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ABSTRACT

Foundation models have demonstrated remarkable success across diverse
machine-learning domains through large-scale pretraining. However, their ap-
plication to time series data poses challenges due to substantial mismatches in
the distributions of pretraining datasets. In this paper, we tackle this issue by
proposing a domain-aware adaptive normalization strategy within the Transformer
architecture. Specifically, we replace the traditional LayerNorm with a prototype-
guided dynamic normalization mechanism, where learned prototypes represent
distinct data distributions, and sample-to-prototype similarity determines the ap-
propriate normalization layer. This approach effectively captures the diverse char-
acteristics of time series data, ensuring better alignment between pretrained repre-
sentations and downstream tasks. Our method significantly improves fine-tuning
performance, outperforming vanilla pretraining techniques and reducing the neg-
ative impact of distribution shifts. Extensive experiments on various real-world
time series datasets demonstrate the efficacy of our approach, paving the way for
more robust and generalizable time series foundation models.

1 INTRODUCTION
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Figure 1: (a) Distributional shifts exist among different time series datasets. (b) Fine-tuning per-
formance comparison on multiple datasets after different pretraining strategies. Individual refers to
pretraining and fine-tuning a Transformer model on each dataset separately. Vanilla denotes pre-
training the foundation model on multiple datasets without additional design considerations. In
ProtoN-FM, we utilize the same multi-dataset pretraining, but incorporate our proposed Domain-
Aware Mixture of LayerNorms, resulting in superior performance across diverse datasets.

Foundation Models (FM) have revolutionized machine learning by enabling the learning of general-
purpose representations from vast amounts of unlabeled data (Zhou et al., 2023a). These models
have achieved remarkable success, particularly in natural language processing (NLP) tasks (Kenton
& Toutanova, 2019). In NLP, FMs such as GPT-3 (Brown, 2020), GPT-4 (Achiam et al., 2023), and
LLAMA (Touvron et al., 2023) have demonstrated strong performance and generalization capabili-
ties, benefiting from the inherent similarities and structures present in text data.

The ability of FMs to generalize across diverse domains offers promising potential for extending
their success into time series (TS) analysis, to be applied to ubiquitous domains such as finance (Yu
et al., 2023), healthcare (Moor et al., 2023), and climate (Wu et al., 2023). However, unlike NLP
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tasks, where the data distributions are relatively consistent and the models can capture the underlying
patterns and semantics, a significant challenge arises when applying FMs to TS data encountered in
the mismatch between the data distributions during the pretraining stage (Kim et al., 2021).

This mismatch can be attributed to several factors. First, different TS data often exhibit distinct
properties, such as temporal dependencies, irregularities, and domain-specific dynamics. Second,
TS data may have varying sampling rates, number of channels, and noise levels, which differ from
the clean and well-structured data used in pretraining language models (Wang et al., 2024; Liang
et al., 2024). To illustrate this mismatch, Figure 1(a) presents the distribution of various TS datasets
for machine fault diagnosis, namely IMS, PU, and UO. The datasets are collected from different
engines, and hence, they exhibit significant differences in their value ranges and shapes, highlighting
the heterogeneity present in TS data.

The impact of this mismatch on pretraining FMs can be seen in Figure 1(b), which compares the
fine-tuning performance upon pretraining with different strategies. We notice that the Vanilla pre-
training strategy on multiple datasets without considering their heterogeneity achieves suboptimal
fine-tuning results. In contrast, considering this mismatch during pretraining achieves better perfor-
mance, demonstrating the necessity of aligning FMs with the characteristics of TS data.

Therefore, in this work, we propose a novel approach to address the discrepancy between FM pre-
training and TS data distributions. Specifically, we introduce a Foundation Model design based on
Prototype-guided dynamic Normalization mechanism (ProtoN-FM) within the Transformer archi-
tecture, enabling adaptive normalization based on the similarity of samples to learned prototypes,
as shown in Figure 2. Unlike traditional LayerNorm, which applies fixed normalization parameters
across all samples, our method learns prototypes that capture distinct data characteristics, with each
prototype associated with a corresponding LayerNorm module. During training, the model measures
the similarity between samples and prototypes, dynamically selecting the most suitable LayerNorm
for each sample. This adaptive mechanism allows the model to better align with the heterogeneous
nature of TS data, mitigating the distribution shift between pretraining and downstream tasks.

In summary, the main contributions of this work are as follows:

• This is the first work to identify the challenge of data distribution mismatch between foun-
dation model pretraining and time series data, which hinders the effective application of
foundation models to time series tasks.

• We propose a novel approach introducing a prototype-guided dynamic normalization mech-
anism (ProtoNorm) within the Transformer architecture, enabling adaptive normalization
based on sample similarity to learned prototypes, and capturing domain-specific patterns
aligned with time series data characteristics. This layer can be simply included within any
Transformer architecture to address the distribution shift during FM pretraining.

• Extensive experiments on diverse real-world time series datasets for different application
tasks demonstrate significant fine-tuning improvements and enhanced generalization com-
pared to traditional pretraining, highlighting the effectiveness of our proposed approach in
identifying the data distribution mismatch.

2 RELATED WORK

2.1 FOUNDATION MODELS FOR TIME SERIES

Foundation models (FMs) have gained attention in TS analysis, following the success of Large
Language Models (LLMs) in natural language processing (NLP) (Liang et al., 2024). However,
while some studies have adapted pretrained LLMs for TS data (Cao et al., 2023; Rasul et al., 2024;
Gao et al., 2024; Zhou et al., 2023b), this approach is not ideal for TS tasks. The inherent differences
between text, which is discrete and categorical, and TS data, which is continuous and numeric,
present significant challenges for LLM-based methods (Li et al., 2024). These models often fail
to capture the unique temporal patterns and dynamics of TS data. Other research has focused on
designing FMs specifically for TS tasks (Das et al., 2024; Liu et al., 2024a; Dong et al., 2024a), often
using self-supervised learning techniques like masked sequence prediction (Goswami et al., 2024;
Li et al., 2023), contrastive learning (Eldele et al., 2023; Yeh et al., 2023), or hybrid methods (Lee
et al., 2024; Dong et al., 2024b). However, it’s vital to distinguish works based on their pretraining
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strategy. Some methods train on a single dataset and test on that same dataset, such as PatchTST
(Nie et al., 2023) and TSLANet (Eldele et al., 2024). While these approaches can achieve strong
performance within a specific domain, they do not involve pretraining on multiple datasets, limiting
their ability to generalize across diverse TS domains. On the other hand, certain methods adopt a
more generalizable approach by pretraining on a pool of datasets (Li et al., 2024; Woo et al., 2024;
Ansari et al., 2024), aiming to build foundation models that can generalize well. However, even
among these models, some fail to fully address the challenges posed by distribution shifts during
pretraining, which can impact their efficacy in real-world applications across different domains.

