LEANFLEX-GKP: ADVANCING HASSLE-FREE STRUC-TURED PRUNING WITH SIMPLE FLEXIBLE GROUP COUNT

Anonymous authors

Paper under double-blind review

ABSTRACT

Densely structured pruning methods — which generate pruned models in a fully dense format, allowing immediate compression benefits without additional demands — are evolving due to their practical significance. Traditional techniques in this domain mainly revolve around coarser granularities, such as filter pruning, thereby limiting performance due to restricted pruning freedom. Recent advancements in Grouped Kernel Pruning (GKP) have enabled the utilization of finer granularities while maintaining a densely structured format. We observe that existing GKP methods often introduce dynamic operations to different aspects of their procedures at the cost of adding complications and/or imposing limitations (e.g., requiring an expensive mixture of clustering schemes) or contain dynamic pruning rates and sizes among groups that result in a reliance on custom architecture support for its pruned models. In this work, we argue that the best practice to introduce these dynamic operations to GKP is to make Conv2d (groups) (a.k.a. group count) flexible under an integral optimization, leveraging its ideal alignment with the infrastructure support of *Grouped Convolution*. Pursuing such a direction, we present a one-shot, post-train, data-agnostic GKP method that is more performant, adaptive, and efficient than its predecessors while simultaneously being a lot more user-friendly, with little-to-no hyper-parameter tuning or handcrafting of criteria required.

1 INTRODUCTION

Despite having a proven track record revolving around computer vision tasks, modern convolutional neural networks (CNNs) face deployment challenges for growing model capacities. To address this issue of over-parameterization, *network pruning* — a field studying how to insightfully remove components from the original model without significant degradation to its properties and performance — has undergone constant development for being an intuitive way of potentially reducing the computation and memory footprint required to practically utilize a model (Blalock et al., 2020).

In this work, we advance the progress on *Grouped Kernel Pruning (GKP)* (Zhong et al., 2022), a recently developed structured pruning granularity with many deployment-friendly properties, by investigating a common design choice among existing GKP methods: dynamic operations — which is an act of applying different operations to the same task (e.g., clustering CNN filters with various combinations of dimensionality reduction and clustering techniques, as in TMI-GKP (Zhong et al., 2022)). We find that current GKP designs tend to include such operations in a sub-optimal manner, resulting in various complications and limitations. As a solution, we propose that the best practice to implement dynamic operations to GKP is to make Conv2d (groups) (a.k.a. group count) flexible under an integral optimization, leveraging its ideal alignment with the existing and future infrastructure support of Grouped Convolution (Krizhevsky et al., 2012). Our empirical evaluation showcases that by making these group counts flexible, we can afford to "lean down" on the rest of the typical GKP procedures, and therefore obtain a new one-shot, post-train, data-agnostic GKP method that is more performant, adaptive, and efficient than its predecessors while simultaneously being a lot more user-friendly with little-to-no hyper-parameter tuning or handcrafted criteria required. We can concisely summarize our contribution as "advancing hassle-free structured pruning," as suggested in the title.

Given that our work develops upon specific observations made on existing adaptations of grouped kernel pruning (Zhong et al., 2022), a recently proposed structured pruning granularity with

limited exposure, we hereby provide a rather extensive background on the procedure at the risk of being redundant. Additionally, we refer readers to Zhong et al. (2022) and He & Xiao (2023) for more information regarding different structured pruning granularities.

1.1 TRADING PERFORMANCE FOR DEPLOYABILITY: THE PRACTICAL ADVANTAGE OF STRUCTURED PRUNING

Under the general realm of network pruning, two categories of techniques have been proposed, which are commonly known as *unstructured pruning* and *structured pruning* (Mao et al., 2017; Blalock et al., 2020; He & Xiao, 2023). While it can be faithfully concluded that these two categories have very different focuses and approaches, there is, unfortunately, no universally agreed distinction between what pruning methods constitute structured pruning and what do not.

Nonetheless, the general understanding follows a performance-deployability trade-off: an unstructured pruning method typically tends to enjoy a higher degree of pruning freedom — and thus better performance — but it is done so at the cost of leaving the pruned network to be sparse without a reduction in size and consequently require special libraries or hardware support to realize compression/acceleration benefits (Yang et al., 2018) (e.g., weight pruning (LeCun et al., 1989)). Conversely, a structured pruning method often removes model components in groups that follow the architecture design of the original network, potentially resulting in a smaller network. Specifically, the majority of structured pruning methods (e.g., filter pruning (Zhou et al., 2016; Li et al., 2017)) are capable of delivering pruned models that are reduced in dimension yet entirely dense (a.k.a. *densely structured*) and therefore provide immediate compression benefits without additional demand.

1.2 EXPLORING STRUCTURED PRUNING WITH FINER GRANULARITIES: GROUPED KERNEL PRUNING (GKP)

To narrow the performance gap between unstructured and structured pruning methods, many structured pruning works have been exploring finer pruning granularities, which are often regarded as *intra-channel pruning* due to the two most prevalent structured pruning approaches — channel pruning and filter pruning — and essentially drive their pruning operations upon the in and out channels of the original CNN model.

Figure 1: Different Structured Pruning Granularities

However, one major issue with these intra-channel explorations is that their pruned models are no longer dense and therefore lose the benefits of staying densely structured, such as increasing network efficiency without additional environment or hardware support (Yang et al., 2018). This is evident in Figure 1: it can be seen that if we naively seek out a finer pruning granularity than filter/channel pruning, we'd naturally have kernel pruning, which is intrinsically sparse. This is also the case for all *intra-kernel* pruning methods (e.g., stride pruning (Anwar et al., 2017), N:M sparsity (Zhou et al., 2021)), in which kernel-level sparsity is introduced. These methods might be "structured" by definition — they indeed "remove model components in groups" — but they often cannot provide efficiency benefits without external support due to the sparsity introduced to pruned models.

In order to achieve both increased pruning freedom and remaining densely structured, a special type of intra-channel pruning granularity called *Grouped Kernel Pruning (GKP)* (Zhong et al., 2022) has been proposed¹, where a finer pruning granularity than filter/channel pruning was achieved without introducing sparsity by leveraging the format of grouped convolution (Krizhevsky, 2014), as

¹For the sake of rigor, this granularity was in fact revisited and refined by Zhong et al. (2022) at ICLR 2022 and coined as *grouped kernel pruning*. The granularity itself is, of course, naturally emerged in grouped convolution (Krizhevsky, 2014) and was first proposed under a pruning context by Yu et al. (2017); unfortunately, the proposal did not attract much traction (more about this in Appendix A).

Figure 2: Procedure of Grouped Kernel Pruning

illustrated in Figure 2. To the best of our knowledge, GKP provides the highest degree of pruning freedom under the context of being densely structured and thus attracts the interests of the pruning community (Zhong et al., 2022; Zhang et al., 2022a; Park et al., 2023; He & Xiao, 2023).

1.3 A COMMON RECIPE FOR GKP-BASED METHODS: DYNAMIC OPERATIONS

Although GKP is still a fairly under-developed pruning granularity given its recency, we have observed a consistent pattern among the few existing successful works in GKP (e.g., TMI-GKP (Zhong et al., 2022) and DSP (Park et al., 2023)). Both methods introduce *dynamic operations* to different stages of its procedure and achieve significant performance improvement than GKP methods with only deterministic operations.

Figure 4: Procedure of Dynamic Structure Pruning (DSP)

As shown in Figure 3: TMI-GKP opts to include dynamic choices of clustering schemes in each of its convolutional layers. Similarly, in Figure 4, DSP makes its filter grouping and group kernel pruning stages dynamic in the sense that they may enjoy different group sizes and different in-group pruning rates for components within the same layer. While both methods deliver impressive performance, we notice that their adoption of dynamic operations results in various complications and limitations. For instance, several clustering schemes trialed in TMI-GKP can be very expensive to run. Yet, many of the produced clustering results are eventually discarded according to their tickets magnitude increase (TMI) scores. On the other hand, DSP essentially prunes grouped kernels in different sizes, where the resultant pruned network is irregularly shaped (i.e., having different dimensions of tensors within the same layer) and therefore relies on custom model definitions and convolutional operators to undergo training and inference — more on this in Section 2.1.

To mitigate the complications and limitations caused by dynamic operations in existing GKP methods, we propose a new method to include the dynamic operation within Conv2d (groups) (a.k.a. "group count" or "number of groups" as of grouped convolution). This means we allow each convolutional layer to take a flexible number of groups when grouping filters. We argue this is the best area to integrate dynamic operations into a GKP procedure, as this setup is directly supported by the well-adopted grouped convolution operator in modern ML frameworks, and is therefore able to make use of existing and future infrastructure updates and support for grouped convolutions. Empirical evaluation also supports the effectiveness of our approach.

Moreover, after employing a flexible group count, we can simultaneously reduce the complexity and dependency of the rest of the GKP procedure and drastically improve the efficiency and usability of our method. As an example, we utilize only one simple clustering operation rather than selecting one of the multiple expansive TMI-score-dependent clustering schemes. This makes our method usable without needing access to the training snapshots or checkpoints of the unpruned model (unlike TMI-GKP). This is a meaningful trait, given the prevalent utilization of pretrained models. We name our method LeanFlex-GKP, emphasizing that it is a GKP method that is more "leaned down" than others, utilizing flexible group counts as its primary mechanism.

We summarize the traits of our proposed method and the contributions of our work as follows:

- Advancing the progress of GKP by identifying and solving a common pain point: dynamic operations. We recognize the significance of dynamic operations to GKP, as well as the challenges of integrating them into a GKP procedure. By utilizing flexible group counts as a medium, we tactfully introduce such operations to our GKP procedure while avoiding the complications and limitations typically found in other GKP methods. Extensive empirical evaluation supports the effectiveness of our method.
- **Providing an efficient, hassle-free experience.** By reducing the complexity of various stages in the typical GKP procedure, our method provides a drastic advantage in terms of efficiency and adaptability. LeanFlex-GKP is a post-train, one-shot, data-agnostic procedure with little-to-no hyper-parameter tuning or setting handcrafting required, making it one of the most usable structured pruning methods.
- **Guiding future developments of GKP**. Aside from the proposed method itself, our work contains the most comprehensive empirical evaluation and ablation studies currently done on GKP. Given that GKP is an underdeveloped pruning granularity with many attractive properties, we believe our investigation may provide valuable insights and guidance to future scholars working to adopt GKP and its variants.

Due to our introduction's extensive coverage of tightly related pruning methods, we refer readers to Appendix A for more discussion on related works due to page limitation-related concerns.

2 MOTIVATION

2.1 **FLEXIBLE GROUP COUNT AS THE DYNAMIC OPERATION IN GKP**

As mentioned in Section 1.3, the involvement of dynamic operations plays a significant role to the GKP procedure. Yet, current GKP methods tend to adopt dynamic operations at the cost of adding complications or imposing limitations. Take TMI-GKP (Zhong et al., 2022) and Dynamic Structure Pruning (DSP) (Park et al., 2023) as examples: TMI-GKP trials different clustering schemes at its filter grouping stage — which consist of different combinations of various dimensionality reductions and clustering techniques — per each convolutional layer of the unpruned model, forming a dynamic choice of clustering schemes across the depth of the pruned model. DSP, with the term "dynamic" in its name, allows for dynamic group sizes and in-group pruning ratios upon the formed filter groups and thus enjoys a higher degree of pruning freedom than TMI-GKP.

While both methods demonstrate performance advantages over GKP methods with purely deterministic operations (e.g., KPGP by Zhang et al. (2022a) and many of the other alternative GKP procedures introduced in the appendix of Zhong et al. (2022)), the addition of such dynamic operations also comes with its own respective costs.

In TMI-GKP, some clustering schemes can be very expensive to run. e.g., *k*-PCA — one of the candidate dimensionality reduction techniques utilized in TMI-GKP — requires an eigen decomposition of a convolutional layer's weight tensor, which is an expensive procedure requiring a complexity more than $\mathcal{O}(n^3)$ for a $n \times n$ matrix (Pan & Chen, 1999). Yet, all but a single produced clustering result are discarded if they are not preferred by its tickets magnitude increase (TMI) score: a weight-shift related metric inspired by series of works on the *lottery ticket hypothesis* (Frankle & Carbin, 2019). This makes the use of TMI-GKP challenging should the width of the target network become large.

In DSP, dynamic behavior is present in both the filter grouping and grouped kernel pruning stages, where the (learn-based) filter groups are allowed to be in different sizes, yet each filter group may opt to remove a different amount of grouped kernels, resulting in a pruning granularity that is finer than typical equal-group-equal-pruning-ratio GKP methods (Yu et al., 2017; Zhong et al., 2022; Zhang et al., 2022a). However, with the pruned network having different tensor shapes within the same layer, it can no longer be reconstructed into a grouped convolution format and instead relies on custom-defined model definitions and operators, therefore diminishing its practical adaptability.

In this work, we integrate dynamic operations on Conv2D (groups); also commonly known as "group count" or "number of groups" under a grouped convolution context. This means we may group convolutions with different groups settings across model layers. We emphasize this setup is supported by the grouped convolution operator, and is therefore able to take advantage of the existing and future coming infrastructure updates and support. This flexible group count setup is different to that of TMI-GKP, where a hard-coded groups=8 is applied for all models and layers, yet TMI-GKP decide the grouping result without consideration of the subsequent pruning (but our method does). Such a constant grouping schema and individual approach are revealed to be sub-optimal by our ablation studies in Appendix C. Our setup is also different from DSP, as the end results still have an equal group size and an identical pruning ratio among groups, and thus can be implemented without custom support.

