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Abstract

We study causal, low-latency, sequential video
compression when the output is subjected to both
a mean squared-error (MSE) distortion loss as
well as a perception loss to target realism. Mo-
tivated by prior approaches, we consider two
different perception loss functions (PLFs). The
first, PLF-JD, considers the joint distribution (JD)
of all the video frames up to the current one,
while the second metric, PLF-FMD, considers
the framewise marginal distributions (FMD) be-
tween the source and reconstruction. Using deep-
learning based experiments, we demonstrate that
the choice of PLF can have a significant effect
on the reconstruction, especially at low-bit rates.
In particular, while the reconstruction based on
PLF-JD can better preserve the temporal correla-
tion across frames, it also imposes a significant
penalty in distortion compared to PLF-FMD and
further makes it more difficult to recover from
errors made in the earlier output frames. We also
demonstrate that encoded representations gener-
ated by training a system to minimize the MSE
(without requiring either PLF) can be transformed
to a reconstruction satisfying the perfect percep-
tual quality based on FMD by changing the dis-
tortion at most with a factor of two. A similar
argument holds for the PLF-JD for a class of en-
coders operating at low-rate regime. We validate
our results using information-theoretic analysis
and deep-learning based experiments on moving
MNIST and KTH datasets.
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1. Introduction
There is an increasing demand for video compression al-
gorithms that are able to generate visually pleasing videos
at low bitrates. Most of the current video codecs use dis-
tortion measures such as PSNR (Agustsson et al., 2020a;
Yang et al., 2020; Rippel et al., 2021; Li et al., 2021a), MSE
and MS-SSIM (Golinski et al., 2020; Rippel et al., 2021;
Li et al., 2021a) to generate reconstructions which tend to
be blurry at extremely low bitrates. In recent years, there
has been a growing interest (see e.g., (Zhang et al., 2021b;
Mentzer et al., 2022; Yang et al., 2021; Veerabadran et al.,
2021; Wang et al., 2020)) in using deep generative mod-
els to make the reconstructions look more realistic. Such
techniques introduce an additional perception loss function
that measures a distance between distributions of the source
and reconstruction, with perfect perception corresponding
requiring that the two distributions be identical.

In compression systems, improving realism comes at the
price of increasing distortion. The work of Blau and
Michaeli (Blau & Michaeli, 2019) establishes the theoret-
ical rate-distortion-perception (RDP) tradeoff which has
also been validated in (Agustsson et al., 2019; Ballé et al.,
2017; Theis et al., 2017; Mentzer et al., 2018). Further-
more universal encoded representations were proposed in
(Zhang et al., 2021a) where the representation is fixed at
the encoder and the decoder is adapted to achieve a perfor-
mance near the optimal RDP tradeoff curve. The extension
of these works to video compression involves many chal-
lenges. First, the compression system must not only account
for spatial redundancy as in image compression, but also
exploit the temporal redundancy across video frames, mak-
ing the system design more complex. Secondly, unlike the
case of image compression, there may be no clear choice
of the perception loss function (PLF). Indeed, some prior
works (Mentzer et al., 2022) consider PLF that preserves
framewise marginal distribution (PLF-FMD) between the
source and reconstruction, while other works consider joint
distribution (PLF-JD) across multiple frames (Veerabadran
et al., 2021).

As illustrated in Fig. 1a, we study causal, low-latency, se-
quential video compression when the output is subjected to
both a mean squared-error (MSE) distortion loss and either
a PLF-JD or PLF-FMD metric for perception loss.
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(a) Encoders and decoders for T=3 frames.
(b) Effects of different PLFs on reconstructions for Moving MNIST and

KTH datasets (best view in the monitor).

Figure 1. (a) Proposed System Model (b) Error permanence phenomenon under different PLF. High fidelity but incorrect I-frame
reconstruction propagates the error to subsequent P-frames in 0-PLF-JD reconstructions. The MMSE and 0-PLF-FMD reconstructions do
not have this problem.

Our main results are as follows. For general sources, we
show that when using PLF-FMD, the MMSE reconstruction
can be transformed to a reconstruction satisfying perfect
perceptual quality by increasing the distortion at most by a
factor of two. While a similar result does not hold for PLF-
JD in general, it is satisfied for a special class of encoders
which operate in the low-rate regime. On the experimental
side, we demonstrate that while PLF-JD preserves better
temporal consistency across video frames, it suffers from
the permanence of error phenomenon in which the mistakes
in reconstructions propagate to future frames 1. On the other
hand, the PLF-FMD metric shows more capability in cor-
recting mistakes across frames (see Fig. 1b for visualizations
involving three-frame videos).

