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Figure 1: CPPO vs. prior perception-rewarding methods. Prior work follows three strategies:
(1) Visionary-R1 and Vision-SR1 force the policy to generate separated perception from reasoning,
followed by an LLM perception reward, (2) Perception-R1 uses ground-truth CoT and an LLM as
a judge to provide perception reward, and (3) PAPO applies a perception loss to all rollout tokens.
In contrast, CPPO uses entropy of the output tokens to identify perception tokens and assigns a
Contrastive Perception Loss (CPL) exclusively to these tokens.

ABSTRACT

We introduce CPPO, a Contrastive Perception Policy Optimization method for
finetuning vision–language models (VLMs). While reinforcement learning (RL)
has advanced reasoning in language models, extending it to multimodal reasoning
requires improving both the perception and reasoning aspects. Prior works tackle
this challenge mainly with explicit perception rewards, but disentangling percep-
tion tokens from reasoning tokens is difficult, often requiring extra LLMs, ground-
truth data, forced separation of perception from reasoning by policy model, or
applying rewards indiscriminately to all output tokens. CPPO addresses this prob-
lem by detecting perception tokens via entropy shifts in the model’s outputs under
perturbed input images. CPPO then extends the RL objective function with a
Contrastive Perception Loss (CPL) that enforces consistency under information-
preserving perturbations and sensitivity under information-removing ones. Exper-
iments show that CPPO surpasses previous perception-rewarding methods, while
avoiding extra models, making training more efficient and scalable. Code is avail-
able in the supplementary materials.

1 INTRODUCTION

Reinforcement learning (RL) with verifiable rewards has emerged as an effective finetuning method.
Notably, DeepSeek-AI (2025) showed the potential of language models to develop reasoning ca-
pabilities without explicit step-by-step supervision, focusing on their self-evolution through a pure
RL process. Given the success of RL in language models, recent research has focused on extending
this approach to vision-language models (VLMs) and multimodal reasoning (Xia et al., 2025; Wang
et al., 2025b; Li et al., 2025a; Liu et al., 2025).
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In the language-only setting, the policy model draws on its internal knowledge to generate step-by-
step logical inference tokens, which we refer to as reasoning tokens. For a VLM policy, however,
accurate perception is also required to generate query-relevant factual tokens from the image. We
refer to these tokens that encode image information as perception tokens. Wang et al. (2025b)
shows that wrong perception tokens are a significant source of failures in multimodal reasoning.
However, RL algorithms with verifiable final-answer rewards (e.g., (DeepSeek-AI, 2025)) do not
separate perception from reasoning errors. This design is problematic, since inaccurate perception
tokens will lead to an incorrect final answer, even with correct reasoning steps. Therefore, achieving
the optimal policy is difficult when all output tokens are penalized based on the final answer alone.
This limitation raises two questions: 1) How can the output perception and reasoning tokens be
disentangled for a VLM policy? 2) How to best define an explicit perception loss/reward?

To address the first question, Xia et al. (2025) and Li et al. (2025b) force the policy model to separate
perception from reasoning, placing perception within <perception> tags and reasoning within
<think> tags. However, forcing a separation between perception and reasoning disrupts the nat-
ural reasoning process of the model, making it difficult to apply to many tasks (e.g., with complex
images). In addition, the process becomes vulnerable to reward hacking (where the model places
the final answer in the perception section to maximize reward). Thus, we argue that perception and
reasoning should be disentangled within the natural generation flow of the model.

In order to address the second question, Visionary-R1 Xia et al. (2025), Vision-SR1 (Li et al.,
2025b), and Perception-R1 (Xiao et al., 2025) rely on an LLM and utilize either the policy’s own
perceptual outputs or ground-truth Chain-of-Thought (CoT) annotations to compute perception re-
wards. Such evaluation of perception outputs with LLMs still require explicit separation of percep-
tion from reasoning, incur computational overhead, and rely on unscalable CoT supervision. PAPO
(Wang et al., 2025b) takes a different approach via a KL divergence loss between model outputs
conditioned on the original and corrupted versions of the images. However, the KL divergence is
unbounded, which can easily cause reward collapse and makes the method’s hyperparameter sensi-
tive. Moreover, PAPO applies the perception loss uniformly across all tokens and output rollouts,
regardless of whether they correspond to perception or reasoning, or whether the outputs are correct
or incorrect. Applying divergence over reasoning tokens leads to over-regularization, while maxi-
mizing divergence on wrong perception tokens effectively reinforces incorrect perception outputs.

Motivated by these observations, we propose Contrastive Perception Policy Optimization (CPPO),
an RL solution designed for VLMs. CPPO integrates two main components into the training process:
(1) a mechanism that uses policy’s own output probability distribution to determine the tokens in
a generated response that the policy most strongly considers as perception tokens in its current
state, and (2) a token-level Contrastive Perception Loss (CPL) incorporated into the RL objective to
enforce differential sensitivity to vision information. Specifically, in each training step, we compare
the policy’s entropy for each token within responses when policy is conditioned on the original image
as well as a perturbed image with information-removing augmentations. Tokens whose entropy
increases the most under this perturbation are selected as perception tokens by the policy, since their
distribution exhibits the highest mutual information with the image.

