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Motion-Based Temporal Alignment of
Independently Moving Cameras

Xue Wang, Jianbo Shi, Hyun Soo Park, and Qing Wang, Member, IEEE

Abstract— This paper presents a method to establish a
nonlinear temporal correspondence between two video sequences
captured by cameras independently moving in a dynamic
3D scene. We assume that the 3D spatial poses of the cameras
are known for each frame. With predefined trajectory basis, the
coefficients of the reconstructed trajectory of a moving scene
point reflect the rhythm in motion. A robust rank constraint from
the coefficient matrices is exploited to measure the spatiotemporal
alignment quality for every feasible pair of video fragments. Point
correspondences across sequences are not required or even it is
possible that different points are tracked in different sequences,
only if they satisfy the assumption that every 3D point tracked in
the observed sequence can be described as a linear combination
of a subset of the 3D points tracked in the reference sequence.
Synchronization is then performed using a graph-based search
algorithm to find the globally optimal path that minimizes both
spatial and temporal misalignments. Our algorithm can use
both complete and incomplete feature trajectories along time,
and is robust to mild outliers. We verify the robustness and
performance of the proposed approach on synthetic data as well
as on challenging real video sequences.

Index Terms— Nonrigid structure from motion, rank
constraint, trajectory basis, video synchronization.

I. INTRODUCTION

IMAGINE a group of people wearing first-person
cameras and performing an activity together (Fig. 1). These

videos captured by independently moving cameras can be used
together to obtain a complete 3D scene or recognize human
action. For most of such computer vision applications, multiple
unsynchronized video streams need to be synchronized at
first. We expect that the synchronization could be achieved
automatically using visual information only. This is a difficult
task in practice.

Video synchronization is part of a more general video
alignment problem that occurs in tasks such as human
action recognition, video retrieval, multiview surveillance,
and 3D visualization. Videos must be aligned both spatially
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Fig. 1. Our algorithm synchronizes multiple independent video streams
recorded in a social event. Large view variations, independent camera motions,
and nonlinear temporal relationship make the task extremely challenging. The
local time axis t1 is referred to as the global time axis t in this example.

and temporally. Spatial alignment computes the geometrical
transformation of 2D or 3D coordinate systems of aligned
frames; therefore, the object of interest is in correspon-
dence. Temporal alignment computes 1D temporal mapping
by aligning frames to achieve good spatial alignment. Most
previous methods consider the problem in 2D by computing
the best fitting geometry (e.g., homography, perspective, or
affine projection model) and checking the residual errors.
These methods, referred to as 2D analysis, usually require
large overlap between synchronized frames, which is fulfilled
only for narrow-baseline views. Alternatively, one can also
consider the problem in 3D, for instance, by backprojecting the
points as lines into the 3D world and looking for intersecting
lines [1]. These methods, referred to as 3D analysis, require
additional knowledge (e.g., camera poses) or assume certain
projection models.

Jointly reasoning about spatial and temporal alignment
improves the robustness of the system. There are two main
challenges. First, explicit 2D or 3D spatial alignment is very
difficult to compute for independently moving cameras on a
dynamically changing scene with multiple moving objects.
Second, due to nonpredictable frame drops, temporal context
constraints (i.e., continuity) cannot be applied everywhere for
temporal alignment.

This paper describes an algorithm that synchronizes two
video sequences captured by free-moving cameras. The key
insight is the spatiotemporal rhythm in the 3D motion of
a human body. Both the geometrical configuration and the
trajectories of body parts are strong cues for alignment,
which are coupled in the rhythm. Our method uses sparse
space–time feature trajectories as input and avoids the need

1051-8215 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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of correspondences across cameras. Moreover, the features
tracked in different cameras could be different. Using the
image observation, we measure the feasibility of spatiotem-
poral alignment between two video fragments using a rank
constraint based on 3D trajectory reconstruction.

We do not put any restrictive constraints on the scene
or on the camera motions, except that the cameras view
one or more moving objects simultaneously. By realizing
that the individual time delay is probably not an integer
(i.e., the closest frame does not correspond exactly), instead
of estimating the temporal mapping with subframe accuracy,
we try to find the temporal closest frame. In addition, unlike
the methods that assume that a sufficient amount of features
can be tracked throughout both sequences, our approach
utilizes both complete and incomplete feature trajectories
along time and tolerates mild outliers.

