
Lexico: Extreme KV Cache Compression via Sparse Coding
over Universal Dictionaries

Junhyuck Kim 1 Jongho Park 1 Jaewoong Cho 1 Dimitris Papailiopoulos 2 3

Abstract
We introduce Lexico, a novel KV cache compres-
sion method that leverages sparse coding with
a universal dictionary. Our key finding is that
key-value cache in modern LLMs can be accu-
rately approximated using sparse linear combi-
nation from a small, input-agnostic dictionary of
∼4k atoms, enabling efficient compression across
different input prompts, tasks and models. Us-
ing orthogonal matching pursuit for sparse ap-
proximation, Lexico achieves flexible compres-
sion ratios through direct sparsity control. On
GSM8K, across multiple model families (Mis-
tral, Llama 3, Qwen2.5), Lexico maintains 90-
95% of the original performance while using
only 15-25% of the full KV-cache memory, out-
performing both quantization and token eviction
methods. Notably, Lexico remains effective in
low memory regimes where 2-bit quantization
fails, achieving up to 1.7× better compression
on LongBench and GSM8K while maintaining
high accuracy. Our code is available at https:
//github.com/krafton-ai/lexico.

1. Introduction
Transformers (Vaswani et al., 2017) have become the back-
bone of frontier Large Language Models (LLMs), driving
progress in domains beyond natural language processing.
However, Transformers are typically limited by their sig-
nificant memory requirements. This stems not only from
the large number of model parameters, but also from the
having to maintain the key-value (KV) cache that grows
proportional to the model size (i.e., the number of layers,
heads, and also embedding dimension) and token length of
the input. Additionally, serving each model session typically

1KRAFTON 2University of Wisconsin-Madison 3Microsoft
Research. Correspondence to: Dimitris Papailiopoulos <dim-
itris@papail.io>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

requires its own KV cache, limiting opportunities for reuse
across different user inputs, with the exception of prompt
caching that only works for identical input prefixes. This
creates a bottleneck in generation speed for GPUs with lim-
ited memory (Yu et al., 2022). Thus, it has become crucial
to alleviate KV cache memory usage while preserving its
original performance across domains.

Extensive post-training KV cache optimization re-
search (Kwon et al., 2023; Lin et al., 2024; Ye et al., 2024)
offers off-the-shelf methods for pretrained LLMs, including
selectively retaining tokens (Beltagy et al., 2020; Xiao et al.,
2023; Zhang et al., 2024b) and quantizing KV cache to 2 or
4 bits (Liu et al., 2024b; He et al., 2024; Kang et al., 2024).
However, eviction strategies have limitations on complex
reasoning tasks that require retaining a majority of previous
tokens, while quantizations to 2 or 4 bits have clear upper
bounds on compression rates.

In this paper, we focus on utilizing low-dimensional struc-
tures for efficient KV cache compression. Prior work reports
that each key vector lies in a low-rank subspace (Singhania
et al., 2024; Wang et al., 2024b; Yu et al., 2024). Yet, it is
unclear whether all vectors lie in the same subspace; if so,
such redundancy remains to be taken advantage of. Thus,
we naturally ask the following questions:

Do keys and values lie in low-dimensional subspaces
across diverse input sequences? If so, can we

leverage this for efficient KV cache compression?

Towards this end, we propose Lexico, a universal dictionary
that serves as an overcomplete basis, which can sparsely
decompose and reconstruct the KV cache with sufficiently
small reconstruction error that can be directly controlled via
the level of sparsity of each reconstruction.

In Section 2.2, we report our observation that a subset of
key vectors cluster near each other, even though the keys
are from different inputs, while some cluster in different
subspaces. To take advantage of such a low-dimensional
structure, we draw inspiration from compressed sensing
and dictionary learning, areas of statistical learning and
signal processing that developed algorithms for information
compression across various domains (Candès et al., 2006;
Donoho, 2006; Dong et al., 2014; Metzler et al., 2016).

1

https://github.com/krafton-ai/lexico
https://github.com/krafton-ai/lexico

KV Cache Compression via Sparse Coding over Universal Dictionaries

(a) Prefilling Stage (b) Decoding Stage

Figure 1. (a) Prefilling: Following attention computation, Lexico uses OMP to find sparse representations of the KV vectors (3-8×
smaller). (b) Decoding: Key cache consists of the compressed sparse key cache, Kcsr, and an full-precision buffer, Kbuffer, for the
most recent tokens. qt, kt represent the query, key vectors for the newly generated token. Computation is reduced by computing the
query-dictionary product, qtDk, then multiplying Kcsr, to get the pre-softmax attention score.

Lexico is simple to learn, can be applied off-the-shelf for
KV cache compression, and only occupies small constant
memory regardless of input or batch size.

Methodologically, Lexico utilizes both sparsity-based com-
pression (steps 1 and 2) and quantization (step 3) in three
straightforward steps:

1. Dictionary pretraining: For our experiments, we train
a dictionary on WikiText-103 (Merity, 2016) for each
model. This dictionary is only trained once and used
universally across all tasks. It only occupies constant
memory and does not increase with batch size. We note
that this dictionary can be trained from richer sources
to improve the overall performance of our sparse ap-
proximation algorithms.

2. Sparse decomposition: During prefilling and decod-
ing (Figure 1), Lexico decomposes key-value pairs into
a sparse linear combination, which consists of s pairs
of reconstruction coefficients and dictionary indices
pointing. This step by itself provides high compression
rates.

3. Lightweight sparse coefficients: We obtain higher
KV cache compression rates by representing the sparse
coefficients in 8 bits instead of FP16. Lowering pre-
cision to 8 bits yields minimal degradation. Lexico
theoretically allows us to compress more than 2-bit
quantization (1/8 of FP16 KV cache size) if s ≤ 10
when head dimension is 128.

Overall, we make the following contributions:

• Near-lossless performance: Given similar memory
requirements, Lexico performs on par with or better

than baseline quantization methods on challenging lan-
guage tasks, such as LongBench (Bai et al., 2023) and
GSM8K (Cobbe et al., 2021).

• Compression rates beyond 2-bits: Lexico’s sparsity
parameter enables both wider and more fine-grained
control over desired memory usage. This allows us to
explore performance when using under 15-20% of the
original KV cache size, a low-memory regime previous
compression methods could not explore.

• Universality: Instead of an input-dependent dictionary,
we find a sufficiently small universal dictionary (per
model) that can be used for all tasks and across multiple
users. Advantageously, such dictionary does not scale
with batch size and can be used off-the-shelf.

2. KV Cache Compression with Dictionaries
2.1. Background & Notation

During autoregressive decoding in Transformer, the key
and value states for preceding tokens are independent of
subsequent tokens. As a result, these key and value states
are cached to avoid recomputation, thereby accelerating the
decoding process.

Let the input token embeddings be denoted as X ∈ Rlseq×d,
where lseq and d are the sequence length and model hidden
dimension, respectively. For simplicity, we focus on a single
layer and express the computation of query, key, and value
states at each attention head during the prefilling stage as:

Q(h) = XW (h)
q , K(h) = XW

(h)
k , V (h) = XW (h)

v ,

where W
(h)
q ,W

(h)
k ,W

(h)
v ∈ Rd×m are the model weights

with m representing the head dimension.