2.2 DISTRIBUTION SHIFTS IN TIME SERIES

Time series data is particularly prone to distribution shifts due to factors such as changes in sensor
behavior, environmental variations, and temporal dynamics (Akay & Atak, 2007). A growing body
of research aims to mitigate these shifts in deep learning models through techniques such as domain
adaptation (Ragab et al., 2023; He et al., 2023; Gong et al., 2024; Ott et al., 2022) and domain gen-
eralization (Deng et al., 2024; Lu et al., 2024). These approaches seek to capture domain-invariant
features that can be generalized across different distributions. Besides, architecture-specific mech-
anisms have been developed, including Adaptive RNNs (Du et al., 2021), Non-stationary Trans-
formers (Liu et al., 2022), Instance Normalization flows (Fan et al., 2023; 2024), and contextualized
adapters (Chen et al., 2024). These mechanisms aim to alleviate the impact of non-stationary factors
through distribution characterization. However, a significant drawback of these designs is their lim-
ited transferability across different model architectures, potentially hindering their broader applica-
bility in diverse TS analysis scenarios. Beyond architecture-specific designs, several normalization-
based strategies have been proposed to address distribution shifts in TS data (Ogasawara et al., 2010;
Passalis et al., 2019). For instance, RevIN (Kim et al., 2021) introduced instance normalization to
mitigate distribution shifts by leveraging statistics from individual samples to normalize TS data.
Despite these advances, the application of such techniques to Transformer architectures remains
limited, and their utilization in multi-dataset training scenarios is still underexplored.

2.3 ADAPTIVE NORMALIZATION TECHNIQUES

Adaptive normalization methods, in contrast to traditional fixed schemes, learn flexible strategies to
address covariate shift (Vivek Panday, 2022; Fan et al., 2021). For instance, Adaptive Batch Nor-
malization dynamically adjusts normalization parameters across batches, while Adaptive Instance
Normalization aligns channel-wise mean and variance to match style input (Li et al., 2018; Chang
et al., 2019; Lubana et al., 2021). Recent research has focused on developing adaptive normal-
ization techniques specifically for the non-stationary characteristics of TS data (Deng et al., 2021;
Ogasawara et al., 2010). For example, DAIN introduced a non-linear network for adaptive input
normalization (Passalis et al., 2019), which was subsequently extended by various approaches (Tran
et al., 2021; September et al., 2024). These extensions incorporated adaptive preprocessing layers
into deep neural networks. RevIN proposed a symmetric, model-agnostic method that normalizes
input sequences and denormalizes model output sequences in TS forecasting (Kim et al., 2021).
More recently, SAN introduced slice-level adaptive normalization, offering more flexible normal-
ization and denormalization for TS forecasting (Liu et al., 2024b), while SIN proposed selective
and interpretable normalization to select statistics and learn the normalization transformation (Han
et al.). While existing normalization methods have shown efficacy, they assume uniform statisti-
cal properties across all TS instances, which may not be optimal while pretraining with multiple
datasets. In contrast, we explicitly take the distribution inconsistencies into consideration during
FM pretraining, offering a more nuanced and effective training strategy.

3 PROPOSED METHOD

3.1 PRELIMINARIES

3.1.1 PROBLEM DEFINITION

This study addresses the following problem: given a collection of time series datasets D = {Dk|k =
1, 2, ..., n}, where each dataset Dk contains a variable number of samples with dimensions Lk ×Ck
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Figure 2: Framework of our proposed ProtoN-FM. Input from diverse TS datasets is first parti-
tioned into patches, with positional embeddings added. The resulting output embeddings are then
processed through the encoder. Within the encoder, data undergoes normalization using ProtoNorm
layers, with each comprising two key components: (1) a prototype-guided gate network that matches
each sample to the most suitable LayerNorm, and (2) a process that applies the matched LayerNorm
for sample normalization.

(Lk denoting signal length and Ck representing the number of sensors or variables), our objective is
to pretrain a time series foundation model M on this collection of datasets D while accounting for
inter-dataset distributional shifts. The model is then fine-tuned on either a novel or known dataset
using a limited amount of data samples to achieve superior performance.

3.1.2 LAYER NORMALIZATION

Layer Normalization (LN) (Ba et al., 2016) is a widely used training technique in deep learning
networks, especially in the currently prevalent Transformer architecture (Vaswani, 2017). Instead of
normalizing across the batch dimension, i.e., Batch Normalization (BN), LN normalizes across the
features within a single layer. Similar to BN, LN also has two trainable affine parameters γ and β
to allow the network to learn different scales and shifts. Given a layer’s activation x ∈ RC×L for a
single input, LN is expressed as follows,

LN (xi; γ, β) = γ · x̂i + β, (1)

where
x̂i =

xi − µ√
σ2 + ϵ

. (2)

The µ is the mean and σ2 is the variance computed over the features of the layer for a single input,
which are denoted as,

µ =
1

d

d∑
i=1

xi, σ2 =
1

d

d∑
i=1

(xi − µ)
2
, (3)

and ϵ is a small constant to avoid divide-by-zero.