2. System Model
Let (X1, . . . , XT ) ∈ X1 × . . .×XT be T frames in a video
(with each Xi ⊆ Rd) distributed according to PX1...XT

.
The frames are available for encoding sequentially; X1 is
available first, then X2 arrives, followed by X3 and so on.
There is a shared randomness K ∈ K which is available at
all encoders and decoders. The following (possibly stochas-
tic) mappings define the encoding and decoding functions:

fj : X1 × . . .×Xj ×K → Mj , j = 1, . . . , T,(1)

gj : M1 ×M2 × . . .×Mj ×K → X̂j , (2)

where Mj ∈ {0, 1}⋆ denotes the set of (variable-length)
messages assigned by the jth encoder and X̂j ⊆ Rd

is the j-th reconstruction alphabet (see Fig. 1a). Let
PX̂1...X̂T |X1...XT

be the conditional distribution of the re-
constructed video given the original video which is basically

1Unlike the error propagation issue (Mentzer et al., 2020; Lu
et al., 2020), the permanence of error phenomenon cannot be
resolved by increasing the code rate assigned to the P frames.

determined by the mappings {fj}Tj=1 and {gj}Tj=1. The
above setting is a one-shot setup as only a single source
sample is compressed at a time. For each frame j, a dis-
tortion metric is imposed on the output, which we assume
throughout is the mean squared-error (MSE) function i.e.
d(xj , x̂j) = ||x− x̂j ||2, which is commonly used in many
applications. The compression rate of the jth frame is de-
fined to be E[ℓ(Mj)] where ℓ(.) denotes the length of the
message Mj . From a perceptual point of view, for given
probability distributions PX1...Xj

and PX̂1...X̂j
on the orig-

inal and reconstructed frame j, let ϕj(PX1...Xj
, PX̂1...X̂j

)
be the perception function capturing the difference between
them. Note that the function ϕj is defined based on the joint
distribution of all first j frames. We call this metric as per-
ception loss function based on joint distribution (PLF-JD).
Note that when ϕj(PX1...Xj

, PX̂1...X̂j
) = 0, we have:

PX1...Xj
= PX̂1...X̂j

, j = 1, . . . , T. (3)

We refer to this case as zero-perception loss function based
on joint distribution (0-PLF-JD). Alternatively, the percep-
tion loss function based on framewise marginal distribution
(PLF-FMD) is denoted by ξj(PXj

, PX̂j
) and is based on

only the marginal distribution of the j-th frame. In particu-
lar, note that 0-PLF-FMD implies that PXj

=PX̂j
for each

j.

In most of the paper, for simplicity of presentation, we
provide some of our results for T = 3 frames. In
that case, we use the shorthand notation X to denote the
tuple (X1, X2, X3), e.g., M := (M1,M2,M3), D :=
(D1, D2, D3), f := (f1, f2, f3).

3. Distortion Analysis for a Fixed Encoder and
Zero-perception Loss

In this section, we assume that the encoding functions f
are fixed, but the decoding functions g can be optimized to
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generate different reconstructions. Equivalently, the dis-
tribution PM|XK :=1{M = f(X,K)} is fixed, while by
varying the reconstruction distribution PX̂|MK :=1{X̂ =

g(M,K)}, one attains different reconstructions X̂, where
1{.} denotes the indicator function. Furthermore defining
Dj :=EP [∥Xj − X̂j∥2], we denote D as the achievable dis-
tortion tuple associated with PX̂|MK .

One natural choice of reconstructions is the minimum mean
squared error (MMSE) reconstruction function. At step
j, the reconstruction, which we denote in this case by
X̃j , is obtained by taking the conditional expectation of
Xj given all information at the decoder up to time j i.e.,
X̃j :=EP [Xj |M1 . . .Mj ,K] for each j = 1, 2, 3. It is well
known that the MMSE reconstruction functions minimize
the reconstruction distortion i.e., if we define the set

ΦDmin(PM|XK) =

{D : Dj ≥ EP [∥Xj − X̃j∥2], j = 1, 2, 3}, (4)

then the distortion tuple D associated with any reconstruc-
tion PX̂|MK satisfies D ∈ ΦDmin(PM|XK).