2

KV Cache Compression via Sparse Coding over Universal Dictionaries

Figure 2. Left shows a pairwise cosine similarity matrix between key vectors generated from one input text from all heads in Layer 10
of Llama-3.1-8B-Instruct. Keys are sorted by similarity to demonstrate the clusters. Right shows the similarity matrix between key
vectors from two different input texts. These plots indicate that there may exist a mixture of low-dimensional subspaces in the space of all
possible keys, a hypothesis that naturally leads to dictionary learning.

Let t represent the current step in the autoregressive decod-
ing, and let xt ∈ R1×d denote the embedding of the newly
generated token. The KV cache up to but not including the
current token, are denoted as K(h)

t−1 and V
(h)
t−1, respectively.

The typical output computation for each attention head h
(h)
t

using the KV cache can be expressed as:

h
(h)
t = Softmax

q
(h)
t

(
K

(h)
t−1 ∥ k

(h)
t

)⊤
√
m

(V (h)
t−1 ∥ v

(h)
t

)
.

(1)
where q

(h)
t ,k

(h)
t ,v

(h)
t represent the query, key, and value

vectors for the new token embedding xt. Here, ∥ denotes
concatenation along the sequence length dimension.

2.2. Sparse Approximation

Given a dictionary, our goal is to decompose and represent
KV cache efficiently, i.e., approximate a vector k ∈ Rm

as a linear combination of a few vectors (atoms) from an
overcomplete dictionary D ∈ Rm×N . This reconstruction
is given by k = Dy, where y ∈ RN is the sparse represen-
tation vector such that s = ||y||0. For implementation, y
only requires space proportional to s, not N .

We hypothesize that the KV cache, like other domains where
sparse approximation is effective, contains inherent redun-
dancy that can be leveraged for efficient compression. For
instance, Figure 2 presents pairwise cosine similarity plots
for keys generated during inference on a random subset of
the WikiText dataset. Here, we observe that key vectors
cluster in multiple different subspaces. Dictionary learning
can take advantage of such redundancy, enabling KV vec-
tors to be represented by a compact set of atoms with only a
few active coefficients.

Sparse approximation, which aims to find y with minimum
sparsity given k and D, while ensuring a small reconstruc-
tion error, is NP-hard. This optimization problem is typi-
cally formulated as:

min
y
∥y∥0 subject to ∥k −Dy∥2 ≤ δ ∥k∥2 ,

for some relative error threshold δ > 0.

In this work, we adopt Orthogonal Matching Pursuit (OMP)
as the sparse approximation algorithm. Given an input key
or value vector k, a dictionary D, and a target sparsity s,
OMP iteratively selects dictionary atoms to minimize the
ℓ2-reconstruction error, with the process continuing until the
specified sparsity s is reached. Our implementation of OMP
builds on advanced methods that utilize properties of the
Cholesky inverse (Zhu et al., 2020) to optimize performance.
Additionally, we incorporate implementation details from
(Lubonja et al., 2024) for efficient batched GPU execution
and extend it to include an extra batch dimension, allowing
for parallel processing across multiple dictionaries. The full
algorithm is detailed in Appendix A.

2.3. Learning Layer-specific Dictionaries

Layer-specific dictionaries. While the sparse approxima-
tion algorithm is crucial, achieving a high compression ratio
relies heavily on well-constructed dictionaries. In this sec-
tion, we describe the process for training the dictionaries
used in Lexico. We adopt distinct dictionaries for the key
and value vectors in each transformer layer due to their
different functionalities. We denote the key and value dic-
tionaries at each layer as Dk and Dv ∈ Rm×N , where
N is the fixed dictionary size. With N = 1024, the dic-
tionaries add an additional 16.8MB to the model’s storage
requirements for 7B/8B models.

3

KV Cache Compression via Sparse Coding over Universal Dictionaries

Figure 3. Dictionary Learning of Lexico. We train a linear layer
D (our dictionary) that minimizes ℓ2-reconstruction error of KV
cache. The KV cache of layer i are used as training data for dictio-
nary D(i). Each step, we apply OMP with fixed D to represent
KV as a vector of sparse coefficients; we then perform a step of
gradient descent on D and repeat the process. A sparse vector can
be efficiently stored as a CSR, using a tuple of 16-bit index and
8-bit value.

As shown in Figure 3, we train layer-specific KV dictio-
naries via direct gradient-based optimization. For a given
key or value vector, denoted as k ∈ Rm and a dictionary
D ∈ Rm×N , the OMP algorithm approximates the sparse
representation y ∈ RN . This process is parallelized across
multiple dictionaries, but for simplicity, we present the nota-
tion for a single dictionary. The dictionary training objective
minimizes the ℓ2 norm of the reconstruction error, with the
loss function L = ∥k −Dy∥22. We enforce unit norm con-
straints on the dictionary atoms by removing any gradient
components parallel to the atoms before applying updates.

Training. The dictionaries are trained on KV pairs gener-
ated from the WikiText-103 dataset using Adam (Kingma &
Ba, 2014) with a learning rate of 0.0001 and a cosine decay
schedule over 20 epochs. The dictionaries are initialized
with a uniform distribution. Table 1 summarises training
time for Llama-3.1-8B-Instruct on a single NVIDIA A100
at different sparsity s and dictionary size N .

We demonstrate our trained dictionaries reconstruct and gen-
eralize better than dictionaries trained using sparse autoen-
coders (similarly to those from Makhzani & Frey (2013);
Bricken et al. (2023)) across several corpora in Table 2.
Our method consistently achieves lower relative reconstruc-

Table 1. Dictionary training time (minutes) for Llama-3.1-8B-
Instruct on an A100 GPU for different sparsity levels s and dictio-
nary sizes N .

Dictionary size s=4 s=8 s=16 s=32

N=1024 37 52 70 119
N=4096 78 100 160 322

Table 2. Reconstruction error. Relative reconstruction errors of
different methods when training dictionary of size 1024 and spar-
sity s = 32 on WikiText-103. Sparse Autoencoder is a two-layer
perceptron with hard top-k thresholding as activation (encoder
as a linear layer + activation in Figure 3). Lexico is optimized
using OMP as encoder. KV cache is generated from Llama-3.1-
8B-Instruct.

Test Dataset Lexico Sparse
Autoencoder

Random
Dictionaries

WikiText-103 0.17 ± 0.06 0.20 ± 0.05 0.27 ± 0.02
CNN/DailyMail 0.19 ± 0.05 0.22 ± 0.04 0.27 ± 0.02
IMDB 0.18 ± 0.05 0.22 ± 0.05 0.27 ± 0.02
TweetEval 0.18 ± 0.06 0.21 ± 0.05 0.27 ± 0.02

tion errors, such as 0.19 ± 0.05 on out-of-domain dataset
CNN/DailyMail, and this trend is consistent across other
datasets.