In the training phase, LN computes the mean and variance across the features of a single training
example at each layer. The normalization step helps to stabilize the learning process by reducing
the internal covariate shift. During the testing phase, LN behaves almost identically to the training
phase. The difference is that the model is no longer learning or updating the parameters, so the role
of LN is purely to normalize the activations and apply the learned scaling and shifting.

Since LN normalizes the features of each sample rather than the batch, there is no need to accumulate
running statistics as in BN. This makes LN consistent between the training and testing phases, with
no discrepancies between the statistics computed during training and those used during inference.

3.2 PROTOTYPE-GUIDED DYNAMIC NORMALIZATION MECHANISM

It is important to explain why we chose to modify LN specifically, rather than other components of
the Transformer, to address the distribution shift problem. LN is an ideal candidate for this modifica-
tion because it has fewer parameters than other parts of the Transformer, making it computationally
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efficient to replicate. This allows us to handle variations across different datasets while minimizing
the risk of overfitting.

In addition, previous research has demonstrated that domain-specific normalization techniques, such
as BatchNorm, are highly effective in reducing domain shifts in adaptation tasks (Chang et al., 2019).
This success inspired us to explore a domain-aware normalization strategy tailored for time series
data. However, traditional LN approaches assume a static relationship between input samples and
their corresponding normalization strategies, potentially limiting the model’s adaptability to both
intra- and inter-dataset variations. Relying on a fixed normalization strategy for an entire dataset
may fail to address challenges such as mixed sample characteristics or cross-domain overlap.

Prototype-Guided Gating Network. To overcome these limitations, we introduce ProtoN-FM,
which implements an adaptive and dynamic normalization mechanism, as illustrated in Figure 2.
Rather than employing a fixed LN for each dataset, we propose ProtoNorm layer, which consists of
multiple LN modules, where one of them is selected based on a prototype-guided gating network
that matches each sample to the most appropriate LN based on its proximity to learned prototypes.
Upon the completion of the pretraining, the learned prototypes act as anchors that represent different
data distributions, allowing the model to adapt its normalization strategy on a per-sample basis.

Figure 3 demonstrates how these learned prototypes function as centroids or representative anchors,
capturing distinct data distributions. This approach enables the model to flexibly select the opti-
mal normalization strategy for each sample, thereby accommodating subtle variations within and
across datasets, and enhancing its capacity to handle complex or overlapping data distributions.

Prototype 0

Prototype 1
Prototype 2

Prototypes PU UO IMS

Figure 3: Visualization of learned
prototypes and sample features.
Prototypes capture the unique dis-
tribution patterns of each cluster.

Formally, each ProtoNorm layer predefines a set of n
LayerNorm modules {LN1, LN2, ..., LNn}, alongside a
prototypes-guided gating network G. Considering a TS sig-
nal v and its features x, G determines which LayerNorm con-
tributes to the input’s normalization. Specifically, G computes
the distance between x and a set of predefined prototypes
{p1, p2, . . . , pn}, each corresponding to one LayerNorm.

Adaptive Normalization. The network selects the Layer-
Norm module LN i whose prototype pi minimizes the distance
to x, matching the input to the most suitable normalization
function. This selection is given by:

i∗ = arg min
i∈{1,2,...,n}

d(x, pi), (4)

where d(x, pi) represents the distance metric (e.g., Euclidean
distance) between x and prototype pi.

Prototype Update. The prototypes are updated during train-
ing using Exponential Moving Average (EMA) (Kingma, 2014), ensuring gradual adaptation based
on the evolving input distributions. Formally, the prototype pi is updated as:

p
(t+1)
i = α · p(t)i + (1− α) · x, (5)

where p
(t)
i is the prototype at time t, x is the current input feature, and α is the EMA decay factor.

This update process ensures that prototypes evolve to better represent the underlying data distribu-
tions throughout training, maintaining robustness and adaptability.

Orthogonality Constraint. To ensure the learned prototypes remain distinguishable, we intro-
duce an additional orthogonality constraint. Initially, the prototypes are initialized with orthogonal-
ity parameters, enabling the gating network to better differentiate among diverse input features and
distributions. Further, we implement a regularization technique that encourages prototype indepen-
dence by minimizing their deviation from orthogonality, inspired by (Saito et al., 2017). Formally,
given a matrix P ∈ Rn×d where each row represents a prototype, we define the orthogonal loss as:

Lorth = ∥PPT − I∥2F (6)
where I is the identity matrix, and ∥ · ∥2F denotes the Frobenius norm.
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3.3 SELF-SUPERVISED PRETRAINING

We pretrain the foundation model using an augmentation-based contrastive learning approach for
time series modeling. This procedure uses augmented versions of time series data to learn robust
feature representations. Given an input TS sample x, we apply two augmentation techniques: time-
shift and scaling with jitter (Eldele et al., 2023), generating two diverse views of the same sample,
denoted as x̃1 and x̃2. Time-shift augmentation introduces variations in signal timing by shifting
the input sequence along the temporal axis, while scaling with jitter applies random scaling factors
combined with small perturbations, simulating variability in signal amplitude and sensor noise.

Both x̃1 and x̃2 are processed by the encoder and projector head to produce representation vectors
z1 and z2, respectively. We then employ the NT-Xent loss (Chen et al., 2020) to maximize similarity
between different views of the same sample while minimizing similarity with other samples. For a
batch of N samples, the NT-Xent loss for each augmented pair (x̃1, x̃2) is defined as:

LNT-Xent = − log
exp(sim(z1, z2)/τ)∑2N

j=1 1[j ̸=i]exp(sim(zi, zj)/τ)
, (7)

where sim(z1, z2) =
z1·z2

∥z1∥∥z2∥ denotes the dot product between ℓ2 normalized z1 and z2 (i.e., cosine
similarity), τ is a temperature scaling parameter, and 1[j ̸=i] is an indicator function excluding the
positive pair from the denominator.