The main result of this section is that assuming fixed en-
coder, the achievable distortions under 0-PLF-FMD is at
most twice of that under the MMSE distortion loss alone.
The same conclusion also holds for 0-PLF-JD for a class of
encoders operating at low rate. We first consider the case of
0-PLF-FMD.

Definition 3.1 (0-PLF-FMD Distortion). For an encoder
PM|XK , the set ΦD0(PM|XK) denotes the set of all distor-
tion tuples D for which there exists a reconstruction PX̂|MK

satisfying PXj
= PX̂j

for each j ∈ {1, 2, 3}.

Theorem 3.2. The set ΦD0(PM|XK) is characterized as
follows:

ΦD0(PM|XK) = {D :

Dj ≥ EP [∥Xj − X̃j∥2] +W 2
2 (PX̃j

, PXj ), j = 1, 2, 3},
(5)

where W 2
2 (PXj

, PX̂j
) denotes the Wasserstein-2 distance

between the two distributions (Panaretos & Zemel, 2020).
Furthermore, we also have that:

ΦD0(PM|XK) ⊇
{D : Dj ≥ 2EP [∥Xj − X̃j∥2], j = 1, 2, 3}, (6)

i.e., minimum achievable distortion with 0-PLF-FMD is at
most twice the MMSE distortion.

Proof: See Appendix A.

We remark that the proof of Theorem 3.2, operationally
demonstrates that the MMSE reconstruction can be con-
verted to another reconstruction satisfying 0-PLF-FMD with

at-most a factor of 2 increase in distortion, generalizing the
result in (Zhang et al., 2021a) for the single frame scenario
(see also (Blau & Michaeli, 2018)).

We next consider the case when zero perception loss is sat-
isfied under the PLF-JD metric. Analogous to ΦD0(PM|XK)

in Definition 3.1, one can define Φjoint
D0 (PM|XK) to be the set

of distortions associated with reconstruction functions that
satisfy (3). The analysis of Φjoint

D0 (PM|XK) is discussed in
Appendix B as it is more involved. In general, the factor
of two bound as in Theorem 3.2 cannot be realized in this
case as demonstrated by a counter-example in Appendix B.
Nevertheless, for a special family of encoders we can obtain
a counterpart of Theorem 3.2. In this family of encoders,
the source Xj at time j is nearly independent of the encoder
outputs up to and including time j, i.e., we can express:

P noisy
Xj |M1...MjK

= (1− µ)PXj
+ µQnoisy

Xj |M1...MjK
,

j = 1, 2, 3. (7)

where µ is a sufficiently small constant and the distribution
Qnoisy(·) could be arbitrary conditional distribution with
same marginal as PXj . We note that such encoders are
studied in a variety of problems in information theory (see
e.g., (Makur, 2019)) that correspond to the low rate operat-
ing regime. The following result states that the factor-two
bound holds approximately for such encoders.

Theorem 3.3. For the class of encoders given by (7), we
have

Φjoint
D0 (P noisy

M|XK) ⊇

{D : Dj ≥ 2EP noisy [∥Xj − X̃j∥2] +O(µ), j = 1, 2, 3}.
(8)

Proof: See Appendix C.

We note that the low-rate operating regime is practically
important, as at higher rates MMSE based reconstructions
can suffice and the use of PLF metrics may be less relevant.

4. Experiment
We conduct experiments on the MovingMNIST dataset (Sri-
vastava et al., 2015) (with 1 digit) using Wasserstein GAN
(Gulrajani et al., 2017), to verify the implications of our
theoretical claims to perceptual video compression. Ad-
ditional results on the KTH dataset (Schuldt et al., 2004)
are available in Appendix D.2. Our compression network
is built on the scale-space flow model (Agustsson et al.,
2020b) and conditional module (Li et al., 2021b). Details
about the architecture and training objectives are available
in the Appendix D.1. The experimental setup is focused on
validating our theory, rather than proposing state-of-the-art
neural network architectures. Accordingly, we (1) validate
Theorems 3.2 and 3.3, which characterize the factor-of-two
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bounds on the distortion of 0-PLF reconstructions (2) em-
pirically demonstrate the error permanence phenomenon of
the PLF-JD.

Table 1. Distortions of optimal reconstructions at different regimes
(✓means factor of 2 holds and ✗means otherwise). Distortion is
scaled by 10−2.

