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Abstract

Current speech encoding pipelines often rely001
on an additional text-based LM to get robust002
representations of human communication, even003
though SotA speech-to-text models often have004
a LM within. This work proposes an approach005
to improve the LM within an audio model such006
that the subsequent text-LM is unnecessary. We007
introduce WhiSPA (Whisper with Semantic008
and Psychological Alignment), which lever-009
ages a novel audio training objective: con-010
trastive loss with a language model embedding011
as a teacher. Using over 500k speech segments012
from mental health audio interviews, we evalu-013
ate the utility of aligning Whisper’s latent space014
with semantic representations from a text au-015
toencoder (SBERT) and lexically derived em-016
beddings of basic psychological dimensions:017
emotion and personality. Over self-supervised018
affective tasks and downstream psychological019
tasks, WhiSPA surpasses current speech en-020
coders, achieving an average error reduction021
of 73.4% and 83.8%, respectively. WhiSPA022
demonstrates that it is not always necessary023
to run a subsequent text LM on speech-to-text024
output in order to get a rich psychological rep-025
resentation of human communication.026

1 Introduction027

Human communication is inherently multimodal,028

but AI integration of modalities is often frag-029

mented (Lazaro et al., 2021; Gu et al., 2017), where030

speech models, such as Whisper (Radford et al.,031

2022), are often pipelined into text-based language032

models (LMs) (Chuang et al., 2020) in order to033

get the most accurate speech-based representations034

(see Figure 1). Text-based LMs produce richer se-035

mantic representations (Wu et al., 2024; Fu, 2024).036

This often results in redundant computational costs037

from having two LMs in the pipeline (one within038

the audio model and one for the text LM) and repre-039

sentations remain incomplete of the full spectrum040

of human expressions (Zhang et al., 2023; Lian041

Figure 1: Speech processing pipelines that use text-
based representations from language models often yield
higher accuracies than those produced solely by SotA
audio models. While both approaches ingest the same
raw audio signal, we close the performance gap by in-
troducing a speech encoder with similar performance to
a text-based LM pipeline.

et al., 2023). This is especially important for psy- 042

chological and social scientific applications where 043

representations from text-based LMs demonstrate 044

superior performance than direct speech represen- 045

tations (Lukac, 2024; Chen et al., 2024). 046

Here, we seek to bridge the semantic and psy- 047

chological representation gap between speech- 048

based LMs present in audio models and text- 049

based LMs. We introduce a speech encoding 050

model, WhiSPA (Whisper with Semantic and 051

Psychological Alignment), which aligns a pre- 052

trained speech recognition model, Whisper (Rad- 053

ford et al., 2022), with the latent dimensions from 054

SBERT (Reimers and Gurevych, 2019), intended to 055

better capture semantics and deeper psychological 056

information (V Ganesan et al., 2022; Park et al., 057

2014). Such alignment reduces computational and 058

memory inefficiencies, circumventing the need for 059

a second text encoder, as it enables a unified cross- 060

modal representation between speech and language 061

models. Still, since text is derivable from speech, 062

speech should intrinsically be mappable to the same 063

rich semantic features from the text. 064

Our focus on psychological or human-level tasks 065

reflects a growing demand for foundation models 066

to better understand the intrinsic qualities of hu- 067
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man communication (Soni et al., 2024). As Clark068