The complete loss function for pretraining incorporates both the contrastive learning loss and the or-
thogonal loss, ensuring robust representation learning and distinct, separable prototypes. We express
the total loss as:

L = LNT-Xent + λ · Lorth (8)
where λ is a hyperparameter that balances the contribution of the orthogonal loss in the overall
optimization. In this study, we empirically set λ to 0.001.

4 EXPERIMENTS

This section evaluates the effectiveness of our proposed method across diverse real-world time series
classification tasks. We present the primary results of our approach to fault diagnosis (FD) and hu-
man activity recognition (HAR) tasks. Subsequently, we conduct an ablation study and analyze key
model parameters. Finally, we provide an extended analysis of the model’s performance and behav-
ior, offering a comprehensive assessment of our method’s capabilities and limitations. To promote
reproducibility and further research, the implementation code will be made publicly available.

4.1 EXPERIMENTAL SETUP

Datasets. We demonstrate the advantages of the proposed method on two key application tasks:
FD and HAR. Specifically, for the FD task, we employ six datasets (i.e., IMS (Qiu et al., 2006), UO
(Huang & Baddour, 2018), PU Lessmeier et al. (2016), CWRU (Smith & Randall, 2015), FEMTO
(Nectoux et al., 2012), and XJTUSY (Wang et al., 2020)) for pretraining phase. Subsequently, we
fine-tune and evaluate the model’s performance on three datasets (i.e., IMS, UO, PU). In the HAR
task, we utilize five datasets (i.e., HHAR (Stisen et al., 2015), SKODA (Stiefmeier et al., 2008),
UCIHAR (Anguita et al., 2013), USCHAD (Zhang & Sawchuk, 2012), and WISDM (Kwapisz et al.,
2011)) for pretraining phase, followed by fine-tuning and performance evaluation on each individual
dataset. Detailed information regarding data preprocessing procedures and dataset characteristics is
provided in Appendix A.

Handling Varying Time Series Characteristics. Due to the variability among TS datasets, we
implement the following preprocessing. First, we fix the varying numbers of channels by repeating
the channels in samples with fewer channels to match the maximum channel count in the whole
pretraining dataset pool. Notably, we mitigate potential overfitting to artificially duplicated data
by introducing random noise to these repeated channels. Second, we standardize sequence lengths
across samples by employing a two-pronged approach: longer sequences are downsampled to the
target length, while shorter sequences are zero-padded to reach the desired length. Specifically, we
standardize sequence lengths to 1024 for FD tasks and 128 for HAR tasks. These preprocessing
techniques ensure uniform input dimensions, enabling our model to train effectively.
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Model Architecture. We adopt the PatchTST architecture (Nie et al., 2023) for its simplicity and
effectiveness. The input data is initially segmented into patches, which are then mapped to embed-
dings. These embeddings are then processed by the encoder to extract salient features. The encoder
comprises multiple layers, each constructed with a multi-head attention mechanism followed by a
ProtoNorm layer, and a feed-forward network succeeded by another ProtoNorm layer, as depicted in
Figure 2. During the pretraining phase, the encoder-extracted features are directed to the contrastive
learning head for self-supervised training. In the fine-tuning and testing phases, these features are
instead fed into a classification head, consisting of linear classifiers, to generate predictions.

Hyperparameters. We optimize our model using the AdamW optimizer with a learning rate of
1e− 3, weight decay of 1e− 5, and dropout rate of 0.15. A cosine learning rate schedule with 2000
warmup steps is applied across all tasks. For the FD task, we employ a pretraining batch size of 256
over 5 epochs, with an embedding dimension of 256, 8 attention heads, 12 encoder layers, a patch
size of 50, and an input sequence length of 1024; fine-tuning maintains this architecture but reduces
the batch size to 64 and extends training to 50 epochs. HAR task uses a pretraining batch size of 128
over 5 epochs, with an embedding dimension of 128, 8 attention heads, 6 encoder layers, a patch
size of 32, and an input sequence length of 128; fine-tuning reduces the batch size to 8 and extends
training to 50 epochs. Model performance was evaluated using accuracy and macro-averaged F1
scores as primary metrics. Each experiment was repeated three times, with the average performance
reported. The method was implemented using PyTorch and conducted on NVIDIA L40 GPUs.

Baselines and Training Protocol. We benchmark our method against supervised training (Sup.),
pretraining on individual datasets (Individual), and conventional pretraining across multiple datasets
(Vanilla). For each application task, we fine-tune the model on 100 randomly selected samples per
dataset. However, for datasets with a high number of classes, we ensure a minimum of 5 samples per
class, even if this exceeds 100 total samples for that dataset. We initialize the model with pretrained
weights and replace the self-supervised learning head with a linear classifier. The model is then fine-
tuned on the downstream dataset, optimizing the learned representations for effective generalization
with minimal labeled data. During this fine-tuning stage, all prototypes remain frozen. Finally, we
evaluate the model’s performance using the test set from each respective dataset.

4.2 EXPERIMENTAL RESULTS

Performance Comparison on FD Task. Table 1 demonstrates the efficacy of the proposed
ProtoN-FM method compared to three baseline approaches across FD tasks. ProtoN-FM out-
performs all other methods, achieving an average accuracy of 70.33% and an average Macro-F1
score of 67.13%. Notably, all self-supervised learning pretraining methods surpass supervised train-
ing, underscoring their ability to capture complex patterns and variations inherent in time series data,
thus enabling richer feature representations. Furthermore, pretraining on multiple datasets exhibits
enhanced performance compared to individual dataset pretraining, suggesting that the incorporation
of diverse data facilitates more robust representation learning. While the Vanilla method shows im-
provement over individual pretraining, it fails to account for distribution shifts between datasets,
limiting its performance relative to ProtoN-FM. This finding validates that by explicitly address-
ing these shifts through a prototype-guided dynamic normalization mechanism, ProtoN-FM effec-
tively aligns its learning process with the heterogeneity present in real-world time series data.

Table 1: Performance comparison of various methods on FD task. We calculate the Accuracy and
F1-score (%) for each dataset. The best results are bolded and the second best results are underlined.