(a) Case 1: R1=∞ bits.
R2 MMSE 0-PLF-FMD 0-PLF-JD
1 1.08± 0.01 1.74± 0.02✓ 2.05± 0.03✓
2 0.88± 0.01 1.39± 0.03✓ 1.46± 0.02✓

3.17 0.53± 0.01 0.76± 0.01✓ 0.79± 0.01✓

(b) Case 2: R1=12 bits(ϵ).
R2 MMSE 0-PLF-FMD 0-PLF-JD
4 1.23± 0.01 2.21± 0.04✓ 2.36± 0.04✓
8 1.04± 0.01 1.78± 0.03✓ 2.28± 0.03 ✗
12 0.89± 0.02 1.43± 0.02✓ 2.26± 0.03 ✗
∞ 0.0 0.0 ✓ 2.18± 0.02 ✗

As our first experimental result in Table 1, we validate the
factor of two bounds in Theorems 3.2 and 3.3. We con-
sider the compression of two frames X1 and X2 at rates
R1 and R2 respectively. The compression of X1 is per-
formed without any prior reference and corresponds to the
compression of the “I-frame”, while the compression of X2

corresponds to the “P-frame”, using X1 as the reference.
We consider the cases when either R1=∞ or R1=12 bits,
where the former corresponds to lossless compression of X1

and the latter corresponds to the low rate regime. The aver-
age distortion for the first frame when R1 = 12 is 0.0124
for the MMSE reconstruction and 0.0235 for the 0-PLF re-
construction, thus satisfying the factor of two bound. In
compression of X2, we systematically vary the value of the
rate R2∈{4, 8, 12,∞}. Following Table 1b, for 0-PLF-JD
reconstruction, only R2=4 bits (low rate) satisfies the fac-
tor of two bounds as expected. Intuitively, even as more
bits are acquired, the 0-PLF-JD criteria actively restricts im-
proving the reconstructions, resulting in persistently higher
distortion. Even in the case when R2 = ∞, the distortion
remains non-zero as the decoder is forced to maintain tem-
poral consistency with X̂1. In contrast, for FMD, the factor
of 2 bound holds at all rates, consistent with Theorem 3.2.

In Fig. 2 and Fig. 3, we present our experimental results
with a group of pictures (GOP) of size 3 (i.e. one I-frame
followed by two P-frames). In Fig. 2, we visualize sample
reconstructions for MSE, 0-PLF-FMD and 0-PLF-JD cases
when operating in the low-rate regime with Rj = 12 bits
for j = 1, 2, 3. Note that given an incorrect digit recon-
struction in X̂1, the decoder with 0-PLF-JD consistently
produces incorrect digits (or content) while the 0-PLF-FMD
gradually “corrects” it, which is called as error permanence
phenomenon. We also plot the framewise distortion in Fig. 3
to show the difference in achievable distortion of the two
perception metrics across different values for R2 and R3

- -

Figure 2. Permanence of Error Phenomenon. Ground-truth
GOP and their optimal reconstructions with different PLFs for
R1=R2=R3=12 bits.
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Figure 3. Permanence of Error Phenomenon. Distortion per frame
(Xi−X̂i)

2 with 0-PLF-FMD and 0-PLF-JD reconstructions for dif-
ferent R2, R3 (R1=12 bits for all the cases). When R2=R3=∞,
the distortions for the second and third frames are 2.18×10−2 for
0-PLF JD and 0.0 for 0-PLF FMD.

as a function of the frame index. We note that the achiev-
able distortion decreases much faster for 0-PLF-FMD than
0-PLF-JD for all selection of rates.

5. Conclusion
This work examines key theoretical properties of different
perception loss functions, namely PLF-FMD and PLF-JD,
for causal video coding. Our analysis highlights that while
0-PLF-JD reconstruction preserves temporal correlation, it
is susceptible to the error permanence phenomenon. On
the contrary, despite sacrificing temporal consistency, the
0-PLF-FMD reconstruction method effectively avoids this
issue, ensuring that the reconstructed results are always con-
fined within a factor of 2 from the MMSE reconstructions.
We suggest future research directions such as exploring
region-based perceptual metrics (Pergament et al., 2022),
incorporating image-aware bits allocation, and leveraging
conditional perception metric (Mentzer et al., 2020).
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A. Distortion Analysis for 0-PLF-FMD
Recall the definition of Wasserstein-2 distance (Panaretos & Zemel, 2020) as follows. For given distributions PXj

and PX̃j
,

let

W 2
2 (PX̃j

, PXj
) := inf E[∥Xj − X̃j∥2], (9)

where the infimum is over all joint distributions of (Xj , X̃j) with marginals PXj
and PX̃j

.

