
Published in Transactions on Machine Learning Research (09/2025)

Segmenting Text and Learning Their Rewards
for Improved RLHF in Language Model

Yueqin Yin∗ yueqin.yin@utexas.edu
The University of Texas at Austin, Microsoft

Shentao Yang∗ shentao.yang@mccombs.utexas.edu
The University of Texas at Austin

Yujia Xie† yujiaxie@microsoft.com
Microsoft

Ziyi Yang† ziyiyang@microsoft.com
Microsoft

Yuting Sun yutingsun@microsoft.com
Microsoft

Hany Awadalla hanyh@microsoft.com
Microsoft

Weizhu Chen wzchen@microsoft.com
Microsoft

Mingyuan Zhou† mingyuan.zhou@mccombs.utexas.edu
The University of Texas at Austin

Reviewed on OpenReview: https: // openreview. net/ forum? id= YhLlqD0UNi

Abstract

Reinforcement learning from human feedback (RLHF) has been widely adopted to align
language models (LMs) with human preference. Previous RLHF works typically take a
bandit formulation, which, though intuitive, ignores the sequential nature of LM generation
and can suffer from the sparse reward issue. While recent works propose dense token-level
RLHF, treating each token as an action may be oversubtle to proper reward assignment.
In this paper, we seek to get the best of both by training and utilizing a segment-level
reward model, which assigns a reward to each semantically complete text segment that
spans over a short sequence of tokens. For reward learning, our method allows dynamic text
segmentation and compatibility with standard sequence-preference datasets. For effective
RL-based LM training against segment reward, we generalize the classical scalar bandit
reward normalizers into location-aware normalizer functions and interpolate the segment
reward for further densification. Our method performs competitively on three popular
RLHF benchmarks for LM policy: AlpacaEval 2.0, Arena-Hard, and MT-Bench. Ablation
studies are conducted to further demonstrate our method. Our code can be viewed at
https://github.com/yinyueqin/DenseRewardRLHF-PPO.

∗Equal contribution. This work was done during an internship at Microsoft.
†Corresponding Author.

1

https://openreview.net/forum?id=YhLlqD0UNi
https://github.com/yinyueqin/DenseRewardRLHF-PPO

Published in Transactions on Machine Learning Research (09/2025)

1 Introduction

To align language models (LMs, e.g., OpenAI, 2023; Reid et al., 2024) with human values, reinforcement
learning (RL, Sutton & Barto, 2018) methods have been widely adopted to optimize the non-differentiable
human preference, leading to the paradigm of reinforcement learning from human feedback (RLHF, Ouyang
et al., 2022; Bai et al., 2022b). A prevailing approach in RLHF is to optimize the LMs by proximal policy
optimization (PPO, Schulman et al., 2017) against a bandit reward model learned from human preference
data, with KL regularization towards a pre-specified target distribution to avoid over-optimization on the
reward model (Ziegler et al., 2019; Stiennon et al., 2020; Castricato et al., 2022). While this bandit approach
is easier for reward modeling and has achieved remarkable success, language generation is intrinsically
sequential, rather than simultaneous. Thus, from the view of optimizing human preference, assigning a
bandit reward to the entire text sequence induces the sparse reward (delayed feedback) issue (Andrychowicz
et al., 2017; Marbach & Tsitsiklis, 2003), that often hurts RL-based LM training by increasing gradient
variance and lowering sample efficiency (Takanobu et al., 2019; Wang et al., 2020; Guo et al., 2022; Snell
et al., 2022).

To mitigate this sparse reward issue, prior works have developed methods to “ground” the sequence-level
preference label into a dense token-level reward model (Yang et al., 2023; Zhong et al., 2024). While a dense
per-token reward signal reduces the optimization complexity (Laidlaw et al., 2023), each action, however,
is then defined as a single token, i.e., a sub-word that is finer-grained than a word, especially with the
BPE-style tokenizers (Gage, 1994; Sennrich et al., 2016). For instance, Llama 3.1’s tokenizer (Dubey et al.,
2024) has tokens as {Brit, ce, cod, neo, redd,...} that have less clear semantic meaning per se in any
given context. The contribution of those tokens to the text sequence will inevitably depend on later tokens,
making reward/credit assignment harder, especially under the prevailing RLHF paradigm of implementing
the reward model as an off-the-shelf decoder-only transformer (e.g., Ouyang et al., 2022; Bai et al., 2022b;
Menick et al., 2022). Further, token-level reward implicitly assumes that the basic unit of a text sequence
is token, which may not follow linguistics, where a more meaningful decomposition of text may be phrase
(including word) that can be more semantically complete and generally consists of a short sequence of tokens.

To retain the optimization benefit of dense reward for RLHF, while mitigating its reward assignment issue
and linguistic counter-intuition, in this paper, we seek to train and utilize a segment-level reward model,
which assigns reward to each semantically meaningful text segment that constitutes a small number of (or
just one) tokens. With this design, we define the action space in RLHF as “text segment,” interpolating
between the finest “per token” and the coarsest “full sequence” and potentially getting the benefit of both
worlds: easier RL-based LM training owing to denser feedback and more accurate training guidance from
the semantic completeness of each action. Although prior work has explored fine-grained RLHF through
sentence-level feedback (Wu et al., 2023), such methods often rely on manual annotation or external APIs,
and may miss finer compositional structures below the sentence level. In contrast, our method automatically
segments text based on predictive entropy, offering fully automated, segment-level feedback from only binary
sequence preferences.

Technically, we are motivated by prior works (Malinin & Gales, 2018; Li et al., 2024a) to dynamically
segment a text sequence by thresholding the entropy of LM’s predictive distributions, under the assumption
that tokens within a semantically complete text segment can be more certainly predicted by prior tokens,
while the beginning of a new segment is not (Wang et al., 2024b). To allow training the segment-level reward
model by the standard sequence-preference labels via Bradley-Terry (BT, Bradley & Terry, 1952) loss, we
differentiably aggregate segment rewards in a text sequence into a parametrized sequence evaluation. The
learned segment-level reward model is then utilized in PPO-based policy learning, where we observe the
unsuitability of classical reward normalizers, i.e., the mean and standard deviation (std) of full sequence
rewards. We address this issue by generalizing the classical bandit normalizers of scalar mean and std into a
mean and a std function that output the reward normalizers at arbitrary locations of the text sequence. In
addition, we enhance PPO training by within-segment reward interpolation, which further densifies training
signal and improves results.

We test our method on the performance of PPO-trained LM policy. On three popular RLHF benchmarks for
LM policy: AlpacaEval 2.0, Arena-Hard, and MT-Bench, our method achieves competitive performance gain

2

Published in Transactions on Machine Learning Research (09/2025)

0.5

𝒓𝝓(𝒔𝟏 , 𝒂𝟏) 𝒓𝝓(𝒔𝟐 , 𝒂𝟐) 𝒓𝝓(𝒔𝟑 , 𝒂𝟑) 𝒓𝝓(𝒔𝟒 , 𝒂𝟒)

Aggregation Function 𝒇 ∙ : Average

𝒆𝝓(𝒙, 𝒚𝒘) 𝒆𝝓(𝒙, 𝒚𝒍)

Loss: 𝓛seg 𝝓

Prompt 𝒙:

What is the function of roots in plants?

Sampled Response:
Roots anchor the plant in the soil and absorb water and nutrients.

Policy LM 𝝅𝜽

Roots anchor the plant in the soil and absorb water and nutrients.

Reward Model 𝒓𝝓

𝒓𝝓(𝒔𝟏, 𝒂𝟏) 𝒓𝝓(𝒔𝟐, 𝒂𝟐) 𝒓𝝓(𝒔𝟑, 𝒂𝟑)

𝝁𝟏 , 𝝈𝟏

𝒓𝝓 𝒔𝟐, 𝒂𝟐 : 𝟏. 𝟒

𝝁𝟐 , 𝝈𝟐

𝒓𝝓 𝒔𝟑, 𝒂𝟑 : 𝟏. 𝟔

𝝁𝟑 , 𝝈𝟑
Reward

Normalization

Roots anchor the plant in the soil and absorb water and nutrients.

𝒓𝝓 𝒔𝟏, 𝒂𝟏 : 𝟎. 𝟓

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4

RLHF PPO Training

A banana is both a fruit with seed and a herb with a soft pseudostem.

Reward
Interpolation

෦𝒓𝝓:

Segment-level Reward Training PPO-based LM Policy Learning

+ Segment
by 𝝅SFT

Figure 1: Overview of training and usage of our segment-level reward model. Numerical values shown are
illustrative. Each text segment is represented by a different color, with its starting word underlined in
the figure.

against both the classical bandit design and the recent token-level design. We conduct extensive ablation
studies to verify our design choices and further probe into our method.

2 Main Method

2.1 Notations and Background

In this section, we will define generic notations, provide background on the classical bandit RLHF, and then
discuss RL formulation of LM generation underlying recent efforts on dense-reward RLHF.

Generic Notations. Both reward modeling and LM policy learning require text prompt x and the corre-
sponding response y. Reward model training turns the supervised fine-tuned (SFT) model πSFT(· | ·) (without
the final unembedding layer) into a parametrized scalar-output model rϕ(·, ·) with parameter ϕ that scores
its input. The LM policy πθ is then optimized against rϕ .

Bandit Reward Model Training. Reward model training assumes a dataset Dpref = {(x, yw, yl)} of
prompt x and the corresponding winning/chosen response yw and losing/rejected response yl, where the
label comes from human evaluation on the entire text sequence yw and yl. In the classical bandit RLHF,
reward model rϕ is trained by the binary classification BT loss

Lbandit(ϕ) = −E(x,yw,yl)∼Dpref

[
log σ

(
rϕ(x, yw)− rϕ(x, yl)

)]
, (1)

where σ(u) = 1/(1 + exp (−u)) denotes the sigmoid function.

PPO-based Bandit Policy Learning. In policy learning, a set Dpol = {x} of text prompts x is given.
The LM policy πθ is trained to generate outputs on Dpol optimizing the bandit reward from rϕ , with a KL
penalty towards πSFT to avoid reward over-optimization. Collectively, the objective is

max
θ

E x∼Dpol
y∼πθ(· | x)

[
rϕ(x, y)− β × log

(
πθ(y |x)

πSFT(y |x)

)]
, (2)

3

Published in Transactions on Machine Learning Research (09/2025)

where β is the KL coefficient. In practice, for PPO’s training stability, the value of rϕ(x, y) is de-mean and
de-std normalized based on statistics calculated on a calibration dataset, e.g., Dpref .

RL Formulation of LM Generation. By its sequential nature, LM generation is formulated as a Markov
Decision Process (MDP) M = (S,A, P,R, γ) (Sutton & Barto, 2018). Concretely, for state space S, the
state at timestep t, st, consists of the prompt x and all generated tokens so far a<t =: [a0, . . . , at−1] with
a<0 =: ∅, i.e., st =: [x, a<t]. A is the action space, where the action at at step t is a short-sequence/segment
of tokens from the vocabulary in our segment-level design, whereas at is a single token in the token-level
design. Transition function P deterministically appends the newly sampled tokens after the previous ones,
i.e., st+1 = [st, at] = [x, a≤t]. r(s, a) : S × A → R scores the action choice (segment/token selection) a
at state/context s and is typically substituted by the learned reward model rϕ . γ ∈ [0, 1] is the discount
factor. In what follows, we will focus on our segment-level design where each action at ∈ A is a semantically
complete text segment, consisting of a non-deterministic number of consecutive tokens. The response y for
prompt x then contains a variable number of segments/actions, generically denoted as y = [a0, . . . , aT −1]
where T is the number of segments in y and varies across responses. We denote a single token in y as yi

whose generation context is [x, y<i].