The remainder of this paper is organized as follows.
Section II reviews related work. Section III presents the rank
constraint derived from the coefficient vectors of 3D trajectory
reconstruction. Section IV presents the robust optimal path
search algorithm for nonlinear temporal alignment. Section V
provides the experimental results for both synthetic and real
data and discusses the robustness and performance of our algo-
rithm. Finally, the main conclusions are drawn in Section VI.

II. PREVIOUS WORK

Most related contributions assume stationary or rigidly
fixed cameras [2]–[14]. Hence, a fixed spatial transformation
between corresponding frames is guaranteed and need not
be re-estimated at runtime. Once an event has been identi-
fied in two such videos, a temporal mapping between the
sequences can be globally described by simple parametric
models, like the constant offset model [5], [6], [9], [12] or 1D
affine model [2]–[4], [7], [8], [10], [13]. Nonlinear temporal
mapping is used to cope with free form of time correspon-
dence [11], [14], e.g., nonpredictable frame drops, human
action recognition, and video retrieval. Assuming simultaneous
recording, this kind of temporal rigidity is preserved even
for independently moving cameras [1], [15]–[18]. If related
videos are captured at different points in time, for the video
matching to be possible, [19]–[24] assume approximately
coincident camera trajectories, which guarantee that corre-
sponding frames are captured from similar viewpoints and
have sufficient overlap in their field of views (FOVs).

Considering the input data of these methods, most fall into
the feature-based category, which usually require complete
features reliably tracked over the entire sequences and known
correspondences across sequences. Such feature-based meth-
ods rely on the existence of a geometric entity that somehow
constraints the relationship between the coordinate systems
of two corresponding frames. Commonly exploited geometric
constraints include plane-induced homography [3], [4],
binocular epipolar geometry constraint [4], [12], [13], [16],
deficient rank conditions arose from special projection models
[5]–[7], [17], affine transformation [14], tri-focal tensor [15],
feature movements [18], [20], matching image points [19],
[23], and so on. The intensity-based synchronization methods
are solely based on the image intensity [5], [6], [8], Fourier

transform of image intensity [9], or dynamic texture [10]. They
try to minimize the sum of squared differences between the
sequences that can be spatially and temporally warped through
a parametric model. Since all the pixels can provide constraints
to such a model, feature tracking and matching can be avoided.
The camera movement-based synchronization method [2]
assumes that the two cameras are attached closely together and
are moved jointly in space, and then the consistent temporal
behavior can be used to recover the spatial and temporal
transformations between two nonoverlapping sequences.

Our scenario is most closely related to the work in [1],
[15], [17], and [18], which focuses on video synchronization
for independently moving cameras and dynamic 3D scenes.
With a scaled orthographic projection model assumption,
Tuytelaars and Van Gool [1] evaluate the line-to-line distance
of the backprojection 3D lines of the matching points to
estimate a constant time offset between two sequences.
Lei and Yang [15] use the tri-ocular geometric constraint
of point/line features to build the timeline maps (integral
time offsets) for multiple sequences to be synchronized.
Tresadern and Reid [17] develop a unified rank constraint
framework for homography, perspective, and affine projection
models to recover a linear synchronization with subframe
accuracy. These methods assume that the features are matched
across sequences and tracked successfully throughout each
sequence, which are difficult to obtain automatically in wide
baseline conditions. Dexter et al. [18] adopt time-adaptive
descriptors of image sequences from self-similarity matrices
to perform nonlinear synchronization. They do not impose
restrictive assumptions as complete feature trajectories along
time or correspondences across sequences. However, they use
static points in the background to estimate a dominant motion
to compensate for modest camera motion, which works only
for distant views or planar scenes.