2.2 <u>LEAN</u>ING OUT FOR AN EFFICIENT GKP PROCEDURE

Granted the effectiveness of flexible group counts, we may simultaneously afford to reduce the complexity of various GKP procedures. For example, instead of trialing different cluster schemes or employing a learn-based regularization procedure like TMI-GKP and DSP, we may simply utilize a k-Means⁺⁺ inspired clustering procedure to determine grouping, which drastically decreases the complexity and dependency requirement of filter grouping (Section 3.2).

During the grouped kernel pruning stage, methods like TMI-GKP formalize the procedure as a graph search problem and solve it with a multiple-restart greedy procedure, which is showcased to have a significant performance advantage over vanilla magnitudes or distance-based alternatives (Zhang et al., 2022a). However, we decided to use a tactfully designed distance and magnitude-based heuristic to achieve similar, if not better, accuracy retention rates to the unpruned models (Section 3.3). The removal of this procedure significantly reduces the runtime of our pruning procedure (as clocked in Table 7), and improves its usability on wide models.

2.3 TOWARDS A HASSLE-FREE EXPERIENCE

Although the after-prune performance and the efficiency of pruning procedures are certainly reasonable criteria when evaluating a method under a practical context, **usability across a broad scenario and being user-friendly along the process are another important set of factors to consider**. In fact, some of the most widely adopted pruning methods do not necessarily offer the best performance or the fastest runtime, but they are often extremely user-friendly as they can be run and deployed with minimal adjustments. Two examples of such work are OTOv2 (Chen et al., 2023) and DepGraph (Fang et al., 2023), which are architecture-agnostic methods capable of pruning any model, with OTOv2 capable of pruning from scratch.

Our method, LeanFlex-GKP, being a GKP method limited to CNNs, is not at the same level of generalization as OTOv2 or DepGraph. Still, we strive to maximize its usability under constraints by making it a post-train, one-shot, data-agnostic pruning method with standard fine-tuning procedures. This means as long as one has access to the weights of the CNN model and fine-tuning data is provided, one may adopt our pruning method to prune their model and fine-tune via standard SGD with no further interference. In comparison, previous GKP methods like TMI-GKP require access to the training snapshot/checkpoint of the unpruned model, and iterative GKP methods like DSP require regularization learning and pruning operations during the fine-tuning/retraining procedure.

On the note of user-friendliness, our method has little-to-no hyperparameters in place or handcrafted settings, making it extremely easy to use (and simultaneously reduces the human and resource effort of trial-and-error testing different settings). Furthermore, **the user of our method can reliably predict the pruned model size and computation requirement by simply multiplying the pruning rate by the original unpruned model**, making the whole pruning procedure a standardized and predictable experience. Note, this is a useful property surprisingly lacking in many modern pruning methods, such as Lin et al. (2020; 2019a); Park et al. (2023) and Chen et al. (2023), where the user will typically need to trial-and-error various hyperparameter combinations to achieve a certain pruning reduction. **We'd say the importance of being able to predictably obtain a pruned model at a certain size cannot be overly emphasized in a practical context**, as the alternative will require massive computation or even manual effort to search the suitable hyperparameter setting; sometimes, it is even impossible to prune to a specific reduction requirement.

3 PROPOSED METHOD

Our proposed method, LeanFlex-GKP, consists of a four-stage procedure:

- 1. Filter grouping: where we group filters within a certain convolution layer into n equal-sized filter groups according to their distance towards k-Means⁺⁺ determined centers (Figure 5).
- 2. Group kernel pruning: where we prune a certain amount of grouped kernels out of all filter groups within the same layer. The pruning is determined by each grouped kernel's L_2 norm and distance to their geometric median (Figure 6).
- 3. **Post-prune group count evaluation:** where we evaluate all grouping and pruning strategies obtained under different group count settings and then select the one where the preserved group kernels have the maximum inter-group distance and the minimum intra-group distance (Figure 7).
- 4. **Grouped convolution reconstruction:** where we convert the pruned model to a grouped convolution format, just like we showcased in the standard GKP procedure (Figure 2).

As a general overview, the theme of our proposed method is to use the most lightweight and dependency-free measures to fulfill the purpose of each GKP stage. In the sections below, we will walk through the technicalities of our method, as well as demonstrate that a SOTA-capable GKP method with many favorable properties can be forged by discerningly putting basic tools together and leveraging the power of flexible group counts.

3.1 PRELIMINARIES

Suppose there is a convolutional neural network model W with L convolutional layers, then the layer with index l is denoted as \mathbf{W}^l . A layer can be viewed as a 4D tensor $\mathbf{W}^l \in \mathbb{R}^{C_{out} \times C_{in}^l \times H^l \times W^l}$, in which C_{in}^l is the number input channels on layer l (number of kernels in a filter), C_{out}^l is the number output channels on layer l (number of filters in a layer), and $H^l \times W^l$ is the kernel size. The task to perform a grouped convolution reconstruction upon \mathbf{W}^l , as illustrated in Figure 2, can be described as converting \mathbf{W}^l to a $\mathbf{G}^l \in \mathbb{R}^{n \times C_{in}^l \times m \times H^l \times W^l}$, where n stands for the group count setting of this conversion, and $m = C_{out}^l/n$ representing the group size.

3.2 KPP-AWARE FILTER GROUPING

The general goal of filter grouping is to cluster filters that are similar to each others within the same group, so that when such filters are "partially removed" due to pruning, the leftover components can hopefully cover the representation power of the removed components. In previous works like TMI-GKP (Zhong et al., 2022) and DSP (Park et al., 2023), this procedure is rather resource-intensive, with TMI-GKP trialing expensive clustering schemes under the guidance of its TMI score, and DSP employing a learning-based procedure.

To reduce the complexity of the grouping procedure, we designed a cost-effective k-Means⁺⁺ (KPP)-based filter clustering algorithm bolstered by two simple greedy strategies. Our procedure is illustrated in Figure 5. We denote n to be the group count and $m = C_{out}^l/n$ to be the group size (number of filters within each filter group). In this particular visualization, we have n = 3 and m = 4. We demonstrate the efficiency and performance advantage of our method with wall-clock results in Table 7 and accuracy results in Table 2, support our claims made in Section 2.2 and Section 2.1.

Under review as a conference paper at ICLR 2024

Figure 5: Visualization of the LeanFlex-GKP KPP-Aware Filter Grouping Procedure. We first cluster filters (the circles) via KPP into n groups with no constraint on having an equal group size to determine clustering centers (the squares), as in (a). Then, our operation can be viewed as a cycle between assigning m nearest filters into a KPP center to form a filter group, then finding the next KPP center to do subsequent filter assignments, as in (b) \rightarrow (c); until n filter groups are formed (the first KPP center is picked at random). Last, we conduct a multiple restart and repeat the (b) \leftrightarrow (c) center-finding-filter-assignments, as showcased in (d). After all multiple restarts, we are left with n candidate filter grouping strategies, and select the strategy that has filters with the least intra-group distance to their respective KPP centers (having less summed length on red arrows).

3.3 L₂ & Geometric Median-based Grouped Kernel Pruning

Previous methods like TMI-GKP converted its grouped kernel selection problem as a graph search problem, added with the help of a greedy procedure and multiple restarts. While such a procedure is generally efficient, it is still time and resource-consuming given a layer with a large amount of in_channels. Thus, inspired by the toolsets proposed in FPGM (He et al., 2019), we utilize a simple combination of L_2 norm and Geometric Median-based distance to form a lightning-fast pruning procedure, as illustrated in Figure 6. Again, we demonstrate the efficiency and performance advantage of our method with Table 7 and Table 3, support our claims made in Section 2.2 and Section 2.1.

Again, we demonstrate the efficiency advantage of our method with Table 7, as we claimed in Section 2.2.

Figure 6: Visualization of LeanFlex-GKP L_2 & Geometric Median-based Grouped Kernel Pruning Procedure. Given an unpruned filter group as in (a), we first calculate the Geometric Median (GM) of its Grouped Kernels (GKs), as well as each GK's distance to the GM and their L_2 norm. These distances and the L_2 norm are visualized in (b) as the length of black arrows and the area of green circles, respectively. The GKs with large L_2 norms and small distances to their GMs are preserved and eventually reconstructed to the grouped convolution format, as shown (c) to (d) — please refer to Appendix B.1 for details.

3.4 **POST-PRUNE GROUP COUNT EVALUATION**

One primary motivation for our work is that our method makes use of flexible group counts under a GKP procedure. However, it is intrinsically challenging to evaluate clustering quality under different group counts (e.g., previously, Zhong et al. (2022) suggests metrics like a Silhouette score have little bearing under a network pruning context). Thus, we simply employ another Geometric Median-based evaluation as we have already done so in Section 3.3. We illustrate our evaluation as Figure 7 and provide **a walk-through of the complete LeanFlex-GKP procedure in pseudocode as Algorithm 1**. Given each group count evaluation is conducted upon a pruned convolutional layer (after being grouped with different Conv2d(groups)), our method makes connections between the (originally independent) filter grouping and grouped kernel pruning stage. Ablation study results in Table 4 confirm the advantage of this integral optimization design over other alternative setups.

Figure 7: Visualization of LeanFlex-GKP Group Count Evaluation. We first compute the GM among retained grouped kernels and then calculate the inner and outer distance among them. After a normalization w.r.t. the group count, the one with the lowest average (Outer Distance – Inner Distance) is chosen; please refer to Appendix B.2 for details.

4 EXPERIMENTS

We evaluate the effectiveness of our method against 32 other densely structured pruning methods (Table 8) with coverage including BasicBlock (20/32/56/110) and BottleNeck ResNets (50/101) (He et al., 2016), VGG11/13/16 (Simonyan & Zisserman, 2015), DenseNet40 (Huang et al., 2017), and MobileNetV2 (Sandler et al., 2018). The datasets we used include CIFAR10/100 (Krizhevsky et al., 2009), Tiny-ImageNet (Wu et al., 2017), and ImageNet-1k (Deng et al., 2009). Please refer to Appendix D for full details on experiment settings.

4.1 RESULTS

Due to page limitations, here we only provide an abbreviated version of our experiments at Table 1. We refer our readers to Table 9 to 16 in Appendix D for the full experiment results, where we compared against 32 different structured pruning methods illustrated in Table 8 and evaluated our methods under 20 different settings specified in Table 5. We also provide a series of ablation studies in Appendix C to facilitate an anatomical understanding of our proposed method.

For all experiment results, **DA** represents if the method is data-agnostic (pruning can be done without access to data), **IP** indicates if a method is considered an iterative pruning method (utilizing a trainprune cycle), and **RB** reports recovery budget (in terms of epochs). All other reported criteria are in terms of %. **BA** and **Pruned** respectively report the unpruned (baseline) accuracy and the pruned accuracy. Methods marked with * are drawn from their original or (third-party) replicated publication; the rest are replicated by us to ensure a fair comparison (often with an identical baseline). Generally speaking, a method that is **DA** \checkmark , **IP** \bigstar , and demands a smaller **RB** is likely to be more user-friendly.

5 DISCUSSION AND CONCLUSION

We believe it is fair to conclude that our proposed method showcases SOTA-competitive (if not beyond) performance across comprehensive combinations of models and datasets. Out of all 20 reported results of LeanFlex-GKP, 17 of them showcased improvements after pruning (yet, no other compared method is able to provide positive ΔAcc under the three exception setups), suggesting our pruning method actually help on the generalization of the model should there be a reasonable setup.

We also note the compute (MACs) and memory (Params) reduction of our pruned models are almost always within 1% of their assigned pruning rates (e.g., see Table 15 and Table 16), which is a useful characteristic not found in many compared methods². This supports one of the hassle-free claims we made in Section 2.3. Additionally, we would like to mention the combinations of BasicBlock ResNets with CIFAR10 — though being some of the most commonly evaluated combinations (Blalock et al., 2020) — are potentially getting saturated, as methods with significant performance gaps on more difficult model-dataset combinations tend to show little difference upon BasicBlock ResNets and CIFAR10.

In general, our empirical evaluation supports the efficacy of our flexible group count design as well as our goal of assembling a GKP method with only lightweight and low-dependency operations. Following the exposure of Park et al. (2023) for winning an *oral* recognition at AAAI 2023, our work serves as a more performant, efficient, and user-friendly advancement to the *grouped kernel pruning* granularity and can be of particular interest for both scholars of the pruning community or end users with practical application needs.

 $^{^{2}}$ This is evidenced by the many not-perfectly-aligned results in Table 15 and Table 16, where we tried to make all methods without the * mark — meaning we replicated such experiments under our controlled pipeline — aligned with the pruning rate in caption, but failed to do so in many scenarios.