and Schober (1992) put it, “The common miscon-069

ception is that language has to do with words and070

what they mean. It does not. It has to do with071

people and what they mean.” and specifically how072

well the representations capture information about073

the people communicating (Hovy and Yang, 2021;074

Soni et al., 2022). More specifically, psychological075

studies have suggested mental health attributes are076

highly multimodal as they are influenced by sub-077

tle nuances in voice and content (Sartori and Orrù,078

2023; Chen et al., 2024).079

Our main contributions include: (1) The de-080

velopment of WhiSPA (Whisper with Semantic081

and Psychological Alignment), with a novel align-082

ment objective, (2) Evaluation of the hypothe-083

sis that aligning text and audio latent spaces can084

significantly enhance audio-based representations085

for a deeper semantic and psychological under-086

standing of human communication, (3) Demon-087

stration of significant accuracy improvements in088

self-supervised tasks and downstream psycholog-089

ical tasks over systematically tested variants of090

WhiSPA. We find that: (a) aligning with text-based091

semantic and psychological representations dras-092

tically improves audio representations, including093

SotA person-level psychological assessments; (b)094

a Noise Contrastive Estimation loss yielded a more095

optimal convergence in aligning Whisper’s latent096

space with semantic and psychological dimensions.097

and (c) for downstream psychological tasks, there098

was almost no benefit in utilizing SBERT represen-099

tations on top of WhiSPA’s, suggesting the same100

information from a text LM can be captured with101

the LM of the audio model and thus it is not nec-102

essary to pipeline another text LM after the audio103

model.104

2 Background105

This work builds on top of Whisper (Radford et al.,106

2022), OpenAI’s SotA automatic speech recogni-107

tion (ASR) foundation model. We chose Whis-108

per over other alternatives such as HuBERT and109

Wav2Vec2-BERT, since previous works (Kyung110

et al., 2024; Yang et al., 2023) have shown that111

Whisper has a stronger language encoding module112

at capturing speaker attributes.113

Recent advances in foundational speech tech-114

nologies, like Whisper and HuBERT, have vastly115

improved the performances on speech recognition116

tasks (Radford et al., 2022; Hsu et al., 2021). How-117

ever, they have limited ability to capture deeper se- 118

mantics and speaker attributes compared to a text- 119

based language model (Chen et al., 2024; Dong 120

et al., 2022). Prior works that have addressed this 121

have targeted a very narrow scope of psycholog- 122

ical attributes (Busso et al., 2008). These gaps 123

underscore the need for methodologies that bridge 124

speech encoders’ acoustic robustness with the psy- 125

chological depth of text-based language models—a 126

challenge we address by embedding fundamental 127

psychological dimensions present in one’s speech. 128

Multi-level fusion architectures leveraging both 129

acoustic and lexical features have shown to im- 130

prove the performance on downstream tasks. For 131

instance, (Zhao et al., 2022) demonstrates that 132

coattention-based early fusion and late fusion using 133

Wav2Vec2.0 (Baevski et al., 2020; Schneider et al., 134

2019) and BERT (Devlin et al., 2019) outperform 135

SotA emotion recognition benchmarks. Other re- 136

cent works inject acoustic nuances into language 137

models using textual descriptions of speech charac- 138

teristics (Wu et al., 2024) or common-sense reason- 139

ing through historical utterances from the speaker 140

(Fu, 2024). However, this approach does not fully 141

leverage the cross-modal dependencies between 142

text and audio, as it remains unimodal, relying 143

solely on textual inputs rather than raw acoustic 144

representations. 145

Prior works in cross-modal alignment provide 146

foundational insights for this integration. Compo- 147

sitional Contrastive Learning (Chen et al., 2021) 148

distilled audio-visual knowledge into video repre- 149

sentations by aligning teacher-student embeddings 150

across modalities, embedding rich semantics from 151

teacher-audio and image models into the student- 152

video model. In another work, Dong et al. (2022) 153

improved the accuracy of intent classification of 154

spoken language by employing a contrastive loss 155

using both speech and language features. These 156

works highlight that the cross-modal alignment ob- 157

jective embeds information from different modali- 158

ties into shared spaces to capture their relationships, 159

while contrastive learning aids in grouping related 160

inputs across different modalities (e.g., audio and 161

text segments) while separating unrelated pairs (Ye 162

et al., 2022). Efforts to align text and audio include 163

SpeechBERT (Chuang et al., 2020), which adapted 164

BERT’s framework (Devlin et al., 2019) to paired 165

speech-text data, and SLAM (Speech-Language 166

Aligned Models) (Bapna et al., 2022), which op- 167

timized joint embedding spaces to improve down- 168

stream tasks like speech recognition and audio-text 169
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retrieval. To the best of our knowledge, this is170

the first work to perform cross-modal learning to171

endow the foundational speech model with richer172

semantic and psychological representations.173

3 Data & Tasks174

Audio Datasets. We utilize two psychological,175

mental health-focused datasets for training and176

evaluation: WTC-Segments (WTC) (Kjell et al.,177

2024) and HiTOP-Segments (HiTOP) (Kotov178

et al., 2022). WTC recordings were completed by179

patients in a clinic for World Trade Center (9/11)180

responders who came for a health monitoring visit.181

HiTOP interviews were completed by outpatients182

with psychiatric diagnoses who were recruited by183

the study team to complete a research interview.184

Both datasets consist of paired audio-text data, en-185

suring alignment between spoken content and its186

corresponding textual transcription.187

Dataset WTC HiTOP

Total Segment Duration (hr) ∼252 ∼474
Mean Segment Duration (s) 5.86 2.99
Total Audio Segments 154,586 571,420
Total Participants 1,396 524

Table 1: Audio dataset metadata (after preprocessing
and filtering for participant-only speech).

From its source, WTC was curated from ∼6188

minute interview recordings, on average, of pa- 189

tients responding to both personal and general ques- 190

tions in a structured manner (Kjell et al., 2024). 191

Contrarily, HiTOP followed a semi-structured for- 192

mat, where patients described experiences on set 193

topics while also organically conversing with the 194

interviewer. Once filtered for audio segments 195

solely spoken by patients, interviews generally 196

ranged from 45 to 90 minutes, yielding a vo- 197

luminous and broadened set of audio segments 198

(Kotov et al., 2022). The recordings were di- 199

arized using NVIDIA NeMo and transcribed with 200

whisper-large-v2. 201

Psychological Assessments. For each dataset, 202

psychological measures were collected for each 203

user. For WTC, each subject completed the self- 204

reported PTSD CheckList (PCL), yielding scores 205

for four specific subscales: Re-experiencing (REX), 206

Avoidance (AVO), Negative Alterations in Mood 207

(NAM), Hyperarousal (HYP). For HiTOP, trained 208

interviewers provided ratings for the following six 209

psychopathology scales: Internalizing (INT), Dis- 210

inhibition (DIS), Antagonism (ANT), Somatoform 211

(SOM), Thought-Disorder (THD), and Detachment 212

(DET) (Kotov et al., 2022, 2024). 213

To evaluate the encoding ability of WhiSPA 214

for any given audio segment, we manually anno- 215

tate a small subset from both datasets for valence 216

and arousal dimensions expressed in their speech. 217

Figure 2: Diagram of WhiSA and WhiSPA training procedure involving a student-teacher model paradigm. Whisper
(left) is semantically aligned to the ground truth embeddings encoded by SBERT (right). When PsychEmb features
are included in the alignment function, the WhiSPA framework semantically and psychologically aligns the
corresponding embeddings with contrastive loss criteria.
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Three random audio segments containing more218