Theorem A.1. The set ΦD0(PM|XK) is characterized as follows:

ΦD0(PM|XK) = {D : Dj ≥ EP [∥Xj − X̃j∥2] +W 2
2 (PX̃j

, PXj
), j = 1, 2, 3}, (10)

Furthermore, we also have that:

ΦD0(PM|XK) ⊇ {D : Dj ≥ 2EP [∥Xj − X̃j∥2], j = 1, 2, 3}, (11)

i.e., minimum achievable distortion with 0-PLF-FMD is at most twice the MMSE distortion.

Proof: Define

D0 := {D : Dj ≥ E[∥Xj − X̃j∥2] +W 2
2 (PX̃j

, PXj
), j = 1, 2, 3}. (12)

First, we show that ΦD0(PM|XK) ⊆ D0. For any D ∈ ΦD0(PM|XK), there exists X̂D0 = (X̂D0
1
, X̂D0

2
, X̂D0

3
) jointly

distributed with (M,X,K) such that

E[∥Xj − X̂D0
j
∥2] ≤ Dj , j = 1, 2, 3, (13)

PXj
= PX̂

D0
j

. (14)

Then, for example, the analysis for the second frame is as follows

D2 ≥ E[∥X2 − X̂D0
2
∥2] (15)

= E[∥(X2 − X̃2)− (X̂D0
2
− X̃2)∥2] (16)

= E[∥X2 − X̃2∥2] +E[∥X̃2 − X̂D0
2
∥2] (17)

≥ E[∥X2 − X̃2∥2] +W 2
2 (PX̃2

, PX̂
D0

2

) (18)

= E[∥X2 − X̃2∥2] +W 2
2 (PX̃2

, PX2), (19)

where (17) holds because both X̃2 and X̂D0
2

are functions of (M1,M2,K) and thus the MMSE (X2 − X̃2) is uncorrelated
with (X̂D0

2
− X̃2); (19) follows because the 0-PLF-FMD implies that PX̂

D0
2

= PX2
. Following similar steps for other

frames, we get ΦD0(PM|XK) ⊆ D0.

Next, we show that D0 ⊆ ΦD0(PM|XK). Assume that D ∈ D0. Let X̂∗
1 be an auxiliary random variable jointly distributed

with (M1,K) such that it satisfies the following conditions

PX̂∗
1
= PX1 , (20)

and

PX̃1X̂∗
1
= arg inf

P̄X̃1X̂∗
1
:

P̄X̃1
=PX̃1

P̄X̂∗
1
=PX̂∗

1

EP̄ [∥X̃1 − X̂∗
1∥2]. (21)

Moreover, let X̂∗
2 be an auxiliary random variable jointly distributed with (M1,M2,K) such that the following two

conditions are satisfied

PX̂∗
2
= PX2

, (22)
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and

PX̃2X̂∗
2
= arg inf

P̄X̃2X̂∗
2
:

P̄X̃2
=PX̃2

P̄X̂∗
2
=PX̂∗

2

EP̄ [∥X̃2 − X̂∗
2∥2]. (23)

Similarly, we define X̂∗
3 . Now, notice that since D ∈ D0, we have:

D2 ≥ E[∥X2 − X̃2∥2] +W 2
2 (PX̃2

, PX2). (24)

It then directly follows that

E[∥X2 − X̂∗
2∥2] = E[∥X2 − X̃2∥2] +E[∥X̃2 − X̂∗

2∥2] (25)
= E[∥X2 − X̃2∥2] +W 2

2 (PX̃2
, PX̂∗

2
) (26)

= E[∥X2 − X̃2∥2] +W 2
2 (PX̃2

, PX2
) (27)

≤ D2, (28)

where

• (25) follows because X̃2 and X̂∗
2 are functions of (M1,M2,K) and thus the MMSE (X2 − X̃2) is uncorrelated with

(X̂∗
2 − X̃2);

• (26) follows from (23);

• (27) follows because PX̂∗
2
= PX2

.

Following similar steps for other frames, we get D ∈ ΦD0(PXr|X).

Now, notice that W 2
2 (PX̃2

, PX2
) ≤ E[∥X2 − X̃2∥2] since the Wasserstein-2 distance takes the infimum over all possible

joint distributions (X2, X̃2), but the expectation in E[∥X2 − X̃2∥2] is taken over the given PX2X̃2
. Thus, we get

E[∥X2 − X̃2∥2] +W 2
2 (PX̃2

, PX2) ≤ 2E[∥X2 − X̃2∥2]. (29)

This concludes the proof.