Fig. 1 overviews key components in our method. A detailed algorithm box is in Appendix A.

2.2 Reward Model Training

Overview. In training our segment-level reward model, we follow the data assumption set forth in Sec-
tion 2.1, where the dataset Dpref = {(x, yw, yl)} contains only binary sequence-level preference labels, without
any process supervision (Uesato et al., 2022). The reward model rϕ(st, at) is configured to output a scalar
reward for each text segment choice at at the generation context st. rϕ is trained such that its induced pa-
rameterized text sequence evaluations, aggregated from all segment-level rewards in the respective sequence,
align with the preference labels in Dpref . This is inspired by the imitation learning literature (e.g., Christiano
et al., 2017; Brown et al., 2019; 2020) and prior token-level reward modeling in RLHF (Yang et al., 2023).
Collectively, the BT loss for training our segment-level reward function rϕ is

Lseg(ϕ) = −E(x,yw,yl)∼Dpref

[
log σ

(
eϕ(x, yw)− eϕ(x, yl)

)]
,

∀ y ∈ {yw, yl}, eϕ(x, y) = f
(
{rϕ(st, at)}at∈y

)
.

(3)

where eϕ is the parameterized sequence evaluation induced by rϕ, constructed by aggregating all segment-
level rewards {rϕ(st, at)}at∈y in the text sequence y by a selected aggregation function f(·).

Entropy-based Segmentation. As discussed in Section 1, we intend to split the given text sequence
y ∈ {yw, yl} into semantically complete segments, so that the reward assignment to each action (segment)
can be easier, especially under the common implementation of the reward model as a casual LM. Recent works
on LMs (e.g., Li et al., 2024a; Wang et al., 2024b) have noticed that tokens within a semantically complete
text segment can be more predictable by the corresponding generation context, since they are continuation
of the designated semantics; whereas the starting token of a new segment is comparably less predictable, as
its semantic binding with prior words is relatively weaker. For casual LMs, the predictability of each token
can be conveniently measured by the entropy of the next-token-prediction distribution from which the token
is sampled (Malinin & Gales, 2018). To make text sequence segmentation a one-time data pre-processing in
the reward model training stage, we choose to use the prediction distribution from the supervised fine-tuned
model πSFT, from which the reward model is initialized before training. With a selected entropy cutoff cent,
token yi starts a new segment if the Shannon entropy H(·) of πSFT’s predictive distribution of the i-th token
surpasses cent, i.e., H(πSFT(· |x, y<i)) > cent, in which case yi−1 ends the previous segment.

Choice of the Aggregation Function f(·). Aggregation function f(·) provides inductive bias on the
relation between the quality of each segment/action and the preferability of entire text sequence. While
several designs have been proposed in literature (Christiano et al., 2017; Kim et al., 2023; Yang et al., 2023),
after looking into the dataset, in our experiments, we select Average to differentiably highlight the better
average quality of the chosen responses over the rejected ones. With this choice of f(·), the parametrized
sequence evaluation eϕ(x, y) in Eq. (3) is constructed as

4

Published in Transactions on Machine Learning Research (09/2025)

eϕ(x, y) = f({rϕ(st, at)}at∈y) = 1
T

T −1∑
t=0

rϕ(st, at). (4)

An Alternative Interpretation. Comparing our segment-level reward training loss Eq. (3) with the
classical bandit loss Eq. (1), one may alternatively interpret eϕ and f({rϕ}) in Eq. (3) as a re-parametrization
of the learned sequence-level feedback that differentiably aggregates the quality/contribution of each text
segment, and thereby connects a denser evaluation rϕ of each semantically complete text segment with the
information in ground-truth sequence-level preference label.

2.3 PPO-based Policy Learning

Overview. In policy learning, we again follow the classical bandit setting in Section 2.1 to optimize the LM
policy πθ on a given prompt set Dpol = {x}. But unlike the bandit objective in Eq. (2), we adopt the full RL
setting (Sutton & Barto, 2018) to maximize πθ’s expected sum of per-segment/step rewards. This enables
directly plugging our segment-level reward model rϕ into most off-the-shelf RLHF PPO implementation.
With this design, the policy learning objective for πθ is

max
θ

E x∼Dpol

y∼
∏T −1

t=0
πθ(at | st)

[
T −1∑
t=0

rϕ(st, at)− β log
(

πθ(y |x)
πSFT(y |x)

)]
, (5)

where again, each at is a segment of tokens (chopped by πSFT), st = [x, a0, . . . at−1] is the generation context
at step t, and y = [a0, . . . , aT −1] is the response to prompt x sampled from the learning LM policy πθ.

Recall from Section 2.1 that the output values from the reward model rϕ need to be normalized for the
stability of PPO training. With our segment-level design, it is no longer suitable to normalize each per-step
reward rϕ(st, at) by the mean and std of entire sequences’ rewards as in the bandit setting, since the latter
may not be on a proper scale. Further, the on-policy nature of PPO induces an extra complexity: each
step of PPO samples new text sequences, whose total length, segment lengths, and segment locations are all
stochastic and can differ from the reward calibration dataset, e.g., Dpref . Appendix H provides an extended
discussion on reward normalization in PPO-based LM training. Below, we discuss our approach to construct
the reward value normalizers, followed by interpolating the segment-level reward into per-token signal to
helpfully provide an even denser training guidance.

Location-aware Reward Normalizers via Regression. While the length of the sampled response y
and the lengths and locations of segments {at} in y are all stochastic, we know that each at is somewhere
in y. Correspondingly, each input (st, at) to rϕ is linked to a normalized location p ∈ (0, 1] of y, and p can
be simply defined as t/T , where t is the index of the segment at in y, since PPO routine has fully sampled
y before calculating rewards. On each datapoint in the calibration set, normalized location p ∈ (0, 1] again,
with the linked segment-level reward available. Across all data points in the calibration set, we construct
a new dataset Dnorm = {(p, µp, σp)}, where p runs over all values of normalized location in the calibration
set, µp and σp respectively denote sample mean and std of all segment-level rewards corresponding to p
in the calibration set. With Dnorm, we run simple linear regressions to estimate the relation between the
log-transformed normalized location log(p) and the mean/std of segment-level rewards at p. The regression
formula is given by:

Mean(p) = wµ log(p) + bµ, Std(p) = wσ log(p) + bσ, (6)
where the independent variable is log(p), and the regression coefficients (wµ, bµ) and (wσ, bσ) are obtained
as ordinary least squares (OLS) solutions, with µp and σp as the corresponding response variables.

Note that the classical bandit normalizers of the mean and std of full sequences’ rewards correspond to
evaluate Mean(p) and Std(p) at p = 1.0. In this regard, our mean and std functions in Eq. (6) generalize
the classical scalar normalizers into location-aware functions able to output proper reward normalizers at an
arbitrary (normalized) location p of the text sequence. With Mean(·) and Std(·) and the corresponding p,
rϕ(st, at) is normalized by rϕ(st, at)← (rϕ(st, at)−Mean(p))/Std(p).

Within-segment Reward Interpolation. Depending on the specific tokenizer in use, we observed that
semantically complete text segments may contain around twenty tokens. The corresponding action space

5

Published in Transactions on Machine Learning Research (09/2025)

A might still be large and the resulting segment-level design might not sufficiently address the sample
inefficiency issue in the classical bandit RLHF and could again lead to inferior PPO-based RL training.
To further densify the RL training signal, we evenly split the segment-level reward rϕ(st, at) for a segment
at to each token yi ∈ at. This induces a token-level credit assignment that ∀ yi ∈ at, r̃ϕ([x, y<i], yi) =
rϕ(st, at)/|at|, where [x, y<i] is the generation context of token yi and |at| is the length of segment at. r̃ϕ

can then directly substitute rϕ in Eq. (5), since
∑T −1

t=0 rϕ(st, at) =
∑T −1

t=0 (
∑

yi∈at
rϕ(st, at)/|at|).

Note that r̃ϕ is still intrinsically segment level, since all token selections yi within segment at receive the
same feedback, i.e., the average of segment-level reward rϕ(st, at)/|at|. This is in contrast to prior works on
token-level reward models (Yang et al., 2023; Zhong et al., 2024), where each token selection is evaluated
separately and thus their token-level feedback vary for each token.

Summary. With the learned segment-level reward model rϕ, in PPO training of the LM policy πθ, we first
normalize each rϕ(st, at) in the sampled sequence by the corresponding normalizers Mean(p) and Std(p).
Normalized segment-level rewards are then interpolated into the per-token feedback signal r̃ϕ . Finally, we
plug r̃ϕ directly into an off-the-shelf RLHF PPO routine. A more theoretical viewpoint of using finer-grained
reward over the classical bandit reward is provided in Appendix B.

3 Related Work

Training Signals for RL-based Language Model (LM) Training. In RL-based LM fine-tuning, a
classical training signal for adapting LMs to the specific downstream task is the native trajectory-level
downstream test metrics (e.g., Ryang & Abekawa, 2012; Ranzato et al., 2015). This approach intrinsically
uses a bandit formulation of LM generation that treats the entire generated sequence as a single action. As
discussed in Section 1, ignoring the sequential nature of LM generation, this bandit training signal delays
the feedback to each token/phrase selection, and can thus incur optimization difficulty (Guo et al., 2022;
Snell et al., 2022). With various forms of stronger data or compute requirements, task-specific per-step
training signals have been proposed to mitigate this sparse reward issue. Assuming abundant golden expert
data for supervised (pre-)training, Shi et al. (2018) construct per-step reward via inverse RL (Russell, 1998);
Guo et al. (2018) use a hierarchical approach; Yang et al. (2018) learn LM discriminators; Lin et al. (2017)
and Yu et al. (2017) use the expensive and high-variance Monte Carlo rollout to estimate per-step reward
from a sequence-level adversarial reward function trained in the first place; while Le et al. (2022) use some
rule-based intermediate training signal derived from the oracle sequence-level evaluation, without explicitly
learning per-step reward.

Similarly, in RLHF, to move forward from the classical bandit formulation, methods have recently been
proposed to ground sparse preference labels into dense per-step feedback, with applications in task-oriented
dialog systems (e.g., Ramachandran et al., 2021; Feng et al., 2023) and variable-length text-sequence gener-
ation (Yang et al., 2023). Recently, RTO(Zhong et al., 2024) has also explored the token-level action space
for RLHF, which we adopt as one of our baselines. Our paper seeks to reconcile dense v.s. sparse training
signal in RLHF by distributing feedback to the level of semantically complete “text segment”, interpolating
between the densest “token level” and the sparsest “sequence level” and ideally getting the benefit of both
worlds: easier RL training and accurate optimization signal. Fine-grained rewards were also explored in Wu
et al. (2023), which demonstrated their advantages over bandit rewards in detoxification and long-form QA
tasks. However, their approach relies on manual segment annotation. In contrast, as shown in Section 2,
our method overcomes this limitation through entropy-based automated segmentation and systematically
explores the integration of segment rewards with PPO training.