than 5 uttered words from each user were sam-219

pled from each dataset and were annotated by two220

individuals with a background in psychology using221

the affective circumplex scale (Figure 7). This re-222

sulted in 300 audio segments, equally split between223

the two datasets.224

Self-Supervised PsychEmb. For each audio/text225

pair in our datasets, we extract theoretically de-226

rived psychological features using pre-trained lex-227

ica (V Ganesan et al., 2022), which we refer to228

as PsychEmb. PsychEmb broadly covers three do-229

mains of psychological constructs measured at dif-230

ferent temporal granularity: (a) states, which re-231

flect the emotional condition of the person at a232

point in time; (b) dispositions, which are slightly233

more stable than states and reflect the tendencies234

of humans to behave in certain ways and finally235

(c) the traits, which are long term stable charac-236

teristics (Park et al., 2014). The ten dimensions237

of PsychEmb are Valence (VAL), Arousal (ARO),238

Openness (OPE), Consciousness (CON), Extraver-239

sion (EXT), Agreeableness (AGR), Neuroticism240

(NEU), Anger (ANG), Anxiety (ANX), and De-241

pression (DEP), each represented with scalar val-242

ues. Once the self-supervised PsychEmb dimen-243

sions were extracted for each segment across both244

datasets, we perform a 80:10:10 (train/val/test)245

split.246

4 Methodology247

Aligning audio representations directly with a text-248

based language model allows us to infuse the audio249

model’s latent space with the rich semantic and af-250

fective details typically provided by text represen-251

tations, thereby eliminating the need for a separate252

text LM. While this approach does not explicitly253

leverage the unique acoustic features of speech, it254

prioritizes efficiency by avoiding redundant pro-255

cessing and consistently delivers a semantically en-256

riched representation—an advantage that is particu-257

larly critical for psychological and social scientific258

applications (Lukac, 2024; Chen et al., 2024).259

Model Architecture. We begin with the Whis-260

per1 encoder-decoder backbone (Radford et al.,261

2022), which does not run autoregressively. During262

training, audio segments are previously transcribed263

with whisper-large-v2, making it entirely self-264

supervised. Likewise, SBERT and PsychEmb rep-265

1Whisper-384 version: whisper-tiny

resentations were encoded using these transcrip- 266

tions. As seen in the Whisper (Student) portion 267

of Figure 2, we apply a mean pooling layer to 268

the last hidden state of Whisper’s decoder yield- 269

ing a singular representation for the input audio. 270

This representation is then pooled using a learn- 271

able dense layer, and the output serves as our em- 272

bedding during alignment. This aggregated repre- 273

sentation is aligned to the pooled representations 274

from pre-trained SBERT for semantic alignment 275

and the PsychEmb’s dimensions for psychologi- 276

cal alignment. Throughout this paper, we denote 277

the pre-trained Whisper model as Whisper-384, 278

where the numeric suffix refers to the embedding 279

dimensionality. 280

4.1 Alignment Objective 281

While fusion architectures focus on merging 282

acoustic-textual features throughout layers, we 283

contrast this paradigm by directly aligning cross- 284

modal latent spaces for deeper semantic and psy- 285

chological representations from audio, bypassing 286

the need for task-specific fusion architectures. Our 287

alignment objective aims to improve the semantic 288

and psychological information encoded in Whisper 289

(student) with the help of the representations from 290

a strong text encoding teacher model like SBERT2 291

and PsychEmb. In this work, we explore two suit- 292

able candidate objective functions to align speech 293

representations with text, which are described be- 294

low in detail. 295

4.1.1 Cosine Similarity Loss (CS) 296

The success of the cosine similarity-based approach 297

in building geometrically robust representations in 298

SBERT motivated its use as an alignment objective 299

in this work. We apply cosine similarity loss to 300

the pooled audio embeddings and pooled SBERT 301

embeddings, given by the following equation: 302

LCS =
∑
i∈I

LCS
i (1) 303

LCS
i = 1− sim(Ai,Ti)

where sim(Ai,Ti) =
Ai ·Ti

||Ai|| ||Ti||
where i ∈ I ≡ {1...N} refers to the index of 304

audio/text pair in a batch of N samples. Ai refers 305

to the source audio embedding, Ti refers to its cor- 306

responding target text embedding, and sim() com- 307

putes the cosine similarity between audio and text 308

2SBERT-384 version: all-MiniLM-L12-v2
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embeddings which produces a scalar value between309

[−1, 1]. This loss can also be interpreted as the co-310

sine diversity of the two embeddings. To align the311

embedding spaces, we aim to maximize the cosine312

similarity between corresponding embedding pairs313

(Reimers and Gurevych, 2019; Sanh et al., 2020),314

and hence decrease LCS .315

4.1.2 Noise Contrastive Estimation Loss316

(NCE)317

The Noise Contrastive Loss (Equation 2) is opti-318

mized to increase the cosine similarity between a319

pair of audio embedding and its corresponding text320

embedding while simultaneously increasing the dif-321

ferentiation between the audio embedding and ran-322

domly sampled text embeddings in that batch (Ye323

et al., 2022).324

LNCE =
∑
i∈I

LNCE
i (2)325

LNCE
i = − log

exp(sim(Ai,Ti)/τ)∑
b∈B(i) exp(sim(Ai,Tb)/τ)

where LNCE
i refers to contrastive loss criteria326

in which pairwise cosine similarities are calculated327

for each audio embedding with all text embeddings328

in that batch. Hence, there is only one positive329

text embedding that pairs with an audio embed-330

ding, while the remaining text embeddings from the331

batch serve as contrastive samples. Let B(i) ∈ I,332

where B(i) represents all other SBERT text em-333

beddings in the batch such that Tb ̸= Ti (Ye et al.,334

2022; Chen et al., 2020; Khosla et al., 2021). The335

variable Tb denotes the index of an arbitrary, nega-336

tive SBERT text embedding sample and τ , temper-337

ature, represents a tunable scalar parameter which338

is set to 0.1.339

4.2 Whisper Semantically Aligned340

(WhiSA-384)341

WhiSA leverages a student-teacher model342

paradigm (Hinton et al., 2015; Sanh et al., 2020)343

to align Whisper’s audio-based embeddings with344

SBERT’s text-based embeddings, which serve as345

the teacher model. SBERT encodes corresponding346

text sentences into semantically rich embedding347

vectors, which serve as T in the above equations348

during training. Whisper’s embeddings (A in349

the above equations), derived from its decoder’s350

last hidden state, are aligned to these SBERT351

embeddings using the loss functions described352

above. This process is aimed at WhiSA to learn353

robust semantic representations directly from 354

audio inputs by minimizing the cosine distance 355

between Whisper and SBERT embeddings as 356

shown in Figure 2. 357

4.3 Adding Psychological Alignment 358

(WhiSPA) 359

WhiSPA extends the WhiSA framework by aug- 360

menting PsychEmb dimensions into Whisper’s. 361

While maintaining the semantic alignment objec- 362

tive, WhiSPA injects the PsychEmb dimensions 363

into the SBERT embeddings under two settings: (1) 364

with replacement: We adopted a naive strategy of 365

replacing the first ten dimensions of SBERT’s em- 366

bedding with the PsychEmb dimensions to main- 367

tain the same number of latent dimensions be- 368

tween both models. We use WhiSPA-384r to 369

refer to this. (2) with projection: We concate- 370

nate the PsychEmb dimensions to the text embed- 371

ding from SBERT. Consequently, this requires a 372

384× 10 learnable projection matrix, P , to trans- 373

form Whisper embeddings of dimensionality 384 374

to 394, which is then passed through a TanH acti- 375

vation. This model goes by the name WhiSPA-394. 376

To address the numerical instability issues from 377

modeling the PsychEmb dimensions in its abso- 378

lute range, we standardize and scale them to match 379

SBERT’s distribution of embedding values. Refer 380

to Appendix subsection A.2 for more information 381

on training. 382

5 Results & Discussion 383

We consider three popular, robust speech encoders 384

as baselines: Wav2Vec2-BERT3 (Communication 385

et al., 2023; Chung et al., 2021), HuBERT4 (Hsu 386

et al., 2021), and Whisper (Radford et al., 2022), 387

which are referred to as W2V2B, HuBERT, and 388

Whisper-384, respectively. We measured the effec- 389

tiveness of these embeddings by computing Pear- 390

son correlation coefficient (r) and mean squared 391

error (mse) over a 10-fold cross-validated ridge 392

regression model for each task. For each model 393

variant, we encode audio segments for each partici- 394

pant and aggregate them with a statistical mean to 395

represent person-level embeddings for the tasks in 396

Table 2 and Table 3. 397

Alignment improved the models’ ability to cap- 398

ture psychological dimensions from language. 399

We evaluated the speech-based models’ ability 400

3W2V2B version: wav2vec2-bert-CV16-en
4HuBERT version: hubert-large-ls960-ft
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Dataset Model
Traits States Dispositions