Despite being trained only on WikiText-103, Lexico dictio-
naries demonstrate a degree of universality: our dictionaries
achieve lower test loss on out-of-domain datasets such as
TweetEval than the test loss on WikiText-103 for sparse au-
toencoders, offering significant compression with minimal
reconstruction error. In the next subsection, we explore how
low ℓ2-reconstruction loss translates to strong performance
preservation in language modeling.

2.4. Prefilling and Decoding with Lexico

During the prefilling stage, each layer generates the KV vec-
tors for the input tokens, as illustrated in Figure 1a. Lexico
uses full-precision KV vectors for attention computation,
which are then passed to subsequent layers. Subsequently,
OMP finds the sparse representations of the KV vectors
using layer-specific key and value dictionaries, Dk and Dv .

The compressed key and value caches are denoted as
Kcsr,Vcsr ∈ Rlseq×N and replace the full-precision KV
cache. Their reconstructions become K̂ = KcsrD

⊤
k and

V̂ = VcsrD
⊤
v .

Recall that at the t-th iteration of autoregressive decoding,
each layer receives qt, kt, and vt, the query, key, and value
vectors corresponding to the newly generated token. Sim-
ilarly to prior work (Liu et al., 2024b; Kang et al., 2024),
we find that keeping a small number of recent tokens in full
precision improves the generative performance of the model.
To achieve this, we introduce a buffer that temporarily stores
recent tokens in an uncompressed state. The KV vectors
stored in the buffer are denoted as Kbuffer,Vbuffer ∈ Rnb×m,
where nb is the number of KV vectors in the buffer. The key
cache up to, but not including the new token at iteration t,
is then reconstructed as follows:

K̂t−1 = KcsrD
⊤
k ∥Kbuffer

4

KV Cache Compression via Sparse Coding over Universal Dictionaries

Substituting this reconstruction into the Equation 1, the
attention weights for each head a

(h)
t are computed as:

a
(h)
t = Softmax

(
q
(h)
t (K

(h)
csr D⊤

k ∥K
(h)
buffer ∥ k

(h)
t)⊤√

m

)

A key implementation is that attention for the compressed
sparse key cache and the uncompressed key cache is com-
puted separately. For compressed sparse key cache, we
first compute the product q(h)

t Dk before we multiply Kcsr,
directly calculating the pre-softmax attention scores for com-
pressed tokens. Attention for the buffer tokens is computed
as usual. These scores are then concatenated with softmax
to produce the final attention weights (Figure 1b). This
process is formalized as:

a
(h)
t = Softmax

(
q
(h)
t DkK

(h)⊤
csr | q(h)

t (K
(h)
buffer ∥ k

(h)
t)⊤√

m

)
,

where | represents concatenation along columns for attention
scores.

When the buffer reaches capacity, OMP compresses the KV
vectors for the oldest na tokens in the buffer. This process
is independent of the attention computation for the newest
token and can therefore be performed in parallel.

Time and space complexity. The sparse representa-
tions are stored in CSR format, with values encoded in
FP8(E4M3), and all indices, including offsets, are stored
as int16. Each row in CSR corresponds to a single key
or value vector. For a given sparsity level s, the memory
usage includes: nonzero values (s bytes), dictionary indices
(2s bytes), and the offset array (2 bytes), resulting in a total
size of 3s+ 2 bytes. For a head dimension of 128, a fully
uncompressed vector using FP16 takes 256 bytes, yielding
a memory usage of 3s+2

256 × 100 ≈ 1.17s% (e.g., 37.5% for
s = 32).

In terms of time complexity, computing qtK
⊤
t for a sin-

gle head requires O(lseqm) multiplications. On the other
hand, qtDkK

⊤
csr needs O(Nm+lseqs) multiplications. This

means that our computation is particularly well-suited for
long-context tasks when lseq > N where N is anywhere
between 1024 and 4096. For short contexts when lseq < N ,
our method only adds a small overhead to attention compu-
tation in actuality.

3. Experiments
Setup. We evaluate our method on various models
(Llama-3-8B, Llama-3.1-8B-Instruct, Llama-3.2-1B-
Instruct, Llama-3.2-3B-Instruct, Mistral-7B-Instruct,
Qwen2.5-14B-Instruct), using dictionaries trained on
WikiText-103, as done in Section 2.3. To assess the effec-
tiveness of Lexico in memory reduction while maintaining

long-context understanding, we conduct experiments on
selected tasks from LongBench (Bai et al., 2023), following
the setup of Liu et al. (2024b). See Table 7 in Appendix B
for task details.

Additionally, we evaluate generative performance on com-
plex reasoning tasks, such as GSM8K (Cobbe et al.,
2021) with 5-shot prompting and MMLU-Pro Engineer-
ing/Law (Wang et al., 2024a) with zero-shot chain-of-
thought. We choose these MMLU-Pro subjects since they
are deemed the most difficult as they require complex for-
mula derivations or deep understanding of legal knowledge
intricacies. We compare our method against two kinds
of KV cache compression methods: namely, quantization-
based compression and eviction-based compression. For
quantization-based methods, we evaluate KIVI (Liu et al.,
2024b), ZipCache (He et al., 2024), and the Hugging Face
implementation for per-token quantization. For eviction-
based methods, we evaluate PyramidKV (Cai et al., 2024)
and SnapKV (Li et al., 2024). We refer to the 4-bit and 2-bit
versions of KIVI as KIVI-4 and KIVI-2, respectively, and
denote its quantization group size as g.

We report KV size as the average percentage of the com-
pressed cache relative to the full cache at generation end.
Sparsity s is set to match the KV size of the baseline.

Hyperparameter settings. For both experiments, Lex-
ico uses a dictionary size of N = 4096, a buffer size of
nb = 128, and an approximation window size na = 1,
compressing the oldest token with each new token gener-
ated. For KIVI-4 and KIVI-2, we use a quantization group
size of g = 32 and a buffer size of nb = 128 , as is tested
and recommended in Liu et al. (2024b), for LongBench.
For GSM8K and MMLU-Pro, we test for stronger memory
savings, so we use g = 64 and nb = 64 for KIVI.

3.1. Experimental Results

LongBench results. Table 3 presents the performance of
Lexico and KIVI on LongBench tasks. Lexico demonstrates
better performance than KIVI with similar or even smaller
KV sizes. Notably, Lexico enables exploration of extremely
low memory regimes that KIVI-2 cannot achieve. At a
memory usage of just 12.4% KV size, Lexico maintains
reasonable long-context understanding, with only 5.6%p
and 4.4%p performance loss on Llama-3.1-8B-Instruct and
on Mistral-7B-Instruct-v0.3, respectively, compared to the
full cache (FP16). The largest performance loss comes
from tasks with the lowest full cache accuracy, Qasper, yet
there is almost no loss in simpler tasks, such as TriviaQA.
This indicates that difficult tasks that require more complex
understanding are much more sensitive to performance loss.
Hence, it is important to evaluate on GSM8K, one of the
harder natural language reasoning tasks, as we do next.

