ARIMA and NARMA easily achieved near-zero error on the Chebyshev polynomials.
Meanwhile, Chronos and Moirai both struggle while TimesFM can sometimes some accurate fore-
casts (at lower degrees of the polynomial). Chronos is encoded to make prediction within the range
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Table 5: Zero shot RMSE of deep learning models (part 2)

Dataset NHits NLinear PatchTST TFT TimesNet
Elliptic 0 0.7124 0.6943 0.6794 0.4861 0.2189
0.9 0.8038 0.7923 0.7815 0.4817 0.2475
0.99 0.8596 0.8611 0.8441 0.4898 0.2831
0.999 0.8943 0.9053 0.9087 0.4901 0.3084
Chebyshev 1 0.5619 0.6230 0.5896 0.5224 0.6456
2 0.5086 0.9016 0.9067 0.9684 0.8967
3 1.0249 0.7858 0.7350 0.7459 0.8925
4 0.7192 1.2148 1.3459 0.6274 1.6365
Electric Grid 7.7541 8.9913 5.3959 3.5727 3.4156
S&P 500 232.7832 230.4755 232.6104 249.1181 266.4293

of the context it is given, which would explain its struggles with extrapolation in trends. Similarly,
Moirai tends to make noisy forecasts since it is designed to output from mixed distributions.

6 CONCLUSION

We examine the performance of various models, ranging from simple statistical models to highly
parametrized foundation models, on datasets with varying complexities. We find that in general,
while foundation models have an advantage on noisy data, they struggle with simple, deterministic
(low complexity) data. Meanwhile, some deep learning models, trained on considerably less data
than the foundation models can perform just as well or better than some foundation models. Our
work does show that foundation models have their place in having the best performance for a specific
level of data complexity, specifically for high complexity data.

The probabilistic forecasting from Chronos and Moirai makes them both desirable for highly
stochastic data. Meanwhile, TimesFM can forecast polynomials to some extent. This benchmark
framework should guide practitioners on model selection for real world deployment.
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A APPENDIX

A.1 LARGE LANGUAGE MODEL USAGE

Large language models were used in this work to improve grammar and polish writing. They also
assisted in generating codes for experiments and plotting.
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