The presented method is inspired by [5] and [6], which
use rank constraint of a matrix of image measurements to
define its energy above an expected rank bound. This energy is
minimized when the structure is most consistent between syn-
chronized sequences. The method requires complete feature
trajectories but does not require exact correspondences across
sequences. Instead, they make a weaker assumption that the
points tracked in the second sequence could be expressed as
a fixed linear combination of a subset of the points tracked
in the reference sequence. A similar assumption is made in
our method. The limitation is that it recovers the integral
time offset by globally pooling data from groups of 2D point
trajectories. As a result, their method works only for fixed
affine cameras that have the same frame rate. In contrast, we
propose a novel rank constraint using reconstructed 3D point
trajectories to recover a nonlinear time warp for free-moving
cameras.

III. MOTION-BASED RANK CONSTRAINT

Since the cameras undergo different motions in both
sequences, the point trajectories of one moving 3D point cap-
tured by different cameras are dissimilar. To remove the effect
of camera motion, we reconstruct the 3D point trajectory as a
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linear combination of predefined basis trajectories [25], [26],
such as the discrete cosine transform (DCT).

For a given t th (time stamp) camera projection matrix,
P(t) ∈ R

3×4, let a point in 3D, X(t) = [X (t) Y (t) Z (t)]�,
be imaged as x(t) = [x (t) y(t)]�. This projection is defined up
to scale[

x(t)

1

]
� P(t)

[
X(t)

1

]
, or

[
x(t)

1

]
×

P(t)
[

X(t)

1

]
= 0 (1)

where [·]× is the skew symmetric representation of cross prod-
uct. By taking F time stamps, a closed form for reconstructing
the 3D trajectory of the point X can be formulated as [26]⎡

⎢⎣
Q(1)

. . .

Q(F)

⎤
⎥⎦

⎡
⎢⎣

X(1)

...

X(F)

⎤
⎥⎦ =

⎡
⎢⎣

q(1)

...

q(F)

⎤
⎥⎦, or QX = q (2)

where Q(t) = ([�x(t)]×P(t)
1:3)1:2 and q(t) = (−[�x(t)]×P(t)

4 )1:2.

Note �x(t) = [x (t) y(t) 1]� is the homogeneous coordinates

of x(t). P(t)
1:3 and P(t)

4 are the matrices made of the first three
columns and the last column of P(t), respectively. (·)1:2 is the
matrix made of the first two rows from (·).

The 3D point trajectory is approximated using a linear
combination of the DCT basis, which can be described as

X = [X(1)� . . . X(F)�]� ≈ ���1β1+ · · · + ���3K β3K = ���βββ

(3)

where ��� = [���1 . . .���3K ] ∈ R
3F×3K is the trajectory basis

matrix, βββ = [β1 . . . β3K ]� ∈ R
3K is the coefficients of a

point trajectory, and K is the number of bases per coordinate.
By plugging (3) into (2), an overconstrained system can be
derived by choosing K such that 2F ≥ 3K

Q�β�β�β = q. (4)

Equation (4) is a linear least square system for recon-
structing a point trajectory, which is proved to be capable of
providing an efficient, numerically stable, and globally optimal
solution [26]. Fast and random camera motion results in high
reconstructibility. If the same trajectory is seen by another
moving camera (registered in the same world coordinate
system with Pi ), we get

Q̂X = Q̂���β̂ββ = q̂ (5)

where we denote the variables related to the second sequence
using a similar notation with a hat (ˆ). Since ��� is an orthogonal
matrix, the coefficient vectors βββ and β̂ββ should be identical in
theory.

If there are P moving scene points seen by the two cameras,
we get a coefficient matrix M = [βββ1 . . . βββ P β̂ββ1 . . . β̂ββ P ],
of which the rank is bounded by P when 3K > 2P .
The rank of M would seem to be an appropriate metric
for determining synchrony: when the F-frame fragments
are temporally aligned, the coefficient correspondences are
consistent with an underlying interpretation of spatiotemporal
structure (the changing configurations of P points moving
nonrigidly in the scene) and the rank is low. Therefore,
the two sequences can be synchronized by examining the

rank of M for various time offsets between the sequences.
Let S1 = {I1(1), I1(2), . . . , I1(N1)} and S2 = {I2(1),
I2(2), . . . , I2(N2)} be two video sequences N1 and N2 frames
long, respectively, recorded from independently moving
cameras. S1 denotes the reference sequence and S2 the
observed sequence. The verifiable integral offset � is in the
range of R = [−N1 + F, N2 − F].