After identifying vision-dependent tokens in the policy’s output, we compute the token-level CPL
term. Unlike prior work, CPL is an unsupervised perception contrastive loss that does not require
additional CoT supervision or proprietary models. Specifically, for each input image, we create two
other variants: an information-preserving perturbation that retains query-relevant content and an
information-removing perturbation that obscures such information. CPL is then implemented as an
InfoNCE contrastive loss (Chen et al., 2020): the token probability distribution conditioned on the
original image serves as the anchor, the distribution under the information-preserving perturbation
as the positive, and the distribution under the information-removing perturbation as the negative
sample. Crucially, the contrastive loss is applied only to perception tokens from correct rollouts,
ensuring that anchors correspond to accurate and verified perception tokens. This provides targeted
perception feedback to the policy, thereby improving its visual grounding capability. In summary,
the major contributions of our work are as follows:

• We propose CPPO, an RL-based finetuning solution tailored for VLMs to disentangle perception
and reasoning improvement of the policy.

• We propose an entropy-based perception token detection method, where the VLM policy identifies
its own perception tokens using its output distribution.
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• We propose CPL, an unsupervised perception-specific contrastive loss to optimize a VLM policy.
• We show the superiority of CPPO compared with prior perception-specific RL methods.

2 RELATED WORK

In this section, we categorize the related RL methods proposed for VLMs into three directions:
1) sampling and rollout augmented methods, 2) RL combined with SFT or off-policy data, and 3)
perception-aware approaches. Our approach falls into the third category, while the other directions
are orthogonal to our method. We also discuss the background of using contrastive learning in RL.

Sampling and Rollout Augmented RL with VLMs. This line of work improves robustness and
training efficiency by mixing trajectories from clean and moderately distorted images during RL
training. NoisyRollout (Liu et al., 2025) and Vision Matters (Li et al., 2025a) use input perturbations
to stabilize grounding and enhance generalization. Shuffle-R1 (Zhu et al., 2025) introduces pairwise
trajectory sampling and advantage-based batch reshuffling to improve gradient signal quality and
increase exposure to valuable rollouts. VL-Rethinker (Wang et al., 2025a) proposes selective sample
replay to address the “vanishing advantages” problem and forced rethinking, which appends a trigger
token to enforce self-reflective reasoning. This line of work is orthogonal to CPPO.

RL Combined with SFT or Off-Policy with VLMs. This line of research combines on-policy
RL with off-policy CoT or SFT training. Vision-R1 (Huang et al., 2025), Look-back (Yang et al.,
2025b), OpenVLThinker (Deng et al., 2025), VisionThink (Yang et al., 2025a), and (Shen et al.,
2025) focus on semi-off-Policy RL with emphasis on rethinking, iterative pipelines, or off-policy
data to enhance slow-thinking reasoning and overall training stability. Similar to the prior category,
this line of work is also orthogonal to our work.

Perception-Aware RL with VLMs. This category focuses on improving the interaction between
perception and reasoning of the policy model. One line of work proposes decoupled architectures
such as Guo et al. (2025) and Gou et al. (2025) that use a VLM for visual description and an LLM
for reasoning, optimized jointly with RL. Another direction explicitly separates perception from
reasoning in the output space of VLMs: Visionary-R1 Xia et al. (2025) and Vision-SR1Li et al.
(2025b). Both of these works enforce the policy model to put perception between <perception>
tokens (or similar tokens) and thinking between <think> tokens. The perception tokens are then
fed to an LLM to obtain the perception reward. Instead of forcing the model to separate perception
from thinking, Perception-R1 Xiao et al. (2025) uses a supervised CoT trajectory to evaluate the
perception components of the reasoning trajectory and provides explicit perception rewards. All of
these prior works either call an LLM (or the VLM itself) for a second round to answer the question
given the perception part or check whether the perception component matched the ground-truth CoT.
This design makes inference slower, while also being error-prone when being limited to using small
models as a judge. PAPO (Wang et al., 2025b) proposes an additional unsupervised KL divergence
loss between the model’s outputs conditioned on original and corrupted versions of the images. Such
KL divergence has an unbounded nature that can result in collapsed rewards.

Contrastive Learning in RL. Contrastive learning has also been explored in RL as a way to learn
more robust and discriminative representations. Prior works such as CURL (Laskin et al., 2020),
SPR (Schwarzer et al., 2021), SODA (Hansen & Wang, 2021), and TACO (Zheng et al., 2023)
leverage contrastive objectives on latent features to improve sample efficiency and generalization in
visual RL tasks. Recently, contrastive methods have also been explored for alignment with human
feedback. Contrastive Preference Learning (Hejna et al., 2024) proposes learning directly from hu-
man feedback signals without relying on standard RLHF pipelines, by using a contrastive objective
to distinguish preferred behaviors. Similarly, Contrastive Preference Optimization (CPO) (Xu et al.,
2024) applies this principle in the context of LLMs, showing that contrastive objectives can out-
perform traditional RL-based preference optimization in domains like machine translation. While
these methods highlight the versatility of contrastive learning across RL and alignment, VLM policy
optimization remains unexplored. Our approach introduces a token-level contrastive loss tailored to
VLMs, that is applied specifically to vision-dependent tokens within reasoning rollouts.

3 METHOD

In this section, we first discuss RL with verifiable rewards in the preliminaries and then elaborate
our proposed perception token detection and unsupervised contrastive perception loss.
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Figure 2: An overview of CPPO. For each rollout oi, perception tokens are identi-
fied and their probability distributions are computed under three conditions: the original im-
age I (anchor sample: πθ(oi,t)), an information-preserving perturbation I+ (positive sample:
π+
θ (oi,t)), and an information-removing perturbation I− (negative sample: π−

θ (oi,t)). Similarities
sim

(
πθ(oi,t), π

+
θ (oi,t)

)
and sim

(
πθ(oi,t), π

−
θ (oi,t)

)
are computed and incorporated into the Con-

trastive Perception Loss (CPL), which serves as an additional perception-specific term in the RL
objective. Notations are simplified for brevity.