OPE CON EXT AGR NEU VAL ARO ANG ANX DEP

r(↑) mse(↓) r mse r mse r mse r mse r mse r mse r mse r mse r mse

HiTOP

W2V2B .63 .14 .69 .12 .75 .09 .60 .09 .72 .10 .65 .001 .73 .000 .45 .04 .51 .02 .64 .03
HuBERT .67 .13 .71 .11 .77 .08 .57 .10 .70 .11 .66 .001 .73 .000 .48 .04 .48 .02 .58 .04
Whisper-384 .74 .11 .80 .08 .69 .10 .76 .06 .78 .08 .71 .001 .82 .000 .53 .03 .61 .01 .65 .03

SBERT-384 .73 .11 .83 .07 .68 .11 .75 .06 .77 .09 .69 .001 .81 .000 .59 .03 .60 .01 .61 .04

WhiSA-384 .71∗ .11 .81∗ .08 .70 .10 .77∗ .06 .78∗ .08 .73∗ .001 .83∗ .000 .59† .03 .61 .01 .61 .04
WhiSPA-384r .74∗ .11 .83† .07 .70 .10 .79† .05 .79† .07 .78† .000 .85† .000 .59† .03 .61† .01 .66∗ .03
WhiSPA-394 .72∗ .11 .83† .07 .72 .09 .79† .05 .82† .07 .76† .000 .84∗ .000 .62† .03 .65† .01 .63∗ .03

WTC

W2V2B .33 .54 .51 .55 .34 .64 .37 .46 .34 .64 .32 .004 .51 .005 .31 .21 .14 .16 .22 .15
HuBERT .35 .54 .57 .50 .39 .61 .44 .43 .42 .60 .38 .003 .53 .005 .36 .20 .15 .16 .22 .16
Whisper-384 .57 .43 .70 .37 .68 .38 .64 32 .67 .40 .56 .003 .82 .002 .54 .16 .46 .13 .45 .13

SBERT-384 .65 .35 .78 .29 .73 .33 .73 .25 .73 .34 .62 .003 .86 .002 .62 .14 .56 .11 .59 .11

WhiSA-384 .70† .31 .82† .24 .75† .32 .76† .23 .77† .30 .67† .002 .85† .002 .66† .13 .61† .10 .61† .10
WhiSPA-384r .71† .29 .82† .24 .74† .30 .76† .20 .76† .27 .68† .002 .85† .002 .67† .01 .61† .09 .61† .09
WhiSPA-394 .72† .28 .83† .22 .76† .29 .79† .19 .79† .26 .70† .002 .86† .002 .69† .11 .64† .09 .66† .09

Table 2: Self-Supervised Prediction Accuracies for Psychological Traits, States, and Dispositions. Averaged
person-level embeddings were fit to a ridge regression with 10-fold cross validation. Bold indicates the best metric
for the psychological scale in the respective dataset. ↑ implies higher is better. ↓ implies lower is better. ∗ indicates
statistically significant (p < .05) predictions compared to W2V2B. † indicates statistically significant (p < .05)
predictions compared to Whisper-384.

to capture the psychological dimensions of lan-401

guage by comparing our models’ predictions to402

PsychEmb derived values at the segment level.403

As summarized in Table 2, we found that both404

semantic (WhiSA) and psychological alignments405

(WhiSPA) significantly outperformed traditional406

speech-based models (Wav2Vec and Whisper)407

across all ten dimensions on both metrics. Com-408

pared to Whisper, which was evidently a stronger409

baseline than Wav2Vec2 (Avg∆ = 36 Pearson410

points for WTC & 21 points for HiTOP), Our se-411

mantic alignment method showed a marked im-412

provement in performance, with an average of 11 in413

Pearson points for WTC and 2 in HiTOP. A paired414

t-test was used to confirm that all improvements415

over Wav2Vec and all improvements over Whisper,416

except for 4 outcomes in HiTOP, were statistically417

significant (p < .05). This result highlighted our418

alignment methods improved the speech model’s419

ability to capture psychological dimensions in lan-420

guage (PsychEmb).421

Interestingly, deriving psychological estimates422

from semantic dimensions (WhiSPA-394) was con-423

sistently better than the replacement (WhiSPA-424

384r) of 10 semantic dimensions with PsychEmb425

dimension. This shows the importance of curat-426

ing the semantic dimensions before replacing them427

with different embeddings.428

We also observed that the alignment increased429

the overlap between the latent space of the speech430

and text embeddings, as shown in Figure 3. Before431

alignment (Figure 3a), speech and text embeddings432

(a) Before Alignment (b) After Alignment

Figure 3: Bivariate KDE contour plot of PCA dimen-
sionally reduced speech/text embeddings. Speech repre-
sentations in blue. Text representations in red.

show distinct contours with very little overlap in 433

their dense regions, highlighting a clear modality 434

gap and a lack of shared contextual meaning. After 435

alignment (Figure 3b), the contours exhibit greater 436

overlap, indicating a unified embedding space with 437

reduced variance. Figure 3 demonstrates that the 438

alignment process effectively bridges the semantic 439

gap between the two modalities. 440

Semantic-Psychological alignment is SotA for 441

audio-based psychological assessments. Ta- 442

ble 3 shows that the improvements brought by 443

our aligned models over traditional models were 444

preserved even when evaluated on a spectrum of 445

downstream psychological assessment tasks. In 446

particular, the alignment showed a stark increase 447

in capturing deeper psychological conditions such 448

as INT (internalizing) (≥ 16 Pearson points) and 449

DIS (disinhibition) (≥ 20 Pearson points) from 450
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Model
HiTOP WTC