Till now, there are three assumptions taken into considera-
tion when using the rank constraint.

1) The point correspondences across sequences are known.
2) The feature points are tracked throughout both

sequences.
3) The temporal relationship between sequences is

described by a constant offset model.
Here, we discuss only the first assumption and the other two
will be discussed in the following section.

The rank constraint still holds when the correspondences
across sequences are not available, if instead we use a weaker
assumption [5], [6]: every 3D point tracked in the observed

sequence X̂
(t)
i , 1 ≤ i ≤ P2 can be described as a linear

combination of a subset of the 3D points tracked in the
reference sequence⎡
⎢⎢⎣

X̂
(1)

1 . . . X̂
(1)

P2
...

. . .
...

X̂
(F)

1 . . . X̂
(F)

P2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

X(1)
1 . . . X(1)

P1
...

. . .
...

X(F)
1 . . . X(F)

P1

⎤
⎥⎥⎦ [Q1 . . . Q P2]

(6)

where the coefficients Qi ∈ R
N of the linear combination are

unknown but fixed throughout the F-frame fragment and P1 is
the number of points tracked in the reference sequence. The
assumption is based on the following observation: given a set
of four or more noncoplanar 3D points in a rigid body, all
points in the set can be described as a linear combination of
just four of the points. The affine representation of these points
does not change if the same nonsingular linear transformation
(e.g., translation, rotation, and scaling) is applied to all the
points [27]. Combining (3) and (6) and multiplying both sides
with ����, we have

[β̂ββ1 . . . β̂ββ P2
] = [βββ1 . . . βββ P1][Q1 . . . Q P2 ]. (7)

Thus, the rank of the new coefficient matrix M =
[βββ1 . . . βββ P1 β̂ββ1 . . . β̂ββ P2

] is still bounded by P1 when
3K > P1 + P2. The upper bound is usually not tight, depend-
ing on the rigidity of the P1 scene points. For example, when
there are more than four points coming from the same rigid
body and four of them are not coplanar, a new lower bound
of the rank exists. Still, we expect the rank of the matrix M
to decrease in the synchronized case at least as much as it
decreases in the unsynchronized case. The relaxation not only
avoids point correspondence estimation between views but also
enables our algorithm to handle extreme cases under wide
baseline viewing condition (i.e., the cameras are situated on the
opposite sides of the scene and facing each other; the cameras
observe the same object, but can never see the same point).

In practice, however, due to noise, the matrix M will almost
be of full rank. Even without noise, considering that the
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Fig. 2. Example of the singular values of M in the synchronized case
(red curves) and the nonsynchronized cases (gray curves). We set P1 = 20
and P2 = 20 in this example.

coefficient vector βββ is a least square solution of an overcon-
strained system, the coefficient vectors βββ and β̂ββ would not be
identical. To deal with these, we examine the effective rank n̂
of the coefficient matrix [6]. The singular values s1, . . . , sh

of M can be obtained using singular value decomposition.
We set n̂ = arg min j {∑ j

k=1 sk > θ} for a threshold θ

(we use θ = 0.99
∑h

k=1 sk). Then the sum of remaining
singular values, denoted by dst = ∑h

k=n̂+1 sk , can be used to
measure the matching of two sequences. An example of the
singular values of M in the synchronized case (red curves)
and the nonsynchronized cases (grey curves) is shown in
Fig. 2. In general, the red curve has faster speed of decline
compared with the grey curves. Furthermore, we transform dst
to a normalized cost c by

c(M�) = 1 − exp

(
−dst(M�)

σ 2

)
. (8)

Finally, we have the following optimization over integral
time offset �:

�� = arg min
�

c(M�). (9)

IV. NONLINEAR TEMPORAL ALIGNMENT

The synchronization procedure described above is based
on having image points tracked throughout both sequences
and the constant time offset model assumption. To make it
more robust, we present a graph-based alignment algorithm
for nonlinear temporal mapping that copes with incomplete
image point trajectories and outliers.