5

KV Cache Compression via Sparse Coding over Universal Dictionaries

Table 3. Experimental results on LongBench. For Lexico, we use N = 4096 as the dictionary size and nb = 128 as the buffer size. For
KIVI, we use g = 32 (group size for quantization) and nb = 128 (buffer size). Sparsity level s is set to match average KV size of KIVI,
while s = 8 corresponds to cache size unattainable by common 2-bit quantizations. Full cache is in FP16.

Method KV Size Qasper QMSum MultiNews TREC TriviaQA SAMSum LCC RepoBench-P Average

Llama-3.1-8B-Instruct
Full Cache 100% 22.54 24.57 27.44 72.5 91.65 43.47 63.15 56.76 50.26

KIVI-4 33.2% 22.83 23.72 27.95 71.0 90.39 44.25 62.93 55.48 49.78
Lexico s=24 30.6% 21.68 24.25 27.20 72.5 91.58 42.93 62.92 56.51 49.95

KIVI-2 21.1% 13.77 22.72 27.35 71.0 90.85 43.53 62.03 53.00 48.03
Lexico s=16 21.4% 15.45 23.13 25.78 72.5 92.25 42.02 63.01 55.58 48.71

Lexico s=8 12.4% 11.66 21.04 22.35 60.0 91.01 40.30 59.60 51.46 44.68

Mistral-7B-Instruct-v0.3
Full Cache 100% 41.58 25.69 27.76 76.0 88.59 47.58 59.37 60.60 53.40

KIVI-4 33.2% 40.37 24.51 27.75 74.0 88.36 47.56 58.49 58.31 52.42
Lexico s=24 30.6% 41.01 25.32 27.51 76.0 88.84 46.27 59.98 59.44 53.05

KIVI-2 21.1% 38.24 24.08 26.99 74.5 88.34 47.66 57.51 56.46 51.72
Lexico s=16 21.4% 40.34 24.97 26.36 76.0 89.31 45.84 59.31 59.50 52.70

Lexico s=8 12.4% 33.03 22.80 22.85 68.5 87.85 43.10 56.66 56.85 48.96

Table 4. Experimental results on GSM8K. For Lexico, we use N = 4096 as the dictionary size and nb = 128 as the buffer size. For
KIVI, we use g = 64 (group size for quantization) and nb = 64 (buffer size). Sparsity level s is set to match the average KV size of
KIVI, while s = 4 corresponds to cache size unattainable by common 2-bit quantizations. Full cache is in FP16. We include example
generations of KIVI and Lexico in Appendix C.1.

(a) Llama 3.x 8B Models

Method KV Size Llama-3-8B 3.1-8B-Instruct

Full Cache 100% 49.89 79.61

KIVI-4 38.2% 49.13 78.17
Lexico s=24 36.9% 48.29 76.88

KIVI-2 25.7% 40.56 67.93
Lexico s=14 26.1% 48.75 75.06

Lexico s=4 15.8% 40.03 51.71

(b) Mistral 7B v0.3 Model

Method KV Size 7B-Instruct

Full Cache 100% 48.60

KIVI-4 38.2% 48.52
Lexico s=20 32.7% 48.60

KIVI-2 25.7% 42.91
Lexico s=10 22.0% 44.35

Lexico s=4 15.8% 39.20

GSM8K results. The performance of Lexico on GSM8K
compared to KIVI is shown in Table 4. With a KV size of
36.9%, Lexico on Llama 8B models experiences a slight
accuracy drop of less than 3%p, underperforming KIVI-4 at
a similar KV size. However, in the lower memory regime
near 25% KV size, Lexico significantly outperforms KIVI-
2, achieving a higher accuracy by 8.2%p on the Llama-3-
8B model and 7.1%p on the Llama-3.1-8B-Instruct model.
These results highlight the robustness of Lexico in low-
memory settings, demonstrating that low reconstruction
error can be achieved using only a few atoms from our
universal dictionary. To further test the resilience of Lexico,
we set the sparsity to s = 4, observing a noticeable drop
in accuracy on the Llama-3.1-8B-Instruct model. Despite
this, both Llama models maintain an accuracy above 40%,
which is remarkable given that only 4 atoms from Lexico
were used for each key-value vector, utilizing just 15.8% of

the full cache, including the buffer.

The performance of Lexico on the Mistral-7B-Instruct
model is even more impressive. We demonstrate that for
Mistral, Lexico not only outperforms KIVI-4 and KIVI-2
but also achieves higher accuracy with even less memory
usage. We also evaluate Lexico with s = 4 on the Mistral
model and observe an accuracy of 39.2%, further demon-
strating robustness in low-memory settings.

Results across model sizes and baselines. We illus-
trate the trade-off between memory usage and performance
across six different KV cache compression methods on
Llama models (1B, 3B, and 8B) in Figure 4. For all three
model sizes, Lexico consistently lies on the Pareto fron-
tier, achieving higher scores than other compression meth-
ods at similar KV cache budget sizes. Notably, Lexico
demonstrates greater robustness at smaller model scales,

6

KV Cache Compression via Sparse Coding over Universal Dictionaries

Figure 4. Memory usage vs. performance of Lexico compared to other KV cache compression methods on GSM8K. The figure
illustrates the relationship between KV cache size and the performance of Lexico on Llama models on GSM8K. For Lexico, we use
N = 4096 as the dictionary size and nb = 128 as the buffer size. Lexico consistently outperforms both eviction-based methods (SnapKV,
PyramidKV) and quantization-based methods (per-token quantization, KIVI, ZipCache).

with larger performance gaps observed for the 1B and 3B
models. In the extremely low-memory regime below 20%,
where quantization methods such as KIVI and ZipCache
cannot achieve feasible cache sizes, Lexico achieves supe-
rior performance. Furthermore, while eviction-based meth-
ods (SnapKV, PyramidKV) can operate in these extremely
low-memory settings, their performance lags significantly
behind due to their incompatibility with Grouped Query
Attention (GQA), making Lexico the effective choice for
stringent memory constraints. We also evaluate Lexico
on a larger model, Qwen2.5-14B-Instruct, with its weights
quantized to 4 bits, comparing it against quantization meth-
ods. The results, illustrated in Figure 5, show that Lexico
achieves a higher GSM8K score than KIVI under similar KV
cache budgets. Additionally, Lexico enables higher com-
pression ratios than 2-bit quantization methods, facilitating
deployment under extreme memory-constrained scenarios.

MMLU-Pro results. Figure 6 illustrates the trade-offs
between memory usage and performance for Lexico on
the MMLU-Pro Engineering and Law subjects using the
Llama-3.1-8B-Instruct model. Lexico outperforms eviction-
based methods like SnapKV and PyramidKV across all
memory settings, though its performance is comparable to
quantization-based methods such as KIVI and ZipCache.
However, in a low memory regime below 20% cache, our
method still outperforms any other baseline. This highlights
that Lexico supports a wide range of compression ratios
quite effectively and that our dictionary is generalizable
across input distributions.

3.2. Ablation Study

Error thresholding in sparse approximation. Lexico
also supports a quality-controlled method for memory sav-
ing by allowing early termination of the sparse approxi-
mation process when a predefined error threshold is met.
This approach conserves memory that would otherwise be
used for marginal improvements in approximation quality.
Detailed descriptions and results of this ablation study are
provided in the Appendix D.1.