3.1 PRELIMINARIES

Group Relative Policy Optimization (GRPO). GRPO (DeepSeek-AI, 2025) includes RL fine-
tuning of the policy VLM πθ with parameters θ on verifiable tasks. Given an input set x = {q, I} in-
cluding query q and image I , a group of G output trajectories (responses) {o1, . . . ,oG} ∼ πθ(· | x)
are sampled. Each output oi consists of T tokens {oi,1, . . . , oi,t, . . . , oi,T } and receives a scalar
reward R(oi), typically reflecting correctness. Relative advantages are computed as:

Ai =
R(oi)−mean

(
R(o1:G)

)
std

(
R(o1:G)

) , (1)

where i ∈ [1, G]. The GRPO objective is then defined as:

JGRPO(θ) = Eoi∼πθold

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1{

min
( πθ(oi,t | x,oi,<t)

πθold(oi,t | x,oi,<t)
Ai, clip(

πθ(oi,t | x,oi,<t)

πθold(oi,t | x,oi,<t)
, 1− ϵ, 1 + ϵ)Ai

)
− βKL[πθ||πref ]

}
,

(2)

where the KL penalty controls the deviation from the frozen reference policy πref with weight β.
Output trajectories are generated by the rollout policy πθold . The hyperparameter ϵ controls clipping
large policy updates. In this setting, the correctness reward alone provides no explicit signal to
enhance the policy model’s perceptual sensitivity. Our CPL loss aims to address this gap.

3.2 CPPO: CONTRASTIVE PERCEPTION POLICY OPTIMIZATION

While prior work has explored guiding the policy model toward improved perceptual understanding
by providing explicit vision rewards, our approach is different as it augments the RL objective
function with a perception-dependent contrastive loss. Figure 2 illustrates the overall proposed
framework. Inspired by contrastive representation learning (Chen et al., 2020), the central idea of
CPPO is to encourage the policy to be differentially sensitive to visual perturbations in the input
image at the token level. At each training step, the policy generates a response oi for the input
x = {q, I}. Our approach begins by identifying the subset of perception tokens within oi. We
then introduce the additional CPL term in RL objective, which is applied to the policy’s probability
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distribution over the detected perception tokens. Specifically, CPL recomputes policy’s probability
distribution for each perception token under two variants of the input image I:

• Information-removing perturbations I−, obtained from transformations such as region mask-
ing, occlusion, or deletion of critical visual elements that obscure query-relevant information.
The policy’s output distribution, πθ(oi,t | q, I−,oi,<t) should diverge from that of πθ(oi,t |
q, I,oi,<t).

• Information-preserving perturbations I+, obtained from transformations such as mild Gaus-
sian noise, small brightness shifts, or rotations that do not remove query-relevant content. The out-
put distribution, πθ(oi,t | q, I+,oi,<t) should remain consistent with that of πθ(oi,t | q, I,oi,<t).

In other words, CPL encourages the model’s confidence regarding visual information in a generated
response about image I to remain stable if I is altered with irrelevant perturbations, but decrease ap-
propriately when perturbations remove or obscure query-relevant content. Notably, this is achieved
in an unsupervised manner, without relying on any CoT data.

3.2.1 PERCEPTION TOKEN DETECTION

Not all tokens in an output are equally dependent on perceptual input. For example, interpreting “the
base is 10 cm” relies on visual info, whereas solving “x2+2x+1 = 0” or recalling that “the angles
of a triangle sum to 180°” can be performed independently of the image. Applying CPL uniformly
across all tokens may lead to excessive regularization and destabilize the training. To handle this
issue, we propose a mechanism to selectively identify perception-dependent tokens within each
trajectory using model’s own output distribution. By applying CPL only to these tokens, the model
is guided to be sensitive to relevant visual info, while maintaining stability for general reasoning.
Proposition 1 (Entropy increase as a proxy for perception dependence). (Proof in Appendix
A.2) Let I denote the original image, I− a perturbed variant that removes query-relevant perceptual
information, and oi the ith sequence of tokens generated by the policy when conditioned on I . The
increase in entropy of a token oi,t ∈ oi, when the policy is conditioned on I− rather than I , serves
as a proxy for the degree to which the policy model associates oi,t with the query-relevant visual
content of I . This increase is calculated as follows:

∆Hi,t = H(oi,t|q, I−,oi,<t)−H(oi,t|q, I,oi,<t). (3)

For each token in the ith generated sequence of tokens {oi,1, . . . , oi,T }, the predictive entropy of the
model at position t is defined as:

H(oi,t|x,oi,<t) = −
∑

oi,t∈V
πθ(oi,t | x,oi,<t) log πθ(oi,t | x,oi,<t), (4)

where V denotes the vocabulary. This entropy measures the level of uncertainty in predicting the
next token based on the input query and image.