INT DIS ANT SOM THD DET PCL REX AVO NAM HYP

r(↑) mse(↓) r mse r mse r mse r mse r mse r mse r mse r mse r mse r mse

W2V2B .50 .17 .46 .21 .35 .11 -.00 .24 .27 .11 .32 .20 .14 133.19 .14 12.08 .07 3.99 .13 10.98 .10 17.17
HuBERT .50 .17 .53 .19 .36 .11 .07 .23 .28 .11 .31 .20 .21 129.86 .22 11.72 .07 3.99 .19 10.80 .15 16.99
Whisper-384 .39 .19 .33 .24 .33 .11 .07 .23 .28 .11 .29 .20 .23 128.85 .21 11.77 .06 4.00 .19 10.87 .23 16.41

WhiSA-384 .55† .16 .53† .19 .43† .10 .22† .23 .37† .10 .33† .18 .29† 119.68 .27† 11.26 .19† 3.90 .26† 10.12 .28† 15.56
WhiSPA-384r .56† .15 .53† .19 .42† .10 .23∗ .22 .39† .10 .39† .19 .34† 119.24 .30† 11.23 .17 3.88 .31† 10.08 .32† 15.54
WhiSPA-394 .57† .15 .54† .19 .43† .10 .22† .22 .37† .10 .38† .19 .35† 118.91 .30† 11.18 .20 3.85 .32† 10.09 .32† 15.48

Table 3: Self-Reported/Annotated Prediction Accuracies for Psychological Scales. Averaged person-level
embeddings were fit to a ridge regression with 10-fold cross validation. Bold indicates the best metric for the
psychological scale in the respective dataset. ↑ implies higher is better. ↓ implies lower is better. ∗ indicates
statistically significant (p < .05) predictions compared to W2V2B. † indicates statistically significant (p < .05)
predictions compared to Whisper-384.

very long durations of speech data. Consistent451

with behaviours exhibited with PsychEmb dimen-452

sions, in Table 2, semantic-psychological align-453

ment from semantically-derived psychological di-454

mensions (WhiSPA-394) performed the best, fol-455

lowed by semantic-psychological alignment from456

replacement (WhiSPA-384r) and finally semantic-457

only alignment (WhiSA-384). For these tasks,458

we averaged the segment-level representations of459

the interview audio file to produce a person-level460

embedding. These embeddings were used to per-461

form 10-fold cross-validation with a ridge regres-462

sion model, and its performance was measured463

using Pearson correlation coefficient (r) and mean464

squared error (mse).465

The success of WhiSPA-394 can be attributed to466

its integration of psychological feature alignment,467

which complements semantic alignment by explic-468

itly encoding affective dimensions such as valence469

and arousal. The improvements in outcomes like470

INT and DIS further support this interpretation471

since these constructs often rely on subtle vocal472

cues, such as pause distribution, pitch variability,473

and vocal tone as established by prior works (Ko-474

tov et al., 2024). By injecting dimensions with475

psychological relevance into the alignment process, 476

the model bridges the gap between the prosodic 477

information in speech and the textual semantics 478

used to train baseline models like WhiSA. This 479

dual alignment likely enhances the model’s ability 480

to capture both the what (semantic content) and the 481

how (affective delivery) of speech, enabling more 482

accurate predictions of psychological scales. 483

Contrastive loss criteria led to richer represen- 484

tations of audio. Investigation of the choice of 485

alignment objective towards performance (Table 4) 486

revealed that Noise Contrastive Estimation (NCE) 487

consistently produced a better-aligned model than 488

cosine similarity (CS). This is likely because NCE 489

optimizes for discriminative learning, encourag- 490

ing more separation between positive and negative 491

samples in the embedding space (Ye et al., 2022), 492

enhancing the model’s ability to encode nuanced 493

semantic and psychological cues. When compar- 494

ing WhiSPA-394 and WhiSPA-384, we notice the 495

recurring trend with NCE granting a greater op- 496

tima during alignment than CS as exemplified in 497

Table 4. However, WhiSPA-384 holds its ground 498

in HiTOP, achieving comparable correlations. This 499

suggests that WhiSPA-394’s architecture may gen- 500

Model Loss Self-Supervision Tasks Downstream Tasks

Pearson r (↑) MSE (↓) Pearson r (↑) MSE (↓)

WhiSA-384 CS .72 .11 .34 15.26
NCE .72 .11 .36 14.63

WhiSPA-384r CS .72 .12 .34 15.08
(with replacement) NCE .73 .11 .36 14.68

WhiSPA-394 CS .72 .11 .34 15.21
(with projection) NCE .74 .10 .37 14.59

Table 4: Comparison of Loss Functions on Self-Supervised and Downstream Tasks. The reported Pearson r’s
and MSE’s are averaged across all outcomes. Bold indicates the best metric when comparing loss functions across
different models. ↑ implies higher is better. ↓ implies lower is better.
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eralize well to diverse datasets but thrives in highly501

semantic and affective audio contexts like WTC.502

Model PCL HiTOP VAL

INT DIS THD (segment)

SBERT-384 .36 .54 .55 .40 .47

Whisper-384 .23 .39 .33 .28 .38

WhiSA-384 .29 .55 .53 .37 .50*
WhiSPA-384r .34 .56* .53 .39 .53*
WhiSPA-394 .35 .57* .54 .37 .51*

WhiSPA-394 .36 .58* .56 .39 .52*& SBERT-384

Table 5: Comparison of Audio and Text Models for
Predicting Psychological Scales. Acoustic valence
(VAL) was regressed on 300 human-annotated audio
segments. SBERT-384 utilizes a cascaded pipeline
(Whisper transcript → SBERT encoding). Higher is
Better. * indicates statistically significant (p < .05)
predictions compared to SBERT-384.