Performance without buffer. To evaluate the impact of
the buffer, we first conducted experiments with varying
sparsity without the buffer, with the results shown by the
dashed lines in Figure 7 in Appendix D.2. The comparison
shows that removing the buffer results in a more pronounced
decline in performance, especially at lower KV sizes.

Table 5. Balancing memory between buffer and sparse repre-
sentation. Performance of Lexico with the Llama-3.1-8B-Instruct
model on LongBench tasks while varying the memory allocation
between the buffer and the sparse representation, with the total KV
cache size fixed at 25% of the original size.

Qasper MultiNews TREC

s nb F1 Score s nb ROUGE-L s nb Accuracy

1 862 6.38 1 503 17.20 1 1232 58.5
4 724 8.36 4 423 20.21 4 1035 63.5
8 517 14.58 8 302 21.27 8 739 65.0
12 278 17.84 12 163 22.81 12 398 63.5
16 0 8.27 16 0 10.70 16 0 54.5

7

KV Cache Compression via Sparse Coding over Universal Dictionaries

Figure 5. Memory usage vs. performance
of Qwen2.5-14B-Instruct with Lexico on
GSM8K. We compare the performance of Lex-
ico against quantization methods on Qwen2.5-
14B-Instruct, with its weights quantized to 4 bits.
For Lexico, we use N = 4096 as the dictionary
size and nb = 128 as the buffer size.

Figure 6. Memory usage vs. performance of Llama-3.2-8B-Instruct with Lexico
on MMLU-Pro Engineering/Law. For Lexico, we use N = 4096 as the dictionary
size and nb = 128 as the buffer size. Lexico often outperforms both eviction-
based methods (SnapKV, PyramidKV) and quantization-based methods (per-token
quantization, KIVI, ZipCache). For Law, our method slightly underperforms around
25%, but in lower memory regimes, our method still outperforms any other baseline.

Balancing memory between buffer and sparse represen-
tation. As shown in Table 5, we examine how balancing
memory allocation between the buffer and the sparse repre-
sentation affects performance. By fixing the total KV cache
size at 25% of the original, we vary the memory distribution
between the buffer and the sparse representation across three
LongBench tasks: Qasper, MultiNews, and TREC. The re-
sults demonstrate that long-context understanding ability
while using Lexico is not solely reliant on the buffer or the
sparse representation. Rather, there exist optimal balance
points where performance is maximized for each task.

Adaptive dictionary learning. While our universal dic-
tionaries demonstrate strong performance, we explore an
adaptive learning method to better incorporate input-specific
context. This adaptive approach improves performance by
adding new dictionary atoms during generation when the
predefined reconstruction error threshold is not met. These
atoms, tailored to the input prompt, improve performance

but cannot be shared across batches, requiring them to be
included in the KV size calculation. While this approach
boosts accuracy, it increases memory usage, limiting its
ability to achieve low-memory regimes. Detailed methods
and results are provided in Appendix D.3.

3.3. Latency Analysis

In this section, we present latency measurements of the
forward pass and OMP portion of Lexico during decoding
in Table 6. We run simple generation tests on a 1000-token
input to the Llama-3.1-8B-Instruct model and generate up
to 250 tokens. We compare dictionary sizes of N = 1024
and 4096, which primarily affects OMP computation time,
while setting the sparsity level s = 24 and processing OMP
in batches of na = 8.

Although Table 6 separately lists the forward pass and OMP
time, these processes can be parallelized: generating one
token takes the maximum of the two durations plus some

Table 6. Latency measurements. Time (ms) to compute one new token across 32 layers of Llama-3.1-8B-Instruct. We report the standard
full-precision forward pass and Lexico ’s forward pass / OMP step for dictionary sizes N=1024 and N=4096 at various sparsity levels s.

Computation type Full N = 1024 N = 4096

s=4 s=8 s=16 s=24 s=4 s=8 s=16 s=24

Standard forward pass (qK⊤) 48.39 – – – – – – – –
Lexico: forward pass using q(KcsrD

⊤
k)⊤ and VcsrD

⊤
v – 53.90 54.67 55.46 55.56 57.24 56.64 57.13 56.35

Lexico: sparse approximation (OMP) – 6.03 10.16 18.31 26.57 9.37 15.55 28.37 40.58

8

KV Cache Compression via Sparse Coding over Universal Dictionaries

overhead. However, parallelization introduces a time–space
tradeoff, as running OMP also increases GPU memory us-
age.

Higher latency may limit Lexico’s suitability for latency-
critical use cases. Nonetheless, our primary focus is on
memory-constrained scenarios where a single GPU can be
exceeded with just a batch size of one. By prioritizing
memory efficiency, Lexico remains feasible where other
methods risk out-of-memory errors, making it valuable for
deployment in memory-limited settings.

4. Related Work
Prior work on KV cache optimization spans training-stage
and deployment-focused methods. On the deployment side,
Kwon et al. (2023) introduces a Paged Attention mechanism
and the vLLM framework. While there is a significant
and important line of research in this direction (Lin et al.,
2024; Qin et al., 2024), this direction is orthogonal to our
work and can often be used in tandem with quantization.
Post-training techniques focus on three main categories: (1)
evicting tokens based on attention scores or heuristics (Ge
et al., 2023; Li et al., 2024; Liu et al., 2024a; Devoto et al.,
2024; Dong et al., 2024), (2) quantizing KV cache with per-
channel or two-dimensional schemes (Hooper et al., 2024;
Liu et al., 2024b; Yue et al., 2024; Kang et al., 2024), and
(3) merging tokens or memory blocks. These approaches
can complement one another, as shown by Liu et al. (2024a)
in successfully combining quantization and eviction.

A recent work, QJL, introduces a promising 1-bit quanti-
zation method for KV cache compression (Zandieh et al.,
2025). However, QJL applies its transformation exclusively
to keys (using per-token quantization for values), while Lex-
ico compresses both keys and values, enabling a more com-
prehensive and memory-efficient solution. Another line of
work, PQCache, leverages product quantization by partition-
ing vectors into sub-blocks and learning centroids for each
subspace (Zhang et al., 2024a). Compression is achieved
by replacing each sub-block with its nearest centroid. In
contrast, Lexico employs sparse coding, representing each
vector as a sparse linear combination of dictionary atoms.

5. Conclusion and Limitations
In conclusion, Lexico offers a novel way to compress KV
caches by leveraging low-dimensional structures and sparse
dictionary learning, revealing substantial redundancy among
key cache vectors across diverse inputs. This enables near-
lossless compression that often surpasses traditional quan-
tization methods, while offering fine-grained control over
memory usage. The universal dictionary remains compact
and scalable, making it broadly applicable without increas-
ing memory requirements, and yields strong memory sav-

ings especially for long-context tasks without discarding
any tokens.