B. Distortion Analysis for 0-PLF-JD
Let X̂∗

1 be defined as in (20)–(21). Moreover, let X̂∗
2 be an auxiliary random variable jointly distributed with (M1,M2,K)

such that the following conditions are satisfied

PX̂∗
2 |X̂∗

1=x1
= PX2|X1=x1

, ∀x1 ∈ X1, (30)

and

PX̃2X̂∗
2 |X̂∗

1=x1
= arg inf

P̄X̃2X̂∗
2 |X̂∗

1=x1
:

P̄X̃2|X̂∗
1=x1

=PX̃2|X̂∗
1=x1

P̄X̂∗
2 |X̂∗

1=x1
=PX̂∗

2 |X̂∗
1=x1

EP̄ [∥X̃2 − X̂∗
2∥2|X̂∗

1 = x1], ∀x1 ∈ X1. (31)

Then, the following result holds.
Theorem B.1. We have

Φjoint
D0 (PM|XK) ⊇ {D : D1 ≥ E[∥X1 − X̃1∥2] +W 2

2 (PX̃1
, PX1),

D2 ≥ E[∥X2 − X̃2∥2] +
∑
x1

PX1(x1)W
2
2 (PX̃2|X̂∗

1=x1
, PX2|X1=x1

),

D3 ≥ E[∥X3 − X̃3∥2] +
∑
x1,x2

PX1X2
(x1, x2)W

2
2 (PX̃3|X̂∗

1=x1,X̂∗
2=x2

, PX3|X1=x1,X2=x2
)}.

(32)
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Proof: Define

D0
joint := {D : D1 ≥ E[∥X1 − X̃1∥2] +W 2

2 (PX̃1
, PX1

),

D2 ≥ E[∥X2 − X̃2∥2] +
∑
x1

PX1
(x1)W

2
2 (PX̃2|X̂∗

1=x1
, PX2|X1=x1

),

D3 ≥ E[∥X3 − X̃3∥2] +
∑
x1,x2

PX1X2
(x1, x2)W

2
2 (PX̃3|X̂∗

1=x1,X̂∗
2=x2

, PX3|X1=x1,X2=x2
)}.

(33)

Now, assume that D ∈ D0
joint. For the first frame, recall that X̂∗

1 is an auxiliary random variable jointly distributed with
(M1,K) such that it satisfies (20)–(21). From similar steps to (25)–(27), it then follows that

E[∥X1 − X̂∗
1∥2] = E[∥X1 − X̃1∥2] +W 2

2 (PX̃1
, PX1

) (34)
≤ D1. (35)

For the second frame, since D ∈ D0
joint, we have:

D2 ≥ E[∥X2 − X̃2∥2] +
∑
x1

PX1(x1)W
2
2 (PX̃2|X1=x1

, PX2|X1=x1
). (36)

Recall that X̂∗
2 is an auxiliary random variable jointly distributed with (M1,M2,K) such that (30)–(31) hold. It then

directly follows that

E[∥X2 − X̂∗
2∥2] = E[∥X2 − X̃2∥2] +E[∥X̃2 − X̂∗

2∥2] (37)

= E[∥X2 − X̃2∥2] +
∑
x1

PX̂∗
1
(x1)E[∥X̃2 − X̂∗

2∥2|X̂∗
1 = x1] (38)

= E[∥X2 − X̃2∥2] +
∑
x1

PX̂∗
1
(x1)W

2
2 (PX̃2|X̂∗

1=x1
, PX̂∗

2 |X̂∗
1=x1

) (39)

= E[∥X2 − X̃2∥2] +
∑
x1

PX1
(x1)W

2
2 (PX̃2|X̂∗

1=x1
, PX2|X1=x1

), (40)

where

• (37) follows because X̃2 and X̂∗
2 are functions of (M1,M2,K) and thus the MMSE (X2 − X̃2) is uncorrelated with

(X̂∗
2 − X̃2),

• (39) follows from (31),

• (40) follows because PX̂∗
1 X̂

∗
2
= PX1X2

.

Following similar steps for the third frame, we get D ∈ ΦD0(PM|XK). This concludes the proof.