Table 1: Abbreviated Experimental	nent F	Result	ts (plea	ase refe	er to Secti	on 4.1 for header d	lefinitions)
Method	DA	IP	RB	BA	Pruned	$\Delta Acc \mid \downarrow MACs$	\downarrow Params

		ND	DIX	1 i uncu		1 TINGS	ψ I al allis
CIFAR1	0 1	MAC	$s \approx 313.4$	4M Para	$ams \approx 14.7$	М	
x	x	300	93 94	94 14	± 0.20	43.18	-
x	./	300	03.04	01.20	2.65	35.16	47.40
X	•	300	03.04	03.57	10.37	32.28	40.82
	v	200	02.04	02.88	+ 1.06	42.20	40.82
V	÷.	200	93.94	92.00	$\downarrow 1.00$	42.71	12 50
V	÷.	200	94.27	94.17	$\downarrow 0.13$	45.15	45.59
√	<u>^</u>	300	93.94	94.07	10.10	25.00	-
✓	X	300	93.94	94.15	↑ 0.21	43.15	43.59
n CIFAR	R10	MAG	$Cs \approx 255$	5.0M Pa	arams ≈ 1.7	'3M	
\checkmark	X	300	94.26	94.90	$\uparrow 0.64$	43.31	43.52
√	X	300	94.26	92.96	$\downarrow 1.30$	43.17	36.69
X	X	300	94.26	94.31	$\uparrow 0.05$	44.54	39.47
X	\checkmark	300	94.26	94.44	$\uparrow 0.18$	43.42	43.52
X	\checkmark	300	94.26	93.42	$\downarrow 0.84$	29.14	31.37
X	\checkmark	300	94.26	94.18	$\downarrow 0.08$	43.39	43.52
X	X	300	94.26	94.16	$\downarrow 0.10$	42.46	35.19
X	\checkmark	300	94.26	92.96	1.30	18.57	5.38
X	\checkmark	300	94.26	92.53	1.73	60.25	64.58
x	x	300	94.26	94.49	↑ 0.23	43.37	42.30
x	1	300	94 26	91.58	2.68	37.83	42.44
	x	300	93.76	94.01	↑0.25	43.3	43.5
	x	300	94.26	94.92	1 0.25 1 0 66	43 31	43 52
	^	300	94.20	74.74		45.51	45.52
	(10	MA	$Cs \approx 98.$./68M I	$Params \approx 2$.383M	
X	-	400	94.47	94.69	↑ 0.22	26.00	-
X	-	400	94.48	94.24	$\downarrow 0.24$	49.30	-
X	-	400	94.47	94.17	$\downarrow 0.30$	26.00	-
X	-	160	94.23	94.49	$\uparrow 0.26$	40.00	-
X	-	-	95.02	95.14	$\uparrow 0.12$	28.71	-
X	-	350	94.89	95.15	$\uparrow 0.26$	46.22	-
X	\checkmark	300	93.55	92.58	$\downarrow 0.97$	20.00	-
\checkmark	X	300	93.87	94.30	↑ 0.43	28.74	26.98
CIFAR10)0]	MAC	$s \approx 255.$.001M H	Params ≈ 1 .	.734M	
	x	300	72.99	72.79	10.20	43.31	43.37
	x	300	73.20	69.85	1335	43.74	44.41
×	x	300	73.20	73 21	± 0.01	13.14	10.78
× ×	x	300	73.20	72.38	0.01	42 77	18.60
	Ŷ	200	73.20	72.50	+ 0.82	42.77	10.09
	^	200	73.20	75.50	0.58	43.30	42.10
	-	200	74.19	70.70	+2.01	52.2	-
	•	200	74.14	71.28	$\downarrow 2.80$	52.5	-
	V V	300	74.14	72.33	$\downarrow 1.39$	52.5	-
×	×.	300	/5.06	/3.16	$\downarrow 1.90$	52.6	-
✓	X	300	73.20	73.63	↑ 0.43	43.31	43.36
y-Image	Net	MA	$Cs \approx 50$	6.254M	Params \approx	0.865M	
√	X	300	55.59	51.48	$\downarrow 4.11$	37.05	36.76
\checkmark	X	300	56.13	55.41	$\downarrow 0.72$	35.51	32.14
X	\checkmark	300	56.13	53.65	$\downarrow 2.48$	33.96	35.38
X	\checkmark	300	56.13	54.14	↓ 1.99	33.53	34.68
X	\checkmark	300	56.13	54.16	↓ 1.97	37.39	30.98
X	\checkmark	100	56.55	55.87	↓ 0.68	52.00	32.00
1 *	/	100	56 55	55.00	10.72	55.00	46.00
X	v	100	30	55.82	1.0.7.5	33.00	TU.(//)
X	✓ √ .	420	56 55	55.82 56.04	$\downarrow 0.73$ $\downarrow 0.51$	59.00	34 00
XX	√ √ · X	420 100	56.55 56.55	55.82 56.04 52.45	$\downarrow 0.73 \\ \downarrow 0.51 \\ \downarrow 4.10$	59.00 53.00	34.00 54.00
×	√ ✓ × ×	420 100 300	56.55 56.55 56.13	55.82 56.04 52.45 55.67	$\downarrow 0.73 \\ \downarrow 0.51 \\ \downarrow 4.10 \\ \downarrow 0.46$	59.00 53.00 37.05	34.00 54.00 36.76
X X X	× √ √ √	420 100 300	56.55 56.55 56.13 ≈ 4122	55.82 56.04 52.45 55.67	$\downarrow 0.73 \\ \downarrow 0.51 \\ \downarrow 4.10 \\ \downarrow 0.46 \\ \hline Parama \simeq 2$	59.00 59.00 53.00 37.05	34.00 54.00 36.76
X X ✓ geNet-11	× × × K	420 100 300 MACs	56.55 56.55 56.13 56.12	55.82 56.04 52.45 55.67 2.828M	$\begin{array}{r} \downarrow 0.73 \\ \downarrow 0.51 \\ \downarrow 4.10 \\ \downarrow 0.46 \end{array}$ Params ≈ 2	53.00 59.00 53.00 37.05 25.557M	34.00 54.00 36.76
x x √ geNet-11	✓ × × K ✓	420 100 300 MACs 100	56.55 56.55 56.13 56.13 56.13 56.13 56.13 56.13 56.13	55.82 56.04 52.45 55.67 2.828M 58.50 75.04	$\begin{array}{c} \downarrow 0.73 \\ \downarrow 0.51 \\ \downarrow 4.10 \\ \downarrow 0.46 \end{array}$ Params ≈ 2 $\begin{array}{c} \downarrow 17.63 \\ \downarrow 1.00 \end{array}$	33.00 59.00 53.00 37.05 25.557M 36.08 25.02	34.00 54.00 36.76
x x √ geNet-11 x x	√ √ √ X X √ √	100 420 100 300 MACs 100 100	56.33 56.55 56.55 56.13 $5 \approx 4122$ 76.13 76.13 76.13 76.13	55.82 56.04 52.45 55.67 2.828M 58.50 75.04	$\downarrow 0.73 \downarrow 0.51 \downarrow 4.10 \downarrow 0.46 Params \approx 2\downarrow 17.63 \downarrow 1.09 \downarrow 0.62$	33.00 59.00 53.00 37.05 25.557M 36.08 35.93 22.21	34.00 54.00 36.76 32.31 28.36 22.74
x x √ geNet-11 x x √	✓ ✓ ✓ X X X X X X X X X X X X X X X X X X X	420 100 300 MACs 100 100 100	56.33 56.55 56.55 56.13 $5 \approx 4122$ 76.13 76.13 76.15 76.25	55.82 56.04 52.45 55.67 2.828M 58.50 75.04 75.53 59.51	$ \begin{array}{c} \downarrow 0.73 \\ \downarrow 0.51 \\ \downarrow 4.10 \\ \downarrow 0.46 \\ \hline Params \approx 2 \\ \downarrow 17.63 \\ \downarrow 1.09 \\ \downarrow 0.62 \\ \downarrow 0.62 \\ \hline \end{array} $	33.00 59.00 53.00 37.05 25.557M 36.08 35.93 33.21	34.00 54.00 36.76 32.31 28.36 33.74
x x √ geNet-11 x x √ x	✓ ✓ ✓ X X X X X X X X X X X X X X X X X X X	420 100 300 MAC: 100 100 100 100	56.35 56.55 56.55 56.13 56.13 56.13 76.13 76.13 76.15 72.88	55.82 56.04 52.45 55.67 2.828M 58.50 75.04 75.53 72.04	$\begin{array}{c} \downarrow 0.73 \\ \downarrow 0.51 \\ \downarrow 4.10 \\ \hline \textbf{Params} \approx 2 \\ \hline 17.63 \\ \downarrow 109 \\ \downarrow 0.62 \\ \downarrow 0.84 \end{array}$	33.00 59.00 53.00 37.05 25.557M 36.08 35.93 33.21 36.7	34.00 54.00 36.76 32.31 28.36 33.74
x x √ geNet-11 x x √ x x	✓ ✓ ✓ ✓ × × × × × × × × × × × × × × × ×	420 100 300 MACs 100 100 100 100 120	56.33 56.55 56.55 56.13 $5 \approx 4122$ 76.13 76.13 76.15 72.88 76.13	55.82 56.04 52.45 55.67 2.828M 58.50 75.04 75.53 72.04 75.38	$\begin{array}{c} 0.73 \\ \downarrow 0.51 \\ \downarrow 4.10 \\ \downarrow 0.46 \end{array}$ Params ≈ 2 $\begin{array}{c} 1 \\ \downarrow 17.63 \\ \downarrow 1.09 \\ \downarrow 0.62 \\ \downarrow 0.84 \\ \downarrow 0.75 \end{array}$	33.00 59.00 53.00 37.05 25.557M 36.08 35.93 33.21 36.7 37.70	34.00 54.00 36.76 32.31 28.36 33.74 - 26.58
x x √ geNet-11 x x √ x x x	$ \sqrt[]{} $	420 100 300 MACs 100 100 100 100 100 100 100 100 100 120 120	$\begin{array}{c} 36.33\\ 56.55\\ 56.55\\ 56.13\\ \hline \\ 8\approx 4122\\ \hline 76.13\\ 76.13\\ 76.15\\ 72.88\\ \hline 76.13\\ 76.13\\ \hline 76.47\\ \end{array}$	55.82 56.04 52.45 55.67 2.828M 58.50 75.04 75.53 72.04 75.38 74.20	$\begin{array}{c} 0.73 \\ \downarrow 0.51 \\ \downarrow 4.10 \\ \downarrow 0.46 \end{array}$ Params ≈ 2 $\begin{array}{c} 1 \\ \downarrow 17.63 \\ \downarrow 1.09 \\ \downarrow 0.62 \\ \downarrow 0.84 \\ \downarrow 0.75 \\ \downarrow 2.18 \end{array}$	33.00 59.00 59.00 37.05 25.557M 36.08 35.93 33.21 36.7 37.70	34.00 34.00 36.76 32.31 28.36 33.74 - 26.58
X X X y geNet-11 X X X X X X X	✓ ✓ ✓ ✓ × × × × × × × × × × × × × × × ×	420 100 300 MACs 100 100 100 120 120	$\begin{array}{c} 36.33\\ 56.55\\ 56.55\\ 56.13\\ \hline \\ 8\approx 4122\\ \hline \\ 76.13\\ 76.13\\ 76.15\\ 72.88\\ \hline \\ 76.13\\ 76.47\\ 76.15\\ \hline \end{array}$	55.82 56.04 52.45 55.67 2.828M 58.50 75.04 75.53 72.04 75.38 74.29 75.50	$\begin{array}{c} 0.73 \\ \downarrow 0.51 \\ \downarrow 4.10 \\ \downarrow 0.46 \end{array}$ Params ≈ 2 $\begin{array}{c} 1 \\ \downarrow 17.63 \\ \downarrow 1.09 \\ \downarrow 0.62 \\ \downarrow 0.84 \\ \downarrow 0.75 \\ \downarrow 2.18 \\ \downarrow 0.65 \end{array}$	33.00 59.00 59.00 37.05 25.557M 36.08 35.93 33.21 36.7 37.70 60.00 23.7	34.00 54.00 36.76 32.31 28.36 33.74 - 26.58
X X X V geNet-11 X X V X X X X	✓ ✓ ✓ X X ✓ ✓ X ✓ ✓ X X X	420 100 300 MACs 100 100 100 120 120	$56.53 \\ 56.55 \\ 56.55 \\ 56.13 \\ 5 \approx 4122 \\ 76.13 \\ 76.13 \\ 76.13 \\ 76.15 \\ 72.88 \\ 76.13 \\ 76.47 \\ 76.15 \\ \end{cases}$	55.82 56.04 52.45 55.67 2.828M 58.50 75.04 75.53 72.04 75.38 74.29 75.50	$\begin{array}{c} 0.73 \\ \downarrow 0.51 \\ \downarrow 4.10 \\ \downarrow 0.46 \end{array}$ Params ≈ 2 $\begin{array}{c} 1 \\ \downarrow 17.63 \\ \downarrow 1.09 \\ \downarrow 0.62 \\ \downarrow 0.84 \\ \downarrow 0.75 \\ \downarrow 2.18 \\ \downarrow 0.65 \end{array}$	33.00 59.00 59.00 37.05 25.557M 36.08 33.21 36.7 37.70 60.00 33.7	34.00 54.00 36.76 32.31 28.36 33.74 - 26.58 - 33.2
X X X y geNet-11 X X X X X X X X X	✓ ✓ X X X ✓ ✓ X ✓ ✓ X X X	420 100 300 MAC: 100 100 100 100 120 120 -	$\begin{array}{c} 36.33\\ 56.55\\ 56.55\\ 56.13\\ \hline \\ 76.13\\ 76.13\\ 76.13\\ 76.13\\ 76.13\\ 76.13\\ 76.15\\ 72.88\\ 76.13\\ 76.15\\ 76.14\end{array}$	55.82 56.04 52.45 55.67 2.828M 58.50 75.04 75.53 72.04 75.38 74.29 75.50 75.0	$\begin{array}{c} 0.73 \\ \downarrow 0.51 \\ \downarrow 4.10 \\ \downarrow 0.46 \end{array}$ Params ≈ 2 $\begin{array}{c} 1 \\ \downarrow 17.63 \\ \downarrow 1.09 \\ \downarrow 0.62 \\ \downarrow 0.84 \\ \downarrow 0.75 \\ \downarrow 2.18 \\ \downarrow 0.65 \\ \downarrow 1.14 \end{array}$	33.00 59.00 53.00 37.05 25.557M 36.08 35.93 33.21 36.7 37.70 60.00 33.7 5.5	34.00 34.00 36.76 32.31 28.36 33.74 - 26.58 - 33.2 -
	CIFAR1 × × × · · · · · · · · · · · · · · · ·	CIFAR10 X X X V X V X V X V X X X X X X	DAT II ICE CIFAR10 MACS $X X$ 300 $X X$ 300 $X X$ 300 $X X$ 300 $V X$ 300 $X X$ 300 <	Dri IR RD Dri CIFAR10 MACs ≈ 313 . X 300 93.94 X \checkmark 300 93.94 X \checkmark 300 93.94 X \checkmark 300 93.94 \checkmark \checkmark 300 93.94 \checkmark X 300 94.26 \checkmark X 300 94.26 \checkmark \checkmark 300 94.26 \checkmark <	DAT AL ALD DAT France CIFAR10 MACs< $\approx 313.4M$ Para X 300 93.94 94.14 X 300 93.94 91.29 X 300 93.94 91.29 X 300 93.94 92.88 V X 300 93.94 94.07 V X 300 93.94 94.15 n CIFAR10 MACs $\approx 255.0M$ Para V X 300 94.26 94.90 V X 300 94.26 94.90 V X 300 94.26 94.15 n CIFAR10 MACs $\approx 255.0M$ Para X 300 94.26 94.44 X 300 94.26 94.41 X 300 94.26 94.18 X 300 94.26 92.53 X 300 94.26 94.49 X 300 94.26 94.49 X 300 94.26 <td>DAT H RD DAT Finite Data Data Data CIFAR10 MACs $\approx 313.4M$ Params ≈ 14.7 X 300 93.94 94.14 \uparrow 0.20 X \checkmark 300 93.94 91.29 \downarrow 2.65 X \checkmark 300 93.94 92.88 \downarrow 1.06 \checkmark X 300 93.94 94.07 \uparrow 0.13 \checkmark X 300 94.26 94.90 \uparrow 0.64 \checkmark X 300 94.26 92.96 \downarrow 1.30 X 300 94.26 94.31 \uparrow 0.05 X 300 94.26 94.31 \uparrow 0.05 X 300 94.26 94.31 \uparrow 0.05 X 300 94.26 94.44 \uparrow 0.18 X 300 94.26 94.44 \uparrow 0.18 X 300 94.26 94.44 \uparrow 0.18 X 300 94.26 94.92 \uparrow 0.66 X 300 94.26 94.92 \uparrow 0.66 <!--</td--><td>Diff Diff <thdiff< th=""> Diff Diff</thdiff<></td></td>	DAT H RD DAT Finite Data Data Data CIFAR10 MACs $\approx 313.4M$ Params ≈ 14.7 X 300 93.94 94.14 \uparrow 0.20 X \checkmark 300 93.94 91.29 \downarrow 2.65 X \checkmark 300 93.94 92.88 \downarrow 1.06 \checkmark X 300 93.94 94.07 \uparrow 0.13 \checkmark X 300 94.26 94.90 \uparrow 0.64 \checkmark X 300 94.26 92.96 \downarrow 1.30 X 300 94.26 94.31 \uparrow 0.05 X 300 94.26 94.31 \uparrow 0.05 X 300 94.26 94.31 \uparrow 0.05 X 300 94.26 94.44 \uparrow 0.18 X 300 94.26 94.44 \uparrow 0.18 X 300 94.26 94.44 \uparrow 0.18 X 300 94.26 94.92 \uparrow 0.66 X 300 94.26 94.92 \uparrow 0.66 </td <td>Diff Diff <thdiff< th=""> Diff Diff</thdiff<></td>	Diff Diff <thdiff< th=""> Diff Diff</thdiff<>