Despite these advantages, Lexico has several limitations.
Most notably, as shown in Section 3.3, it does not of-
fer latency improvements. While well-suited for highly
memory-constrained scenarios, it may be less effective in
high-throughput settings, as latency becomes a key per-
formance bottleneck. Additionally, the OMP algorithm
introduces GPU-side memory overhead, which may limit
reductions in peak memory usage. These trade-offs suggest
that Lexico is best suited for memory-constrained settings
where throughput is not the primary bottleneck.

Future directions include further optimizing CSR tensors
with customized quantizations, improving the OMP-related
latency tradeoffs, and exploring “soft-eviction” strategies
that dynamically adjust sparsity based on token importance.
Additionally, while our current implementation adopts stan-
dard greedy OMP for its efficiency in memory-constrained
settings, extending it to a beam search variant–which selects
the top-B atoms at each iteration–could further improve re-
construction accuracy, albeit with increased computational
overhead. Investigating such trade-offs between approxima-
tion quality and efficiency remains an interesting avenue for
future work.

Impact Statement
This paper presents a method to efficiently compress KV
cache when employing Transformer-based models. Al-
though there are potential societal consequences of our
work, there are none which we feel must be specifically
highlighted.

References
Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z.,

Du, Z., Liu, X., Zeng, A., Hou, L., et al. Longbench: A
bilingual, multitask benchmark for long context under-
standing. arXiv preprint arXiv:2308.14508, 2023.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn, A.,
Conerly, T., Turner, N., Anil, C., Denison, C., Askell, A.,
et al. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits
Thread, 2, 2023.

Cai, Z., Zhang, Y., Gao, B., Liu, Y., Liu, T., Lu, K., Xiong,
W., Dong, Y., Chang, B., Hu, J., et al. Pyramidkv: Dy-
namic kv cache compression based on pyramidal informa-
tion funneling. arXiv preprint arXiv:2406.02069, 2024.

9

KV Cache Compression via Sparse Coding over Universal Dictionaries

Candès, E. J., Romberg, J., and Tao, T. Robust uncertainty
principles: Exact signal reconstruction from highly in-
complete frequency information. IEEE Transactions on
information theory, 52(2):489–509, 2006.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Devoto, A., Zhao, Y., Scardapane, S., and Minervini, P. A
simple and effective l 2 norm-based strategy for kv cache
compression. arXiv preprint arXiv:2406.11430, 2024.

Dong, H., Yang, X., Zhang, Z., Wang, Z., Chi, Y., and
Chen, B. Get more with less: Synthesizing recurrence
with kv cache compression for efficient llm inference. In
Forty-first International Conference on Machine Learn-
ing, 2024.

Dong, W., Shi, G., Li, X., Ma, Y., and Huang, F. Com-
pressive sensing via nonlocal low-rank regularization.
IEEE transactions on image processing, 23(8):3618–
3632, 2014.

Donoho, D. L. Compressed sensing. IEEE Transactions on
information theory, 52(4):1289–1306, 2006.

Ge, S., Zhang, Y., Liu, L., Zhang, M., Han, J., and Gao,
J. Model tells you what to discard: Adaptive kv cache
compression for llms. In The Twelfth International Con-
ference on Learning Representations, 2023.

He, Y., Zhang, L., Wu, W., Liu, J., Zhou, H., and Zhuang,
B. Zipcache: Accurate and efficient kv cache quanti-
zation with salient token identification. arXiv preprint
arXiv:2405.14256, 2024.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, Y. S., Keutzer, K., and Gholami, A.
Kvquant: Towards 10 million context length llm in-
ference with kv cache quantization. arXiv preprint
arXiv:2401.18079, 2024.

Kang, H., Zhang, Q., Kundu, S., Jeong, G., Liu, Z., Krishna,
T., and Zhao, T. Gear: An efficient kv cache compression
recipefor near-lossless generative inference of llm. arXiv
preprint arXiv:2403.05527, 2024.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A.,
Ye, H., Cai, T., Lewis, P., and Chen, D. Snapkv: Llm
knows what you are looking for before generation. arXiv
preprint arXiv:2404.14469, 2024.

Lin, B., Peng, T., Zhang, C., Sun, M., Li, L., Zhao, H., Xiao,
W., Xu, Q., Qiu, X., Li, S., et al. Infinite-llm: Efficient llm
service for long context with distattention and distributed
kvcache. arXiv preprint arXiv:2401.02669, 2024.

Liu, Z., Desai, A., Liao, F., Wang, W., Xie, V., Xu, Z., Kyril-
lidis, A., and Shrivastava, A. Scissorhands: Exploiting
the persistence of importance hypothesis for llm kv cache
compression at test time. Advances in Neural Information
Processing Systems, 36, 2024a.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman,
V., Chen, B., and Hu, X. Kivi: A tuning-free asym-
metric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

Lubonja, A., Præsius, S. K., and Tran, T. D. Efficient
batched cpu/gpu implementation of orthogonal matching
pursuit for python. arXiv preprint arXiv:2407.06434,
2024.

Makhzani, A. and Frey, B. K-sparse autoencoders. arXiv
preprint arXiv:1312.5663, 2013.

Merity, S. The wikitext long term dependency language
modeling dataset. Salesforce Metamind, 9, 2016.

Metzler, C. A., Maleki, A., and Baraniuk, R. G. From
denoising to compressed sensing. IEEE Transactions on
Information Theory, 62(9):5117–5144, 2016.

Qin, R., Li, Z., He, W., Zhang, M., Wu, Y., Zheng, W.,
and Xu, X. Mooncake: A kvcache-centric disaggre-
gated architecture for llm serving, 2024. arXiv preprint
arxiv:2407.00079, 2024.

Singhania, P., Singh, S., He, S., Feizi, S., and Bhatele, A.
Loki: Low-rank keys for efficient sparse attention. arXiv
preprint arXiv:2406.02542, 2024.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, pp. 5998–6008,
2017.

Wang, Y., Ma, X., Zhang, G., Ni, Y., Chandra, A., Guo, S.,
Ren, W., Arulraj, A., He, X., Jiang, Z., et al. Mmlu-pro:
A more robust and challenging multi-task language under-
standing benchmark. arXiv preprint arXiv:2406.01574,
2024a.

10

KV Cache Compression via Sparse Coding over Universal Dictionaries

Wang, Z., Jin, B., Yu, Z., and Zhang, M. Model tells you
where to merge: Adaptive kv cache merging for llms
on long-context tasks. arXiv preprint arXiv:2407.08454,
2024b.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
In The Twelfth International Conference on Learning
Representations, 2023.

Ye, L., Tao, Z., Huang, Y., and Li, Y. Chunkattention:
Efficient self-attention with prefix-aware kv cache and
two-phase partition. arXiv preprint arXiv:2402.15220,
2024.

Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and Chun, B.-
G. Orca: A distributed serving system for {Transformer-
Based} generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
22), pp. 521–538, 2022.

Yu, H., Yang, Z., Li, S., Li, Y., and Wu, J. Effectively com-
press kv heads for llm. arXiv preprint arXiv:2406.07056,
2024.