In this paper, we seek to refine RL-based LM preference alignment by re-thinking the suitable action space
in the RL formulation that allows both denser immediate feedback while not jeopardizing the feedback
accuracy. Our segment-level design is validated through numeric and example in Section 4. We discuss a
broader set of related works in Appendix G.

6

Published in Transactions on Machine Learning Research (09/2025)

Table 1: Performance comparison among different action definitions on PPO-trained LM policy, with the
backbone model being Phi3-mini Instruct. # {char, token} measures the average response length in the
benchmark tests. Highest value of each column is in bold.

Action
Definition

AlpacaEval 2.0 Arena-Hard MT-Bench
LC(%) WR(%) # char WR% # token GPT-4o

Phi3-mini Instruct 18.89 14.41 1473 25.1 490 7.33
Bandit (Sequence) 27.05 29.07 2164 31.3 623 7.46
Sentence 25.56 32.92 2626 32.8 671 7.51
Token 27.82 26.46 1940 27.2 533 7.58
Segment (Ours) 31.05 34.53 2257 34.0 593 7.65
Bandit as Segment 14.39 6.46 691 11.1 308 6.61
Segment as Bandit 27.15 28.20 2079 30.9 620 7.38

4 Experiments

4.1 Experimental Setups and Implementation

Datasets. For reward model training, we use the preference-700K dataset1. which is a diverse collection of
open-source preference datasets, such as HH-RLHF (Bai et al., 2022a), Stanford Human Preferences Dataset
(SHP) (Ethayarajh et al., 2022), and HelpSteer (Wang et al., 2023). PPO-based LM policy training is
conducted on Ultrafeedback dataset (Cui et al., 2023), from which we only use prompts to sample responses
during PPO training.

Evaluation Benchmarks. The (PPO-trained) LM policy is evaluated on three popular open-ended
instruction-following benchmarks: AlpacaEval 2.0 (Li et al., 2023), Arena-Hard (Li et al., 2024b), and MT-
Bench (Zheng et al., 2023), where GPT-4o is used as the judge. For AlpacaEval 2.0, we report two metrics:
Win Rate (WR), calculated as the mean of the LLM judge (GPT-4o)’s soft preference probabilities over all
prompts, comparing the evaluated model to the baseline (typically GPT-4 Turbo); and Length-Controlled
Win Rate (LC), which debiases for response length via logistic regression by simulating both models having
equal output length, with the reported value still being the average of (adjusted) soft preference probabilities.
Further evaluation details are deferred to Appendix D.

Implementation. We implement our method onto the open-sourced 3.8B Phi3-mini Instruct (Abdin et al.,
2024), the SFT checkpoint of Phi3.1-mini Instruct, and the popular SFT checkpoint of Llama-3-8B (Dubey
et al., 2024) released by RLHFlow (Dong et al., 2024)2. The backbone model is used as the starting points
of both reward model training and PPO-based LM policy learning, in the latter initializing the models for
value function, learning policy, and reference policy. Our implementation is built upon the open-source RLHF
framework OpenRLHF (Hu et al., 2024). We maximally follow the default hyperparameters in OpenRLHF.
Due to space limit, we defer further implementation details to Appendix D.

4.2 Main Experimental Comparisons

Baselines. To demonstrate our unique consideration of RLHF’s action space, in the main experiment, we
compare our design of segment-level action space with the coarsest bandit/sequence-level action space, the
coarser sentence-level space, and the finest token-level space, in terms of performance of the PPO-trained
LM policy. For PPO training, a reward model is first trained under the specified action definition. The
sentence-level models are implemented by splitting the text sequences using sentence splitters {".", "!",
"?", "\n", ";", "...", ",", ":"} and/or their foreign language equivalents. To further illustrate our
segment-level reward model and denser segment-level reward assignment, we additionally compare with two
hybrid approaches: (A) the reward model is trained using bandit-level reward (only using the EOS token),

1https://huggingface.co/datasets/hendrydong/preference_700K
2https://huggingface.co/RLHFlow/LLaMA3-SFT-v2

7

https://github.com/OpenRLHF/OpenRLHF
https://huggingface.co/datasets/hendrydong/preference_700K
https://huggingface.co/RLHFlow/LLaMA3-SFT-v2

Published in Transactions on Machine Learning Research (09/2025)

Table 2: Performance comparison among different action definitions on PPO-trained LM policies. The
top four rows correspond to the 3.8B SFT checkpoint of Phi3.1-mini Instruct, and the bottom four rows
correspond to the 8B SFT checkpoint of Llama-3 released by RLHFlow. Table format follows Table 1.

Backbone Model Action Definition AlpacaEval 2.0 Arena-Hard MT-Bench
LC (%) WR (%) # char WR (%) # token GPT-4o

Phi3.1-mini-SFT

Raw Backbone 14.93 10.19 1271 14.5 476 7.00
Bandit (Sequence) 19.39 14.78 1542 19.5 524 7.26
Token 22.48 19.25 1687 23.2 525 7.43
Segment (Ours) 26.19 23.85 1795 28.5 585 7.49

Llama-3-8B-SFT

Raw Backbone 16.31 9.50 1221 10.4 469 6.82
Bandit (Sequence) 21.20 20.99 2218 18.7 513 7.11
Token 23.84 20.87 1744 26.0 622 7.13
Segment (Ours) 25.11 28.57 2264 30.4 616 7.15

but during PPO training, rewards are computed at each segment by feeding the corresponding logits into
the reward model (“Bandit as Segment”); and (B) the reward model is trained to produce segment-level
rewards, but during PPO training, all segment rewards are aggregated into a single bandit reward applied at
the EOS token (“Segment as Bandit”), where the bandit reward is implemented via the parametric sequence
evaluator eϕ in Eq. (4). For all baselines, we follow the standard training receipts and tune them to the
extent of ensuring a fair comparison.

Results. Table 1 compares our PPO-trained LM policy with alternative RLHF action spaces and two hybrid
approaches using the Phi3-mini Instruct backbone. Key findings are as follows.

(1) Our segment-level approach improves RLHF training while not suffering from length hacking. As seen
in Table 1, our LM policy performs better than the baselines across all three benchmarks: AlpacaEval 2.0,
Arena-Hard, and MT-Bench. Notably, our model’s average response length on AlpacaEval 2.0 and Arena-
Hard is not significantly larger than the baseline models’, in contrast to the LM policy from the sentence-level
action space. Together, these results manifest the merit of our segment-level approach in truly improving the
quality of the generated responses while not cheating the benchmark evaluations by response-length hacking
(Dubois et al., 2024).

(2) Not all finer action spaces can help RLHF training over the classical bandit formulation. Apart from
our denser segment-level approach, in Table 1, we see that the other two finer action space specifications:
per-sentence and per-token, both fail to generally improve over the classical bandit/sequence-level design,
especially on AlpacaEval 2.0 and Arena-Hard. This validates our design of segment-level reward assignment
for RLHF PPO training, that offers more granular feedback than sentence-level and can be more accurate
than the semantically incomplete token-level.

(3) A segment-level reward model is necessary for segment-level reward assignment, and vice versa. One may
wonder if we can use the classical bandit reward model to assign segment-level reward in the PPO training.
As shown by the results of “Bandit as Segment” in Table 1, this approach performs significantly worse than
the original pure bandit, which in turn under-performs our segment-level design. These comparisons justify
the necessity to train a segment-level reward model for segment-level reward assignment. Conversely, using
our segment-level reward model to provide only bandit feedback in PPO training (“Segment as Bandit”)
leads to slight performance degradation over pure bandit design. Compared with our main results, we see
that “Segment as Bandit” does not fully benefit from our proposal of a (consistent) segment-level action
space. Its weaker results again highlight the gain of denser reward assignment in PPO-based RLHF training.

(4) The benefit of segment-level design extends to SFT model and the larger 8B model. We swap the
backbone model to the SFT checkpoint of Phi3.1-mini Instruct and the larger 8B SFT checkpoint of Llama-
3, as shown in Table Table 2. It is clear the gain of our segment-level design over the prior bandit and
token-level design is not scoped within the already DPO’ed Phi3-mini Instruct. Rather, our advantage
extends to both the SFT checkpoint of Phi3.1-mini Instruct and the larger Llama-3-8B-SFT, which verifies
the value and versatility of our method in the practical post-training pipeline.

8

Published in Transactions on Machine Learning Research (09/2025)

Table 3: Performance comparison between our segment-level PPO and DPO.

Model Method AlpacaEval 2.0 (LC/WR) MT-Bench Arena-Hard GSM8K

Phi3-mini Instruct DPO 29.24 / 29.69 7.27 28.1 81.6
Segment-PPO (Ours) 31.05 / 34.53 7.65 34.0 86.7

Phi3.1-mini-SFT DPO 24.65 / 22.73 7.45 26.6 82.7
Segment-PPO (Ours) 26.19 / 23.85 7.49 28.5 85.1

Llama-3-8B-SFT DPO 24.71 / 26.71 7.13 24.9 82.5
Segment-PPO (Ours) 25.11 / 28.57 7.15 30.4 82.7

Table 4: Comparison of fixed n-gram and entropy-based segmentation on PPO-trained LM policy.

Fixed n-gram AlpacaEval 2.0 MT-Bench
LC (%) # char GPT-4o

n = 2 26.00 2805 7.57
n = 5 27.88 2224 7.51
n = 10 28.55 2968 7.61
n = 20 24.32 3369 7.58
Ours 31.05 2257 7.65

Appendix E provides generation examples from our main LM policy. Table 7 in Appendix C compares the
LM policies in Table 1 on OpenLLM Leaderboard. Both show that our method, while achieving strong
RLHF training, does not suffer from the “alignment tax” (Askell et al., 2021).

(5) Segment-level PPO consistently outperforms DPO across models and benchmarks. Although the primary
goal of our work is to rethink the appropriate action space for PPO in RLHF, we also compare our proposed
segment-level PPO with the widely adopted Direct Preference Optimization (DPO) that removes the need
for an explicit reward model. As shown in Table 3, our segment-level PPO achieves stronger performance
than DPO (Rafailov et al., 2023) across all metrics. In particular, it achieves up to +5.9 absolute gain on
Arena-Hard (34.0 vs. 28.1) and +5.1 on GSM8K (86.7 vs. 81.6) for Phi3-mini Instruct. Similar gains are
observed with the Phi3.1-mini-SFT and Llama-3-8B-SFT backbones, while DPO exhibits signs of alignment
tax, particularly on GSM8K (Cobbe et al., 2021) benchmark.

4.3 Ablation Study

This section considers the following research questions to better understand our method. Unless otherwise
specified, all ablation studies are performed on the 3.8B Phi3-mini Instruct model used in Table 1.

(a): What will the performance be if we segment text by the “simpler” fixed n-gram?

To compare with recent work (Chai et al., 2025), we swap our entropy-based text segmentation for the
“simpler” heuristic of fixed n-gram, where every non-overlapping n tokens in the text constitute a text
segment, without considering semantics. Table 4 compares the performance of PPO-trained LM policy from
our entropy-based segmentation against fixed n-gram with n ∈ {2, 5, 10, 20}.