REFERENCES

- Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural networks. *ACM Journal on Emerging Technologies in Computing Systems (JETC)*, 13(3):1–18, 2017.
- Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of neural network pruning? *Proceedings of machine learning and systems*, 2:129–146, 2020.
- Tianyi Chen, Luming Liang, DING Tianyu, Zhihui Zhu, and Ilya Zharkov. Otov2: Automatic, generic, user-friendly. In *International Conference on Learning Representations*, 2023.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee, 2009.
- Xuanyi Dong and Yi Yang. Network pruning via transformable architecture search, 2019.
- Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan. More is less: A more complicated network with less inference complexity. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 5840–5848, 2017.
- Sara Elkerdawy, Mostafa Elhoushi, Abhineet Singh, Hong Zhang, and Nilanjan Ray. One-shot layer-wise accuracy approximation for layer pruning. In 2020 IEEE International Conference on Image Processing (ICIP), pp. 2940–2944. IEEE, 2020.
- Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any structural pruning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16091–16101, 2023.
- Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In *International Conference on Learning Representations*, 2019. URL https://openreview.net/forum?id=rJl-b3RcF7.
- Shangqian Gao, Feihu Huang, Jian Pei, and Heng Huang. Discrete model compression with resource constraint for deep neural networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1899–1908, 2020.
- Shangqian Gao, Feihu Huang, Weidong Cai, and Heng Huang. Network pruning via performance maximization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 9270–9280, June 2021.
- Jinyang Guo, Wanli Ouyang, and Dong Xu. Multi-dimensional pruning: A unified framework for model compression. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1508–1517, 2020a.
- Qingbei Guo, X. Wu, J. Kittler, and Zhi quan Feng. Self-grouping convolutional neural networks. *Neural networks : the official journal of the International Neural Network Society*, 132:491–505, 2020b.
- Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan. Dmcp: Differentiable markov channel pruning for neural networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1539–1547, 2020c.
- Yi Guo, Huan Yuan, Jianchao Tan, Zhangyang Wang, Sen Yang, and Ji Liu. Gdp: Stabilized neural network pruning via gates with differentiable polarization. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 5239–5250, 2021.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (*CVPR*), June 2016.
- Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey, 2023.

- Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating deep convolutional neural networks, 2018a.
- Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for deep convolutional neural networks acceleration, 2019.
- Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model compression and acceleration on mobile devices. In *European Conference on Computer Vision* (ECCV), 2018b.
- Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected convolutional networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, July 2017.
- Donggyu Joo, Eojindl Yi, Sunghyun Baek, and Junmo Kim. Linearly replaceable filters for deep network channel pruning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 8021–8029, 2021.
- Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. *CoRR*, abs/1404.5997, 2014. URL http://arxiv.org/abs/1404.5997.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

- Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper_files/paper/ 2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.
- Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky (ed.), Advances in Neural Information Processing Systems, volume 2. Morgan-Kaufmann, 1989. URL https://proceedings.neurips.cc/paper_files/paper/1989/ file/6c9882bbac1c7093bd25041881277658-Paper.pdf.
- Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient convnets, 2017.
- Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, and Radu Timofte. Dhp: Differentiable meta pruning via hypernetworks, 2020.
- Yuchao Li, Shaohui Lin, Jianzhuang Liu, Qixiang Ye, Mengdi Wang, Fei Chao, Fan Yang, Jincheng Ma, Qi Tian, and Rongrong Ji. Towards compact cnns via collaborative compression, 2021.
- Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Provable filter pruning for efficient neural networks. In *International Conference on Learning Representations*, 2020. URL https://openreview.net/forum?id=BJxkOlSYDH.
- Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank: Filter pruning using high-rank feature map, 2020.
- Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye, Feiyue Huang, and David Doermann. Towards optimal structured cnn pruning via generative adversarial learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2019a.
- Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye, Feiyue Huang, and David Doermann. Towards optimal structured cnn pruning via generative adversarial learning, 2019b.
- Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning efficient convolutional networks through network slimming. In *Proceedings of the IEEE international conference on computer vision*, pp. 2736–2744, 2017.

- Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural network compression. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, Oct 2017.
- Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J. Dally. Exploring the granularity of sparsity in convolutional neural networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, July 2017.
- Tanay Narshana, Chaitanya Murti, and Chiranjib Bhattacharyya. DFPC: Data flow driven pruning of coupled channels without data. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=mhnHqRqcjYU.
- Victor Y. Pan and Zhao Q. Chen. The complexity of the matrix eigenproblem. In Jeffrey Scott Vitter, Lawrence L. Larmore, and Frank Thomson Leighton (eds.), STOC, pp. 507–516. ACM, 1999. ISBN 1-58113-067-8. URL http://dblp.uni-trier.de/db/conf/stoc/stoc1999.html#PanC99.
- Jun-Hyung Park, Yeachan Kim, Junho Kim, Joon-Young Choi, and SangKeun Lee. Dynamic structure pruning for compressing cnns. *ArXiv*, abs/2303.09736, 2023.
- Sourjya Roy, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Anand Raghunathan. Pruning filters while training for efficiently optimizing deep learning networks. *CoRR*, abs/2003.02800, 2020. URL https://arxiv.org/abs/2003.02800.
- Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 4510–4520. Computer Vision Foundation / IEEE Computer Society, 2018.
- Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition, 2015.
- Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chunjing Xu, Chao Xu, and Chang Xu. Scop: Scientific control for reliable neural network pruning. *Advances in Neural Information Processing Systems*, 33:10936–10947, 2020.
- Rishabh Tiwari, Udbhav Bamba, Arnav Chavan, and Deepak K Gupta. Chipnet: Budget-aware pruning with heaviside continuous approximations. *arXiv preprint arXiv:2102.07156*, 2021.
- Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage: Structured pruning in the kronecker-factored eigenbasis, 2019.
- Wenxiao Wang, Minghao Chen, Shuai Zhao, Long Chen, Jinming Hu, Haifeng Liu, Deng Cai, Xiaofei He, and Wei Liu. Accelerate cnns from three dimensions: A comprehensive pruning framework. In *International Conference on Machine Learning*, pp. 10717–10726. PMLR, 2021.
- Yulong Wang, Xiaolu Zhang, Lingxi Xie, Jun Zhou, Hang Su, Bo Zhang, and Xiaolin Hu. Pruning from scratch. In *The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 12273–12280. AAAI Press, 2020.*
- Jiayu Wu, Qixiang Zhang, and Guoxi Xu. Tiny imagenet challenge. Technical report, 2017.
- Carl Yang, Aydın Buluç, and John D Owens. Design principles for sparse matrix multiplication on the gpu. In *European Conference on Parallel Processing*, pp. 672–687. Springer, 2018.
- Yinan Yang, Yu Wang, Ying Ji, Heng Qi, and Jien Kato. One-shot network pruning at initialization with discriminative image patches. *arXiv preprint arXiv:2209.05683*, 2022.
- Niange Yu, Shi Qiu, Xiaolin Hu, and Jianmin Li. Accelerating convolutional neural networks by group-wise 2d-filter pruning. In 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2502–2509, 2017. doi: 10.1109/IJCNN.2017.7966160.

- Guanqun Zhang, Shuai Xu, Jing Li, and Alan J. X. Guo. Group-based network pruning via nonlinear relationship between convolution filters. *Applied Intelligence*, January 2022a. doi: 10.1007/s10489-021-02907-0.
- Guanqun Zhang, Shuai Xu, Jing Li, and Alan JX Guo. Group-based network pruning via nonlinear relationship between convolution filters. *Applied Intelligence*, 52(8):9274–9288, 2022b.
- Kaiqi Zhao, Animesh Jain, and Ming Zhao. Automatic attention pruning: Improving and automating model pruning using attentions, 2023.
- Shaochen Zhong, Guanqun Zhang, Ningjia Huang, and Shuai Xu. Revisit kernel pruning with lottery regulated grouped convolutions. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=LdEhiMG9WLO.
- Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li. Learning n:m fine-grained structured sparse neural networks from scratch. In *International Conference on Learning Representations*, 2021. URL https://openreview. net/forum?id=K9bw7vqp_s.
- Hao Zhou, José Manuel Álvarez, and Fatih Murat Porikli. Less is more: Towards compact cnns. In *European Conference on Computer Vision*, 2016. URL https://api.semanticscholar.org/CorpusID:14666124.
- Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu. Discrimination-aware channel pruning for deep neural networks. *Advances in neural information processing systems*, 31, 2018.

A RELATED WORKS

Structured pruning. As discussed in Section 1.1 and illustrated Figure 1, structured pruning is a family of pruning methods that removes model components in groups, where the majority of methods are capable of delivering densely structured pruned models for immediate efficiency benefits. Below, we briefly introduce some important aspects of structured pruning and refer our reader to comprehensive survey work like Blalock et al. (2020) and He & Xiao (2023) for details.