Yue, Y., Yuan, Z., Duanmu, H., Zhou, S., Wu, J., and Nie,
L. Wkvquant: Quantizing weight and key/value cache
for large language models gains more. arXiv preprint
arXiv:2402.12065, 2024.

Zandieh, A., Daliri, M., and Han, I. Qjl: 1-bit quantized jl
transform for kv cache quantization with zero overhead.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 39, pp. 25805–25813, 2025.

Zhang, H., Ji, X., Chen, Y., Fu, F., Miao, X., Nie, X., Chen,
W., and Cui, B. Pqcache: Product quantization-based
kvcache for long context llm inference. arXiv preprint
arXiv:2407.12820, 2024a.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:
Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information
Processing Systems, 36, 2024b.

Zhu, H., Chen, W., and Wu, Y. Efficient implementations
for orthogonal matching pursuit. Electronics, 9(9):1507,
2020.

11

KV Cache Compression via Sparse Coding over Universal Dictionaries

Appendix

A. Implementation Details
Algorithm 1 illustrates a naive implementation of OMP for understanding. In Lexico, we adopt the implementation of OMP
v0 proposed by (Zhu et al., 2020), which minimizes computational complexity using efficient inverse Cholesky factorization.
Additionally, we integrate methods from (Lubonja et al., 2024) for batched GPU execution and extend the implementation
to handle multiple dictionaries in parallel.

Algorithm 1 OMP

Require: Signal k ∈ Rm, dictionary D ∈ Rm×N , sparsity s
Ensure: Sparse representation y ∈ Rn

1: Initialize r(0) ← k, I(0) ← ∅, y(0) ← 0
2: for i = 1 to s do
3: n(i) ← argmax1≤n≤N

{∣∣∣(D⊤
(
k −Dy(i)

))
n

∣∣∣}
4: I(i) ← I(i−1) ∪

{
n(i)
}

5: y(i+1) ← argminy∈RN

{
∥k −Dy∥2 , Supp (y) ⊂ I(i)

}
6: end for
7: return y

Algorithm 2 Prefilling and decoding with Lexico
1: Parameter: sparsity s, buffer length nb, approximation length na

2: procedure PREFILLING
3: Input: X ∈ Rlseq×d

4: K ←XWk, V ←XWv

5: Kcsr ← OMP (K [: lseq − nb] ,Dk, s)
6: Vcsr ← OMP (V [: lseq − nb] ,Dv, s)
7: Kbuffer ←K [lseq − nb :], Vbuffer ← V [lseq − nb :]
8: KV cache←Kcsr,Kbuffer,Vcsr,Vbuffer
9: return K, V

10: end procedure

11: procedure DECODING
12: Input: KV cache, xt ∈ R1×d

13: qt ← xtWq , kt ← xtWk, vt ← xtWv

14: Kcsr,Kbuffer,Vcsr,Vbuffer ← KV cache
15: Kbuffer ← Concat ([Kbuffer,kt] , dim = token)
16: Vbuffer ← Concat ([Vbuffer,vt] , dim = token)
17: at ← Concat ([qtDkKcsr, qtKbuffer] , dim = token)
18: at ← Softmax (at)
19: V ← Concat ([DvVcsr,Vbuffer] , dim = token)
20: ot ← atV
21: if len (Kbuffer) > nb then
22: K′

csr ← OMP (Kbuffer [: na] ,Dk, s)
23: V ′

csr ← OMP (Vbuffer [: na] ,Dv, s)
24: Kcsr ← Concat ([Kcsr,K

′
csr] , dim = token)

25: Vcsr ← Concat ([Vcsr,V
′
csr] , dim = token)

26: Kbuffer ←Kbuffer [na :], Vbuffer ← Vbuffer [na :]
27: end if
28: KV cache←Kcsr,Kbuffer,Vcsr,Vbuffer
29: return ot

30: end procedure

12

KV Cache Compression via Sparse Coding over Universal Dictionaries

B. LongBench Task Statistics

Table 7. Details of LongBench tasks used in experiments.
Task Task Type Evaluation Metric Average Length # of Samples

Qasper Single-doc QA F1 3619 200
QMSum Summarization ROUGE-L 10614 200
MultiNews Summarization ROUGE-L 2113 200
TREC Few-shot information retrieval Accuracy 5177 200
TriviaQA Few-shot reading comprehension F1 8209 200
SAMSum Few-shot dialogue summarization ROUGE-L 6258 200
LCC Code completion Edit Similarity 1235 500
RepoBench-P Code completion Edit Similarity 4206 500

C. Qualitative Results
C.1. GSM8K Example Generation

The boxes highlight the correct intermediate answers that must be derived. The highlighted colors in red show incorrect
reasoning and answers. We provide the original problem and solution below, along with outputs from Llama-3.1-8B-Instruct
with full KV cache (FP16), KV-Dict (sparsity s = 14), and KIVI-2.

Original Problem & Solution

Problem: The Kennel house keeps 3 German Shepherds and 2 Bulldogs. If a German Shepherd consumes 5 kilograms
of dog food and a bulldog consumes 3 kilograms of dog food per day, how many kilograms of dog food will they need
in a week?

Solution: The German Shepherds consume 3× 5 = 15 kilograms of dog food per day.
The Bulldogs consume 2× 3 = 6 kilograms of dog food per day.
The dogs consume a total of 15 + 6 = 21 kilograms of dog food per day.
Therefore, they need 21× 7 = 147 kilograms of dog food in a week.

Final Answer: 147

Llama-3.1-8B-Instruct with Full Cache

First, find the total amount of food the German Shepherds consume in a day: 3 dogs × 5 kg/dog = 15 kg.
Then find the total amount of food the Bulldogs consume in a day: 2 dogs × 3 kg/dog = 6 kg.
Add the two amounts together to find the total amount of food the dogs consume in a day: 15 kg +6 kg = 21 kg.
Multiply that number by 7 to find the total amount of food the dogs consume in a week: 21 kg/day ×7 days = 147 kg.

Llama-3.1-8B-Instruct with KV-Dict (s = 14)

The kennel has 3 German Shepherds and 2 Bulldogs, so they have 3 + 2 = 5 dogs.
The German Shepherds consume 5× 3 = 15 kilograms of dog food per day.
The Bulldogs consume 2× 3 = 6 kilograms of dog food per day.
So, the kennel needs 15 + 6 = 21 kilograms of dog food per day.
In a week, they will need 21× 7 = 147 kilograms of dog food.
The answer is 147.

Llama-3.1-8B-Instruct with KIVI-2

13

KV Cache Compression via Sparse Coding over Universal Dictionaries

The Kennel house has 3 German Shepherds and 2 Bulldogs, so they have a total of 3 + 2 = 5 dogs.
Each German Shepherd consumes 5 kilograms of dog food per day, so the total amount of dog food consumed by the
German Shepherds is 5× 5 = 25 kilograms per day.
Each Bulldog consumes 3 kilograms of dog food per day, so the total amount of dog food consumed by the Bulldogs is
2× 3 = 6 kilograms per day.
The total amount of dog food consumed per day is 25 + 6 = 31 kilograms.
The Kennel house will need 31× 7 = 217 kilograms of dog food in a week.