Perception-Topk. We use the criterion in Proposition 1 to identify the most relevant tokens in
each response oi with respect to the image. After generating oi for image I , we construct I− by
randomly applying a perturbation from a set of information-removing perturbations. Given oi and
I−, we compute πθ(oi,t | q, I−,oi,<t) and measure the corresponding change in entropy (∆Hi,t)
for each token oi,t. Tokens are then ranked by ∆Hi,t, and the topk most perception-dependent
tokens are retained. Formally, we define Sperception as the set of token indices in each response:

Sperception = { t | Rank(∆Hi,t) ≤ k · T } , (5)

where k denotes the proportion of tokens with the highest entropy increase, to which that receive the
CPL loss is applied. Finally, we construct a binary mask vector Mi ∈ {0, 1}T for the ith response:

Mi,t =

{
1, if t ∈ Sperception,

0, otherwise.
(6)

3.2.2 CONTRASTIVE PERCEPTION LOSS (CPL)

After identifying perception tokens via our entropy-based criterion, we now define the token-level
CPL. Besides the created I− with obscured query-relevant information, we generate I+ by sampling
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a perturbation from a set of information-preserving perturbations. For each perception token oi,t
(i.e., Mi,t = 1) in each rollout, we treat the policy probability distribution under the original image
I as the anchor πθ(oi,t) = πθ(oi,t | q, I,oi,<t), the distribution under I+ as the positive sample
π+
θ (oi,t) = πθ(oi,t | q, I+,oi,<t), and the distributions under I− as the negative sample π−

θ (oi,t) =
πθ(oi,t | q, I−,oi,<t). Let sim(p, p∗) = −KL(p ∥ p∗) denote the negative KL divergence as
an estimate similarity between token probability distributions. Then, our contrastive loss term is
defined by adopting the InfoNCE loss (Chen et al., 2020):

LInfoNCE
oi,t = − log

exp
{
sim

(
πθ(oi,t), π

+
θ (oi,t)

)
/τ

}
exp

{
sim

(
πθ(oi,t), π

+
θ (oi,t)

)/
τ}+ exp

{
sim

(
πθ(oi,t), π

−
θ (oi,t)

)/
τ}

, (7)

where τ > 0 is a temperature hyperparameter. Minimizing this loss encourages the anchor dis-
tribution πθ(oi,t) to remain close to the positive view π+

θ (oi,t) while being pushed away from the
negative view π−

θ (oi,t). For all tokens in the ith trajectory oi, the CPL is defined as:

LCPL,i,t =

{
LInfoNCE
oi,t if Mi,t = 1,

0, if Mi,t = 0.
(8)

That is, non-perception tokens (Mi,t = 0) are excluded from the CPL. The overall CPL for the ith
trajectory oi is obtained by averaging over its tokens:

LCPL(oi; I, I
+, I−) =

1

|oi|

|oi|∑
t=1

LCPL,i,t. (9)

Integration with GRPO. Finally, we integrate CPL with the GRPO objective. For each sam-
pled trajectory oi, we compute the standard GRPO update (Eq. 2) along with the CPL. To prevent
low-quality trajectories from introducing noisy gradients, we use an advantage gating mechansim,
whereby CPL is only applied when the trajectory’s group-relative advantage Ai is positive. For-
mally, we maximize the following combined objective:

J (θ) = Eoi∼πθold

[
JGRPO(θ) − λ

1

G

G∑
i=1

{
1{Ai > 0} · LCPL(oi; I, I

+, I−)
}]

, (10)

where 1{·} is the indicator function. The hyperparameter, λ, controls the strength of perceptual
grounding. By incorporating the advantage gating mechanism, we ensure that CPL acts as an aux-
iliary constraint only on trajectories that improve upon the group baseline, thereby aligning visual
regularization with successful reasoning behaviors.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Dataset. We train on ViRL39K (Wang et al., 2025a), a dataset consisting of 38.8K mul-
timodal question–answer pairs. The dataset spans a broad range of domains, including grade school
problems to broader STEM and social topics; reasoning with charts, diagrams, tables, documents,
and spatial relationships.

Evaluation. Following prior works, we use the following benchmarks for evaluation: LogicVista
(Xiao et al., 2024), MathVista (Lu et al., 2024), DynaMath (Zou et al., 2025), WeMath (Qiao et al.,
2024), MathVision (Wang et al., 2024), MathVerse (Renrui Zhang, 2024), and MMMU-Pro-Vision
(Yue et al., 2025). These benchmarks encompass math, general multimodal reasoning, and logical
reasoning tasks. All evaluations are performed using VLMEvalKit (Duan et al., 2024). We report
average accuracy@8 with an inference temperature of 1.0 to provide a more consistent and reliable
measure of model performance across all the experiments in the paper.

Baselines. We use Qwen2.5-VL-3B and 7B (Bai et al., 2025) as the backbone models in all our
experiments. We compare our CPPO with recent RL methods proposed for VLMs: OpenVLThinker-
3B/7B, Visionary-R1-3B, PAPO-3B/7B, VL-ReThinker-7B, Vision-Matters-7B, Perception-R1-7B,
Vision-SR1-7B, NoisyRollout-7B, and Look-Back-7B (semantic checkpoint). All of these prior
works use Qwen2.5-VL-3B/7B as the policy model and, therefore, comparisons are fair.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: CPPO vs. prior works. All results are based on avg@8. For prior methods, we used their
released checkpoints. Bold: the best value in each column. Underlined: the second best.

Math Benchmarks Visual Reasoning

Methods MVistam DMath WeMath MVisionm MVerse MMMU-Pv LogicVista Avg.