It is clear in Table 4 that while fixed n-gram yields reasonable results, all of them under-performs our
entropy-based segmentation, in terms of lower benchmark scores and higher response lengths. As will be
discussed in the following part (b) and Fig. 2, our entropy-based approach segments text sequence based on
semantic completeness rather than the rigid token count, which should benefit reward assignment and thus
policy learning.

(b): Can our method reasonably segment text and assign rewards?

In Fig. 2 (Top), we compare dense reward assignments from our segment-level reward model with the token-
level and fixed n-gram model on normal text. We choose n-gram with n = 5 as the resulted LM policy
in Table 4 does not exhibit the response-length hacking issue, and so the reward model should have higher

9

Published in Transactions on Machine Learning Research (09/2025)

Prompt: Explain what is Buddhism?

Entrop-based Segment Reward Model (Ours):

Fixed 5-Gram Reward Model:

Prompt: What causes earthquakes?

Entrop-based Segment Reward Model (Ours):

Token-level Reward Model:

Token-level Reward Model:

Figure 2: Examples of dense reward assignment for text sequences encountered in PPO training. In the
Top half, we compare our segment-level reward model with the token-level and fixed n-gram models with
n = 5 on normal text. In the Bottom half, we compare our segment-level reward model with the token-level
model on text with verbosity/repetition, where repeated sentences are

::::::::::
underlined. Darker color indicates

higher reward.

Table 5: Comparison of different constructions of segment-level reward normalizers, on performance of the
resulted PPO-trained LM policies.

Reward
Normalizer

AlpacaEval 2.0 MT-Bench

LC (%) # char GPT-4o

No Reward Normalization 19.64 2446 7.25
Global Statistics of All 17.34 2420 7.14
Statistics of the Last Rewards 20.30 2551 7.10

Regression-based (Section 2.3) 31.05 2257 7.65

quality. The color blocks in Fig. 2 (Top) demonstrate that our entropy-based approach segments text into
meaningful semantic units. In contrast, in the token-level design, a token often represents only part of a word,
and thus the reward model often inconsistently highlights only parts of words (e.g., “Truths,” “meditation,”
“compassion”). The fixed n-gram approach rigidly segments text without considering semantics, and thus
can lead to unnatural breaks, such as splitting “a guide to ethical living” into two segments: “a guide to
eth” and “ical living”.

In Fig. 2 (Bottom), we compare our segment-level reward model with the token-level model on text with
verbosity/repetition. We see that our model oassigns consistent low rewards to the repeated sentences,
effectively refraining the LM from verbosity. In contrast, the token-level model still assigns high rewards
to tokens in the repetitions, even in the second repeat, which is undoubtedly undesirable. This comparison
further shows the benefit of our design of a semantically complete action space for more accurate reward
assignment.

(c): How will PPO training perform if we use different constructions of reward normalizers?

Recall that in our PPO training (Section 2.3), we use simple linear regression to fit location-aware mean
and std functions that provide reward normalizers at arbitrary locations of the text sequence. To study if
this design is over-engineering, we compare our main method with three simpler constructions of segment-
level reward normalizers: (A) no reward normalization; (B) using the scalar global mean and std over all

10

Published in Transactions on Machine Learning Research (09/2025)

Table 6: Comparison of different within-segment reward interpolation strategies. Shown are the results of
the resulted PPO-trained LM policies.

Interpolation
Strategy

AlpacaEval 2.0 MT-Bench
LC (%) # char GPT-4o

No Interpolation 25.98 2666 7.45
Repeat Segment Reward 26.34 1795 7.42
Even Split (Section 2.3) 31.05 2257 7.65

cent = 1.5 cent = 1.75 cent = 2 cent = 2.25

0.0

7.5

15.0

22.5

(a) Avg. Len (# token)

26

28

30

32

(b) AlpacaEval 2 (LC)

20

25

30

35

(c) AlpacaEval 2 (WR)

24

28

32

36

(d) Arena-Hard

7.3

7.5

7.7

(e) MT-Bench

Figure 3: Performance comparison among different entropy cutoffs cent for entropy-based text segmentation, com-
paring PPO-trained LM policy’s benchmark scores and average segment length (“Avg. Len”) in terms of number of
tokens.

segment-level rewards in the reward calibration dataset; and (C) using the scalar mean and std over the
last segment-level rewards in each response of the calibration set, mimicking the normalizers in the classical
bandit approach. Table 5 compares the resulted LM policies.

In Table 5, we clearly see that normalizing (dense) reward by improper reward statistics is akin to no reward
normalization, as all three baselines have significantly lower benchmark scores than our regression-based
approach and undesirable longer response lengths. As discussed in details in Appendix H, the linguistic
structure of the response leads to certain correlation between the mean and std of segment-level reward
values and the normalized location of segment in the response, e.g., in the early or middle or later part. This
necessitates our design of location-aware reward normalizers that are able to capture the reward statistics
at each arbitrary location of the sampled text sequence, since constant normalization statistics can be
insufficient to properly normalize the rewards of text segments at different parts of the text sequence, as
verified in Table 5. Future work may extend our linear regression-based normalizer functions in Section 2.3
with non-linearity and/or more features.

(d): What will happen if we use different strategies for within-segment reward interpolation?

Recall from Section 2.3 that, to further densify the learning signal in RLHF for enhancing training, we
interpolate the segment-level rewards by evenly splitting the reward of a segment to each of its constituting
token. We now compare this even-split interpolation strategy with two other intuitive alternatives: (A) no
interpolation on the segment-level rewards, use 0 for technical padding in PPO (“No Interpolation”); (B)
repeat the segment-level reward of a segment to each token in it (“Repeat Segment Reward”). Table 6 shows
the performance of the resulted PPO-trained LM policies.

In conjunction with our main result Table 1, in Table 6, we see that these two alternatives still provide
(relatively) effective RLHF training on Phi3.1-mini Instruct, in reference to the results of the classical bandit
approach in Table 1. Nevertheless, we see that the generation length from “No Interpolation” is significantly
longer, while “Repeat Segment Reward” is too short. Probing into those long text sequences encountered in
PPO training, we found that they typically contain some very negative segment-level rewards that refrains
the behavior of long generation from being learned by the policy LM. Such very negative reward signals
may be diluted by the technical zero-padding in “No Interpolation”, leading to overly long text generation;
whereas they are overly amplified in “Repeat Segment Reward”, resulting in too-strong punishment for long
texts and hence too-short generations. By contrast, the even-split interpolation strategy in our main method

11

Published in Transactions on Machine Learning Research (09/2025)

provides densified learning signal of a proper scale, which we attribute to the implicit (segment-) length
normalization inherited from the operation of dividing by segment length in an even split. Future work may
design a proper non-even split of segment-level reward over each token in the text segment.

(e): With a different entropy cutoff cent for text segmentation, how will our method perform?

As discussed in Section 4.1, for main results, we use entropy cutoff cent = 1.75 for entropy-based text
segmentation. To investigate the impact of cent, in Fig. 3, we vary the value of cent ∈ {1.5, 1.75, 2.0, 2.25},
and compare the performance of the resulted PPO-trained LM policies as well as the average segment length
of the PPO-trained LM policy.

As seen in Fig. 3, similar to the discussion of token-level approach in Section 1, a smaller cent = 1.5, which
chops text sequence into finer pieces with smaller average segment length, may result in semantically less
complete segments, leading to less accurate reward modeling and the subsequent weaker LM policy. A
reasonably larger entropy cutoff, such as cent ∈ [1.75, 2.25] that corresponds to an average segment length of
10 to 22 in Fig. 3a (or about 3 to 7 words), leads to much better PPO-trained LMs. This coincides with the
advantage of our segment-level design over the prior token-level design in Table 1-Table 2 and verifies our
goal of a more semantically complete action space.

(f): How does our segment-based PPO policy compare on the AlpacaEval win rate-KL frontier?

Fig. 4 shows the AlpacaEval LC win rate versus KL to the reference policy (Phi3.1-mini-SFT). For all
methods, the win rate increases as KL grows, but our segment-based PPO achieves consistently higher win
rates than the bandit or token-level baselines across the entire KL range. This indicates that our approach
makes the most effective use of the optimization budget (KL), and sets a new frontier for real alignment
performance.

Figure 4: The AlpacaEval LC win rate-KL vs KL to the reference SFT policy.

(g): How does segment-level reward modeling affect code generation performance?

Figure 5 compares the performance of Bandit, Token, and Segment action spaces on three code generation
benchmarks (MBPP Base (Austin et al., 2021), MBPP Plus, LiveCodeBench-V5 (Jain et al., 2024)), for both
Phi3.1-mini-SFT and Llama-3-8B-SFT backbones. All models are trained on the Ultrafeedback dataset.
Across all benchmarks and model backbones, our segment-based PPO consistently achieves the highest
scores, surpassing both token-level and bandit baselines. This demonstrates that segment-based action
space provides better and more robust performance even on structured data types such as code.

12

Published in Transactions on Machine Learning Research (09/2025)

Figure 5: Performance comparison on code generation benchmarks (MBPP Base, MBPP Plus, Live-
CodeBench) for different action spaces (Bandit, Token, Segment) and model backbones (Phi, Llama).

5 Conclusion

In this paper, we propose to train and utilize a segment-level reward model for improved RLHF in LMs,
motivated by both a denser reward signal in RL-based LM training and semantic completeness of each
action for accurate reward assignment. Our method and insight are validated through extensive experiments,
ablation studies, and backbone models of different sizes, offering a promising research direction for further
exploration of fine-grained action spaces in RLHF.

13

Published in Transactions on Machine Learning Research (09/2025)

Limitations

While our proposed segment-level reward model demonstrates promising improvements in RLHF, certain
aspects warrant further investigation. As an initial exploration into refining the action space in RLHF, our
experiments have so far been limited to PPO training on free-form dialog-style datasets and instruction-
following benchmark evaluations. Future work will focus on scaling our approach to even larger LMs,
extending its applicability to diverse tasks such as mathematical reasoning and code generation, and exploring
its integration with alternative RL algorithms, such as GRPO (Shao et al., 2024), and REINFORCE++ (Hu,
2025).

Impact Statement

Segment-PPO advances RLHF by introducing segment-level reward modeling, improving language model
alignment while addressing sparse reward issues. This refinement enhances response quality, benefiting
applications like conversational AI and automated content generation. However, segment-level optimization
requires careful calibration to mitigate potential biases and unintended generation patterns. Additionally, as
RLHF influences AI decision-making, responsible deployment is crucial to prevent misuse in misinformation
propagation or biased outputs. By refining reward learning at a more semantically meaningful level, our
work underscores the importance of balancing AI advancements with ethical considerations.

14

Published in Transactions on Machine Learning Research (09/2025)

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Riad Akrour, Marc Schoenauer, and Michele Sebag. Preference-based policy learning. In Machine Learn-
ing and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011, Athens, Greece,
September 5-9, 2011. Proceedings, Part I 11, pp. 12–27. Springer, 2011.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew,
Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. Advances in
neural information processing systems, 30, 2017.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory for alignment.
arXiv preprint arXiv:2112.00861, 2021.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022a.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from
ai feedback. arXiv preprint arXiv:2212.08073, 2022b.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar
Sanseviero, Lewis Tunstall, and Thomas Wolf. Open LLM leaderboard. Hugging Face, 2023.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired
comparisons. Biometrika, 39(3/4):324–345, 1952.

Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond suboptimal
demonstrations via inverse reinforcement learning from observations. In International conference on ma-
chine learning, pp. 783–792. PMLR, 2019.

Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning via
automatically-ranked demonstrations. In Conference on robot learning, pp. 330–359. PMLR, 2020.

Meng Cao, Lei Shu, Lei Yu, Yun Zhu, Nevan Wichers, Yinxiao Liu, and Lei Meng. Drlc: Reinforcement
learning with dense rewards from llm critic. arXiv preprint arXiv:2401.07382, 2024.

Louis Castricato, Alexander Havrilla, Shahbuland Matiana, Michael Pieler, Anbang Ye, Ian Yang, Spencer
Frazier, and Mark Riedl. Robust preference learning for storytelling via contrastive reinforcement learning.
arXiv preprint arXiv:2210.07792, 2022.

Yekun Chai, Haoran Sun, Huang Fang, Shuohuan Wang, Yu Sun, and Hua Wu. Ma-rlhf: Reinforcement
learning from human feedback with macro actions. ICLR, 2025.

Alex J Chan, Hao Sun, Samuel Holt, and Mihaela van der Schaar. Dense reward for free in reinforcement
learning from human feedback. arXiv preprint arXiv:2402.00782, 2024.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory
cost. arXiv preprint arXiv:1604.06174, 2016.

15

Published in Transactions on Machine Learning Research (09/2025)

Zhipeng Chen, Kun Zhou, Wayne Xin Zhao, Junchen Wan, Fuzheng Zhang, Di Zhang, and Ji-Rong Wen.
Improving large language models via fine-grained reinforcement learning with minimum editing constraint.
arXiv preprint arXiv:2401.06081, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforce-
ment learning from human preferences. Advances in neural information processing systems, 30, 2017.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv preprint
arXiv:2310.01377, 2023.

T Dao, DY Fu, S Ermon, A Rudra, and C Flashattention Ré. Fast and memory-efficient exact attention
with io-awareness. URL https://arxiv. org/abs/2205.14135, 2022.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo,
Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf. arXiv preprint
arXiv:2405.07863, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled alpacaeval:
A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset difficulty with V-usable
information. In International Conference on Machine Learning, pp. 5988–6008. PMLR, 2022.

Yihao Feng, Shentao Yang, Shujian Zhang, Jianguo Zhang, Caiming Xiong, Mingyuan Zhou, and Huan
Wang. Fantastic rewards and how to tame them: A case study on reward learning for task-oriented
dialogue systems. In The Eleventh International Conference on Learning Representations, 2023.

Chelsea Finn, Paul Francis Christiano, P. Abbeel, and Sergey Levine. A connection between generative
adversarial networks, inverse reinforcement learning, and energy-based models. ArXiv, abs/1611.03852,
2016.

Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng, and Sang-Hyeun Park. Preference-based reinforce-
ment learning: a formal framework and a policy iteration algorithm. Machine learning, 89:123–156, 2012.

Philip Gage. A new algorithm for data compression. The C Users Journal, 12(2):23–38, 1994.

Geyang Guo, Ranchi Zhao, Tianyi Tang, Wayne Xin Zhao, and Ji-Rong Wen. Beyond imitation: Leveraging
fine-grained quality signals for alignment. arXiv preprint arXiv:2311.04072, 2023.

Han Guo, Bowen Tan, Zhengzhong Liu, Eric Xing, and Zhiting Hu. Efficient (soft) q-learning for text
generation with limited good data. Findings of the Association for Computational Linguistics: EMNLP
2022, pp. 6969–6991, 2022.

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Long text generation via adver-
sarial training with leaked information. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Alexander Havrilla, Maksym Zhuravinskyi, Duy Phung, Aman Tiwari, Jonathan Tow, Stella Biderman,
Quentin Anthony, and Louis Castricato. trlX: A framework for large scale reinforcement learning from
human feedback. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 8578–8595, Singapore, December 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.530. URL https://aclanthology.org/2023.emnlp-main.530.

16

https://aclanthology.org/2023.emnlp-main.530

Published in Transactions on Machine Learning Research (09/2025)

Joey Hejna and Dorsa Sadigh. Inverse preference learning: Preference-based rl without a reward function.
arXiv preprint arXiv:2305.15363, 2023.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence with apps. arXiv
preprint arXiv:2105.09938, 2021.

Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. arXiv preprint
arXiv:2501.03262, 2025.

Jian Hu, Xibin Wu, Weixun Wang, Xianyu, Dehao Zhang, and Yu Cao. Openrlhf: An easy-to-use, scalable
and high-performance rlhf framework. arXiv preprint arXiv:2405.11143, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large
language models for code. arXiv preprint arXiv:2403.07974, 2024.

Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza, Noah Jones,
Shixiang Shane Gu, and Rosalind Picard. Human-centric dialog training via offline reinforcement learning.
arXiv preprint arXiv:2010.05848, 2020.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models with
pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. In ICML,
pp. 652–661. PMLR, 2016.

Changyeon Kim, Jongjin Park, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. Preference
transformer: Modeling human preferences using transformers for RL. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=Peot1SFDX0.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations, 2014.

Cassidy Laidlaw, Stuart Russell, and Anca Dragan. Bridging rl theory and practice with the effective horizon.
arXiv preprint arXiv:2304.09853, 2023.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl: Mas-
tering code generation through pretrained models and deep reinforcement learning. Advances in Neural
Information Processing Systems, 35:21314–21328, 2022.

Bolian Li, Yifan Wang, Ananth Grama, and Ruqi Zhang. Cascade reward sampling for efficient decoding-time
alignment. arXiv preprint arXiv:2406.16306, 2024a.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Banghua Zhu, Joseph E Gonzalez, and Ion Stoica.
From live data to high-quality benchmarks: The arena-hard pipeline, 2024b.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B Hashimoto. Alpacaeval: An automatic evaluator of instruction-following models, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint arXiv:2305.20050,
2023.

Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, and Ming-Ting Sun. Adversarial ranking for language
generation. Advances in neural information processing systems, 30, 2017.

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. Advances in neural
information processing systems, 31, 2018.

17

https://openreview.net/forum?id=Peot1SFDX0

Published in Transactions on Machine Learning Research (09/2025)

Peter Marbach and John N Tsitsiklis. Approximate gradient methods in policy-space optimization of markov
reward processes. Discrete Event Dynamic Systems, 13:111–148, 2003.

Jacob Menick, Maja Trebacz, Vladimir Mikulik, John Aslanides, Francis Song, Martin Chadwick, Mia Glaese,
Susannah Young, Lucy Campbell-Gillingham, Geoffrey Irving, et al. Teaching language models to support
answers with verified quotes. arXiv preprint arXiv:2203.11147, 2022.

OpenAI. Gpt-4 technical report, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. arXiv preprint arXiv:2203.02155, 2022.

Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society: Series C (Applied
Statistics), 24(2):193–202, 1975.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model. In Thirty-seventh Con-
ference on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
HPuSIXJaa9.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to Q∗: Your language model is secretly
a Q-function. arXiv preprint arXiv:2404.12358, 2024.

Govardana Sachithanandam Ramachandran, Kazuma Hashimoto, and Caiming Xiong. Causal-aware safe
policy improvement for task-oriented dialogue. arXiv preprint arXiv:2103.06370, 2021.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training with
recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste Alayrac,
Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Stuart Russell. Learning agents for uncertain environments. In Proceedings of the eleventh annual conference
on Computational learning theory, pp. 101–103, 1998.

Seonggi Ryang and Takeshi Abekawa. Framework of automatic text summarization using reinforcement
learning. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning, pp. 256–265, Jeju Island, Korea, July 2012. Association
for Computational Linguistics. URL https://aclanthology.org/D12-1024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with subword
units. In Katrin Erk and Noah A. Smith (eds.), Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin, Germany, August 2016.
Association for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL https://aclanthology.
org/P16-1162.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300, 2024.

Zhan Shi, Xinchi Chen, Xipeng Qiu, and Xuanjing Huang. Toward diverse text generation with inverse
reinforcement learning. arXiv preprint arXiv:1804.11258, 2018.

Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline rl for natural language
generation with implicit language q learning. arXiv preprint arXiv:2206.11871, 2022.

18

https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://aclanthology.org/D12-1024
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162

Published in Transactions on Machine Learning Research (09/2025)

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario
Amodei, and Paul F Christiano. Learning to summarize from human feedback. Advances in Neural
Information Processing Systems, 33:3008–3021, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ryuichi Takanobu, Hanlin Zhu, and Minlie Huang. Guided dialog policy learning: Reward estimation for
multi-domain task-oriented dialog. arXiv preprint arXiv:1908.10719, 2019.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and outcome-based feedback.
arXiv preprint arXiv:2211.14275, 2022.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences via
multi-objective reward modeling and mixture-of-experts. arXiv preprint arXiv:2406.12845, 2024a.

Huimin Wang, Baolin Peng, and Kam-Fai Wong. Learning efficient dialogue policy from demonstrations
through shaping. In Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics, pp. 6355–6365, 2020.

Xinpeng Wang, Bolei Ma, Chengzhi Hu, Leon Weber-Genzel, Paul Röttger, Frauke Kreuter, Dirk Hovy, and
Barbara Plank. " my answer is c": First-token probabilities do not match text answers in instruction-tuned
language models. arXiv preprint arXiv:2402.14499, 2024b.

Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel Egert, Olivier
Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan Swope, et al. Helpsteer: Multi-attribute helpfulness
dataset for steerlm. arXiv preprint arXiv:2311.09528, 2023.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J Zhang,
Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev. Helpsteer2: Open-source dataset for training top-
performing reward models. arXiv preprint arXiv:2406.08673, 2024c.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith, Mari
Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for language
model training. NeurIPS, 36:59008–59033, 2023.

Dehong Xu, Liang Qiu, Minseok Kim, Faisal Ladhak, and Jaeyoung Do. Aligning large language models via
fine-grained supervision. arXiv preprint arXiv:2406.02756, 2024.

Shentao Yang, Shujian Zhang, Congying Xia, Yihao Feng, Caiming Xiong, and Mingyuan Zhou. Preference-
grounded token-level guidance for language model fine-tuning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=6SRE9GZ9s6.

Zichao Yang, Zhiting Hu, Chris Dyer, Eric P Xing, and Taylor Berg-Kirkpatrick. Unsupervised text style
transfer using language models as discriminators. Advances in Neural Information Processing Systems,
31, 2018.

Eunseop Yoon, Hee Suk Yoon, SooHwan Eom, Gunsoo Han, Daniel Wontae Nam, Daejin Jo, Kyoung-Woon
On, Mark A Hasegawa-Johnson, Sungwoong Kim, and Chang D Yoo. Tlcr: Token-level continuous reward
for fine-grained reinforcement learning from human feedback. arXiv preprint arXiv:2407.16574, 2024.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets with
policy gradient. In Proceedings of the AAAI conference on artificial intelligence, volume 31, 2017.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf: Sequence
likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

19

https://openreview.net/forum?id=6SRE9GZ9s6

Published in Transactions on Machine Learning Research (09/2025)

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena.
Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Han Zhong, Zikang Shan, Guhao Feng, Wei Xiong, Xinle Cheng, Li Zhao, Di He, Jiang Bian, and Liwei
Wang. Dpo meets ppo: Reinforced token optimization for rlhf. arXiv preprint arXiv:2404.18922, 2024.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse rein-
forcement learning. In Proc. AAAI, pp. 1433–1438, 2008.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.