D. Ablation Study: Experimental Results
D.1. Error Thresholding in Sparse Approximation

For the error thresholding ablation study, detailed results are provided in Table 8. We set a maximum sparsity of 32,
corresponding to the maximum number of iterations for the OMP algorithm. However, if the reconstruction error at any
iteration falls below a predefined error threshold, we let the OMP terminate early, saving memory that would otherwise
be used for minor approximation improvements. This approach is particularly compatible with OMP, as its greedy nature
ensures that early termination yields the same results as using higher sparsity (less non-zero elements). Additionally, OMP
inherently computes the residual at each iteration, allowing for continuous evaluation of the relative reconstruction error
without requiring any additional computation.

Table 8. Impact of error thresholding on LongBench performance and memory usage. The table presents the performance of Lexico
on the Llama-3.1-8B-Instruct model at various reconstruction error thresholds (δ) for early termination of the sparse approximation
algorithm. A dictionary size of N = 1024 and FP16 precision for the values of the CSR tensors are used.

Threshold (δ) KV Size Qasper QMSum MultiNews TREC TriviaQA SAMSum LCC RepoBench-P Average

Llama-3.1-8B-Instruct
Full Cache 100% 22.54 24.57 27.44 72.5 91.65 43.47 63.15 56.76 50.26
0.2 50.6% 20.03 23.65 26.44 72.5 91.61 43.47 62.72 56.63 49.63
0.3 41.1% 16.49 23.35 25.34 72.5 91.34 43.02 62.53 56.65 48.90
0.4 30.9% 16.08 22.91 23.77 69.5 90.79 42.70 61.28 54.82 47.73
0.5 22.8% 12.43 21.75 21.29 57.5 88.56 41.04 58.85 53.19 44.33

D.2. Performance without Buffer

In this section, we assess the effect of the buffer by comparing results with and without its use. The results for LongBench
and GSM8K are presented in Table 9 and Table 10, respectively.

D.3. Adaptive Lexico

While we observe some degree of universality in our dictionaries, as shown in Table 2, their performance is particularly
strong on WikiText-103, the dataset they were trained on. To better incorporate input context information, we propose an
extension that adaptively learns the dictionary during generation. In this framework, we begin with a pre-trained universal
dictionary as the initial dictionary. If, during the generation process, the sparse approximation fails to meet the predefined
relative reconstruction error threshold, the problematic uncompressed key or value vector is normalized and added to the
dictionary. The sparse representation of this vector is then stored with a sparsity of s = 1, where its index corresponds to the
newly added atom and its value is the ℓ2 norm of the uncompressed vector. The updated dictionary is subsequently used for
further sparse approximations during the generation task. In this way, the adaptive learning framework incrementally refines
the dictionaries, tailoring them to the specific generative task and enhancing overall performance at the cost of additional
memory usage.

In our experiment, we use a universal dictionary of size 1024, allowing up to 1024 additional atoms to be added during
generation. The maximum sparsity of 16 is used, with a buffer size of nb = 128, and FP16 precision for the values of the
CSR tensors. Results of this experiment are presented in

14

KV Cache Compression via Sparse Coding over Universal Dictionaries

Figure 7. Memory usage vs. performance of Lexico with and without buffer on LongBench and GSM8K. The figure illustrates
the impact of removing the buffer on the performance of Lexico when evaluated on the Llama 3.1-8B-Instruct and Mistral-7B-Instruct
models for LongBench (left) and GSM8K (right) tasks. Solid lines represent configurations with a buffer, while dashed lines represent
configurations without a buffer. We use a dictionary size of N = 1024 and FP16 precision for the values of CSR tensors to vary sparsity
and explore a wide range of KV sizes.

Table 9. LongBench performance without buffer. This table shows the impact of removing the buffer of Lexico on the performance of
the Llama-3.1-8B-Instruct and Mistral-7B-Instruct models at varying sparsity levels. A dictionary size of N = 1024 and FP16 precision
for the values of the CSR tensors are used.

Sparsity KV Size Qasper QMSum MultiNews TREC TriviaQA SAMSum LCC RepoBench-P Average

Llama-3.1-8B-Instruct
Full Cache 100% 13.10 23.46 26.94 72.5 91.65 43.47 63.15 56.76 48.88
s = 32 50.8% 14.87 26.51 26.57 71.5 92.48 42.88 61.54 54.04 48.80
s = 24 38.2% 13.37 25.02 22.54 65.0 91.75 39.71 52.21 46.48 44.51
s = 16 25.8% 8.27 13.74 10.70 54.5 77.51 20.45 26.53 22.46 29.27
s = 12 19.5% 6.31 10.15 5.66 39.0 53.70 6.83 22.18 19.46 20.41
s = 8 13.3% 2.74 8.05 4.17 36.5 34.45 4.27 18.24 18.32 15.84

Mistral-7B-Instruct-v0.3
Full Cache 100% 41.58 25.69 27.76 76.0 88.59 47.58 59.37 60.60 53.40
s = 32 50.8% 40.27 25.21 27.53 76.5 89.01 45.77 58.64 59.07 52.75
s = 24 38.2% 37.46 24.41 27.34 75.5 88.66 43.87 48.55 49.50 49.41
s = 16 25.8% 25.57 18.49 15.19 71.5 81.91 27.90 19.39 21.45 35.18
s = 12 19.5% 18.59 13.11 5.95 58.0 50.13 2.86 13.38 12.60 21.83
s = 8 13.3% 10.32 6.98 2.67 31.5 20.01 2.27 10.18 8.11 11.51

Table 10. GSM8K performance without buffer. This table shows the impact of removing the buffer of Lexico on the performance of the
Llama-3.1-8B-Instruct and Mistral-7B-Instruct models at varying sparsity levels. A dictionary size of N = 1024 and FP16 precision for
the values of the CSR tensors are used.

Sparsity KV Size Llama-3.1-8B-Instruct Mistral-7B-Instruct-v0.3

Full Cache 100% 79.61 48.60
s = 32 50.8% 69.07 43.97
s = 24 38.2% 32.75 23.20
s = 16 25.8% 1.97 1.29
s = 12 19.6% 1.36 0.76

15

KV Cache Compression via Sparse Coding over Universal Dictionaries

Table 11. GSM8K performance of adaptive Lexico. The table shows the GSM8K performance and KV cache sizes of adaptive Lexico
on the Llama-3.1-8B-Instruct and Mistral-7B-Instruct-v0.3 models at varying reconstruction error thresholds (δ). A universal dictionary of
size 1024 is used, with up to 1024 additional atoms added during generation. The maximum sparsity of s = 16, buffer size of nb = 128,
and FP16 precision for CSR tensor values are applied.

Threshold (δ) Llama-3.1-8B-Instruct Mistral-7B-Instruct-v0.3

KV Size GSM8K Score KV Size GSM8K Score

Full Cache 100% 79.61 100% 48.60
0.25 N/A N/A 42.1% 48.07
0.30 43.5% 77.41 41.3% 48.14
0.35 42.0% 76.80 39.8% 47.76

16