GPT4-o 60.0 34.5 47.4 30.6 41.2 51.9 52.8 45.4
Gemini-2.0-Flash 73.4 42.1 45.8 41.3 54.6 51.7 52.3 51.6

Qwen2.5-VL-3B 56.4 33.7 14.5 19.5 25.7 19.9 32.4 28.8
OpenVLThinker 60.0 35.6 26.3 22.3 36.9 25.0 37.4 34.7
Visionary-R1 61.4 41.2 27.1 19.7 34.5 27.9 37.1 35.5
PAPO 64.8 45.4 28.1 24.3 38.3 26.8 39.4 38.1

GRPO 63.7 45.7 28.4 25.1 38.3 25.8 37.7 37.8
CPPO (ours) 66.3 48.9 30.8 25.3 39.4 28.5 40.9 40.0

Qwen2.5-VL-7B 65.6 53.2 33.3 24.5 41.2 33.7 45.1 42.3
OpenVLThinker 70.7 43.9 38.4 27.5 40.7 35.5 45.8 43.9
Vision-SR1 67.0 52.6 33.6 28.0 40.7 38.9 43.2 43.9
Look-Back 69.1 52.5 39.8 25.8 41.9 34.5 46.3 44.8
Vision-Matters 68.6 54.5 40.1 25.2 45.3 35.5 45.1 45.3
PAPO 71.6 54.7 39.5 26.5 44.5 38.7 45.8 46.8
PerceptionR1 70.0 55.8 45.4 27.6 46.0 38.1 45.5 47.3
NoisyRollout 71.1 55.9 44.4 29.4 46.4 38.5 47.9 47.7

GRPO 71.2 55.6 42.4 27.6 45.0 37.9 47.4 46.7
CPPO (ours) 72.2 56.9 44.8 29.9 46.5 39.0 48.2 48.2

Implementation Details. We use verl (Sheng et al., 2024) as our RL training framework. The
policy models are initialized with Qwen2.5-VL-3B/7B. We train the policy model with GRPO and
CPPO for 2 epochs on the ViRL39K dataset with a group size of 5 and a global batch size of 512.
Both the vision encoder and LLM of the baselines were updated during training. For other RL-
related hyperparameters, we use the default settings of verl. More details are in the Appendix A.3.

Perturbation Types. For information-removing perturbations, we employ random 80% patch-
wise masking and random 30% cropping (retaining only 30% of the image) to obscure the majority
of the visual content. For information-preserving perturbations, we apply lightweight transforma-
tions such as color jitter, random perspective, random rotation, and Gaussian noise, which modify
the image appearance without eliminating critical information. At each training step, one augmen-
tation is randomly sampled from each augmentation set. Detailed parameter settings and illustrative
examples of all perturbations are provided in the Appendix A.4.

4.2 MAIN RESULTS

The performance of closed-source models (GPT4-o, Gemini-2.0-Flash), the backbone models, and
RL-based baseline VLMs including GRPO compared with our CPPO is reported in Table 1.

Comparison to Baseline GRPO. Applying CPPO to the Qwen2.5-VL-3B and -7B baselines
yields consistent and substantial improvements on the test benchmarks, with average performance
gains of 11.2% and 5.9%, respectively. As reported in Table 1, CPPO achieves a higher accuracy
than GRPO across all benchmarks—average 40.0% vs. 37.8% for the 3B model and 48.2% vs.
46.7% for the 7B model. Overall, these results confirm that CPPO is a more effective optimization
strategy than GRPO, especially for mid-sized models, and establishes CPPO as a strong and scalable
alternative for finetuning large VLMs. Qualitative results are given in the Appendix A.7.

Comparison to Other Methods. As shown in Table 1, CPPO consistently surpasses prior meth-
ods across all benchmarks for the 3B model. For the 7B model, CPPO also outperforms existing
approaches on all benchmarks (except WeMath), demonstrating stronger generalization. In partic-
ular, when compared to PAPO—the most relevant perception-aware RL baseline—CPPO achieves
notable gains. On the 3B model, CPPO improves average performance to 40.0%, compared to
PAPO’s 38.1%. On the larger 7B model, CPPO reaches 48.2% versus PAPO’s 46.8%. Importantly,
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Figure 3: Sample outputs generated with CPPO with top 40% detected perception tokens.

both CPPO and PAPO are trained under identical conditions—using the same dataset (ViRL39K)
and the same number of training steps—ensuring that the improvements are not due to differences
in data or compute. Thus, the consistent advantage of CPPO over PAPO can be attributed directly
to the introduction of contrastive loss on perception tokens, which enhances the model’s ability to
capture and leverage visual information more effectively.

Performance of Perception Token Detection. Figure 3 shows two samples, the policy model’s
outputs generated by CPPO, and the top 40% of perception tokens identified using our entropy-based
method. In the 1st example, the question asks for the value of angle ∠CAD in a geometry problem.
The key visual clues needed to solve this question are: (1) ∠CDA = ∠1 = 40◦, (2) CAD forms a
triangle, and (3) ∠2 = ∠ACD. With these three pieces of information alone, one could solve the
problem without referring back to the original figure. We observe that all these critical elements are
successfully highlighted within the top 40% of selected perception tokens. The 2nd example shows
a stem and leaf plot summarizing the number of menu items per restaurant in a town, which is used
to answer a question. Here, we find that most of the relevant numerical values are also captured
within the top 40% of detected perception tokens, illustrating that the method effectively identifies
the essential visual information for the question. Numerical analysis is given in the Appendix A.5.

4.3 ABLATIONS

We adopt Qwen2.5-VL-3B as the baseline model and conduct all ablations on the Geometry3K
dataset Lu et al. (2021), which contains 2.1K samples. We select Geometry3K both to enable faster
training and to demonstrate the generalizability of our approach across different training datasets.