As the basis of our alignment algorithm, we use the cost c,
described in the last section, to estimate the alignment quality
for all possible pairs of F-frame fragments. In practice, we
divide both sequences to small continuous fragments (small
windows in time) of length up to F frames. We set the
reference frame as the middle frame of each fragment and
compute the cost c jk for fragment pair ( f1( j), f2(k)), where

Fig. 3. Estimated temporal alignment (solid curve) and the false alignment
(dashed curve). (a) Shorter path in the top-right corner of the cost matrix is
a false solution. (b) Longer path covers the other path entirely. The matrix
shows the alignment cost for fragment f1( j) from the reference sequence
(horizontal axis) and fragment f2(k) from the second sequence (vertical axis).

f1( j) denotes the fragment with reference frame I1( j) and
f2(k) the fragment with reference frame I2(k). Subsequently,
we obtain a cost matrix C ∈ R

(N2−2∗
F/2�)×(N1−2∗
F/2�),
where 
·� denotes the floor function.

The linear relationship described in (6) is based on constant
time offset assumption. When slight frame drops exist or the
frame rate ratio approaches one, however, the equation can
still be satisfied approximately when the reference frames of
two fragments are synchronized.

In addition, the point trajectories just spanning the complete
F frames can be used by our algorithm. However, care should
be taken for the following two cases.

1) For each sequence, the number of points used for
alignment should be identical for all fragments. Let
P1( j) denote the number of points tracked throughout
fragment f1( j), then P1 = min{P1( j)}, 
F/2� + 1 ≤
j ≤ N1 − 
F/2�. Similar definition for P2.

2) Two inequations should be satisfied: 2F ≥ 3K and
3K > P1 + P2. The former is to make sure an over-
constrained system for point trajectory reconstruction.
The latter is to make sure that the rank of the matrix M
is bounded by P1.

The discrete representation of a temporal mapping ω is
referred as a path through the cost matrix. To support nonlinear
alignment of clips with partial temporal overlap, as in [24],
a set of paths from any start frame to any end frame in either
video is computed. We do not use a predefined minimum
threshold for path length to exclude trivial solutions; instead,
we divide all the feasible paths into two pools according to the
path ends in S1 or S2 and propose two alternatives, respectively
(with the lowest normalized cost). To prevent false alignment,
we finally select the longer one when a corner of C has a low
cost [Fig. 3(a)] or their overlapping [Fig. 3(b)].

Before we apply the nonlinear temporal alignment
algorithm, we first use feature tracker to generate image point
trajectories. These trajectories can be short or long. Next, the
3D trajectories of the points tracked throughout each fragment
are reconstructed. These two steps are performed for each
sequence separately. The only step that involves combinations
of sequences is computing the alignment cost according to (8)
for each feasible fragment pair f1( j) and f2(k). We randomly
select P1 and P2 points among the trajectories that span the



2348 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 11, NOVEMBER 2017

Fig. 4. Comparisons of robustness for different fragment lengths with regard to (a) tracking error, (b) occlusion, and (c) point number.

complete fragment f1( j) and f2(k), respectively. A spread-out
distribution of points is desired and the point with longer
trajectory gets higher priority. After the procedure is repeated
T times, we choose the median as the final cost c jk. The
more times the procedure is repeated, the more robust our
algorithm is to outliers (i.e., the points that are not tracked
properly or do not fit the linear combination assumption).
The computational complexity of the alignment algorithm
is O(N1 · N2 · T ), so there is a tradeoff between accuracy
and computational efficiency. We choose T according to the
tracking results and the number of points that have been
tracked. In general, the better the targets are tracked and the
less the points have been tracked, the smaller T we choose.

V. EXPERIMENTS

In this section, we evaluate the proposed framework using
both synthetic trajectories and real video sequences. Given the
ground truth of the synchronization mapping {ω̂(k), k}k=1...N2 ,
we use the average absolute temporal alignment error ε as our
basic accuracy metric

ε = 1

N2

N2∑
k=1

|ω̂(k) − ω(k)|. (10)

If the observed sequence is partially contained within the
reference sequence, we consider only the overlapping.