B.1. A Counterexample for Factor-Two Bound in Case of 0-PLF-JD

Assume that we have only two frames, i.e., D3 → ∞. Let M1 be independent of X1 and M2 = X2. Then, we have X̃1 = ∅
and X̃2 = X2. Consider the achievable distortion region of Theorem B.1. The distortion of the first step is given by the
following

E[∥X1 − X̃1∥2] +W 2
2 (PX̃1

, PX1
) = 2E[X2

1 ]. (41)

For the second frame, we have

E[∥X2 − X̃2∥2] +
∑
x1

PX1
(x1)W

2
2 (PX̃2|X̂∗

1=x1
, PX2|X1=x1

)

=
∑
x1

PX1
(x1)W

2
2 (PX2|X̂∗

1=x1
, PX2|X1=x1

) (42)

=
∑
x1

PX1
(x1)W

2
2 (PX2

, PX2|X1=x1
), (43)

9
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where (42) follows because X̃2 = X2 and (43) follows because X2 is independent of X̂∗
1 (M1 is independent of X1, then

X̂∗
1 , which is a function of (M1,K), would be independent of X1 and hence independent of X2).

Now, notice that the MMSE distortion of the second step is zero since X̃2 = X2. However, the achievable distortion of the
second step for the reconstruction satisfying 0-PLF JD is given in (43) which clearly does not satisfy the factor-two bound.

C. Fixed Encoders Operating at Low rate regime
We consider the class of noisy encoders where the encoder distribution can be written as follows

P noisy
Xj |M1...MjK

= (1− µ)PXj + µQnoisy
Xj |M1...MjK

, j = 1, 2, 3. (44)

where µ is a sufficiently small constant and the distribution Qnoisy(·) could be arbitrary conditional distribution with same
marginal as PXj

.

Theorem C.1. For the class of encoders given by (44), we have

Φjoint
D0 (P noisy

M|XK) ⊇ {D : Dj ≥ 2EP noisy [∥Xj − X̃j∥2] +O(µ), j = 2, . . . , 3}. (45)

Proof: We analyze the distortion for the second frame. A similar argument holds for other frames.

Denote the reconstruction of the second step by X̂∗
2 and consider the expected distortion. From a similar justification starting

from (15) and leading to (17), we can write the distortion as follows

E[∥X2 − X̂∗
2∥2] = E[∥X2 − X̃2∥2] +E[∥X̃2 − X̂∗

2∥2]. (46)

Now, we study the expected term E[∥X̃2 − X̂∗
2∥2] as follows

E[∥X̃2 − X̂∗
2∥2] =

∑
x1

PX̂∗
1
(x1)E[∥X̃2 − X̂∗

2∥2|X̂∗
1 = x1]. (47)

In order to analyze the above expression, we first approximate the MMSE reconstruction X̃2 as follows

X̃2 = EP noisy [X2|M1,M2,K] (48)
= (1− µ)EP [X2] + µEQnoisy [X2|M1,M2,K] (49)
= E[X2] +O(µ), (50)

where (49) follows from (44). Moreover, notice that (50) implies that

E[∥X2 − X̃2∥2] = E[∥X2 −E[X2] + µ(EQnoisy [X2|M1,M2,K]−E[X2])∥2] (51)
= E[∥X2 −E[X2]∥2] +O(µ). (52)

Next, consider the expected term in (47) as follows∑
x1

PX̂∗
1
(x1)E[∥X̃2 − X̂∗

2∥2|X̂∗
1 = x1] =

∑
x1

PX̂∗
1
(x1)E[∥E[X2]− X̂∗

2∥2|X̂∗
1 = x1] +O(µ)

(53)

=
∑
x1

PX̂∗
1
(x1)E[∥E[X2]−X2∥2|X1 = x1] +O(µ)

(54)

=
∑
x1

PX1
(x1)E[∥E[X2]−X2∥2|X1 = x1] +O(µ)

(55)
= E[∥E[X2]−X2∥2] +O(µ) (56)
= E[∥X̃2 −X2∥2] +O(µ), (57)

where
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• (53) follows from (50);

• (54) follows because the 0-PLF-JD implies that PX̂∗
2 |X̂∗

1
= PX2|X1

and E[X2] is just a constant;

• (55) follows from 0-PLF-JD where PX̂∗
1
= PX1

;

• (57) follows from (52).

Considering (46) and (57), we get

E[∥X2 − X̂∗
2∥2] = 2E[∥X2 − X̃2∥2] +O(µ). (58)

The proof for the third frame follows similar steps.