Ablation on Main Components of CPPO. Table 2 reports the ablation study on the key compo-
nents of CPPO. Starting from GRPO, applying CPL to all tokens raises the average accuracy from
34.7% to 35.0%. Restricting CPL to only the top 50% of perception tokens yields a larger gain,
increasing accuracy to 36.6%. Finally, introducing advantage gating—where the contrastive loss is
applied only to rollouts with positive advantage—further improves performance to 38.6%. These
results highlight that each component makes a meaningful contribution, and together they account
for the overall effectiveness of CPPO.

Table 2: Ablation on the main component of CPPO.
Methods LogicVista MVistam MVisionm WeMath Avg.
Qwen2.5-VL-3B 32.4 56.4 19.5 14.5 30.7

GRPO 35.4 55.9 20.9 26.7 34.7
+ Contrastive Loss on All Tokens 35.6 56.0 20.8 27.2 35.0
+ Contrastive Loss on Topk Perception Tokens 36.4 56.6 22.5 30.9 36.6
+ Advantage Gating 38.5 59.9 23.1 32.9 38.6
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Table 3: Experiments on topk perception tokens.
K LogicVista MVistam MVisionm WeMath Avg.
5% 32.5 52.2 21.4 20.1 31.6
25% 36.7 57.9 22.7 30.7 37.0
50% 38.5 59.9 23.1 32.9 38.6
75% 37.6 57.4 22.3 29.1 36.6
100% 36.3 56.9 22 29.5 36.2

Topk. Table 3 presents the analysis of differ-
ent K values for topk perception token detec-
tion. The results show that average accuracy
improves as K increases from 5% to 50%, but
declines when K is further expanded from 50%
to 100%. We hypothesize that this trend arises
because larger K values include more tokens
that the policy model is already confident about
(i.e., tokens with lower entropy change), which are less informative perception tokens. Incorporat-
ing these tokens can slow down the training and ultimately lead to worse performance when models
are trained for the same number of epochs.

Table 4: Experiments on λ values.
λ LogicVista MVistam MVisionm WeMath Avg.
0.01 37.4 59.2 21.9 31.4 37.5
0.02 38.5 59.9 23.1 32.9 38.6
0.03 38.6 57.8 22.9 28.8 37.0
0.04 35.6 55.9 21.7 27.6 35.2

Loss Weighting (λ). We experiment with dif-
ferent λ values in Eq. 10. λ controls the
strength of perceptual grounding. As given in
Table 4, the best performance is obtained with
λ = 0.02. In general, CPPO with different λ
values outperforms GRPO with an average ac-
curacy of 34.7% as reported in Table 2.

4.4 REWARD GRAPH

Figure 4 shows the training dynamics of CPPO vs. GRPO (Training Reward), reward on the in-
domain validation set (Geometry3K Validation Reward), and detailed accuracy comparison across
out-of-domain benchmarks as training progress. The training reward shows that CPPO leads to
faster learning as well as strong out-of-distribution generalization from the early steps of training.

Figure 4: CPPO vs. GRPO (avg@8) on Qwen2.5-VL-3B across in-domain and out-of-domain
scenarios. The X-axis represents RL training steps. The shaded area corresponds to one standard
deviation. 1st column: Reward comparison on the in-domain dataset during training. 2nd and 3rd
columns: Comparison on four out-of-domain visual reasoning benchmarks.

5 CONCLUSION

In this work, we introduced CPPO, a perception-aware RL-based method for finetuning VLMs.
CPPO leverages an entropy-based approach to disentangle perception tokens from reasoning to-
kens, where perception tokens capture visual information extracted from the input image. To better
align training with perception quality, we proposed a Contrastive Perception Loss (CPL)—an unsu-
pervised, model-free objective that penalizes perception errors. Extensive experiments demonstrate
that CPPO outperforms recent RL methods for VLMs, achieving state-of-the-art performance across
multiple math and visual reasoning benchmarks. We discuss the limitations of our approach and di-
rections for future work in the Appendix A.6.
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tions for reinforcement learning. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 5639–5650. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/laskin20a.html.

Yuting Li, Lai Wei, Kaipeng Zheng, Jingyuan Huang, Linghe Kong, Lichao Sun, and Weiran Huang.
Vision matters: Simple visual perturbations can boost multimodal math reasoning. arXiv preprint
arXiv2506.09736, 2025a.

Zongxia Li, Wenhao Yu, Chengsong Huang, Rui Liu, Zhenwen Liang, Fuxiao Liu, Jingxi Che, Dian
Yu, Jordan Boyd-Graber, Haitao Mi, and Dong Yu. Self-rewarding vision-language model via
reasoning decomposition, 2025b. URL https://arxiv.org/abs/2508.19652.

10

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2503.17352
https://arxiv.org/abs/2503.17352
https://openreview.net/forum?id=iX1RjVQODj
https://arxiv.org/abs/2503.06749
https://proceedings.mlr.press/v119/laskin20a.html
https://proceedings.mlr.press/v119/laskin20a.html
https://arxiv.org/abs/2508.19652


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xiangyan Liu, Jinjie Ni, Zijian Wu, Chao Du, Longxu Dou, Haonan Wang, Tianyu Pang, and
Michael Qizhe Shieh. Noisyrollout: Reinforcing visual reasoning with data augmentation, 2025.
URL https://arxiv.org/abs/2504.13055.

Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang, and Song-Chun Zhu.
Inter-GPS: Interpretable geometry problem solving with formal language and symbolic reasoning.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 6774–6786, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.528.
URL https://aclanthology.org/2021.acl-long.528/.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. In International Conference on Learning Representations
(ICLR), 2024.

Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu, Chong Sun, Xiaoshuai Song, Zhuoma
GongQue, Shanglin Lei, Zhe Wei, Miaoxuan Zhang, Runfeng Qiao, Yifan Zhang, Xiao Zong,
Yida Xu, Muxi Diao, Zhimin Bao, Chen Li, and Honggang Zhang. We-math: Does your
large multimodal model achieve human-like mathematical reasoning?, 2024. URL https:
//arxiv.org/abs/2407.01284.

Yichi Zhang Haokun Lin Ziyu Guo Pengshuo Qiu Aojun Zhou Pan Lu Kai-Wei Chang Peng Gao
Hongsheng Li Renrui Zhang, Dongzhi Jiang. Mathverse: Does your multi-modal llm truly see
the diagrams in visual math problems? In arXiv, 2024.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=uCQfPZwRaUu.

Junhao Shen, Haiteng Zhao, Yuzhe Gu, Songyang Gao, Kuikun Liu, Haian Huang, Jianfei Gao,
Dahua Lin, Wenwei Zhang, and Kai Chen. Semi-off-policy reinforcement learning for vision-
language slow-thinking reasoning, 2025. URL https://arxiv.org/abs/2507.16814.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Haozhe Wang, Chao Qu, Zuming Huang, Wei Chu, Fangzhen Lin, and Wenhu Chen. Vl-
rethinker: Incentivizing self-reflection of vision-language models with reinforcement learning.
arXiv preprint arXiv:2504.08837, 2025a.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. In The
Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2024. URL https://openreview.net/forum?id=QWTCcxMpPA.

Zhenhailong Wang, Xuehang Guo, Sofia Stoica, Haiyang Xu, Hongru Wang, Hyeonjeong Ha, Xiusi
Chen, Yangyi Chen, Ming Yan, Fei Huang, et al. Perception-aware policy optimization for mul-
timodal reasoning. arXiv preprint arXiv:2507.06448, 2025b.

Jiaer Xia, Yuhang Zang, Peng Gao, Yixuan Li, and Kaiyang Zhou. Visionary-r1: Mitigating short-
cuts in visual reasoning with reinforcement learning, 2025. URL https://arxiv.org/
abs/2505.14677.

Tong Xiao, Xin Xu, Zhenya Huang, Hongyu Gao, Quan Liu, Qi Liu, and Enhong Chen. Advancing
multimodal reasoning capabilities of multimodal large language models via visual perception
reward. arXiv preprint arXiv:2506.07218, 2025.

Yijia Xiao, Edward Sun, Tianyu Liu, and Wei Wang. Logicvista: Multimodal llm logical reasoning
benchmark in visual contexts, 2024. URL https://arxiv.org/abs/2407.04973.

11

https://arxiv.org/abs/2504.13055
https://aclanthology.org/2021.acl-long.528/
https://arxiv.org/abs/2407.01284
https://arxiv.org/abs/2407.01284
https://openreview.net/forum?id=uCQfPZwRaUu
https://openreview.net/forum?id=uCQfPZwRaUu
https://arxiv.org/abs/2507.16814
https://openreview.net/forum?id=QWTCcxMpPA
https://arxiv.org/abs/2505.14677
https://arxiv.org/abs/2505.14677
https://arxiv.org/abs/2407.04973


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Ken-
ton Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries
of LLM performance in machine translation. In Ruslan Salakhutdinov, Zico Kolter, Kather-
ine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Pro-
ceedings of the 41st International Conference on Machine Learning, volume 235 of Proceed-
ings of Machine Learning Research, pp. 55204–55224. PMLR, 21–27 Jul 2024. URL https:
//proceedings.mlr.press/v235/xu24t.html.

Senqiao Yang, Junyi Li, Xin Lai, Bei Yu, Hengshuang Zhao, and Jiaya Jia. Visionthink: Smart and
efficient vision language model via reinforcement learning. arXiv preprint arXiv:2507.13348,
2025a.

Shuo Yang, Yuwei Niu, Yuyang Liu, Yang Ye, Bin Lin, and Li Yuan. Look-back: Implicit visual
re-focusing in mllm reasoning, 2025b. URL https://arxiv.org/abs/2507.03019.

Xiang Yue, Tianyu Zheng, Yuansheng Ni, Yubo Wang, Kai Zhang, Shengbang Tong, Yuxuan Sun,
Botao Yu, Ge Zhang, Huan Sun, Yu Su, Wenhu Chen, and Graham Neubig. MMMU-pro: A
more robust multi-discipline multimodal understanding benchmark. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
15134–15186, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-
8-89176-251-0. doi: 10.18653/v1/2025.acl-long.736. URL https://aclanthology.org/
2025.acl-long.736/.

Ruijie Zheng, Xiyao Wang, Yanchao Sun, Shuang Ma, Jieyu Zhao, Huazhe Xu, Hal Daumé III, and
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A APPENDIX

In this appendix, we present the following additional discussions and experimental results:

• Code

• Proof for Proposition 1

• Extra Training Details

• Sample of Perturbations

• Further Analysis: Perception Token Detection

• Limitations of Our Work

• Qualitative Results

• Statement on LLMs Assistance

A.1 CODE

In order for our results to be reproducible, we share our code as supplementary materials, with
detailed instructions included in the associated README.md file.

A.2 PROOF FOR PROPOSITION 1

Proposition 1 (Entropy increase as a proxy for vision dependence). Let I denote the original
image, I− a perturbed variant that removes query-relevant perceptual information, and oi the se-
quence of tokens generated by the policy when conditioned on I . The increase in entropy of a token
oi,t ∈ oi, when the policy is conditioned on I− rather than I , serves as a proxy for the degree to
which the policy model associates oi,t with the query-relevant visual content of I . This increase is
calculated as follows:

∆Hi,t = H(oi,t|q, I−,oi,<t)−H(oi,t|q, I,oi,<t).