A. Simulation

For synthetic data evaluation, we generate sequence pairs
from 3D motion capture data [26] by projecting the 3D tra-
jectories of 13 moving points onto varying image planes using
synthetic camera projection matrices. Therefore, the image
point trajectories in different video sequence correspond to the
same set of points in 3D, and they are all throughout the whole
sequences. Accordingly, the parameter T during alignment is
set to 1. To enhance the reconstructibility using the original
DCT basis [26], a pseudorandom number generator is used
to simulate the independent camera motion. We randomly
take several frames from the second sequence that has been
already offset by an integer value at a maximum rate 5%.
Each experiment is repeated ten times with random camera
motion.

1) Robustness: For robustness evaluation, we test with
tracking errors, missing data, and different numbers of points.
If not specially specified, we consider the situations without
missing data.

Most automatic trackers have difficulties maintaining
accurate positions for all tracked points over time, especially
in dynamic scenes. Fig. 4(a) shows the temporal alignment
error for varying tracking noise levels and different fragment
lengths. In general, the more frames used for reconstruction,
the better temporal alignment our algorithm achieves.
However, longer fragment results in a smaller cost matrix
and accordingly a shorter path found for alignment. Missing
samples occurs in practice due to occlusion, self-occlusion, or
measurement failure. Fig. 4(b) shows the temporal alignment
error for varying amounts of occlusion (0%, 5%, and 10%
of each sequence) and different fragment lengths. As long as
the visibility of a point in a sequence is sufficient to enable
an overconstrained system of equations, the alignment is
robust to moderate occlusion. Fig. 4(c) evaluates robustness
to different numbers of points. One point may synchronize
two sequences if its movement is fast and random; however,
more points locating on different rigid objects will boost
the chance of getting more accurate alignment. The results
confirm this observation. We set K to 30 in the experiment.

2) Accuracy: We compare our algorithm with an existing
technique [1], [17] that focuses on synchronizing videos con-
taining dynamic moving objects from independently moving
cameras with a large baseline. For comparing our technique
with [1], we average the outputs of three different sets of five
points. For comparing our technique with [17], we use the rank
constraint for the perspective model. Note that their original
algorithms estimate a linear time warp. For fairness, we use
their computed cost matrices and run our optimal path search
algorithm to estimate a nonlinear time warp.

Since the image points across sequences actually correspond
to the same 3D points, we additionally compare with the
following baseline: calculating the alignment quality for each
frame pair using Euclidean distance between the correspond-
ing reconstructed points in 3D. For exact corresponding frames
between two video sequences, the corresponding reconstructed
points should coincide. If there are no exact corresponding
frames (noninteger time delay), the corresponding frames
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Fig. 5. (a) Quantitative comparisons of alignment accuracy using different methods regarding tracking noise levels. (b)–(e) Qualitative comparisons of
cost matrix and temporal alignment (white curve) using our method, the distance-based method, and the methods by Tuytelaars and Van Gool [1] and
Tresadern and Reid [17] without tracking error. (f)–(i) Idem as (b)–(e) with only tracking noise level α = 0.30.

Fig. 6. 3D reconstruction results (static points in the scene and cameras). Left to right: Block building scene, Exercise mat scene, Basketball scene
(first sequence pair), and Basketball scene (second sequence pair).

can be found by looking for the minimum distance.
The distance-based method can be thought of as a special
case of our general framework, relying on a different similarity
measure. We set F = 61, K = 30, and P1 = P2 = 13 for our
approach.

Fig. 5(a) compares the alignment accuracy regarding
tracking errors in the stand-and-walk scene. The tracking
noise in pixel is multiplying the tracking noise level α
by a pseudorandom value drawn from a standard normal
distribution. Fig. 5(b)–(i) illustrates qualitative comparisons
for each method on a linear time warping case with � = 35
in the faint scene. Different from ours, the dimensions of
the cost matrices computed by other methods are N2 × N1.
Subsequently, the lengths of estimated paths are different from
ours. Due to the sensitivity to tracking error, previous methods
deteriorate at a faster rate as the tracking noise level increases
compared with ours. Note that the alignment error of [17]
seems not to be proportional to the tracking noise level, which
we attribute to the nonlinear temporal relationship assumption.
Compared with a parametric model, the nonparametric model
dramatically enlarges the dimension of the solution space,
which results in the poor performance when the input mea-
surements are corrupted by noise. The tolerable performance
of the distance-based method makes it an alternative when
the point correspondences across sequences are available.