WhiSPA captures semantics without the need503

for appending SBERT representations. The504

last row in Table 5 underscores the marginal in-505

crease in correlations after appending SBERT em-506

beddings to WhiSPA. WhiSPA, trained through507

a student-teacher alignment paradigm, appears508

to reach a semantic and psychological optimum509

during convergence. This is evident in its sub-510

stantial performance gains over Whisper, which511

lacks the semantic and psychological depth pro-512

vided by language models. However, the poten-513

tial of cross-modal alignment may be constrained514

by the representational efficacy of the teacher515

model(s). On human-annotated audio segments,516

all of the WhiSPA variants achieve substantial im-517

provements in capturing acoustic valence. In com-518

parison with Whisper-384, WhiSPA-384r exhibits519

a gain of +15 Pearson points in VAL (acoustic520

valence) which exemplifies the reduction in the521

semantic/psychological gap between audio mod-522

els and text-based models. Notably in Figure 8,523

WhiSPA-394 demonstrates clear improvements in524

specific measures such as INT and VAL, with gains525

of +3 and +8 Pearson points, respectively, when526

compared to its teacher, SBERT-384.527

Ultimately, these findings highlight two impor-528

tant observations: (1) WhiSPA effectively captures529

nearly all the information encoded by its text-based530

teacher model, SBERT. (2) The marginal returns531

from appending text-based representations indicate532

that WhiSPA successfully learns to encode the criti-533

cal semantic and psychological cues provided by its 534

teachers, reflecting the success of the distillation. 535

WhiSPA’s representations are interpretable 536

through language semantically associated with 537

psychological dimensions. Table 6a shows that 538

n-grams known to be indicative of PTSD severity 539

from prior studies (Kjell et al., 2024) —- including 540

first-person pronouns, experienced symptoms, psy- 541

chological distress, and negative affect – yield sig- 542

nificantly higher correlations with WhiSPA’s pre- 543

dictions compared to Whisper. In contrast, Table 6b 544

reveals that language discussing relationships and 545

positive affect is more negatively associated with 546

WhiSPA’s scores. These findings indicate that the 547

contrastive loss training effectively aligns the la- 548

tent space with rich semantic and psychological 549

representations, capturing psychologically relevant 550

linguistic markers more robustly. The highly se- 551

mantic latent spaces of text-based LMs are reflected 552

in WhiSPA’s representations, especially for psycho- 553

logical nuances in spoken language. More quan- 554

titative analysis of our model can be found in Ap- 555

pendix subsection A.4 556

6 Conclusion 557

We claim that WhiSPA is a significant step toward 558

more accurate representations of human commu- 559

nication by addressing the modal gap between 560

text and audio, as language models often out- 561

perform audio models in predicting psychologi- 562

cal attributes. By aligning WhiSPA’s representa- 563

tions with SBERT’s representations enriched with 564

PsychEmb, we found consistent improvement for 565

ten self-supervised tasks and significantly greater 566

accuracies over 11 downstream psychological tasks. 567

We observed only marginal improvements when ap- 568

pending SBERT representations to WhiSPA’s, im- 569

plying that the distillation process effectively cap- 570

tures the semantic features provided by the teacher 571

language model. Our findings exemplify WhiSPA’s 572

effectiveness in extracting semantic and psycholog- 573

ical features from speech, enhancing SotA audio 574

representations for psychological and mental health 575

assessments. 576

7 Limitations 577

While WhiSPA demonstrates significant advance- 578

ments in providing semantically enriched audio 579

embeddings, its current training paradigm predom- 580

inantly aligns with psychological features derived 581
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from text, potentially limiting its capacity to cap-582

ture critical acoustic information. This lexical bias,583

while beneficial for aligning with language-based584

models, raises an important question: to what ex-585

tent can WhiSPA’s embeddings be further refined586

to incorporate affective context for psychological587

prediction? Given that vocal prosody and acoustic588

features convey essential emotional and psycho-589

logical cues beyond textual content (Low et al.,590

2020), incorporating these dimensions is crucial591

for a more comprehensive representation.592

We acknowledge that this strong alignment with593

text-based language models may introduce an im-594

balance, diminishing the richness of acoustic cues595

that are particularly valuable for affective and psy-596

chological assessments. Despite WhiSPA’s demon-597

strated success-—matching its language model598

teacher in psychological prediction and surpass-599

ing state-of-the-art audio models—-there remains600

an opportunity to enhance its representational ca-601

pacity by preserving acoustic features. To address602

this, future work will explore a multi-weighted603

dual loss objective, ensuring that WhiSPA retains604

a broader spectrum of information beyond textual605

representations. We suspect this refinement would606

not only improve its efficacy in psychological mod-607

eling but also enhance its versatility for general-608

purpose speech tasks like automatic speech recog-609

nition (ASR) and emotion recognition in conver-610

sation (ERC), where both linguistic and acoustic611

cues are essential.612

8 Ethical Implications613

The multimodal WhiSPA model holds significant614

potential for improving mental healthcare assess-615

ments by providing rich insights into individuals’616

states of mind through speech analysis. However,617

multimodal approaches increase ethical consider-618

ations due to the richer and more diverse forms619

of personally identifiable information (PII) they620

capture compared to unimodal models. In addi-621

tion to text content, the WhiSPA model processes622

acoustic and prosodic features — including tone623

of voice, speech patterns, and emotional expres-624

sions — which can inadvertently reveal sensitive625

details like gender, ethnicity, emotional state, and626

health conditions. This expanded data scope raises627

the risk of re-identification, making it essential to628

implement stringent data security and handling, in-629

cluding compliance with privacy regulations such630

as GDPR and HIPAA.631

Security & Privacy. Moreover, the potential for 632

misuse or unauthorized exploitation of such de- 633

tailed multimodal data necessitates robust ethical 634

guidelines for its storage, processing, and applica- 635

tion. Transparency in how these models are trained 636

and used is critical to building trust among clini- 637

cians and patients. Finally, ongoing efforts to miti- 638

gate algorithmic biases and ensure fairness are im- 639

portant, as errors in multimodal assessments could 640

disproportionately impact vulnerable populations 641

or lead to incorrect diagnoses if not carefully man- 642

aged. 643

The WTC and HiTOP recordings took place in a 644

clinical setting where each participant gave consent 645

and was fully informed about the study, that it was 646

voluntary to take part, and that they had the right to 647

withdraw at any time without giving a reason or that 648

it would affect their treatment. After the interview, 649

participants were debriefed (for more details about 650

the WTC data collection, see (Kjell et al., 2024); 651

for more details about the HiTOP data, see (Kotov 652

et al., 2022, 2024). The studies and data uses were 653

approved by the Institutional Review Board at an 654

undisclosed university for privacy reasons. 655

Software. Adhering to the ideals of open and 656

reproducible science, we will make the WhiSPA 657

software code base, along with the trained models 658

and secure dimensional representations of the data, 659

openly available. These representations strictly 660

comply with established security protocols, ensur- 661

ing that no individual can be identified nor any 662

anonymity safeguard compromised. Nevertheless, 663

direct access to the underlying data remains re- 664

stricted in accordance with privacy and security 665

measures. 666

Additionally, AI-based tools were employed 667

throughout the project to assist in code develop- 668

ment and report formulation, including the use of 669

ChatGPT and other similar consumer generative 670

AI. Such integration aligns with established best 671

practices and guidelines, ensuring that the techni- 672

cal accuracy, integrity, and scientific rigour of the 673

work remain uncompromised while benefiting from 674

enhanced efficiency and streamlined workflows. 675
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A Appendix898