Proof. Recall the identity relating conditional mutual information (denoted by MI) and conditional
entropy:

H(oi,t | X, q,oi,<t) = H(oi,t | q,oi,<t) − MI(oi,t;X | q,oi,<t)) . (11)

Applying this with both X = I and X = I− and subtracting, we obtain

Hi,t(I
−)−Hi,t(I) = H

(
oi,t | I−, q,oi,<t

)
−H(oi,t | I, q,oi,<t)

= MI(oi,t; I | q,oi,<t) − MI
(
oi,t; I

− ∣∣ q,oi,<t

)
.

(12)

I− is obtained from I by an information-removing augmentation that obscures query-relevant visual
information. Our main assumption is that the conditional mutual information between perception
tokens in oi and I should be greater than their conditional mutual information with the perturbed
image I−. Formally, if oi,t is a perception token, we assume the following inequality holds for its
conditional mutual information:

MI(oi,t; I | q,oi,<t)−MI
(
oi,t; I

− ∣∣ q,oi,<t

)
≥ 0. (13)

Substituting this inequality into equation 12 yields

Hi,t(I
−)−Hi,t(I) ≥ 0. (14)

Thus, an increase in predictive entropy, ∆Hi,t, serves as a principled proxy for identifying vision-
dependent tokens in the output sequence.

A.3 EXTRA TRAINING DETAILS

Table 5 shows the summary of hyper-parameters used in training of 3B and 7B models.
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Table 5: Summary of hyperparameter configurations.
Parameter Configuration
Main Results
Model Base Qwen2.5-VL-Instruct
Global Batch Size 512
Rollout Temperature 1.0
Learning Rate 1e−6

Rollout Number 5
Training Epochs 2
Optimizer AdamW
Policy Loss Aggregation token-mean
β 0.01
τ 0.1
k 50%
λ 0.02

Ablations Specific
Dataset Geometry3K
Training Epochs 12
Global Batch Size 128

A.4 SAMPLE OF PERTURBATIONS

Figure 5 illustrates examples from the training dataset along with two categories of perturbations:
information-removing and information-preserving. The information-removing perturbations, such
as random occlusion and random zoom crop, eliminate key visual details necessary for understand-
ing the image. In contrast, the information-preserving perturbations—including color jitter, random
perspective, random rotation, and Gaussian blur—modify the image without discarding critical in-
formation.

A.5 FURTHER ANALYSIS: PERCEPTION TOKEN DETECTION

Figure 6: Quantitative evaluation of perception to-
ken detection.

To quantitatively evaluate our perception
detection method, we used the inference
outputs of Qwen2.5-VL-3B and -7B on
four test sets: MathVista-MINI, LogicVista,
MathVision-MINI, and WeMath. We then
passed these outputs to GPT5-mini, which was
used to separate the perception-related informa-
tion from the rest of the model’s response. This
extracted perception information serves as our
ground truth. We measure the accuracy of our
detection method by calculating the ROUGE-
1 F1 score between the detected perception to-
kens and the GPT5-mini outputs. It is important to note that GPT5-mini’s separation is not flawless;
thus, this evaluation should be viewed as a proof-of-concept rather than a definitive benchmark.
Figure 6 shows that the ROUGE-1 F1 score improves as we increase the number of topk perception
tokens, up to the point where 100% of perception tokens are included. Here, 100% refers to selecting
all tokens with positive ∆H in Proposition 1, rather than all output tokens. At each topk percentage,
we also select the same number of tokens randomly to serve as a baseline. Figure 6 shows that there
is significant gap between our entropy-based method and random selection.

A.6 LIMITATIONS

This work has several limitations that should be addressed in future research. First, due to our com-
putational constraints, we did experiments up to 3B and 7B models. Exploring larger VLMs, such
as 72B models, is an important direction for future work. Second, our evaluation was limited to
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Figure 5: Sample information-removing perturbations and information-preserving perturbations.

Qwen2.5-VL baselines; extending the analysis to other baselines, such as InternVL (Chen et al.,
2024), would provide a more comprehensive comparison. Finally, while we demonstrated the effec-
tiveness of CPPO using 40K training samples, future studies should investigate large-scale training
with substantially larger datasets.

A.7 QUALITATIVE RESULTS

Figures 7-9 show three qualitative examples. We observe that CPPO has corrected the perception
mistakes of models trained with GRPO. For example, in Figure 7, the model trained with GRPO
states that "the angle x is given as 70 degrees" that is a wrong perception infor-
mation extracted from the image. However, the model trained with CPPO corrected this statement by
"The two line segments form angles that add up to 180 degrees". Note
that when perception tokens are wrong, even with correct reasoning trajectory, the final answer is
wrong.

A.8 STATEMENT ON LLMS ASSISTANCE

We declare that some portions of this document have been lightly refined using Large Language
Models (e.g., ChatGPT) to enhance clarity and polish. All substantive content and ideas remain
entirely our own.
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Figure 7: Sample generated responses by CPPO and GRPO. GRPO exhibits a perception error that
is corrected in the CPPO response.
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Figure 8: Sample generated responses by CPPO and GRPO. GRPO exhibits a perception error that
is corrected in the CPPO response.
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Figure 9: Sample generated responses by CPPO and GRPO. GRPO exhibits a perception error that
is corrected in the CPPO response.
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