Datasets
Accuracy Macro-F1

Sup. Individual Vanilla ProtoN-FM Sup. Individual Vanilla ProtoN-FM

IMS 54.22 59.48 77.00 78.78 47.84 57.79 68.39 73.03
UO 49.32 50.62 60.00 68.56 48.20 49.33 58.81 67.93
PU 48.19 58.42 61.91 63.65 44.61 54.98 58.66 60.43

Average 50.58 56.17 66.30 70.33 46.88 54.03 61.95 67.13
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Table 2: Performance comparison of various methods on HAR task. We calculate the Accuracy and
F1-score (%) for each dataset. The best results are bolded and the second best results are underlined.

Datasets
Accuracy Macro-F1

Sup. Individual Vanilla ProtoN-FM Sup. Individual Vanilla ProtoN-FM

HHAR 69.57 70.23 71.07 72.43 61.44 62.67 63.08 64.36
SKODA 17.76 23.48 22.52 25.56 11.64 15.27 14.69 16.94
UCIHAR 54.01 55.68 57.69 59.38 43.03 44.61 45.54 46.69
USCHAD 30.52 32.01 34.69 36.64 18.73 20.45 22.14 23.86
WISDM 54.61 55.74 58.16 61.25 37.56 38.23 40.32 42.67

Average 45.29 47.43 48.83 51.05 34.48 36.25 37.15 38.90

Performance Comparison on HAR Task. Table 2 presents the classification performance analy-
sis for HAR tasks. The proposed ProtoN-FM method demonstrates superior efficacy compared to
baseline approaches, achieving an average accuracy of 51.05% and an average Macro-F1 score of
38.90%. Consistent with the findings in FD tasks, all self-supervised learning pretraining methods
outperform supervised training. ProtoN-FM consistently surpasses the Vanilla approach, which,
despite showing improvements over individual pretraining, fails to adequately address distribution
shifts between datasets. This underscores the importance of incorporating diverse training data and
accounting for the heterogeneity inherent in real-world HAR tasks. These performance metrics con-
firm that ProtoN-FM not only enhances classification accuracy but also provides a more nuanced
understanding of the underlying data dynamics in HAR applications.

5 MODEL ANALYSIS

5.1 ABLATION STUDY

Table 3 evaluates the contribution of different model components, comparing the average perfor-
mance of ProtoN-FM against two variants across various datasets in the FD task. The w/o Pro-
toGate variant represents the domain-specific LayerNorm model (i.e., DSLN), which replaces the
prototype-guided gate network with dataset-specific LayerNorm selection. A more detailed descrip-
tion of this variant method is provided in Appendix B. The w/o OrthoConstrain variant indicates
the orthogonality constraints are omitted from the model. The experimental results demonstrate that
removing the prototype-guided gate network (i.e., w/o ProtoGate) yields a notable decline in per-
formance, underscoring its crucial role in dynamically matching appropriate data distributions. In
contrast, using a fixed LayerNorm for each dataset may overlook subtle intra-dataset variations. Ad-
ditionally, removing the orthogonality restrictions (i.e., w/o OrthoConstrain) also diminishes model
performance, suggesting that imposing a separation constraint on learned prototypes enables the
gating network to better differentiate among diverse input features and distributions.

Table 3: Ablation study to the effect of each component. We calculate the Accuracy and F1-score
(%) for each dataset. The best average performance results are bolded.

Variants
Accuracy Macro-F1

IMS UO PU Average IMS UO PU Average

w/o ProtoGate 77.51 60.43 62.02 66.65 69.26 59.37 58.81 62.48
w/o OrthoConstrain 77.53 66.99 63.80 69.44 70.51 66.22 60.69 65.81

ProtoN-FM 78.78 68.56 63.65 70.33 73.03 67.93 60.43 67.13

5.2 PARAMETER ANALYSIS

We conduct parameter analyses of our model, focusing on two key parameters: the number of Lay-
erNorms per ProtoNorm layer and the orthogonal loss weight λ. For the former, we compare models
with {2, 3, 4,#D} LayerNorms, where #D represents the number of pretraining datasets. For λ, we
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evaluate performance across values of {0.001, 0.01, 0.1, 1}. This systematic exploration allows us
to assess the impact of these parameters on model performance and identify optimal configurations.

Effect of Number of LayerNorms. Figure 4 illustrates the average performance of ProtoN-FM
with varying numbers of LayerNorms within each ProtoNorm across different datasets for both
FD and HAR tasks. Detailed results for each dataset are provided in Appendix C.1. For the FD
task, employing three LayerNorms within per ProtoNorm layer yields optimal performance, with
an average accuracy of 70.33% and a Macro-F1 score of 67.80%, marginally outperforming other
configurations. Conversely, in the HAR task, setting the number of LayerNorms equal to the number
of pretrained datasets (#D) achieves the highest performance, with an accuracy of 51.85% and a
Macro-F1 score of 38.50%. These findings suggest that the optimal number of LayerNorms may be
task-dependent, with a slight advantage in matching the LayerNorm count to the number of datasets
in more diverse or complex tasks such as HAR. Notably, the model’s performance remains relatively
stable across different numbers of LayerNorms, indicating robustness to this parameter choice.
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Figure 4: Average performance comparison with
varying number of LNs across different datasets
on different tasks. (a) Average performance on
different datasets of FD task. (b) Average perfor-
mance on different datasets of HAR task.
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Figure 5: Average performance comparison us-
ing varying number of λ across IMS dataset of
FD task and UCIHAR dataset of HAR task. (a)
Average performance on IMS of FD task. (b) Av-
erage performance on UCIHAR of HAR task.

Effect of Orthogonal Weights λ. Figure 5 illustrates the effect of varying the orthogonal loss
weight λ ∈ {0.001, 0.01, 0.1, 1} on the IMS (in the FD task) and UCIHAR (in the HAR task)
datasets. For the IMS dataset, λ = 0.01 yields optimal performance, achieving an accuracy of
78.86% and a Macro-F1 score of 73.25%. Performance declines as λ increases, suggesting that
larger values may lead to over-regularization. Conversely, the UCIHAR dataset exhibits less sen-
sitivity to λ, with only minor fluctuations in both accuracy and Macro-F1. The highest accuracy
of 59.38% and Macro-F1 of 46.69% are observed at λ = 0.001, but overall performance remains
stable across different values. These results indicate that model performance is not highly sensitive
to λ, and smaller values tend to suffice for optimal performance across both tasks.