Prior papers on densely structured pruning have carried out such pruning operations on (or determined by) filters, channels, layers, inputs, or combinations of the above (Li et al., 2017; Dong et al., 2017; Anwar et al., 2017; Wang et al., 2021; Li et al., 2021; Fang et al., 2023; Li et al., 2020; He et al., 2019; Lin et al., 2019a; 2020; Li et al., 2017; Joo et al., 2021; Gao et al., 2021; Chen et al., 2023; Wang et al., 2020; He et al., 2017; Liu et al., 2017; Luo et al., 2017; Zhong et al., 2022; Zhuang et al., 2020; Guo et al., 2021; Dong et al., 2017; Guo et al., 2020a; Tang et al., 2020; Dong & Yang, 2019; Wang et al., 2019; Zhao et al., 2023; He et al., 2020a; Tang et al., 2020; Guo et al., 2022; Zhuang et al., 2020; Guo et al., 2020; Cuo et al., 2020; C

Outside the pruning granularity, the **pipeline of a pruning method** plays another major role in deciding which method to adopt. Pruning operations can conducted from-scratch (e.g., OTOv2 by Chen et al. (2023)), during training (e.g., Roy et al. (2020)), or post-train (e.g., FPGM by He et al. (2019)). Many pruning methods also require intervention (or access to information) at an earlier stage, then conduct actual pruning at a later stage. E.g., DMCP by Guo et al. (2020c) further adjusts weights of a pruned model before pruning, and TMI-GKP by Zhong et al. (2022) requires access to the model training checkpoint to guide its pruning operations. Most pruning methods follow a *train - prune - fine-tune/retrain* pipeline, as the trained model provides a good starting and reference point for pruning and evaluating. However, this pipeline suffers the natural drawback of having to both train the unpruned baseline model and fine-tune/retrain the pruned model, where from-scratch methods or fine-tuning free methods like Narshana et al. (2023) may effectively avoid such compute cost, though often with a trade-off of delivering lower accuracy retention.

Further, the **scheduling of a pruning method** drastically affects the efficiency and adaptability of a method. Most pruning methods can be roughly categorized into one-shot or iterative pruning. The former prunes all redundant model components all at once; the latter, as its name implies, conducts pruning gradually with weight updates between two pruning operations. One-shot pruning is often considered easier to deploy and more efficient to run, though iterative pruning is generally more performant on accuracy retention.

On the note of adaptability, the **data dependency of a pruning method** potentially plays another vital role in the adaptability of a method. With *data-agnostic* pruning methods do not require data access to determine what to prune, and *data-dependent* or *data-informed* methods do the opposite.

Other **implementations details** such as *hard* or *soft pruning* (whether the pruned components are entirely removed from the model to yield a pruned model with reduced dimension, or just zero-masked), reduction control and estimation (if one can reliably control and predict the memory and compute requirements of a pruned model before conducting the actual pruning), and hyperparameter tuning pressure (whether the method has a lot of hyperparameters to adjust, or if the method has a way to tune them automatically, like AAP by Zhao et al. (2023) and AMC by He et al. (2018b)) also have their influences, especially on the user-friendliness aspect of a method.

Our method is a one-shot, post-train, data-agnostic, hard-pruning method with only one tunable hyperparameter (which is primarily determined by the layer dimension; see Appendix C.2 for details). Yet, one may adjust the pruning rate setting of our method to reliably control and predict the *MACs* and *Params* reduction of the pruned model (see the relation between pruning rate and pruned model size in experiments like Table 15 and 16). These characteristics put our method on top of the efficiency, adaptability, and user-friendliness lists over many other pruning methods under the context of densely structured CNN pruning.

Grouped kernel pruning. Grouped kernel pruning (GKP) is a special type of densely structured pruning granularity that is able to offer finer pruning freedom than filter or channel pruning methods. As demonstrated in Figure 2, GKP is, in essence, a combination of pruning a stack of kernels under the same filter group (a.k.a. grouped kernels) and reconstructing the remaining model to a grouped convolution format (Krizhevsky, 2014). Granted, grouped convolution itself is proposed with efficiency motivations, and we may say that this granularity — outside a pruning context — naturally exists with the debut of AlexNet (Krizhevsky et al., 2012).

The combination of densely structured pruning with grouped convolution is first introduced in Yu et al. (2017), but the method, unfortunately, did not attract significant attention from the community. One potential reason for this is due to the high complexity of its pruning procedure: feature maps-dependent iterative pruning plus fine-tuning with knowledge distillation. Other reasons include not performing a comprehensive ablation study to track its contributions, as well as a lack of comparable experiments to modern pruning arts. Another work, Guo et al. (2020b), also explores structured pruning with grouped convolution, but it still introduces sparsity to its pruned model with its zero-padded implementation to support unequal group sizes.

A refined procedure at the intersection of densely structured pruning and grouped convolution is brought by Zhong et al. (2022) as TMI-GKP, where they stipulate a three-stage procedure consisting of 1) filter grouping, 2) grouped kernel pruning, and 3) grouped convolution reconstruction – as well as coining it with the term *"grouped kernel pruning."* The GKP procedure and nomenclature have since been adopted by TMI-GKP's concurrent, related, and follow-up works like Zhang et al. (2022a); Park et al. (2023); He & Xiao (2023).

B EXTENDED PROPOSED METHOD

B.1 FORMAL DEFINITION OF L_2 & GEOMETRIC MEDIAN-BASED GROUPED KERNEL PRUNING

To better illustrate the formal definition of our purposed method, let W be the set containing all filters f in a certain convolutional layer of a CNN:

$$W: \{f_1, f_2, \ldots, f_n\},\$$

where n is the number of filters in that layer, a.k.a. the out_channels. The filter grouping procedure is then applied on such f_1 to f_n .

The numbers of desire grouped filters (a.k.a. the Conv2d (groups) or group count) are chosen from *candidate group count* list (see Table 5), where one of them is ultimately selected after the *post-prune group count evaluation* (see Section 3.4).

For simplicity, let's assume that the current *candidate group count* is m (the number of filters n must be divisible by m because in our implementation every group in the same layer has exactly the same number of filters to be able to reconstruct to a grouped convolution format), and let G be the set containing all filter groups g after KPP-aware filter clustering is applied on all the filters in W (Figure 5):

$$W: \{f_1, f_2, \dots, f_n\} \xrightarrow{\text{KPP-aware Filter Grouping}} G: \{g_1, g_2, \dots, g_m\},\$$

where g_i is the i_{th} grouped filters in G.

Suppose there are λ number of kernels in a filter (a.k.a. in_channel), we shall have λ grouped kernels (gk) in each filter group g:

$$g: \{gk_1, gk_2, \ldots, gk_\lambda\}.$$

We then compute the geometric median τ of each filter group g among all grouped kernels (gk) in g:

$$G: \{g_1, g_2, \dots, g_m\} \xrightarrow{\text{Compute Geometric Median}} \{\tau_1, \tau_2, \dots, \tau_m\}.$$

After we get each group's geometric median, we start to prune grouped kernels gk in each filer group g. Inside each filter group g, we compute the L2-norm of each grouped kernels gk in g and add them to list Q:

$$g: \{gk_1, gk_2, \dots, gk_\lambda\} \xrightarrow{\text{Compute L2-Norm}} Q: \{q_1, q_2, \dots, q_\lambda\}, \text{where } q_i = \|gk_i\|_2$$

Also, we compute the euclidean distance of each grouped kernels gk to its group's geometric median τ and add them to list D:

$$g: \{gk_1, gk_2, \dots, gk_\lambda\} \xrightarrow{\text{gk's Distance to } \tau} D: \{d_1, d_2, \dots, d_\lambda\}, \text{where } d_i = \text{Euclidean}(gk_i, \tau).$$

Then we do Min-Max Normalization on list Q and D separately:

$$Q: \{q_1, q_2, \dots, q_{\lambda}\} \xrightarrow{\text{Min-Max Normalization}} Q': \{q_1', q_2', \dots, q_{\lambda}'\}$$

such that

$$q_i^{'} = \frac{q_i - \min(Q)}{\max(Q) - \min(Q)}.$$

Using the same equation above, we conduct the same Min-Max Normalization upon list D:

$$D: \{d_1, d_2, \dots, d_{\lambda}\} \xrightarrow{\text{Min-Max Normalization}} D': \{d_1', d_2', \dots, d_{\lambda}'\}.$$

We then calculate the importance score I of each grouped kernels (gk) (Figure 6):

$$g: \{gk_1, gk_2, \dots, gk_{\lambda}\} \xrightarrow{\text{calculate importance score}} I: \{I_1, I_2, \dots, I_{\lambda}\}, \text{where } I_i = q_i^{'} + d_i^{'}.$$

Finally, assume that the pruning rate (ratio of grouped kernels to be pruned) is pr, we preserve 1 - pr ratio of grouped kernels gk in group g with higher importance score I. So with λ number of gk and preserve rate 1 - pr, we will have $\lambda(1 - pr)$ numbers of preserved grouped kernels gk after pruning:

$$\underbrace{g: \{gk_1, gk_2, \dots, gk_\lambda\}}_{\lambda \text{ numbers of } gk} \xrightarrow{\text{pruning}} \underbrace{g^*: \{gk_1^*, gk_2^*, \dots, gk_\lambda^*\}}_{\lambda(1-pr) \text{ numbers of } gk}.$$

So in general, for each *candidate group count* m, we will have GKP result G^* :

$$\underbrace{W: \{f_1, f_2, \dots, f_n\} \to G: \{g_1, g_2, \dots, g_m\}}_{\text{filter grouping stage}} \to \underbrace{G^*: \{g_1^*, g_2^*, \dots, g_m^*\}}_{gk \text{ pruning stage}}$$

For demonstration, suppose we have three *candidate group count* $[m_1, m_2, m_3]$, we will have three pruning results G_1^*, G_2^*, G_3^* . Then we evaluate these three pruning results via *post-prune group count evaluation* (Section 3.4). Finally, based on *post-prune group count evaluation*, the optimal pruning result will be transformed into densely structured group convolution layer.

B.2 FORMAL DEFINITION OF POST-PRUNE GROUP COUNT EVALUATION

For simplicity, let's assume that the current *candidate group count* is m (m number of groups in a layer), and suppose there are λ number of kernels in a filter. After grouped kernel pruning (Section B.1), we can get pruned layer:

$$G^*: \{g_1^*, g_2^*, \dots, g_m^*\}.$$

Then we may compute the preserved grouped kernels geometric median τ^* for each pruned group g^* :

$$G^*: \{g_1^*, g_2^*, \dots, g_m^*\} \xrightarrow{\text{Compute Geometric Median}} \{\tau_1^*, \tau_2^*, \dots, \tau_m^*\},$$

where τ_i^* is the **geometric median of preserved gk** (different from Section 3.3, which are the geometric median for all gk including those being pruned). Let | | be an operator that calculate cardinality in terms of grouped kernels. For group g_i^* with geometric median τ_i^* :

$$A(g_i^*) = \frac{1}{|g_i^*|} \sum_{gk \in g_i^*} \text{Euclidean}(gk, \tau_i^*),$$

where $A(g_i^*)$ is the average euclidean distance between gk of i^{th} group and its geometric median (intra-group similarity).

$$B(g_i^*) = \frac{1}{|G^* - g_i^*|} \sum_{gk \in G^* - g_i^*} \operatorname{Euclidean}(gk, \tau_i^*),$$

where $B(g_i^*)$ is the average euclidean distance between i^{th} group's geometric median and all gk that are not in i^{th} group (inter-group distinctions). Now, we may calculate the group count evaluation score S upon the pruning result of each candidate group count (see Figure 7) as:

$$S = \gamma \sum_{i=1}^{m} B(g_i^*) - A(g_i^*), \text{ where } \gamma = \frac{\lambda}{m}.$$
(1)

Since we have *candidate group count* list with different group counts (see Figure 5), during *post-prune group count evaluation*, each group count will provide a unique score S using Formular 1.

For demonstration, following the example in the last paragraph of Section B.1, suppose we have three *candidate group counts* $[m_1, m_2, m_3]$, we will have three pruning results G_1^*, G_2^*, G_3^* . Using Equation 1, we will have three group count evaluation scores S_1, S_2, S_3 . So we only need to choose the pruning result G^* among G_1^*, G_2^*, G_3^* with largest S value in S_1, S_2, S_3 .

A large value of S implies a pruned layer with better intra-group similarity and inter-group distinctions. Utilizing this S evaluation metric, we are able to leverage the joint optimization effect of grouping and pruning on different group count settings and, therefore, obtain a better pruning result for the layer-in-question.