A.1 Data Description899

A.1.1 HiTOP.900

The HiTOP dataset consists of video-recorded in-901

terviews conducted between World Trade Centre902

responder participants and clinicians. Each record-903

ing is annotated with the outcomes derived from904

the HiTOP structured interview, which includes a905

standardized set of questions designed to assess906

a comprehensive set of mental health dimensions,907

including aspects of internalizing (e.g., questions908

about distress and fear), dis-inhibited externalizing909

(e.g., questions about substance abuse and antiso-910

cial behaviours) and more.911

Outcomes in HiTOP The HiTOP outcomes were912

derived from the structured clinical interview (Ro-913

man and Meyer, 2024), where we used the total914

score of the six dimensions including: i) internal-915

izing (INT; e.g., dysphoria, lassitude), ii) disinhib-916

ited externalizing (DIS; e.g., alcohol use, drug use),917

iii) antagonistic externalizing (ANT; e.g., atten-918

tion seeking, callousness), iv) somatoform (SOM;919

e.g., conversion, somatization), v) thought disorder920

(THD; e.g., psychotic and disorganized thought pat-921

terns), vi) detachment (DET; e.g., intimacy avoid-922

ance, suspiciousness)923

A.1.2 WTC.924

In the WTC dataset, participants were recorded in925

a private room during their clinical visit while re-926

sponding to questions displayed on a screen as part927

of an automated clinical interview. These questions928

prompted participants to reflect on both positive929

(e.g., What are three things you currently look for-930

ward to the most?) and negative aspects of their931

lives across different time frames (past, present,932

and future). Topics included general life experi-933

ences (e.g., the best and worst experiences, chal-934

lenges, and support systems) and significant events935

such as COVID-19 and 9/11 (e.g., How does 9/11936

affect you now?). A full list of the questions is937

provided in (Kjell et al., 2024).938

To enhance generalizability, the questions were939

designed to be broad and used everyday language,940

avoiding clinical jargon or references to specific941

symptoms. Instructions on the screen advised par-942

ticipants not to read the questions aloud and to aim943

for at least 60 seconds of response time per ques-944

tion. Throughout the development phase, the ques-945

tions were refined over three iterations to improve946

Figure 4: Standardized distributions of PsychEmb di-
mensions for each segment across both datasets. The
distribution of WTC is shown in blue. The distribution
of WTC is shown in red.

engagement and elicit more detailed responses. 947

However, for the evaluation phase, the same set 948

of questions was used for all participants. On av- 949

erage, recordings for those who met a threshold of 950

at least 150 words lasted 7.5 minutes (SD = 4.1; 951

range = 1.1 to 43.0 minutes). 952

The data, from its source, totalled 1437 partic- 953

ipants (Female = 7%, Male = 93%; Mean age = 954

57.9, SD = 8.0 years; 14.5%). 955

Outcomes in WTC The PCL score and subscales 956

were derived from the PTSD CheckList (PCL) 957

(Blanchard et al., 1996), which consists of 17 items 958

designed to measure the severity of PTSD symp- 959

toms according to the Diagnostic and Statistical 960

Manual of Mental Disorders, Fourth Edition (DSM- 961

IV) criteria. Participants rate their experiences over 962

the past month using a scale from 1 (not at all) to 5 963

(extremely). We calculated both the overall score 964

(PCL) and scores for the four subscales. These 965

subscales are Re-experiencing (REX; e.g., intru- 966

sive thoughts related to trauma), Avoidance (AVO; 967
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e.g., evading trauma-related thoughts), Emotional968

Numbing (NAM; e.g., difficulty recalling aspects969

of the trauma), and Hyperarousal (HYP; e.g., dis-970

turbances in sleep patterns). Reliability, as mea-971

sured by Cronbach’s alpha, was acceptable across972

all scales (≥ .70).973

A.2 Training974

The research done for devising WhiSPA’s frame-975

work resulted from iterations of tweaking and test-976

ing architectures, loss criteria, parameters, and hy-977

perparameters.978

For the methodology presented in this paper,979

we provide the following configurations for repro-980

ducibility:981

Pooling: MEAN . Learning Rate: 1 × 10−5.982

Weight Decay: 1 × 10−2. Temperature (τ ): 0.1.983

Batch Size: 900. Number of Epochs: 50. Number984

of workers (CPU cores): 16. These configurations985

result in a total average training time of ∼ 20 hours.986

We discovered that the efficacy of Equation 2987

highly depends on the batch size. It should be988

stated that larger batch sizes allow for greater de-989

grees of repulsion and attraction in the cross-modal990

embedding space. While training WhiSA and991

WhiSPA, we utilized a batch size of 900 and dis-992

tributed them across 3 NVIDIA RTX A6000 de-993

vices with 48GB of VRAM each.994

Additionally, we use open-source licensed pre-995

trained models from HuggingFace. Our program-996

matic implementation for deep learning is done997

with PyTorch. When it comes to evaluation, we998

utilize Differential Language Analysis Tool Kit999

(DLATK) for correlating regression results across1000

specified groups (i.e., user_id or segment_id)1001

Cosine similarity is sensitive to the relative mag-1002

nitudes of the vectors being compared. If the added1003

ten dimensions of psychological features have a1004

very different scale or distribution from SBERT em-1005

beddings, they could dominate or skew the cosine1006

similarity computation. Once either loss function1007

is applied, (1) or (2), WhiSPA embeddings remain1008

semantically aligned with SBERT while also en-1009

coding meaningful affective cues for downstream1010

tasks.1011

During the training of WhiSPA, we experi-1012

mented with identifying which dimensions of the1013

teacher-model, SBERT, have the lowest correla-1014

tions with PsychEmb dimensions to replace those1015

dimensions. We decided that this approach may1016

lead to statistical biases when training, and so1017

we naively replaced the first 10 dimensions. One1018

Figure 5: Distributions of psychological features stan-
dardized and scaled to the distribution of SBERT’s mean
embedding value before augmentation for WhiSPA
alignment training.