5.3 GENERALIZATION ANALYSIS
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Figure 6: Average generalization performance of
ProtoN-FM and Vanilla on FD and HAR Tasks.
(a) Comparison of the average accuracy on all
datasets of each task. (b) Comparison of the av-
erage macro-F1 on all datasets of each task.

This section evaluates the generalization ca-
pacity of the proposed ProtoN-FM model in
comparison to the Vanilla pretraining method
across both fault diagnosis and human activ-
ity recognition tasks. For each dataset within
each task, we employ a cross-domain pretrain-
ing approach: the model is pretrained on all
datasets except the target dataset, fine-tuned on
a small portion of the target dataset, and subse-
quently tested on its corresponding test set. Fig-
ure 6 illustrates the average performance across
different datasets for both FD and HAR tasks.
Comprehensive results for individual datasets
are provided in Appendix C.2.

Figure 6 demonstrates that ProtoN-FM con-
sistently outperforms Vanilla pretraining in both accuracy and Macro-F1 scores across both appli-
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cation tasks. In the FD task, ProtoN-FM achieves a notable improvement, increasing accuracy
from 41.89% to 46.73% and Macro-F1 from 37.27% to 41.03%. Similarly, for the HAR task,
ProtoN-FM surpasses Vanilla pretraining with an accuracy gain from 47.78% to 49.12% and a
Macro-F1 boost from 36.32% to 37.49%. These results underscore the enhanced generalization
ability of ProtoN-FM, particularly in handling distribution shifts across diverse datasets. The con-
sistent improvements across both application domains highlight the model’s robustness and efficacy
in capturing meaningful representations during pretraining, which are better aligned for fine-tuning
on new, unseen datasets.

5.4 ANALYSIS OF VARYING DISTRIBUTION SHIFTS

In this section, we evaluate the effectiveness of our ProtoN-FM model under varying levels of
distribution shifts using the IMS dataset. To simulate different shift magnitudes, we create three
perturbed versions of the IMS dataset (i.e., IMS-N1, IMS-N2, IMS-N3) by adding Gaussian noise
with increasing standard deviations (i.e., 0.1, 0.2, and 0.3, respectively). The model is pretrained on
paired datasets (i.e., IMS with IMS-N1, IMS-N2, or IMS-N3) and fine-tuned with a small subset of
IMS data. Performance is assessed on the IMS test set, comparing our ProtoN-FM method with
the Vanilla pretraining approach. As illustrated in Figure 7, ProtoN-FM consistently outperforms
Vanilla pretraining across all perturbation levels. Notably, in the most challenging scenario (i.e.,
IMS-N3), ProtoN-FM improves accuracy from 67.05% to 70.54% and Macro-F1 from 63.84% to
66.28%, demonstrating its robustness in handling distribution shifts across the data.

65

70

75

Accuracy Macro-F1Pe
rf

or
m

an
ce

 (%
)

Vanilla ProtoN-FM

(a)

60

65

70

75

Accuracy Macro-F1Pe
rf

or
m

an
ce

 (%
)

Vanilla ProtoN-FM

(b)

60

65

70

75

Accuracy Macro-F1Pe
rf

or
m

an
ce

 (%
)

Vanilla ProtoN-FM

(c)

Figure 7: Comparative average performance of ProtoN-FM and Vanilla method on the IMS Dataset
under varying distribution shifts. IMS-N1, IMS-N2, and IMS-N3 represent increasingly perturbed
versions of the original IMS dataset. (a) Pretraining on IMS and IMS-N1, fine-tuning and testing on
IMS. (b) Pretraining on IMS and IMS-N2, fine-tuning and testing on IMS. (c) Pretraining on IMS
and IMS-N3, fine-tuning and testing on IMS.

6 CONCLUSION

This paper introduces ProtoN-FM, a novel approach addressing the discrepancy between founda-
tion model pretraining and time series data distributions. ProtoN-FM enables adaptive normaliza-
tion based on the similarity of samples to learned prototypes. Unlike traditional LayerNorm, which
applies fixed normalization parameters across all samples, our method learns prototypes that capture
distinct data characteristics, with each prototype associated with a corresponding LayerNorm mod-
ule. Comprehensive experiments across diverse datasets in various application classification tasks
demonstrate our superior performance over traditional Transformer design, particularly in alleviat-
ing data distribution mismatches in time series data. Future research should explore the universal
capabilities of our model in handling additional downstream tasks, such as forecasting and anomaly
detection. Moreover, integrating ProtoNorm layer into various Transformer architectures to fully
leverage its pretraining potential presents a promising avenue for future work.
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A DATASETS DETAILS

A.1 DATA PREPROCESSING

For all application tasks, we employ a 60/20/20 ratio for train/validation/test splits. In addition, to
enhance the scale and diversity of our data, we incorporate three additional prognostics and health
management (PHM) datasets—CWRU, FEMTO, and XJTUSY—to augment the pretraining phase
for FD tasks. Subsequently, we fine-tune and evaluate the model’s performance on three datasets
(i.e., IMS, UO, PU). In the HAR task, we utilize five datasets (i.e., HHAR, SKODA, UCIHAR,
USCHAD, and WISDM) for pretraining phase, followed by fine-tuning and performance evaluation
on each individual dataset.

A.2 FD TASK

Our fine-tune and evaluate on the FD task employs three datasets, described as follows:

• IMS: This dataset, sourced from the University of Cincinnati, comprises data from three
run-to-failure experiments conducted on a loaded shaft. The experimental setup consisted
of a shaft supported by four roller bearings, with each bearing housing instrumented with
both vertical and horizontal accelerometers. The experiments culminated in the develop-
ment of a defect on one of the bearings, providing valuable data on the progression of
bearing failure under controlled conditions.