B.3 PSEUDO CODE FOR THE PROPOSED METHOD

Alg	Igorithm 1 General Procedure of LeanFlex-GKP on a Single Convolutional Layer								
	Input: Candidate Group Count Queue <i>Q</i> ▷ candidate Conv2d (groups) like [2, 4, 8]								
1:	Initialize: Empty List $P $ b storage of pruning strategies w.r.t. each group count candidate								
2:	for $q \in Q$ do \triangleright looping though all group count candidates								
3:	Conduct k-Means ⁺⁺ clustering on filters to get q amount of centers								
4:	$CS \leftarrow q$ candidate sequences of centers generated by multiple restarts \triangleright see Figure 5								
5:	Initialize: Empty List FG \triangleright to store filter grouping results								
6:	for $s \in CS$ do								
7:	Get filter grouping result fg_s for the s center sequence, as illustrated in Figure 5(c)								
8:	$FG.$ append (fg_s)								
9:	Determine the optimal filter grouping result fg_{opt} with least intra-group distance (Figure 5)								
10:	for filter group $g \in fg_{opt}$ do \triangleright Prune grouped kernels inside each filter group								
11:	$g_{\text{pruned}}^q \leftarrow \text{Prune } g \text{ w.r.t. the } L_2 \& \text{ geometric median-based method stipulated in Figure 6}$								
12:	$P.\texttt{append}(g^q_{\texttt{pruned}})$								
13:	Determine the best $g_{opt} \in P$ according to Appendix B.2 \triangleright illustrated in Figure 7								
14:	return Pruned convolutional layer g_{opt} and its corresponding group count q_{opt}								

C ABLATION STUDIES

In company with our main experiment results showcased in Section 4 and Appendix D, we provide ablation studies of our proposed LeanFlex-GKP method from different perspective-of-interests,

C.1 ON DIFFERENT PROCEDURAL RECIPES

In this section, we conduct ablation studies on our proposed methods by evaluating the contribution of our proposed algorithmic components. We utilized BasicBlock ResNets (He et al., 2016) on the CIFAR10 dataset (Krizhevsky et al., 2009) for their lightweightness. All comparisons are done so with the pruning rate being 43.75% (meaning 43.75% of the original model is removed; please refer to the LeanFlex-GKP reports in Table 16 for the exact reduction status).

In Table 2, we try to investigate the influence of different grouping approaches under our Flexible Group Count pipeline, where our proposed filter grouping method, **KPP-aware filter grouping** (Section 3.2) has the optimal empirical results.

Table 2: Ablation	Study on	Different Fil	ter Grouping	Approaches

	1 6	/ 11	
Method Name	ResNet32	ResNet56	ResNet110
FGC + RandomGroup + GM&L2	92.81	93.72	94.67
FGC + No Restart KPP-aware Filter Grouping + GM&L2	93.04	93.76	94.61
FGC + Equal-size KPP + GM&L2	92.52	93.77	-
FGC + KPP-aware Filter Grouping + GM&L2 (ours)	93.01	94.00	94.92

In Table 3, we try to evaluate the validity of our proposed L_2 & geometric median-based grouped kernel pruning method in comparison with other pruning strategies (while under our flexible group count pipeline). It is observed that our flexible group count pipeline is best working with the GM&L2 grouped kernel pruning method we proposed in Section 3.3.

Method Name	ResNet32	ResNet56						
FGC + KPP-aware Filter Grouping + TMI (Greedy)	92.84	93.58						
FGC + KPP-aware Filter Grouping + Distance to GM	92.92	93.73						
FGC + KPP-aware Filter Grouping + L2Norm	92.99	93.61						

94.00

93.01

FGC + KPP-aware Filter Grouping + GM&L2 (ours)

Table 3: Ablation Study on Different Grouped Kernel Pruning Approaches

In Table 4, we showcase the power of adding flexible group count into our GKP procedure as stipulated in **post-prune group count evaluation** (Section 3.4), it is observed that the Conv2d (groups) decided by our evaluation design has better performance than other constant or dynamic group count settings. Specifically, the "Eight Groups" strategy is utilized in TMI-GKP (Zhong et al., 2022), and the "Random Groups Reassign" means to randomly re-distribute the optimal group counts (deemed by our post-prune group count evaluation method) across different layers; granted such reassignment is legal in term of layer dimensions.

Table 4: Ablation Study on Different Group Count Settings

Method Name	ResNet32	ResNet56	ResNet110
Eight Groups (TMI's setting) + KPP-aware Filter Grouping + GM&L2	92.86	93.82	94.72
Max Groups + KPP-aware Filter Grouping + GM&L2	92.88	93.82	94.72
Random Groups Reassign + KPP-aware Filter Grouping + GM&L2	92.75	93.89	94.43
FGC + KPP-aware Filter Grouping + GM&L2 (ours)	93.01	94.00	94.92

C.2 ON DIFFERENT HYPERPARAMETER SETTINGS

We illustrate the hyperparameter settings for all reported LeanFlex-GKP experiments as Table 5. The only tunable hyperparameter for LeanFlex-GKP is Candidate Group Counts, i.e., a set of Conv2D(groups) setting considered. Granted most CNN architectures have different dimensions across their convolutional layer, this setting should be adjusted subject to subject to the layer's out_channels. In our case, we basically checkout what is the largest Conv2D(groups)

applicable to a particular convolutional layer, then generate the rest of group count candidates by reducing it by half.

Table 5: Hyperparameter Settings for LeanFlex-GKP's Reported Results. **PR** stands for pruning rate, **Budget** represents the *train - fine-tune* budget in terms of number of epochs, **BS** implies batch sizes, and **Candidate Group Counts** indicate the different Conv2D(groups) settings considered. We provide settings in torch style code snippets

Model	Dataset	PR	Budget	BS	Optimizer & Learning Rate	Candidate Group Counts
ResNet20 ResNet32 ResNet56 ResNet110	CIFAR10	43.75%	300 - 300	64	SGD(lr=0.01, momentum=0.9, weight_decay=5e-4) StepLR(step_size=100, gamma=0.1)	S2 S1 S2 S1
ResNet32 ResNet56 ResNet110	CIFAR10	62.5%	300 - 300	64	SGD(lr=0.01, momentum=0.9, weight_decay=5e-4) StepLR(step_size=100, gamma=0.1)	\$1 \$2 \$1
ResNet56 ResNet110	CIFAR100	43.75%	200-300	64	SGD(lr=0.01, momentum=0.9, weight_decay=5e-4) StepLR(step_size=100, gamma=0.1)	\$2 \$2
ResNet56	Tiny-ImageNet	37.5%	100-300	64	<pre>SGD(lr=0.01, momentum=0.9, weight_decay=5e-4) MultiStepLR(milestones=[80, 90], gamma=0.1)</pre>	S2
ResNet101	Tiny-ImageNet	43.75%	300-20	256	SGD(lr=0.1, momentum=0.9, weight_decay=le-4) StepLR(step_size=5, gamma=0.1)	[8,16,32]x1 [8,16,32,64]x3
ResNet50	ImageNet	66.00%	Pretrained-100	256	SGD(lr=0.01, momentum=0.9, weight_decay=le-4) StepLR(step_size=30, gamma=0.1)	All layers [4,8,16,32]
VGG11	CIFAR10	43.75%	300-300	64	SGD(lr=0.01, momentum=0.9, weight_decay=5e-4) StepLR(step_size=100, gamma=0.1)	[8,16,32]x1 [16,32,64]x2 [32,64,128]x4
VGG13	CIFAR10	43.75%	300-300	64	SGD(lr=0.01, momentum=0.9, weight_decay=5e-4) StepLR(step_size=100, gamma=0.1)	[4,8,16]x2 [8,16,32]x2 [16,32,64]x2 [32,64,128]x3
VGG16	CIFAR10	43.75%	300-300	64	SGD(lr=0.01, momentum=0.9, weight_decay=5e-4) StepLR(step_size=100, gamma=0.1)	[4,8,16]x2 [8,16,32]x3 [16,32,64]x3 [32,64,128]x4
DenseNet40	CIFAR10	33.33% 50.00% 66.67%	Pretrained-300	64	SGD(lr=0.01, momentum=0.9, weight_decay=1e-4) MultiStepLR(milestones=[150, 225], gamma=0.1)	[4,6,12] [7,8,12,14,21,24] [8,12,13,24]
DenseNet40	CIFAR10	52.00%	400-300	64	SGD(lr=0.01, momentum=0.9, weight_decay=le-4) MultiStepLR(milestones=[150, 225], gamma=0.1)	[4,6,12] [7,8,12,14,21,24] [8,12,13,24]
MobileNetV2	CIFAR10	25.00%	300-300	64	SGD(lr=0.001, momentum=0.9, weight_decay=5e-4) StepLR(step_size=100, gamma=0.1)	[2,4,8] [4,8,12,24] [4,8,16] [8,16,32,64] [8,16,32]

Note in Table 5 above we have S1 and S2 as candidate group count settings for BasicBlock ResNets on CIFAR10. In such cases, S1 stands for [4,8,16], [8,16,32], [16,32,64], where S2 stands for [8,16], [8,16,32], [8,16,32,64]. Table 6 reports the evaluation results when the models are grouped/pruned according to different candidate group count settings. Under most evaluated setups, our method's performance is similar between the two settings.

Table 6: Basicblock ResNets on CIFAR10 when pruned according to setting S1 and S2.

Model	S1: pr = 43.75%	S2: $pr = 43.75\%$	S1: pr = 62.50%	S2: $pr = 62.50\%$
ResNet20	92.14	92.49	-	-
ResNet32	93.01	92.96	92.40	92.07
ResNet56	93.93	94.00	93.32	93.54
ResNet110	94.92	94.54	94.35	94.34

C.3 ON WALL-CLOCK SPEEDUP

We additionally investigate the wall-clock runtime of our proposed method at Table 7 regarding its pruning procedure (time required to obtain a ready-to-fine-tune pruned model in grouped convolution format).

Table 7: Wall-clock Runtime Comparison between LeanFlex-GKP (Ours) and TMI-GKP (Zhong et al., 2022)'s Pruning Procedure

Method	ResNet32	ResNet56	ResNet110
TMI-GKP (Zhong et al., 2022)	1h 20m 10s	2h 36m 22s	5h 30m 18s
LeanFlex-GKP (ours)	10m 56s	21m 32s	44m 15s

Our method provides a massive speed advantage over TMI-GKP while both being post-train, one-shot, and data-agnostic.

D EXTENDED EXPERIMENT RESULTS

Our proposed method, LeanFlex-GKP, follows the classic *train - prune - fine-tune* pipeline under a data-agnostic setting. This implies all model components are pruned all at once prior to fine-tuning, without having access to the training or fine-tuning data. Our method is implemented in a hard pruning fashion, which means the pruned model for fine-tuning is already compressed. We refer our readers to Table 5 for specific experiment details such as epoch budget and hyperparameter settings, as we have thereat documented detailed experiment settings for all 20 reported results of LeanFlex-GKP.

As introduced in Section 4, we evaluate the effectiveness of our method against many other densely structured pruning methods on ResNet20/32/56/110 with the BasicBlock, ResNet50/101 with the BottleNeck implementation (He et al., 2016), VGG11/13/16 (Simonyan & Zisserman, 2015), DenseNet40 (Huang et al., 2017), and MobileNetV2 (Sandler et al., 2018). The datasets we used include CI-FAR10/100 (Krizhevsky et al., 2009), Tiny-ImageNet (Wu et al., 2017), and ImageNet-1k (Deng et al., 2009).

D.1 COMPARED METHODS

Our methods is compared against 32 different pruning methods as illustrated in Table 8. Where notions like C/F/GK/K/L/R in the **Granularity** column respectively represent Channel/Filter/Grouped Kernel/Kernel/Layer/Resolution pruning. **Procedure** indicates if the pruned model is generated iteratively (requires weight update between conducting the first pruning act and having the fully pruned model) or in a one-shot manner (pruned all at once without weight update in between). **Zero-Masked?** column investigates if a model is hard pruned (no zero-masked weight) before fine-tuning.

Method	Venue	Granularity	Procedure	Zero-Masked?
3D (Wang et al., 2021)	ICML	F&L&R	Iterative	-
CC (Li et al., 2021)	CVPR	C	One-shot	Ν
DepGraph (Fang et al., 2023)	CVPR	C	One-shot	Ν
DHP (Li et al., 2020)	ECCV	F	Iterative (from-scratch)	Y
FPGM (He et al., 2019)	CVPR	F	Iterative	Y
GAL (Lin et al., 2019a)	CVPR	F	Iterative	Y
HRank (Lin et al., 2020)	CVPR	F	Iterative	Y
L1Norm (Li et al., 2017)	ICLR	F	One-shot	Ν
LRF (Joo et al., 2021)	AAAI	C	One-shot	Ν
NPPM (Gao et al., 2021)	CVPR	C	One-shot	Ν
OTOv2 (Chen et al., 2023)	ICLR	F	Iterative (from-scratch)	Y
PScratch (Wang et al., 2020)	AAAI	C	One-shot (from-scratch)	-
SFP (He et al., 2018a)	IJCAI	F	Iterative	Y
Slimming (Liu et al., 2017)	ICCV	C	One-shot	Ν
ThiNet (Luo et al., 2017)	ICCV	F	One-shot	-
TMI-GKP (Zhong et al., 2022)	ICLR	GK	One-shot	Ν
LeanFlex-GKP (Ours)	-	GK	One-shot	Ν
EigenDamage (Wang et al., 2019)	ICML	C	Iterative	Ν
AAP (Zhao et al., 2023)	AISTATS	F	Iterative	-
AMC (He et al., 2018b)	ECCV	C	-	Ν
ChipNet (Tiwari et al., 2021)	ICLR	C	Iterative	Ν
PFP (Liebenwein et al., 2020)	ICLR	F	-	-
GDP (Guo et al., 2021)	ICCV	C	One-shot	-
DOP (Yang et al., 2022)	BMVC	C	One-shot	Y
KPGP (Zhang et al., 2022b)	APIN	GK	One-shot	Ν
WM (Zhuang et al., 2018)	NeurIPS	C	Iterative	-
Layer-wise Proxy (Elkerdawy et al., 2020)	IEEE ICIP	L	One-shot	N
DCP (Zhuang et al., 2018)	NeurIPS	C	Iterative	-
DMC (Gao et al., 2020)	CVPR	C	Iterative	-
LCCL (Dong et al., 2017)	CVPR	K	Iterative	Y
MDP (Guo et al., 2020a)	CVPR	C	-	-
SCOP (Tang et al., 2020)	NeurIPS	F	-	-
TAS (Dong & Yang, 2019)	NeurIPS	C&L	Iterative (NAS)	-

Table 8: Overview of Compered Methods.