B. Real Data

We test our algorithm on real video sequences captured by
first person cameras as shown in Fig. 1. Our data set consists of

three social interaction scenes. The scenes, Block building and
Exercise mat, capture tetradic interactions between children
aged 5–6. For the Basketball scene, the players strategically
take advantage of team formation (5v5). Two unsynchronized
sequence pairs from each scene are used for evaluation.
These sequences are 5–10 s long, with camera’s translation
(about 3–12 m) and rotation (about 20◦–60◦ on the camera
optical axis).

During shooting, all the cameras are set to the same
recording mode. We utilize FFmpeg to extract frames from
raw footage at a specified frame rate. The image sequences
captured by different cameras and extracted with different
frame rates are used for alignment. If not specially specified,
we use 48 and 46 frames/s for the reference sequence and
the observed sequence, respectively. Ground truth is provided
by marking multiple frames using a photoflash before, during
and after the actual recording. The remaining frames are
synchronized manually.

The camera pose registration in 3D is based on structure
from motion as described in [28]–[30]. The reconstruction
results for different scenes are shown in Fig. 6. For the Block
building and Exercise mat scenes, compared with the first
sequence pair (i.e., reference and second), the cameras of the
second pair (i.e., reference and third) have greater difference
in viewpoint and they are basically situated on the opposite
sides of the scene.

We use two-granularity tracking [31] to generate image
point trajectories for each sequence. The advantage of the
tracking algorithm is that it can output a mount of point
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Fig. 7. Synchronization results of the Block building scene. Left to right: sample frames from the reference video, corresponding frames from the second
video (top), and from the third video (bottom) by our method with automatically tracked point trajectories, the distance-based method, and the methods by
Tuytelaars and Van Gool [1], Tresadern and Reid [17], Dexter et al. [18], and Wang et al. [24]. The points used by each method are superimposed. The blank
space in the synchronization results indicates that the corresponding aligned frame is not found.

trajectories mainly locating on the trunk body, which pro-
vides good support for the linear combination assumption as
described in (6). In practice, we prune the point trajectories
that belong to the same moving objects and whose length is
too short.

The theory of reconstructibility [26] states that it is pos-
sible to reconstruct 3D point trajectories using DCT basis
precisely if a camera trajectory is fast and random. When
the camera motion is slow, the camera trajectory is likely
to be represented well by the DCT basis, which results in
low reconstructibility and accordingly poor temporal align-
ment. To enhance reconstructibility, one way is to use the
specialized DCT basis set, which is a projection of the
original DCT onto the null space of the camera trajec-
tories. Here, we take advantage of the remaining video
sequences for each scene since a collection of asynchronous

images can be interpreted as the random motion of a camera
center. Correspondences of moving points across sequences
are obtained manually, which are used only for trajectory
reconstruction.

We compare the alignment accuracy against all the methods
used in simulation. The corresponding image point trajectories
required by these methods are the anatomical joints labeled
manually. In addition, we compare with a 2D motion-based
method [18] and a 2D feature matching-based method [24].
Note that for a better comparison, our algorithm is given three
different types of input, which are manually labeled point
trajectories, automatically tracked point trajectories, and both.
Quantitative results of different methods are summarized in
Table I. Figs. 7–10 show synchronization results for sample
frames of different scenes. We set K = 30 and F = 81
for our method.
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Fig. 8. Synchronization results of the Exercise mat scene. Idem as Fig. 7.