Figure 6: Pearson r correlation heatmap of SBERT-
384’s mean embedding. This visual displays the corre-
lations of SBERT’s 384 dimensions with each of the 10
PsychEmb dimensions.

should note that the set of 10 dimensions to replace 1019

in SBERT can be chosen arbitrarily since our study 1020

experimented with this. 1021

A.3 Annotations 1022

Please note that the annotators were expert psychol- 1023

ogists and co-authors. 1024

The documentation accompanying the iHiTOP 1025

interview dataset was utilized to report the coverage 1026

of its domains, demographic information, and other 1027

relevant details. The dataset’s focus on structured 1028

psychological interviews and its linguistic proper- 1029

ties were described in the paper to contextualize its 1030

relevance to this research. This information was 1031

presented to ensure transparency and reproducibil- 1032
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ity. The WTC dataset assessed PTSD symptom1033

severity and related constructs, including anxiety1034

and depression, using English-language data from1035

WTC emergency responders. Linguistic features1036

such as RoBERTa-large embeddings, n-grams, and1037

LDA topics were used to analyze behavioural pat-1038

terns alongside closed-vocabulary features like pro-1039

nouns and death-related terms (LIWC-22). The de-1040

velopment dataset included 1,437 participants, and1041

the prospective dataset included 346, with a mean1042

age of 58 years, predominantly male (93% and1043

91%, respectively) and white (54% and 49%). The1044

analysis emphasized language markers of stress,1045

anxiety, and trauma while reflecting on participants’1046

experiences of 9/11. Ethical safeguards, including1047

IRB approval, informed consent, and automated1048

anonymization, ensured compliance. While com-1049

prehensive in its linguistic and demographic scope,1050

the study was limited to English speakers and WTC1051

responders, constraining generalizability.1052

Figure 7: Annotator’s affective circumplex visual grid
for the task of manually annotating acoustic segments
of speech from both datasets.

A.4 Quantitative Analysis1053

PsychEmb’s lower correlations in Figure 8 should1054

not be mistaken for poor performance. With only1055

10 dimensions, PsychEmb representations achieve1056

a staggering 24 and 22 Pearson points on INT and1057

DIS respectively, emphasizing its validity as the1058

psychological teacher. WhiSPA’s consistent im-1059

provement over the audio models is attributed to1060

the semantic and psychological dimensions that1061

SBERT and PsychEmb offer. Notably, WhiSPA1062

exemplifies drastic improvements in prediction ac-1063

curacy for VAL, INT, THT, and PCL compared1064

to Whisper-384.1065

While WhiSPA demonstrates substantial ad- 1066

vancements, surpassing even its text-based LM 1067

teacher, SBERT-384, it remains inherently con- 1068

strained by the representational capacity of the 1069

teacher model. If the teacher’s capabilities are lim- 1070

ited, these deficiencies inevitably carry over to the 1071

student, even after distillation. This is evident in 1072

the ARO column, where arousal —- an affective di- 1073

mension -— is more accurately conveyed through 1074

acoustic cues. However, WhiSPA struggles to cap- 1075

ture and preserve the acoustic information, instead 1076

predominantly aligning with the semantic represen- 1077

tations provided by SBERT, thus limiting its ability 1078

to fully represent the nuanced affective content in- 1079

herent in speech. 1080

Beyond demonstrating superior alignment with 1081

established PTSD markers, Table 6 highlights 1082

WhiSPA’s enhanced sensitivity to psychologically 1083

meaningful language patterns. Table 6a shows 1084

that n-grams reflecting personal experiences, self- 1085

referential content (e.g., first-person pronouns), and 1086

negative affective states correlate more strongly 1087

with WhiSPA’s predictions than with those of Whis- 1088

per. WhiSPA appears better attuned to indica- 1089

tors of psychological distress, anxiety, and trauma 1090

symptoms—-an advantage likely stemming from 1091

the contrastive alignment objective with text-based 1092

representations. The model’s capacity to detect 1093

nuanced emotional and cognitive expressions in 1094

spoken language is further supported by its higher 1095

effect sizes on known PTSD-relevant n-grams, un- 1096

derscoring that semantically oriented embeddings 1097

can bolster the recognition of clinically significant 1098

markers in audio data. 1099

Meanwhile, Table 6b points to a distinctive nega- 1100

tive association between WhiSPA’s predicted sever- 1101

ity scores and n-grams referencing positive affect 1102

or social relationships. This result suggests that the 1103

same semantically focused latent space that ampli- 1104

fies negative or distress-related terms also filters 1105

out language tied to more adaptive or supportive ex- 1106

periences. In practical terms, such an effect could 1107

be advantageous for screening or early detection: 1108

positive affect or relational talk might serve as a 1109

buffer or resilience indicator, thereby inversely cor- 1110

relating with predicted symptom severity. Taken to- 1111

gether, these findings highlight the unique strength 1112

of WhiSPAs in capturing a wide spectrum of psy- 1113

chologically relevant linguistic markers, surpassing 1114

the granularity offered by audio models alone. 1115
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Figure 8: WhiSPA Closes the Semantic/Psychological Representation Gap. WhiSPA consistently outperforms
every baseline audio model and, in some cases, even exceeds the performance of the text-based language model
teacher.

n-gram r (WhiSPA) r (Whisper)
me 0.261 0.211
ptsd 0.226 0.126
mental 0.200 0.076
because 0.195 0.190
therapist 0.188 0.088
anxiety 0.187 0.075
my therapist 0.175 0.089
my mental health 0.167 0.072
stress 0.165 0.055
want 0.161 0.098
through this 0.160 0.082
pain 0.158 0.171
body 0.156 0.105
this 0.155 0.113
mental health , 0.152 0.051
i had no 0.151 0.135
depression 0.148 0.101
shit 0.147 0.148
but i can’t 0.145 0.041
flashbacks 0.144 0.113

(a)

n-gram r (WhiSPA) r (Whisper)
family -0.264 -0.200
will be -0.201 -0.108
college -0.199 -0.099
we’ve -0.190 -0.155
will -0.182 -0.065
wife -0.180 -0.068
pretty -0.176 -0.161
as -0.172 -0.127
good -0.170 -0.170
hopefully -0.167 -0.155
my wife -0.165 -0.070
graduated from -0.163 -0.028
would -0.159 -0.117
able -0.154 -0.051
i would say -0.153 -0.098
able to -0.153 -0.054
kids will -0.153 -0.102
would say -0.152 -0.100
vacations -0.151 -0.152
lucky -0.150 -0.101

(b)

Table 6: (a) Top positively correlated N-grams with WhiSPA prediction for PCL scores on the WTC dataset and
the corresponding correlations with Whisper predictions. (b) Top negatively correlated N-grams with WhiSPA
prediction for PCL scores on the WTC dataset and the corresponding correlations with Whisper predictions. All
correlations are statistically significant (p<.05; Benjamini Hochberg corrected).
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