• UO: This dataset encompasses vibration signals from bearings operating under diverse
health conditions and rotational speeds. It comprises 36 signal sets, each corresponding to
one of 12 experimental conditions derived from combinations of three bearing health states
(healthy, inner race defect, outer race defect) and four rotational speed patterns (ascending,
descending, ascending-descending, and descending-ascending). To ensure data reliability,
three trials were conducted for each condition. In the UO dataset, the bearing’s health
state serves as the class label, while the various rotational speed patterns represent distinct
domains.

• PU: This dataset comprises vibration signals from an electric motor, encompassing 32 dis-
tinct signal sets, each corresponding to a different bearing. The bearings are categorized
as follows: 6 healthy, 12 with artificial damage, and 14 with real damage incurred under
actual operating conditions. Each bearing was subjected to four different working condi-
tions. In this dataset, the bearing type serves as the class label, while the various operating
conditions represent distinct domains. For our study, we focused on the data collected from
real damaged bearings across all working conditions to conduct performance verification.

To augment the pretraining data for the FD task, we incorporate three additional related prognostics
and health management datasets.

• CWRU: This dataset, provided by the Case Western Reserve University Bearing Data Cen-
ter, comprises vibration signals collected at frequencies of 12 kHz or 48 kHz from both
normal bearings and those with single-point defects, under four distinct motor load condi-
tions. For each operational state, single-point faults were artificially induced on the rolling
element, inner ring, and outer ring, with fault diameters of 0.007, 0.014, and 0.021 inches,
respectively. In our study, we utilized data collected from the drive end, sampled at 12 kHz.

• FEMTO: This dataset, sourced from the FEMTO-ST Institute in France, comprises 17
accelerated run-to-failure experiments. Acceleration and temperature data were collected
using a test bench that subjected bearings to variable loads and speeds under three distinct
operating conditions. Data acquisition occurred at 10-second intervals, with each sam-
ple spanning 0.1 seconds. This experimental design provides a comprehensive dataset for
studying bearing degradation under controlled, accelerated conditions.

• XJTUSY: This dataset comprises run-to-failure data from fifteen bearings, tested under
three distinct operating conditions. Each recording consists of 32768 data points, captured
using a dual-channel vibration sensor sampling at 2.56 kHz. The data acquisition protocol
involved recording 1.28-second snapshots at one-minute intervals, providing a comprehen-
sive time series of bearing degradation across varying operational parameters.
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A summary of the characteristics of these two types datasets is presented in Tables 4 and 5.

Table 4: A description of characteristics of the datasets on FD task used in our experiments.
Dataset # Train # Test Length # Channel # Class

IMS 42492 14164 20480 1 4
UO 42184 14061 2000000 2 3
PU 163296 54432 249600 1 14

Table 5: A description of characteristics of the datasets on other related PHM datasets.
Dataset # Train # Val Length # Channel Sample Rating

CWRU 280 2201 120000 2 12kHz
FEMTO 11794 11934 2560 2 25.6kHz
XJTUSY 191040 202912 32768 2 25.6kHz

A.3 HAR TASK

Our evaluation of the HAR task employs five datasets, described as follows:

• HHAR: This dataset is distinguished by its diverse data collection methodology, encom-
passing multiple device types (smartphones and smartwatches) and various individuals per-
forming a range of activities including cycling, sedentary postures (sitting and standing),
ambulation (walking), and stair navigation. The dataset’s heterogeneity in terms of device
types and body positions presents a challenging benchmark for evaluating model general-
ization across diverse sensor configurations and activity categories.

• SKODA: This dataset is specifically designed to monitor worker activity in a manufac-
turing assembly-line environment. It comprises accelerometer readings from ten distinct
positions on subjects’ arms, with each data point annotated with a specific activity class,
including a null class. The multi-point sensor placement and task-specific labeling make
this dataset particularly valuable for studying fine-grained human activities in industrial
settings. For this dataset, we selected 5 out of 113 channels for our experiments, i.e., chan-
nels with ID 55, 45, 52, 50, and 58. Those were selected based on the correlations between
channels.

• UCIHAR: This dataset comprises experimental data collected from a cohort of 30 volun-
teers performing six activities: walking, ascending stairs, descending stairs, sitting, stand-
ing, and lying down. Participants wore a waist-mounted smartphone equipped with embed-
ded accelerometer and gyroscope sensors, which captured 3-axial linear acceleration and
3-axial angular velocity data, respectively.

• USCHAD: This dataset comprises six-dimensional readings from body-worn 3-axis ac-
celerometers and gyroscopes, collected via Motion-Node devices. The study population
consists of 14 subjects (7 male, 7 female), balanced for gender and with specified physi-
cal characteristics and age demographics. Data were sampled at 100 Hz, with each time-
step annotated with one of 12 distinct activity class labels. This comprehensive and well-
structured dataset provides a robust foundation for human activity recognition research.

• WISDM: This dataset comprises time series data collected from smartphone sensors and
wearable devices, capturing a diverse range of human activities including ambulation
(walking and jogging) and stationary postures (sitting and standing). The heterogeneous
nature of the user-generated activity data renders this dataset particularly suitable for eval-
uating the robustness of HAR models across varied motion patterns and sensor placements.

A summary of the characteristics of these datasets is presented in Table 6.
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Table 6: A description of characteristics of the datasets on HAR task used in our experiments.
Dataset # Train # Test Length # Channel # Class

HHAR 10233 4436 128 3 6
SKODA 2919 974 177 5 10
UCIHAR 5881 2947 128 9 6
USCHAD 2992 1008 500 6 12
WISDM 6309 2104 100 3 6
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Figure 8: Comparison of LayerNorm (LN) and Domain-Specific LayerNorm (DSLN). A DSLN
layer comprises n branches, each corresponding to a specific dataset. Input signals are directed to
the appropriate branch based on their attributed dataset.