TABLE I

QUANTITATIVE COMPARISONS OF ALIGNMENT ERROR ON REAL SCENES.
WE USE #1 AND #2 TO DENOTE THE FIRST SEQUENCE PAIR AND THE

SECOND SEQUENCE PAIR OF EACH SCENE, RESPECTIVELY

The proposed approach shows excellent performance in
comparison with previous methods on the real scene data set.
The other methods basically fail in such challenging scenarios.
The content-based snapping [24] assumes that two frames are

more likely to be alignable if they contain a large number
of similar features and is unable to accurately synchronize
sequences in the wide baseline viewing condition, except for
the first sequence pair of the Basketball scene in which the
sequences share similar content. Note that for the Exercise mat
scene, there are certain actions performed repeatedly, which
may cause ambiguity in the temporal mapping for the instant
spatial-configuration-based alignment methods [1], [17].
As the effect of input on our algorithm, inadequate tracked
points and gross outliers lead to the degradation in the align-
ment accuracy. In this case, adding accurate manual labeling
increases the chance of finding a good alignment. Furthermore,
if the points move slowly or smoothly, the solution tends to
deviate highly from the ground truth.

As stated previously, our alignment framework can align
only video sequences with the same frame rate or different
but close ones. The rank constraint becomes weakened with
increasing difference in frame rate. We compare alignment
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Fig. 9. Synchronization results of the Basketball scene (the first sequence pair). Left to right: sample frames from the reference video, corresponding frames
from the second video by our method with automatically tracked point trajectories, the distance-based method, and the methods by Tuytelaars and Van Gool [1],
Tresadern and Reid [17], Dexter et al. [18] and Wang et al. [24]. The points used by each method are superimposed.

Fig. 10. Synchronization results of the Basketball scene (the second sequence pair). Idem as Fig. 9.

accuracy with different frame rate ratios using the second
sequence pair of the Block building scene [Fig. 11(a)].
The frame rate of the reference sequence is set to
48 frames/s, and we only change the frame rate of the
observed sequence. The cost matrices computed with
different frame rate ratios are shown in Fig. 11(b)–(d). When
the frame rate ratio grows to 2, the rank constraint becomes
insignificant.

Our current MATLAB implementation consists of par-
allelized but unoptimized code. Excluding the preprocess-
ing steps (i.e., the camera pose registration in 3D and the
image point trajectory generation), the entire processing stage,
which consists of 3D trajectory reconstruction, computing

cost matrices, and searching shortest path, takes on average
453 ms per 640 × 480 frame on a modern desktop computer
(Intel 3.20 GHz i5-4570, four cores). Most of this running time
(429 ms) is spent on 3D trajectory reconstruction, which is
performed individually for each fragment pair. However, if the
point correspondences across sequences are available, much
faster processing time could be achieved by implementing the
distance-based method, as for each moving scene point, the
3D reconstruction needs only to be performed only once per
sequence. The average execution time for the entire processing
stage and 3D trajectory reconstruction can be reduced to
3.4 and 2.8 ms per frame, respectively. In addition, the cost for
the preprocessing steps takes on average 204 s per frame and
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Fig. 11. (a) Comparisons of alignment accuracy with different frame rate
ratios. The vertical axis denotes the frame rate of the second sequence.
(b)–(d) Cost matrices computed when the frame rates are 46, 40, and 24,
respectively, with the estimated alignment path (white) and the ground
truth (yellow).

most of this running time (195 s) is spent generating image
point trajectories; if needed, much faster preprocessing time
could be achieved by replacing the two-granularity tracking
algorithm with a different feature tracking algorithm.

VI. CONCLUSION

We present a general framework for synchronizing dynamic
scenes in the presence of independent camera motion.
We demonstrate that the coefficients from 3D trajectory recon-
struction reflect the rhythm in motion and define a rank-based
constraint for nonlinear temporal alignment. We fold the rank
constraint into a graph-based search algorithm and compute
the globally optimal path that minimizes both spatial and tem-
poral misalignments. The main advantage of the framework
is that we do not impose restrictive assumptions as com-
plete trajectories along time or known point correspondences
across sequences. Thus, we can perform the synchronization
task even when the sequences are captured from distant
viewpoints.

In this paper, we assume that the two image sequences
correspond to the same dynamic event. The method will be
exploited in future work to address other tasks, such as human
action recognition or video retrieval, for which the assumption
has to be relaxed.
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