D.2 FULL EXPERIMENT RESULTS

The terms and notations utilized in the following experiment results follow the definitions defined in Section 4.1: **DA** represents if the method is data-agnostic (pruning can be done without access to data), **IP** indicates if a method is considered an iterative pruning method (utilizing a train-prune cycle), and **RB** reports recovery budget (in terms of epochs). All other reported criteria are in terms of %. **BA** and **Pruned** respectively report the unpruned (baseline) accuracy and the pruned accuracy. Methods marked with * are drawn from their original or (third-party) replicated publication; the rest are replicated by us to ensure a fair comparison. Generally speaking, a method that is **DA** \checkmark , **IP** \varkappa , and demands a smaller **RB** is likely to be more user-friendly.

Table 9: Results of ResNet50 Model on ImageNet-1K Dataset. Results in **bold red** indicate being the second best among comparisons.

Method	DA	IP	RB	BA	Pruned	ΔAcc	$ \downarrow$ MACs	\downarrow Params
ResNet50 on ImageNet-1K				\approx 4122.	828M Pa	trams ≈ 25	5.557M	
SFP* (He et al., 2018a)	X	\checkmark	100	76.13	58.50	↓ 17.63	36.08	32.31
FPGM* (He et al., 2019)	X	\checkmark	100	76.13	75.04	↓ 1.09	35.93	28.36
TMI-GKP* (Zhong et al., 2022)	 ✓ 	X	100	76.15	75.53	$\downarrow 0.62$	33.21	33.74
PScratch* (Wang et al., 2020)	X	\checkmark	≈ 409	77.20	76.70	$\downarrow 0.50$	29.80	26.80
ThiNet* (Luo et al., 2017)	X	\checkmark	100	72.88	72.04	$\downarrow 0.84$	36.7	-
OTOv2* (post-train) (Chen et al., 2023)	×	\checkmark	120	76.13	75.38	↓ 0.75	37.70	26.58
DOP* (Yang et al., 2022)	X	X	120	76.47	74.29	$\downarrow 2.18$	60.00	-
Layer-wise Proxy* (Elkerdawy et al., 2020)	×	x	-	76.14	75.0	↓ 1.14	5.5	-
KPGP* (Zhang et al., 2022b) LeanFlex-GKP (ours)	$\left \begin{array}{c} \checkmark \\ \checkmark \end{array} \right $	X X	100	76.15 76.13	75.50 75.62	↓ 0.65 ↓ <mark>0.51</mark>	33.7 33.06	33.2 30.34

Table 10: Results of ResNet56/101 Model on Tiny-ImageNet Dataset

Method	DA	IP	RB	BA	Pruned	ΔAcc	↓ MACs	\downarrow Params
ResNet56 on Tiny	-Imag	geNet	$MACs\approx 506.254M$			Params \approx	0.865M	
TMI-GKP* (Zhong et al., 2022)	\checkmark	X	300	55.59	51.48	↓ 4.11	37.05	36.76
L1Norm-A (Li et al., 2017)	\checkmark	X	300	56.13	55.41	$\downarrow 0.72$	35.51	32.14
L1Norm-B (Li et al., 2017)	\checkmark	X	300	56.13	55.21	$\downarrow 0.92$	36.43	41.04
SFP (He et al., 2018a)	X	\checkmark	300	56.13	53.65	$\downarrow 2.48$	33.96	35.38
FPGM (He et al., 2019)	X	\checkmark	300	56.13	54.14	$\downarrow 1.99$	33.53	34.68
HRank (Lin et al., 2020)	X	\checkmark	300	56.13	54.16	$\downarrow 1.97$	37.39	30.98
GAL* (Lin et al., 2019b)	X	\checkmark	100	56.55	55.87	$\downarrow 0.68$	52.00	32.00
DHP* (Li et al., 2020)	X	\checkmark	100	56.55	55.82	$\downarrow 0.73$	55.00	46.00
3D* (Wang et al., 2021)	X	\checkmark	420	56.55	56.04	$\downarrow 0.51$	59.00	34.00
Slimming* (Liu et al., 2017)	X	X	100	56.55	52.45	$\downarrow 4.10$	53.00	54.00
LeanFlex-GKP (ours)	\checkmark	X	300	56.13	55.67	↓ 0.46	37.05	36.76
ResNet101 on Tiny-	Image	Net	MAC	$s \approx 1008$	31.092M	1.092M Params \approx 42.902M		
TMI-GKP* (Zhong et al., 2022)	√	X	300	65.51	66.89	↑ 1.38	43.25	43.53
GAL* (Lin et al., 2019b)	X	\checkmark	100	64.83	64.33	$\downarrow 0.50$	76.00	45.00
DHP* (Li et al., 2020)	X	\checkmark	100	64.83	64.82	$\downarrow 0.01$	-	50.00
3D* (Wang et al., 2021)	X	\checkmark	420	64.83	65.27	$\uparrow 0.44$	-	51.00
Slimming* (Liu et al., 2017)	X	X	100	64.83	63.47	↓ 1.36	-	75.00
LeanFlex-GKP (ours)	\checkmark	X	20	65.51	68.46	↑ 2.95	43.25	43.53

Table 11: Results of MobileNetV2 Model on CIFAR10 Dataset

Method	DA	IP	RB	BA	Pruned	ΔAcc	$\downarrow \textbf{MACs}$	\downarrow Params
MobileNetV2 on CIFAR10 MACs \approx 98.768M Params \approx 2.383M								
DCP* (Zhuang et al., 2018)	X	-	400	94.47	94.69	$\uparrow 0.22$	26.00	-
SCOP* (Tang et al., 2020)	X	-	400	94.48	94.24	$\downarrow 0.24$	49.30	-
WM* (Zhuang et al., 2018)	X	-	400	94.47	94.17	$\downarrow 0.30$	26.00	-
DMC* (Gao et al., 2020)	X	-	160	94.23	94.49	$\uparrow 0.26$	40.00	-
MDP* (Guo et al., 2020a)	X	-	-	95.02	95.14	$\uparrow 0.12$	28.71	-
GDP* (Guo et al., 2021)	X	-	350	94.89	95.15	$\uparrow 0.26$	46.22	-
ChipNet* (Tiwari et al., 2021)	X	\checkmark	300	93.55	92.58	$\downarrow 0.97$	20.00	-
LeanFlex-GKP (ours)	1	X	300	93.87	94.30	↑ 0.43	28.74	26.98

Method	DA	IP	КB	ВА	Pruned	∆Acc	↓ MACs	↓ Params		
VGG11 on	MAC	$s \approx 153$.5M Para	$ams \approx 9.3$	M					
CC (Li et al., 2021)	X	X	300	92.34	92.24	$\downarrow 0.10$	42.32	56.77		
L1Norm (Li et al., 2017)	 ✓ 	X	300	92.34	91.77	$\downarrow 0.57$	41.44	35.01		
LeanFlex-GKP (ours)	✓	X	300	92.34	92.55	↑ 0.21	43.41	43.68		
VGG13 on CIFAR10 MACs \approx 229.4M Params \approx 9.4M										
CC (Li et al., 2021)	X	X	300	93.95	93.97	$\uparrow 0.02$	42.56	54.11		
L1Norm (Li et al., 2017)	\checkmark	X	300	93.95	93.26	$\downarrow 0.69$	42.95	35.09		
LeanFlex-GKP (ours)	✓	X	300	93.95	94.03	↑ 0.08	43.58	43.68		
VGG16 on CIFAR10 MACs \approx 313.4M Params \approx 14.7M										
CC (Li et al., 2021)	X	X	300	93.94	94.14	$\uparrow 0.20$	43.18	-		
GAL (Lin et al., 2019b)	X	\checkmark	300	93.94	91.29	$\downarrow 2.65$	35.16	47.40		
HRank (Lin et al., 2020)	X	\checkmark	300	93.94	93.57	$\downarrow 0.37$	32.28	40.82		
L1Norm (Li et al., 2017)	\checkmark	X	300	93.94	92.88	$\downarrow 1.06$	42.71	37.85		
KPGP (Zhang et al., 2022b)	 ✓ 	X	300	94.27	94.17	$\uparrow 0.13$	43.15	43.59		
TMI-GKP (Zhong et al., 2022)	 ✓ 	X	300	93.94	94.07	$\uparrow 0.10$	25.00	-		
LeanFlex-GKP (ours)	✓	X	300	93.94	94.15	↑ 0.21	43.15	43.59		

Table 12: Results of VGG11/13/16 Model on CIFAR10 Dataset

Table 13: Results of DenseNet40 on CIFAR10 Dataset

Method	DA	IP	RB	BA	Pruned	ΔAcc	$\downarrow \textbf{MACs}$	\downarrow Params	
DenseNet40 on CIFAR10 MACs ≈ 282.2 M Params ≈ 1.5 M									
GAL* (Lin et al., 2019b)	X	\checkmark	-	94.81	94.61	↓ 0.20	35.30	35.60	
Slimming* (Liu et al., 2017)	X	\checkmark	-	94.81	94.35	$\downarrow 0.46$	57.60	66.30	
HRank* (Lin et al., 2020)	X	\checkmark	-	94.81	94.24	$\downarrow 0.57$	41.00	36.50	
CC (<i>pr=0.33</i>) (Li et al., 2021)	X	X	300	94.81	94.75	$\downarrow 0.06$	32.97	51.42	
CC (<i>pr=0.50</i>) (Li et al., 2021)	X	X	300	94.81	94.58	$\downarrow 0.23$	49.85	64.48	
CC (<i>pr</i> =0.67) (Li et al., 2021)	X	X	300	94.81	94.22	$\downarrow 0.59$	66.55	75.88	
LeanFlex-GKP (pr=0.33) (ours)	\checkmark	X	300	94.81	94.99	↑ 0.18	33.08	52.68	
LeanFlex-GKP (pr=0.50) (ours)	\checkmark	X	300	94.81	94.93	↑ 0.12	49.75	64.08	
LeanFlex-GKP (pr=0.67) (ours)	\checkmark	X	300	94.81	94.72	↓ 0.09	66.42	75.55	
TMI-GKP (<i>pr</i> =0.52) (Zhong et al., 2022)	\checkmark	X	300	94.66	94.76	↑ 0.10	52.49	57.22	
LeanFlex-GKP (pr=0.52) (ours)	\checkmark	X	300	94.66	95.11	↑ 0.45	52.49	57.22	

Table 14: Results of ResNet56/110 on CIFAR100 Dataset

Method	DA	IP	RB	BA	Pruned	ΔAcc	\downarrow MACs	\downarrow Params
ResNet56 on C	MACs ≈ 126.567 M Params ≈ 0.859 M							
TMI-GKP (Zhong et al., 2022)	✓	X	300	70.85	71.11	$\uparrow 0.26$	43.22	43.19
L1Norm-A (Li et al., 2017)	\checkmark	X	300	71.53	68.61	↓ 2.92	43.05	40.86
L1Norm-B (Li et al., 2017)	\checkmark	X	300	71.53	68.32	↓ 3.21	42.16	48.20
CC (Li et al., 2021)	X	X	300	71.53	71.43	$\downarrow 0.10$	43.52	28.52
SFP (He et al., 2018a)	X	\checkmark	300	71.53	69.80	$\downarrow 1.73$	44.29	44.82
FPGM (He et al., 2019)	X	\checkmark	300	71.53	69.48	$\downarrow 2.05$	43.38	43.19
NPPM (Gao et al., 2021)	X	X	300	71.53	71.57	$\uparrow 0.04$	33.54	13.04
HRank (Lin et al., 2020)	X	\checkmark	300	71.53	69.84	$\downarrow 1.69$	37.39	31.32
LCCL* (Dong et al., 2017)	X	-	300	71.33	68.37	$\downarrow 2.96$	39.3	-
TAS* (Dong & Yang, 2019)	X	X	300	73.18	72.25	$\downarrow 0.93$	51.3	-
LeanFlex-GKP (ours)	✓	X	300	71.53	72.11	↑ 0.58	43.22	43.18
ResNet110 on CIFAR100				$s \approx 255.$.001M P	arams ≈ 1	1.734M	
TMI-GKP (Zhong et al., 2022)	✓	X	300	72.99	72.79	$\downarrow 0.20$	43.31	43.37
L1Norm-A (Li et al., 2017)	\checkmark	X	300	73.20	69.85	↓ 3.35	43.74	44.41
L1Norm-B (Li et al., 2017)	\checkmark	X	300	73.20	69.32	↓ 3.88	42.22	51.96
CC (Li et al., 2021)	X	X	300	73.20	73.21	$\uparrow 0.01$	43.43	19.78
NPPM (Gao et al., 2021)	X	X	300	73.20	72.38	$\downarrow 0.82$	42.77	18.69
LRF (Joo et al., 2021)	X	X	300	73.20	73.58	$\uparrow 0.38$	43.38	42.16
LCCL* (Dong et al., 2017)	X	-	300	72.79	70.78	$\downarrow 2.01$	31.3	-
SFP* (He et al., 2018a)	X	\checkmark	300	74.14	71.28	$\downarrow 2.86$	52.3	-
FPGM* (He et al., 2019)	X	\checkmark	300	74.14	72.55	↓ 1.59	52.3	-
TAS* (Dong & Yang, 2019)	X	X	300	75.06	73.16	$\downarrow 1.90$	52.6	-
LeanFlex-GKP (ours)	✓	X	300	73.20	73.63	↑ 0.43	43.31	43.36