D. Experiment Details
D.1. Training Setup and Overview

Our compression architecture is built on the scale-space flow model (Agustsson et al., 2020b), which allows end-to-end
training without relying on pre-trained optical flow estimators. For better compression efficiency, we replace the residual
compression module with the conditioning one (Li et al., 2021b). In the following, we will interchangeably refer X1 as
the I-frame and subsequent ones as P-frames. The annotation for the encoder, decoder, and critic (discriminator) will be
referred to as f, g, and h respectively and their specific functionality (e.g motion compression, joint perception critic) will
be described within context through a subscript/superscript.

Distortion and Perception Measurement: We follow the setup in prior works (Blau & Michaeli, 2018; Zhang et al.,
2021a) for distortion and perception measurement. Specifically, we use MSE loss E[||X−X̂||2] as a distortion metric
and Wasserstein-1 distance as a perception metric, which can be estimated through the WGAN critics (following the
Kanotorovich-Rubinstein duality). For the marginal perception metric, we optimize our critics hm to classify between
original image X and synthetic ones X̂ . This will then allow us to measure W1(PX , PX̂) since:

W1(PX , PX̂) = sup
hm∈F

E[hm(X)]−E[hm(X̂)] (59)

where F is a set of all bounded 1-Lipschitz functions. Similarly, the joint perception metric is realized through
W1(PX1...Xj

, PX̂1...X̂j
) by training a critic hj that classifies between synthetic and authentic sequences:

W1(PX1...Xj
, PX̂1...X̂j

) = sup
hj∈F

E[hj(X1, ..., Xi)]−E[hj(X̂1, ..., X̂i)] (60)

In practice, the set of 1-Lipschitz functions is limited by the neural network architecture. Also, although our analysis
employs the Wasserstein-2 distance as a perception metric, it is worth noting that the ideal reconstructions (0-PLF) for this
metric and the one used in our study should be identical.

I-frame Compressor: We compress I-frames in a similar fashion as previous works (Blau & Michaeli, 2018; Zhang et al.,
2021a). Our encoder fI and decoder gI contain a series of convolution operations and we control the rate R1 by varying
the dimension and quantization level in the bottleneck. The model utilizes common randomness through the dithered
quantization operation. For a given rate R1, we vary the amount of DP tradeoff by controlling the hyper-parameter λmarginal

i

in the following minimization objective L1:

L1 = E[||X1 − X̂1||2] + λmarginal
i W1(PX1

, PX̂1
) (61)

Following the results from Zhang et al.(Zhang et al., 2021a), we fix the encoder after optimizing the encoder-decoder pair
for MSE representations. We then fix the encoder and train another decoder to obtain the optimal reconstruction with perfect
perception, i.e, W1(PX , PX̂) ≈ 0. This gives us the benefit of obtaining reconstructions at different DP tradeoffs (MMSE
and 0-PLF FMD) for the I-frame.

11
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P-frame Compressor: We describe the loss functions before explaining our architectures. Given previous reconstructions
X̂[i−1]:={X̂1, X̂2, ..., X̂i−1}, one can adjust the distortion-joint perception tradeoff by controlling the hyper-parameter
λjoint
i in the following objective Li.

Ljoint
i = E[||Xi − X̂i||2] + λjoint

i W1(PX[i]
, PX̂[i]

) (62)

Note that in order to achieve 0-PLF-JD, previous reconstructions X̂[i−1] must also achieve 0-PLF-JD, since it is impossible
to reconstruct such X̂i if the previous X̂[i−1] are not temporally consistent2. For the FMD metric, we use the loss function
in (61).

D.2. Permanence of Error on KTH Datasets

The KTH dataset is a widely-used benchmark dataset in computer vision research, consisting of video sequences of human
actions performed in various scenarios. We show more examples supporting our argument for the permanence of error
on this realistic dataset. We use 16 bits for each frame. In general, the 0-PLF-JD decoder consistently outputs correlated
but incorrect reconstructions due to the error induced by the first reconstructions, i.e., the P-frames will follow the wrong
direction induced from the I-frame reconstruction. Besides the moving direction, we also notice that the type of actions (i.e.
walking, jogging, and running) is also affected. On the other hand, while losing some temporal cohesion, MMSE and 0-PLF
FMD decoders manage to fix the movement error.

2This follows from the inequality: W 2
2 (PX1,X2 , PX̂1,X̂2

)≥W 2
2 (PX1 , PX̂1

)+W 2
2 (PX2 , PX̂2

)
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Figure 4. Additional Experimental Results for the Permanence of Error Phenomenon on KTH Dataset.

13