20

Published in Transactions on Machine Learning Research (09/2025)

A Algorithm Box

Algorithm 1 summarizes our method in Section 2 on training the segment-level reward model and utilizing
it in PPO-based RLHF LM training. Note that all operations in Algorithm 1 can be efficiently conducted
in batch mode, parallel for multiple sample points at once.

Algorithm 1 Training and Utilizing Our Segment-level Reward.
Input: Binary preference dataset Dpref = {(x, yw, yl)} for reward model training, prompt set Dpol = {x}
for policy learning, supervised fine-tuned model πSFT, reward model training steps Mrew, LM policy
training steps Mpol, entropy cutoff cent, KL coefficient β for RLHF PPO training.

Initialization: Initialize the segment-level reward model rϕ and LM policy πθ from πSFT, fix the aggre-
gation function f(·) as the Average in Eq. (4), initialize other components in the off-the-shelf RLHF PPO
routine as specified.

// Training the segment-level reward model
Use πSFT and cent to split the responses {(yw, yl)} in Dpref = {(x, yw, yl)} into segments.
for iter ∈ {1, . . . , Mrew} do

Sample a minibatch B = {(xi, yw
i , yl

i)}i ∼ Dpref .
With f(·) and τ , calculate eϕ(xi, yw

i) and eϕ(xi, yl
i) by Eq. (4) for (xi, yw

i , yl
i) ∈ B.

Optimize reward model rϕ by Eq. (3).
end for

// Utilizing the segment-level reward model in PPO-based LM policy learning
Estimate the reward normalizer functions Mean(p) and Std(p) as described in Section 2.3.
for iter ∈ {1, . . . , Mpol} do

Sample a minibatch B = {xi}i ∼ Dpol.
Sample a response yi ∼ πθ(· |xi) for each xi ∈ B
Use πSFT and cent to segment each yi; record the completion portion p of each segment.
Use rϕ to assign a segment-level reward to each segment at in each yi

Normalize each segment reward rϕ(st, at) as rϕ(st, at)← (rϕ(st, at)−Mean(p))/Std(p).
Interpolate rϕ(st, at) to each token yi, as ∀ at ∈ y,∀ yi ∈ at, r̃ϕ([x, y<i], yi) = rϕ(st, at)/|at|
With KL coefficient β, optimize policy LM πθ against r̃ϕ by the PPO routine.

end for

B Justification of Using Finer-grained Reward over the Bandit Reward

Since our finer-grained reward is applied to the standard PPO algorithm, the standard gradient calculation
of PPO should hold on our method. The benefit of fine-grained reward manifests in the estimation of value
and advantage functions. For discussion/equation simplicity, below we take as an example the action-value
of the first segment/action Q(x, a0) and ignore the KL-regularization term, where x denotes the prompt.
This discussion holds for action values at other state-actions, the value V function, the advantage A function,
and adding back KL-regularization.

Denote y := [a0, a1, . . . , aT] as the entire response, consisting of T + 1 segments.

Q(x, a0) Under Bandit Reward. The standard bandit reward on PPO is implemented as assigning a
reward R(x, y) to the last segment/action, and padding all intermediate rewards as 0. With the standard
selection of γ = 1 in LM’s RLHF, we have

QBandit(x, a0) = E[a1,...,aT]∼π(·|s1)×π(·|s2)×···×π(·|sT)
[
R(x, y)

]
. (7)

21

Published in Transactions on Machine Learning Research (09/2025)

Q(x, a0) Under Segment-Level Reward. Our denser segment-level reward model assigns a reward
r(st, at) to each segment at. We have

QSeg(x, a0) = E[a1,...,aT]∼π(·|s1)×π(·|s2)×···×π(·|sT)
[
r(s1, a1) + r(s2, a2) + · · ·+ r(sT , aT)

]
. (8)

Interchanging expectation and summation, we have

QSeg(x, a0) = Ea1∼π(· | s1)
[
r(s1, a1)

]
+ E[a1,a2]∼π(· | s1)×π(· | s2)

[
r(s2, a2)

]
+ · · · . (9)

Comparison between QBandit(x, a0) and QSeg(x, a0). We see that QBandit(x, a0) is defined solely on the
product space of all segments:

[a1, . . . , aT] ∼ π(· | s1)× π(· | s2)× · · · × π(· | sT) . (10)

By contrast, our QSeg(x, a0) is decomposed into T terms. The first term is the expectation over a single
segment, the second term over the product space of the first two segments, and so on. Since the sample space
for estimating each term in our QSeg(x, a0) can be an order of magnitude smaller compared to QBandit(x, a0),
QSeg(x, a0) can be estimated more accurately with finite samples, which is our motivation for designing a
denser reward. A formal theoretical treatment comparing dense and sparse rewards, reaching a similar
conclusion, is presented in (Laidlaw et al., 2023).

Our variance reduction technique is in spirit close to the step-wise Importance Sampling (IS) estimator in
off-policy evaluation (v.s. the trajectory-wise IS estimator). For related discussion, see Section 3.2.2 of (Jiang
& Li, 2016).

C Additional Results

Table 7 presents the evaluation results of different LM policies from Table 1 on the HuggingFace OpenLLM
Leaderboard (Beeching et al., 2023).

Table 7: Evaluation results of downstream tasks on the HuggingFace OpenLLM Leaderboard (Beeching
et al., 2023), comparing LM policies in Table 1.

Action Definition ARC TruthfulQA Winograd HellaSwag MMLU GSM8K Average
Phi-Instruct 64.76 54.44 74.51 79.03 70.41 81.6 70.79
Bandit (Sequence) 64.76 55.11 74.35 79.32 70.42 77.8 70.29
Sentence 63.40 53.99 72.93 79.34 70.42 84.1 70.70
Token 62.71 53.94 71.43 79.46 70.55 87.3 70.90
Segment (Ours) 62.71 54.74 72.06 79.23 70.42 86.7 70.98
Bandit as Segment 64.16 54.62 74.66 78.95 70.55 81.0 70.66
Segment as Bandit 64.33 54.81 74.74 79.23 70.39 78.6 70.35

D More Implementation Details

Implementation Details. We tabulate detailed parameter settings in Table 8 and Table 9. Most of them
are the same as the default setting in OpenRLHF. Both the reward model and PPO training employ the
Adam optimizer (Kingma & Ba, 2014), with β1 = 0.9 and β2 = 0.95. To save GPU memory, we use gradient
checkpointing (Chen et al., 2016) and flash attention (Dao et al., 2022).

For reward model training, we set the maximum prompt sequence length as 1792 tokens, with the total
sequence length (including both prompt and response) capped at 2048 tokens. During data preprocessing,
we apply left truncation to the prompt and right truncation to the response. If the EOS token in the
response is truncated, we manually change the last token in the truncated response to the EOS token. The

22

https://github.com/OpenRLHF/OpenRLHF

Published in Transactions on Machine Learning Research (09/2025)

global mini batch size for reward model training is set to 128, with each GPU processing a micro batch
size of 8. To facilitate distributed training, we utilize DeepSpeed ZeRO-3. For our segment-level reward
model, the entropy threshold is set to cent = 1.75 for training with the Phi-series models and cent = 2 for
the Llama-3-8B model. The baseline bandit reward model is technically implemented as setting the entropy
threshold cent = 1000, restricting reward computation to the EOS token only, while the baseline token-level
reward model is implemented as setting the entropy threshold cent = 0, ensuring that a reward is computed
for each token in the text sequence.

For PPO training, the replay buffer size (rollout_batch_size) is set to 1024, while the batch size per GPU
for generation (micro_rollout_batch_size) is configured as 16 for Phi-mini and 4 for Llama-3-8B. The
maximum prompt sequence length is set as 1024 tokens, and the maximum generated sequence length is
also set to 1024 tokens. In PPO’s on-policy sampling, for each prompt in the mini-batch, a single response
is sampled via top-p sampling with p = 1.0 and sampling temperature 1.0. We use DeepSpeed ZeRO-2 for
distributed training. The actor learning rate is set to the default value of 5 × 10−7, and the critic learning
rate is also the default value of 9× 10−6. The clipping coefficient for value loss (value clip) is set to 0.25 for
PPO training based on segment- and token-level reward model, and as default to 0.2 for bandit-reward-based
PPO training. The clipping coefficient for policy loss (eps clip) is set to 0.2. The KL coefficient is kept to
the default value of β = 0.01.

Below, we provide further clarification of the two hybrid baselines in Table 1, which are important for
interpreting our experimental results and understanding the interaction between reward model training and
PPO training strategies: For the “Bandit as Segment” baseline, during reward model training, only the
hidden state of the EOS token is fed into the LM head to compute the reward—hidden states at other
positions are not used for supervision. However, during PPO training, instead of using the reward only at
the EOS token, we feed the hidden states of all positions (not just the EOS token) into the reward model’s
LM head to compute per-segment rewards. This baseline illustrates that if the reward model is trained with
only bandit-level supervision, but during PPO training, we attempt to provide segment-level rewards, the
resulting mismatch leads to inferior performance compared to our approach. This highlights the importance
of jointly considering both reward model training and PPO training strategies.

In the “Segment as Bandit” baseline, we use the same segment-level reward model as in our main PPO
training. The difference is that, during PPO training, we adopt the conventional bandit action space,
assigning reward only at the EOS token (i.e., only the final segment receives a non-zero reward, while all
other positions receive zero). In contrast, our proposed method assigns distinct rewards to all segments. The
inferior results of “Segment as Bandit” demonstrate the benefit of using segment-level rewards throughout
PPO training, rather than reverting to a bandit-level reward signal.

Table 8: Hyperparameters used in reward model training.

Hyperparameter Value
Batch Size 128
Training Epochs 1
Max prompt length 1728
Max total length 2048
DeepSpeed ZeRO stage 3
Optimizer Adam
Learning Rate 1e-6
Gradient clipping norm 1.0
Entropy threshold cent 1.75

E Examples of Generated Responses

Below, we provide examples of generated responses from our LM policy in the main results (Table 1) on the
benchmarks AlpacaEval 2.0 (first two examples) and Arena-Hard (last two examples).

23

https://github.com/microsoft/DeepSpeed

Published in Transactions on Machine Learning Research (09/2025)

Table 9: Hyperparameters used in PPO-based LM training.

Hyperparameter Phi-mini Llama-3-8B
Batch Size 128 128
Rollout batch size 1024 1024
Micro rollout batch size 16 4
Training Epochs 2 1
Max prompt length 1024 1024
Max generation length 1024 1024
DeepSpeed ZeRO stage 2 2
Actor learning rate 5e-7 5e-7
Critic learning rate 9e-6 9e-6
Gradient clipping norm 1.0 1.0
Entropy threshold cent 1.75 2.0
Value clipping 0.25 0.25
KL coefficient β 0.01 0.01

Prompt: When are hops added to the brewing process?