B DOMAIN-SPECIFIC LAYER NORMALIZATION

Domain-Specific LayerNorm (DSLN), a variant of our model, is implemented by using multiple
sets of LNs reserved for each time series dataset. Figure 8 illustrates the difference between LN
and DSLN. Formally, DSLN allocates domain-specific affine parameters γk and βk for each dataset
Dk ∈ D. Let xk = {xk

i |i = 1, 2, ..., d; k = 1, 2, ..., n} denotes a layer’s activation for a single input
belong to dataset Dk, then DSLN layer can be written as follows,

DALNk(xk
i ; γ

k, βk) = γk · x̂k
i + βk, (9)

where

x̂k
i =

xk
i − µk√
σ2
k + ϵ

, (10)

and

µk =
1

d

d∑
i=1

xk
i , σ2

k =
1

d

d∑
i=1

(xk
i − µk)

2
. (11)

During training, DSLN employs a separate LN module for each dataset, ensuring dataset-specific
normalization statistics and learned affine parameters. In the testing phase, for datasets used during
pretraining, DSLN applies the corresponding dataset-specific LN, maintaining consistency with the
training phase normalization. For novel datasets not included in pretraining, DSLN averages the
outputs of all dataset-specific LN modules. This approach enables the model to generalize to unseen
datasets by leveraging the collective learned normalization parameters.

C DETAILED RESULTS

C.1 DETAILED RESULTS ON THE EFFECT OF VARYING NUMBER OF LAYERNORMS

Detailed analysis reveals that the performance of the ProtoN-FM model varies with the number
of LayerNorms within each ProtoNorm layer across different datasets in both FD and HAR tasks.
For the FD task, three LayerNorms yield optimal results, with an average accuracy of 70.33% and
a Macro-F1 score of 67.80%, marginally outperforming other configurations. The IMS dataset
shows improved performance with increased LayerNorms, peaking at 78.78% accuracy and 73.03%
Macro-F1 score. Conversely, in the HAR task, aligning the number of LayerNorms with the number
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of pretrained datasets (#D) achieves the highest performance, with an average accuracy of 51.85%
and a Macro-F1 score of 38.50%. This configuration’s robustness is further evidenced by small
gains observed in datasets like UCIHAR and USCHAD. While performance differences between
configurations are relatively small, these findings underscore the importance of tuning the number
of LayerNorms based on task complexity and dataset diversity.

Table 7: Performance comparison using different number of LayerNorms accross various datasets
on both FD and HAR tasks. We calculate the Accuracy and F1-score (%) for each dataset. Best
average performance results are bolded.

Datasets
Accuracy Macro-F1

2 3 4 #D 2 3 4 #D

IMS 78.14 78.78 78.33 77.23 71.92 73.03 71.51 70.40
UO 66.83 68.56 67.60 68.48 66.10 67.93 66.77 67.72
PU 63.38 63.65 63.42 64.91 60.08 60.43 60.14 61.61
Average 69.45 70.33 69.78 70.21 66.03 67.80 66.81 66.58

HHAR 72.09 72.29 72.22 72.43 64.12 64.11 64.21 64.36
SKODA 26.01 24.26 23.48 25.56 16.27 15.93 15.50 16.94
UCIHAR 59.24 59.11 59.29 59.38 46.70 46.72 46.58 46.69
USCHAD 36.24 35.78 36.01 36.64 23.43 23.23 23.34 23.86
WISDM 63.48 60.85 62.69 61.25 43.70 42.56 42.87 42.67
Average 51.81 50.46 50.74 51.85 38.44 38.11 38.10 38.50

C.2 DETAILED RESULTS ON THE GENERALIZATION ANALYSIS

Detailed analysis of generalization performance for both FD and HAR tasks reveals consistent im-
provements using the ProtoN-FM model over Vanilla pretraining across all datasets. In the FD
task illustrated in Table 8, ProtoN-FM demonstrates significant gains in both accuracy and Macro-
F1 scores. The IMS dataset shows an accuracy increase from 50.10% to 54.66%, with Macro-F1
rising from 42.69% to 45.12%. Similarly, the UO dataset improves from 68.23% to 72.88% in ac-
curacy and from 67.64% to 72.40% in Macro-F1. On average, ProtoN-FM outperforms Vanilla
pretraining in the FD task, boosting accuracy from 41.89% to 46.73% and Macro-F1 from 37.27%
to 41.03%. The results in Table 9 show that for the HAR task, ProtoN-FM also exhibits su-
perior performance. For example, in the USCHAD dataset, accuracy improves from 31.75% to
35.65%, and Macro-F1 increases from 19.49% to 23.30%. On average, ProtoN-FM increases ac-
curacy from 47.78% to 49.12% and Macro-F1 from 36.32% to 37.49%. These results demonstrate
ProtoN-FM’s enhanced generalization capabilities across diverse datasets compared to the Vanilla
pretraining approach.

Table 8: Detailed results of generalization performance comparison of vanilla pretraining method
and ProtoN-FM on FD Task. We calculate the Accuracy and F1-score (%) for each dataset. The
best average performance results are bolded.

Datasets
Accuracy Macro-F1

Vanilla ProtoN-FM Vanilla ProtoN-FM

IMS 50.10 54.66 42.69 45.12
UO 68.23 72.88 67.64 72.40
PU 07.33 12.65 01.47 5.58

Average 41.89 46.73 37.27 41.03
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Table 9: Detailed results of generalization performance comparison of vanilla pretraining method
and ProtoN-FM on HAR Task. We calculate the Accuracy and F1-score (%) for each dataset. The
best average performance results are bolded.

Datasets
Accuracy Macro-F1

Vanilla ProtoN-FM Vanilla ProtoN-FM

HHAR 70.18 70.51 62.18 62.64
SKODA 22.45 23.58 15.09 15.57
UCHIAR 57.64 58.49 45.38 46.29
USCHAD 31.75 35.65 19.49 23.30
WISDM 56.86 57.37 39.45 39.65

Average 47.78 49.12 36.32 37.49
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