Method	DA	IP	KB	BA	Pruned	ΔAcc	↓ MACs	↓ Params	
ResNet32 on	CIFAR	R10	MACs	$s \approx 69.5 M$	A Param	$s \approx 0.46$ M	N		
L1Norm-A (Li et al., 2017)	✓	X	300	92.80	89.96	$\downarrow 2.84$	61.86	65.21	
L1Norm-B (Li et al., 2017)	\checkmark	X	300	92.80	90.01	$\downarrow 2.79$	62.36	67.39	
CC (Li et al., 2021)	X	X	300	92.80	92.39	$\downarrow 0.41$	61.29	54.35	
SFP (He et al., 2018a)	X	\checkmark	300	92.80	90.28	$\downarrow 2.52$	59.74	60.65	
FPGM (He et al., 2019)	X	\checkmark	300	92.80	91.32	$\downarrow 1.48$	58.28	59.57	
NPPM (Gao et al., 2021)	X	X	300	92.80	91.92	$\downarrow 0.88$	61.15	56.52	
DHP (Li et al., 2020)	X	\checkmark	300	92.80	91.73	$\downarrow 1.07$	50.92	-	
LRF (Joo et al., 2021)	X	X	300	92.80	92.79	$\downarrow 0.01$	56.95	56.52	
EigenDamage* (Wang et al., 2019)	X	-	-	95.30	95.17	$\downarrow 0.13$	60	-	
LeanFlex-GKP (ours)	✓	X	300	92.80	92.40	↓ 0.40	61.56	61.74	
ResNet56 on CIFAR10 MACs ≈ 126.6 M Params ≈ 0.85 M									
L1Norm-A (Li et al., 2017)	✓	X	300	93.24	91.79	↓ 1.45	62.43	57.64	
L1Norm-B (Li et al., 2017)	\checkmark	X	300	93.24	91.56	↓ 1.68	62.25	62.35	
CC (Li et al., 2021)	X	X	300	93.24	93.57	$\uparrow 0.33$	61.54	50.58	
SFP (He et al., 2018a)	X	\checkmark	300	93.24	92.24	$\downarrow 1.00$	58.61	60.24	
FPGM (He et al., 2019)	X	\checkmark	300	93.24	92.64	$\downarrow 0.60$	58.33	59.88	
NPPM (Gao et al., 2021)	X	X	300	93.24	93.07	$\downarrow 0.17$	58.49	47.05	
HRank (Lin et al., 2020)	X	\checkmark	300	93.24	90.63	↓ 2.61	60.56	51.88	
DHP (Li et al., 2020)	X	\checkmark	300	93.24	91.66	$\downarrow 1.58$	60.54	-	
AAP* (Zhao et al., 2023)	-	-	-	92.84	92.21	$\downarrow 0.63$	52.72	-	
AMC* (He et al., 2018b)	-	-	-	92.80	91.90	$\downarrow 0.90$	50.00	-	
PFP* (Liebenwein et al., 2020)	X	-	182	92.95	93.64	$\uparrow 0.69$	67.41	72.10	
LeanFlex-GKP (ours)	✓	X	300	93.24	93.54	↑ 0.30	61.76	61.99	
ResNet110 on	CIFAR	R10	MACs	$s \approx 255.0$	M Parai	$\mathrm{ms} \approx 1.73$	BM		
L1Norm-A (Li et al., 2017)	✓	X	300	94.26	92.50	↓ 1.76	61.58	64.16	
L1Norm-B (Li et al., 2017)	\checkmark	X	300	94.26	94.04	$\downarrow 0.22$	60.29	72.25	
CC (Li et al., 2021)	X	X	300	94.26	94.29	$\uparrow 0.03$	61.34	58.38	
SFP (He et al., 2018a)	X	\checkmark	300	94.26	92.98	↓ 1.28	58.70	60.29	
FPGM (He et al., 2019)	X	\checkmark	300	94.26	94.11	↓ 0.15	58.35	60.17	
NPPM (Gao et al., 2021)	X	X	300	94.26	93.93	↓ 0.33	60.81	56.87	
HRank (Lin et al., 2020)	X	\checkmark	300	94.26	91.94	↓ 2.32	61.90	62.49	
DHP (Li et al., 2020)	X	\checkmark	300	94.26	92.73	↓ 1.53	74.16	-	
LRF (Joo et al., 2021)	X	X	300	94.26	94.10	$\downarrow 0.16$	62.94	63.12	
ChipNet* (Tiwari et al., 2021)	X	\checkmark	300	93.98	93.78	$\downarrow 0.20$	62.41	-	
PFP* (Liebenwein et al., 2020)	X	-	182	93.57	94.58	$\uparrow 1.01$	68.94	71.98	
LeanFlex-GKP (ours)	✓	X	300	94.26	94.35	↑ 0.09	64.22	62.19	

Table 15: Results of ResNet32/56/110 on CIFAR10 dataset with a pruning rate of $\approx 62.5\%$ MethodDAIPRBBAPruned $\triangle Acc | | | MACs | | Paramas$

Table 16: Results of ResNet20/32/56/110 on CIFAR10 dataset with a pruning rate of $\approx 43.75\%$. Results in **bold red** indicate being the second best among comparisons.

Method	DA	IP	RB	BA	Pruned	ΔAcc	\downarrow MACs	\downarrow Params
ResNet20 or	7M							
TMI-GKP (Zhong et al., 2022)	√	X	300	91.99	92.18	↑ 0.19	42.86	43.33
L1Norm-A (Li et al., 2017)	\checkmark	X	300	91.99	90.54	↓ 1.45	43.11	35.19
L1Norm-B (Li et al., 2017)	\checkmark	X	300	91.99	90.83	$\downarrow 1.16$	43.87	19.63
CC (Li et al., 2021)	X	X	300	91.99	91.80	$\downarrow 0.19$	43.47	36.30
SFP (He et al., 2018a)	X	V	300	91.99	91.15	$\downarrow 0.84$	40.32	41.85
FPGM (He et al., 2019)	X	√ 	300	91.99	91.51	$\downarrow 0.48$	43.34	43.33
NPPM (Gao et al., 2021)		×	300	91.99	91.86	$\downarrow 0.13$	43.49	35.19
DepGraph (Eang et al. 2021)		Ŷ	300	91.99	92.25	0.24	43.08	45.70
KPGP* (Zhang et al., 2022b)	V V	x	300	92.46	92.10	10.01	55.10	55.70
PFP* (Liebenwein et al., 2020)	x	-	182	91.40	91.36	$\downarrow 0.00$	32.10	43.16
LeanFlex-GKP (ours)	\checkmark	X	300	91.99	92.49	↑ 0.50	42.86	43.33
ResNet32 or	n CIFA	R10	MA	$Cs \approx 69.$	5M Para	$ms \approx 0.4$	6M	
TMI-GKP (Zhong et al., 2022)	√	X	300	92.80	92.99	↑ 0.19	43.08	43.32
L1Norm-A (Li et al., 2017)	\checkmark	X	300	92.80	91.45	↓ 1.35	42.63	45.69
L1Norm-B (Li et al., 2017)	 ✓ 	X	300	92.80	91.58	↓ 1.22	42.96	32.54
CC (Li et al., 2021)	X	X	300	92.80	93.01	$\uparrow 0.21$	43.49	32.76
SFP (He et al., 2018a)	X	√	300	92.80	91.94	$\downarrow 0.86$	41.89	42.67
FPGM (He et al., 2019)	× ×	√ ▼	300	92.80	92.41	$\downarrow 0.39$	43.30	43.53
DHP (Li et al. 2020)	Ŷ		300	92.80	93.13	0.53	43.00	29.74
I RE (Ioo et al. 2021)	x	x	300	92.80	93.04	+ 0.34	42.30	43.97
DepGraph (Fang et al., 2023)		x	300	92.80	93.04	$\uparrow 0.24$	40.79	33.26
OTOv2 (Chen et al., 2023)	x	1	300	92.80	90.97	1.83	38.28	44.77
OTOv2 (Chen et al. 2023)	x	1	300	92.80	92 14	0.66	49 77	35.80
(post-train) (Client of all, 2022)			200	02.71	02.00	+ 0.02	42.1	42.4
KPGP* (Zhang et al., 2022b)	√	×	300	92.71	92.68	$\downarrow 0.03$	43.1	43.4
DeeNet5(^ D10	300	92.00	95.01	0.21	45.00	43.32
		KIU		$s \approx 120$.0M Par	$ams \approx 0.8$		42.40
I MI-GKP (Zhong et al., 2022)	√	×	300	93.24	93.95	$\uparrow 0./1$	43.23	43.49
L'INOIIII-A (Li et al., 2017) L'INorm B (Li et al. 2017)	V	Ŷ	300	93.24	92.44	$\downarrow 0.80$	40.27	42.91
CC (Li et al. 2021)	×	x	300	93.24	92.02	↓ 0.02 ↑ 0.80	44.82	27.78
SEP (He et al., $2018a$)	x	5	300	93.24	93.15	0.09	43.54	43.61
GAL (Lin et al., 2019a)	X	√	300	93.24	91.27	1.97	22.38	17.94
FPGM (He et al., 2019)	X	\checkmark	300	93.24	93.60	↑ 0.36	43.38	43.49
NPPM (Gao et al., 2021)	X	X	300	93.24	93.55	$\uparrow 0.21$	44.02	29.54
HRank (Lin et al., 2020)	X	\checkmark	300	93.24	92.27	$\downarrow 0.97$	37.39	31.54
DHP (Li et al., 2020)	X	\checkmark	300	93.24	92.42	$\downarrow 0.82$	42.09	43.73
LRF (Joo et al., 2021)	X	X	300	93.24	93.93	$\uparrow 0.69$	43.89	42.56
DepGraph (Fang et al., 2023)	√	X	300	93.24	93.79	$\uparrow 0.55$	39.82	26.71
OTOv2 (Chen et al., 2023) OTOv2	^	V	300	93.24	91.57	↓1.07	30.90	43.70
(post-train) (Chen et al., 2023)	×	\checkmark	300	93.24	93.02	↓ 0.22	47.70	35.01
KPGP* (Zhang et al., 2022b)	 ✓ 	X	300	93.75	93.72	$\downarrow 0.03$	43.2	43.5
DecNot110 or		D 10	300 MA	95.24	5 0M Do	$\frac{10.70}{1000} \sim 1^{-1}$	43.23	45.49
TML GKP (Zhong et al. 2022)			300	04.26	04 00	± 0.64	/ 31/	13 52
L1Norm-A (Li et al., 2022)		x	300	94.20	92.75	1.51	43.74	44.56
L1Norm-B (Li et al., 2017)	↓ ✓	X	300	94.26	92.96	$\downarrow 1.31$	43.17	36.69
CC (Li et al., 2021)	X	X	300	94.26	94.31	$\uparrow 0.05$	44.54	39.47
SFP (He et al., 2018a)	X	\checkmark	300	94.26	94.44	$\uparrow 0.18$	43.42	43.52
GAL (Lin et al., 2019a)	X	\checkmark	300	94.26	93.42	$\downarrow 0.84$	29.14	31.37
FPGM (He et al., 2019)	X	√	300	94.26	94.18	$\downarrow 0.08$	43.39	43.52
NPPM (Gao et al., 2021)	X	×	300	94.26	94.16	$\downarrow 0.10$	42.46	35.19
HKank (Lin et al., 2020)	X	v	300	94.26	92.96	$\downarrow 1.30$	18.57	5.38
DHP (Li et al., 2020) L PE (log at al., 2021)		√ ¥	300	94.26	92.33	$\downarrow 1./3$	00.25	04.58
OTOv2 (Chen et al. 2021)	x	Ś	300	94.20 94.26	54.49 91 58	2.68	37.83	42.50
OTOv2 (Chen et al. 2023) OTOv2 (Chen et al. 2022)	×	•	300	94.20	03.00	↓ 0.27	38.11	42.50
(post-train) (Chen et al., 2025) KPGP* (Zhang et al., 2022b)		v ¥	300	94.20	93.99	+ 0.27 ↑ 0.25	12 2	12.50
LeanFlex-GKP (ours)	✓ ✓	x	300	94.26	94.01 94.92	↑ 0.25 ↑ 0.66	43.31	43.52