Response: Hops, the flowers of the hop plant Humulus lupulus, are a crucial ingredient in brewing
beer, primarily used for their bittering, flavoring, and aromatic properties. They are typically added to
the brewing process at various stages, depending on the desired outcome in terms of bitterness, flavor,
and aroma. The timing of hop addition is a critical aspect of brewing that significantly influences the
final beer’s character.

1. Boiling Stage (Early Boil): This is the most common stage for adding hops. Adding hops early
in the boil (usually within the first 15 minutes) primarily contributes to the beer’s bitterness. The
longer the hops are boiled, the more bitterness is extracted due to the breakdown of alpha acids, which
are responsible for this bitterness. This process is known as isomerization. Early boil hops can also
contribute some flavor, but the impact on aroma is minimal because the volatile compounds responsible
for aroma are largely evaporated during this long boil.

2. Middle of the Boil: Adding hops in the middle of the boil (around 15 to 30 minutes) can strike
a balance between flavor and aroma. The bitterness level is moderate, and the hop flavors and some
aromatic compounds are preserved better than in the early boil, thanks to the shorter exposure time.

3. Late Boil (Last 10-15 minutes): Hops added late in the boil contribute significantly to the beer’s
aroma and flavor, with minimal to no contribution to bitterness. This is because the shorter boiling time
allows the volatile aromatic compounds to remain intact, while the alpha acids responsible for bitterness
are less extracted. This technique is often used in styles that emphasize hop aroma and flavor, such as
India Pale Ales (IPAs) and New England IPAs (NEIPAs).

4. Fermentation Stage: Some brewers also add hops during the fermentation process, a technique
known as dry hopping. This is done after the primary fermentation has completed, and the beer is
transferred to a secondary fermenter or directly to the bottle/keg. Dry hopping enhances the beer’s
aroma without significantly affecting its bitterness. The extended contact time allows the hop oils to
infuse the beer, imparting a fresh, fruity, and floral aroma.

5. Post-Fermentation (Aging): In some cases, especially with barrel-aged beers, hops may be
added during the aging process to impart additional flavor and aroma characteristics. This can be a
more experimental approach, as the interaction between the hops and the aging environment (e.g., oak
barrels, different beer styles) can lead to unique and complex profiles.

The choice of when to add hops is a critical decision that brewers make based on the style of beer they are
aiming to produce and the specific flavor, aroma, and bitterness profiles they desire. Experimentation

24

Published in Transactions on Machine Learning Research (09/2025)

and experience play significant roles in fine-tuning this aspect of the brewing process to achieve the
perfect balance for each batch.

Prompt: Introduce the “financial markets and institutions“ by Frederic S. Mishkin.

Response: In his comprehensive work, The Economics of Money, Banking, and Financial Markets,
Frederic S. Mishkin delves into the intricate world of financial markets and institutions, providing a
thorough examination of their roles, functions, and significance in the global economy. The book,
published in 2000, is a well-regarded resource for students, professionals, and policymakers alike, as
it explores the complexities of financial systems and their impact on economic growth, stability, and
development.

Financial markets and institutions are integral components of the broader economic system, serving as
the backbone for the efficient allocation of resources, risk management, and the facilitation of transac-
tions between various participants. Mishkin’s book offers a deep dive into the various types of financial
markets, such as capital markets, money markets, and foreign exchange markets, as well as the in-
stitutions that operate within these environments, including banks, investment firms, and regulatory
bodies.

The book begins by establishing a solid foundation in the basic concepts and principles of money,
banking, and financial markets, ensuring that readers have a clear understanding of the fundamental
ideas that underpin the entire field. Mishkin then progresses to explore the role of financial intermedi-
aries, such as banks and other institutions, in connecting savers and borrowers, and how these entities
contribute to the overall efficiency and stability of the financial system.

One of the key themes in Mishkin’s work is the importance of financial markets and institutions in
promoting economic growth and development. He examines the ways in which these entities facilitate
the flow of funds from savers to productive investments, thereby supporting innovation, entrepreneur-
ship, and job creation. Furthermore, Mishkin discusses the role of financial markets in providing risk
management tools, such as derivatives and insurance products, which help individuals and businesses
protect themselves against potential losses.

Another crucial aspect of Mishkin’s exploration is the examination of the regulatory framework that
governs financial markets and institutions. The author emphasizes the need for effective oversight and
regulation to ensure the stability of the financial system, protect consumers, and prevent financial crises.
Throughout the book, Mishkin provides real-world examples and case studies to illustrate the conse-
quences of both well-functioning and poorly regulated financial markets, highlighting the importance of
maintaining a balanced and robust regulatory environment.

In addition to discussing the theoretical aspects of financial markets and institutions, Mishkin also
addresses practical considerations, such as the impact of technology on the financial industry, the role
of central banks in monetary policy, and the challenges posed by globalization and financial integration.
By offering a comprehensive and well-rounded perspective on the subject, Mishkin’s work serves as an
invaluable resource for anyone seeking to understand the complexities and nuances of financial markets
and institutions in the modern economic landscape.

25

Published in Transactions on Machine Learning Research (09/2025)

Prompt: Provide me with a breakfast recipe that is quick to make and is high in protein (at least 30
grams) and has a variety of ingredients.

Response: Certainly! Here’s a quick and delicious high-protein breakfast recipe called "Spinach and
Feta Egg Muffins." This recipe is not only packed with protein but also incorporates a variety of in-
gredients, including spinach, feta cheese, and eggs. It’s perfect for a healthy, on-the-go breakfast or a
satisfying meal prep option.

Ingredients:

• 6 large eggs

• 1 cup fresh spinach, chopped

• 1/2 cup feta cheese, crumbled

• 1/4 cup red onion, finely chopped

• 1/4 cup cherry tomatoes, halved

• 1/4 cup green bell pepper, finely chopped

• 1/4 cup mushrooms, finely chopped

• 1/4 cup fresh parsley, chopped

• Salt and pepper, to taste

• 1/4 teaspoon garlic powder (optional)

• 1/4 teaspoon paprika (optional)

• 1/4 teaspoon dried oregano (optional)

Instructions:

1. Preheat your oven to 375°F (190°C) and lightly grease a muffin tin with cooking spray or a
small amount of oil.

2. In a large mixing bowl, whisk the eggs until well combined.

3. Add the chopped spinach, feta cheese, red onion, cherry tomatoes, green bell pepper, mush-
rooms, and parsley to the egg mixture. Stir until all the ingredients are evenly distributed.

4. Season the mixture with salt, pepper, garlic powder, paprika, and dried oregano (if using) to
taste.

5. Pour the egg mixture into the prepared muffin tin, filling each cup about 3/4 full.

6. Place the muffin tin in the preheated oven and bake for 20-25 minutes, or until the egg muffins
are set and the tops are lightly golden.

7. Remove the muffin tin from the oven and let the egg muffins cool for a few minutes before
transferring them to a wire rack to cool completely.

8. Once cooled, you can store the egg muffins in an airtight container in the refrigerator for up to
3-4 days or freeze them for up to 3 months.

26

Published in Transactions on Machine Learning Research (09/2025)

9. To reheat, simply place the egg muffins in a microwave-safe dish and heat for 15-20 seconds, or
until warmed through.

Enjoy your high-protein, delicious, and nutritious Spinach and Feta Egg Muffins!

27

Published in Transactions on Machine Learning Research (09/2025)

Prompt: Write a python function that solves a quadratic equation.

Response: To solve a quadratic equation of the form ax2 + bx + c = 0, we can use the quadratic
formula:

x = −b±
√

b2 − 4ac

2a

This formula gives us the roots of the quadratic equation, where a, b, and c are coefficients of the
equation, and x represents the variable. The term under the square root, b2 − 4ac, is known as the
discriminant. The discriminant determines the nature of the roots:

- If the discriminant is positive, there are two distinct real roots. - If the discriminant is zero, there is
exactly one real root (also known as a repeated or double root). - If the discriminant is negative, there
are no real roots, but two complex roots.

Here’s a Python function that calculates the roots of a quadratic equation, handling all three cases:

import cmath

def so lve_quadrat i c (a , b , c) :
" " "
So l v e s a quadra t i c equat ion o f the form ax^2 + bx + c = 0.

Parameters :
− a : C o e f f i c i e n t o f x^2
− b : C o e f f i c i e n t o f x
− c : Constant term

Returns :
− A t u p l e con ta in ing the roo t s o f the equat ion . I f the roo t s are complex ,

they are re turned as complex numbers .
" " "
Ca l cu l a t e the d i s c r iminant
d i s c r im inant = cmath . s q r t (b∗∗2 − 4∗a∗c)

Ca lcu l a t e the two roo t s us ing the quadra t i c formula
root1 = (−b + di s c r im inant) / (2∗ a)
root2 = (−b − di s c r im inant) / (2∗ a)

return (root1 , root2)

Example usage
a , b , c = 1 , 5 , 6 # C o e f f i c i e n t s f o r the equat ion x^2 + 5x + 6 = 0
r oo t s = so lve_quadrat i c (a , b , c)
print (f "The␣ roo t s ␣ o f ␣ the ␣ equat ion ␣ are : ␣{ roo t s [0] } ␣and␣{ roo t s [1] } ")

For a complex d i s c r iminan t
a , b , c = 1 , 2 , 5 # C o e f f i c i e n t s f o r the equat ion x^2 + 2x + 5 = 0
r oo t s = so lve_quadrat i c (a , b , c)
print (f "The␣ roo t s ␣ o f ␣ the ␣ equat ion ␣ are : ␣{ roo t s [0] } ␣and␣{ roo t s [1] } ")

This function uses the ‘cmath‘ module to handle complex square roots, ensuring that it can return
complex roots when necessary. The function calculates and returns both roots, which can be real or
complex numbers, depending on the discriminant.

28

Published in Transactions on Machine Learning Research (09/2025)

Chat Template. Below is the chat template used for PPO training, reward model training, and evaluation
sampling with Phi-3. The original Phi-3-Mini chat template includes an additional EOS token, which we
removed in experiments due to incompatibility, leaving only the <|end|> token.

<|user|>

{the user query} <|end|>

<|assistant|>

{Assistant Response} <|end|>

For Llama-3, the chat template is as follows:

<|begin_of_text|><|start_header_id|>user <|end_header_id|>

{the user query}<|eot_id|><|start_header_id|>assistant <|end_header_id|>

{Assistant Response}<|eot_id|>

F Computation of Location-Aware Reward Normalizers via Regression

First, 60,000 data points are randomly sampled from the Preference-700K dataset, which includes pairs of
prompts, chosen responses, and rejected responses. Each response is processed by a segment reward model,
where the segments within the response are indexed by their respective normalized location. Specifically, the
normalized location p ∈ (0, 1] is computed for each segment at as p = t

T , where t is the index of the segment
within the response and T represents the total number of segments in the response. The model then provides
the reward for each segment, producing a set of data points that consist of the segment’s normalized location
and its corresponding reward.

To estimate the relationship between the normalized location and the reward statistics, we employ a linear
regression approach using the HuberRegressor from the sklearn library, which is robust to outliers. We
perform the regression on the log-transformed normalized locations, log(p), to model the dependence of the
mean reward µp and the standard deviation σp of rewards at each normalized location. The regression
formulas are given by:

Mean(p) = wµ log(p) + bµ, Std(p) = wσ log(p) + bσ, (11)

Here, wµ and bµ are the regression coefficients for the mean reward, and wσ and bσ are those for the standard
deviation.

Once the regression coefficients are obtained, we use them to compute the normalized rewards for each
segment-level reward during the PPO training. The normalized reward rϕ(st, at) is computed according to
the location-aware normalizers:

rϕ(st, at)←
rϕ(st, at)−Mean(p)

Std(p) . (12)

G More Related Work

Reward Models in RLHF. In the classical RLHF paradigm, policy LM is optimized against a bandit
reward model trained firstly by binary classification loss on the preference dataset, with KL penalty to a
specified prior distribution to avoid reward over-optimization (Ziegler et al., 2019; Stiennon et al., 2020;
Jaques et al., 2020; Bai et al., 2022a; Ouyang et al., 2022). Under the same bandit formulation, recent works
have enhanced the bandit reward model by directly modeling the probability of one response being preferred
over the other (e.g., Jiang et al., 2023; Zhao et al., 2023; Dong et al., 2024) or factorizing human preference
into multiple facets via multi-objective modeling (Touvron et al., 2023; Wang et al., 2024c;a). Despite its

29

Published in Transactions on Machine Learning Research (09/2025)

popularity, from the angle of RL-based optimization of human preference captured by the reward model,
such a bandit reward may lead to inferior training, due to the sparse reward issue intrinsic to the bandit
formulation of LM generation and credit assignment (e.g., Takanobu et al., 2019; Guo et al., 2022).

Viewing the weakness of bandit RLHF, efforts have been making to densify the reward signal for RLHF LM
training. Yang et al. (2023), Xu et al. (2024) and Chan et al. (2024) train token-level reward models by the
binary preference classification loss. Zhong et al. (2024) and Rafailov et al. (2024) use an LM trained by
DPO (Rafailov et al., 2023) firstly for token-level reward assignment, which is later used in PPO training or
search-based algorithms. Guo et al. (2023), Cao et al. (2024), and Yoon et al. (2024) assign continuous or
fixed fine-grained rewards (e.g., ±1) by accessing an external powerful large LM or the oracle environmental
reward; while Chen et al. (2024) require the extra task and datasets of erroneous solution rewriting. Apart
from potential extra requirements, as discussed in Section 1, the semantic incompleteness of token in text
may challenge the efficacy of per-token credit assignment, especially with the prevailing implementation of
reward model as a decoder-only transformer that cannot look ahead into later tokens.

Close to our segment-level reward, process reward models (PRMs, e.g., Uesato et al., 2022; Lightman et al.,
2023) in reasoning-alike tasks also assign reward to each step, defined as a short sequence of tokens. However,
PRMs typically require per-step human annotations – impractical for general text generation tasks like
summarization or dialogue where only full text sequences can be properly evaluated. In contrast, our
method (Section 2) is developed for the most basic yet general RLHF setting, where (human) preference is
only provided in a dataset of binary sequence-level preference with diverse prompt-response forms.

Learning-from-preference. Learning-from-preference classically takes a two-stage approach where a re-
ward model is first trained on a dataset of binary or multiple ranking via maximizing the choice model
likelihood (Bradley & Terry, 1952; Plackett, 1975), before optimizing the RL/control policy against the
learned reward model by RL algorithms (Akrour et al., 2011; Fürnkranz et al., 2012). Earlier application in
deep learning mainly focuses on relatively simple neural-network policy for robotics/control tasks (e.g., Chris-
tiano et al., 2017; Hejna & Sadigh, 2023). Implanting its success in robotics, in natural language generation,
this two-stage learning-from-preference paradigm has been scaled up and popularized in the post-training
stage to align LMs with specific human values, with applications ranging from text summarization (Ziegler
et al., 2019; Stiennon et al., 2020), prompt generation (Yang et al., 2023), to (task-oriented) conversational
agent (e.g., Ouyang et al., 2022; Feng et al., 2023; OpenAI, 2023).

To alleviate the complexity in fitting an explicit reward model, motivated by the theory of maximum-entropy
control and RL (Ziebart et al., 2008; Finn et al., 2016), direct preference optimization methods (DPO, e.g.,
Rafailov et al., 2023; Zhao et al., 2023) were recently proposed to directly train LMs on a preference dataset
by using their log-density-ratio as the classification logit.

H More on the Reward Normalizers in PPO Training

To center the assigned rewards from the reward model and reduce their variance, in most open-source (bandit)
RLHF PPO implementations (e.g., Havrilla et al., 2023; Hu et al., 2024), the bandit reward of the newly
sampled response y is first “Z-score” normalized, before being fed into the PPO routine. Concretely, for the
prompt x and sampled response y, the bandit reward rϕ(x, y) is normalized as rϕ(x, y)← (rϕ(x, y)− µ)/σ,
where µ and σ are respectively the mean and standard deviation of (bandit) rewards in the reward calibration
dataset. The PPO routine starts by using this normalized rϕ(x, y), e.g., first subtract it by the KL regularizer,
and then calculate the advantage estimates and value function training target, etc.

For the segment-level action space, we will then need to normalize the reward rϕ(st, at) for each segment
at. As shown in Table 5 (“Global Statistics of All”), the most intuitive idea of simply using the global mean
and standard deviation over all segment-level rewards in the reward calibration dataset does not train a
good LM. Looking into the responses sampled in PPO training and in the reward calibration dataset, we
find that, for example, the beginning segments of the responses are typically greeting alike phrases that are
less informational and/or essential to respond to the given prompt, which tend to receive relatively lower
rewards. If we normalize the segment-level rewards of those early segments by the global mean and standard
deviation, those normalized rewards will be significantly negative, rather than centered around 0. This will

30

Published in Transactions on Machine Learning Research (09/2025)

undesirably refrain the generation of necessary greeting alike phrases, resulting in an “impolite LM” and
thus inferior benchmark results. More generally, the linguistic structure of the response leads to certain
correlation between the mean and standard deviation of segment-level reward values and the normalized
location of segment in the response, e.g., in the early or middle or later part. This observation motivates
us to design location-aware reward normalizers that can approximately capture the reward statistics at an
arbitrary location of the response, so that the normalized segment-level rewards can be more centered and
less varying. It is important to have proper reward normalizers at an arbitrary location of the response,
because the response sampled in PPO training will have a stochastic total length, nondeterministic number
of segments, and less-controllable length of each segment. These considerations motivate our design of the
regression-based reward normalizer functions in Section 2.3.

I More visualization results of segment

We provide additional visualization results to further demonstrate the effectiveness and interpretability of our
entropy-based segmentation method. Specifically, we randomly sampled three examples from the preference-
700K training set and applied our method with an entropy threshold of 1.5. As shown in Fig. 6, Fig. 7,
and Fig. 8, we present direct comparisons between human-annotated segments and our automatic entropy-
based segmentation, demonstrating that our approach produces semantically meaningful and consistent
segments. Furthermore, Fig. 9, Fig. 10, and Fig. 11 showcase representative examples of entropy-based
segmentation across diverse prompts, highlighting the robustness and adaptability of our method to various
question types and response styles. Notably, the coding samples in Fig. 10 and Fig. 11 are randomly selected
from the APPS training set (Hendrycks et al., 2021). In these cases, we observe that the entropy-based
segmentation naturally tends to split the code at meaningful boundaries, such as line breaks (\n) or logical
code blocks. This behavior indicates that to some extent, our method can automatically capture the structure
and semantics of programming outputs without the need for explicit rules or supervision.

31

Published in Transactions on Machine Learning Research (09/2025)

Prompt: What initiatives or partnerships has Jeep established to promote
sustainability in the automotive industry?

（a) Human-Annotated Segments

（b) Entropy-based Segments

Figure 6: Visualization results comparing human-annotated segmentation (a) with entropy-based segmenta-
tion (b).

32

Published in Transactions on Machine Learning Research (09/2025)

Prompt: How has the music scene in Nashville, United State changed over the past century?

（a) Human-Annotated Segments （b) Entropy-based Segments

Figure 7: Visualization results comparing human-annotated segmentation (a) with entropy-based segmenta-
tion (b).

33

Published in Transactions on Machine Learning Research (09/2025)

Prompt: Detailed Instructions: In this task you will break down a question into the basic steps required to
answer it.\n A question decomposition is a numbered list of operations that must be performed to answer
the original question. Imagine explaining your question to a friendly droid by listing each action it
should take in order for the question to be answered. Each step in our decomposition should refer to
either an entity (known or unknown), a propery of an entity or a query operation (count, group, union,
etc.)\n Here are the list of step templates and their description:\n Select: A select step is used to return a
set of objects. There are no references to previous steps in a select step. template: Return [attributes]\n
Filter: A filter step is used to return results from a previous step to which a certain condition applies.
template: Return [#step] [condition]\n Project: A project step should return certain attributes of the
results of a previous step. template: Return [attributes] of [#step]\n Aggregate: An aggregate step returns
an aggregator function applied on a step's result. template: Return the [aggregator] of [#step].\n Group: A
group step is an aggregator applied on attributes. template: Return the [aggregator] of [#step] for each
[attribute]\n Superlative: A superlative step is used to return the result with a highest/lowest attribute
among other results. template: Return [#step1] [where] [#step2] [is] [highest / lowest]\n Comparative: A
comparative step is used when we need to compare an attribute with a number to filter results. template:
Return [#step1] [where] [#step2] [comparator] [number] \n Union: A union step is used to return results
of two steps together. template: Return [#step1] [or /,] [#step2]\n Intersection: An intersection step
returns the result that two steps have in common. template: Return [attribute] of both [#step1] and
[#step2]\n Discard: A discard step returns result of a step and excludes result of another step from it.
template: Return [#step1] besides [#step2]\n Sort: A sort returns result of another step in a specific order.
template: Return [#step1] [ordered / sorted by] [#step2]\n Is true: An is true step checks a condition on
another result and returns a true or false. template: Return [is / if] [condition]\n Arithmetic: An
arithmatic step operates an arithmatic operation on one or more steps. template: Return the [arithmetic
op.] of [#step1] [and] [#step2].\nQ: question: How many years after the Treaty of Verdun did Philip IV
of France become King?

（a) Human-Annotated Segments （b) Entropy-based Segments

Figure 8: Visualization results comparing human-annotated segmentation (a) with entropy-based segmenta-
tion (b).

34

Published in Transactions on Machine Learning Research (09/2025)

Figure 9: Example of entropy-based segmentation.

Figure 10: Example of entropy-based segmentation on coding response.

35

Published in Transactions on Machine Learning Research (09/2025)

Figure 11: Example of entropy-based segmentation on coding response.

36

	Introduction
	Main Method
	Notations and Background
	Reward Model Training
	PPO-based Policy Learning

	Related Work
	Experiments
	Experimental Setups and Implementation
	Main Experimental Comparisons
	Ablation Study

	Conclusion
	Algorithm Box
	Justification of Using Finer-grained Reward over the Bandit Reward
	Additional Results
	More Implementation Details
	Examples of Generated Responses
	Computation of Location-Aware Reward Normalizers via Regression
	More Related Work
	More on the Reward Normalizers in PPO Training
	More visualization results of segment

