
ChartAB: A Benchmark for Chart Grounding & Dense Alignment

Anonymous ACL submission

Abstract001

Charts play important roles in visualization,002
reasoning, and communication in data analysis003
and idea exchange between humans. However,004
vision-language models (VLMs) still lack ac-005
curate understanding of the details and struggle006
to extract fine-grained structural information007
from charts. Such limitations in chart ground-008
ing also hinder their capability to compare mul-009
tiple charts and reason about their difference.010
In this paper, we develop a novel “ChartAlign011
Benchmark (ChartAB)” to provide a full-012
spectrum evaluation of VLMs in chart ground-013
ing tasks, i.e., extracting tabular data, allocating014
visualization elements, and recognizing various015
attributes from charts of diverse types and com-016
plexities. We develop a JSON template to facili-017
tate the calculation of evaluation metrics specif-018
ically designed for each grounding task. By019
applying a novel two-stage inference workflow,020
the benchmark can further evaluate VLMs’ ca-021
pability of aligning and comparing elements/at-022
tributes in two charts. Our analysis of eval-023
uations on several recent VLMs sheds novel024
insights on their perception biases, weaknesses,025
robustness, and hallucinations in chart under-026
standing. These observations expose the fine-027
grained discrepancies among VLMs in chart028
understanding tasks and indicate specific skills029
that need to be strengthened in existing VLMs.030

1 Introduction031

Recent large multimodal models (LMMs) such as032

vision-language models (VLMs) have achieved re-033

markable breakthroughs in aligning vision modal-034

ity with language models, so challenging language-035

level reasoning can be performed on visual input036

signals, opening the possibility of various appli-037

cations that naturally depend on interactions be-038

tween the two modalities. One critical class of039

applications is chart understanding and reasoning,040

which has broad applications in finance, data sci-041

ence, mass media, biology and other scientific dis-042

coveries, and where ideas and information are ex- 043

changed through visualizations. In these applica- 044

tions, measuring the numerical values in charts, 045

comparisons between visual elements (e.g., bars 046

or curves), correspondence between colors/num- 047

bers/names/markers, and recognition of attributes 048

are critical skills for downstream tasks. Most of 049

them require accurate grounding of the structured 050

details in charts. Moreover, dense alignment of ele- 051

ments in multiple charts is also a widely demanded 052

skill in practical scenarios. These raise new open 053

challenges to VLMs. 054

Instead of focusing on charts, existing VLMs 055

have been mainly pretrained and finetuned on natu- 056

ral images and common questions/instructions that 057

are not fully compatible with chart understanding 058

tasks. Unlike perceiving objects’ shape, pose, and 059

semantic meanings in natural images, accurate mea- 060

surements and comparison of geometric/graphic 061

components, understanding of their structure and 062

layout, and manipulation of their positions and rich 063

texts are more important to the perception and rea- 064

soning with chart images. However, it is usually 065

challenging for VLMs to gain these capabilities, 066

leading to hallucinations and misinterpretations in 067

chart-centric tasks. 068

Despite recent growing interest in chart-related 069

tasks, the VLMs and benchmarks specifically 070

designed for charts usually focus on simple 071

QA tasks that cannot comprehensively assess 072

the capabilities of VLMs in grounding and 073

understanding components in charts for more 074

general-purpose tasks. Moreover, the alignment 075

of layout and components between multiple charts 076

has not been explored in previous works. Hence, 077

there is still a lack of benchmarks focusing on 078

evaluating the above critical skills on grounding 079

and dense alignment of charts. 080

In this paper, we take the first step towards eval- 081

uating and analyzing general-purpose VLMs on 082

chart grounding and multi-chart dense alignment. 083
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We split the information to be grounded in a chart084

into two categories: (1) the visualized data, and (2)085

the chart attributes (e.g., colors, style, legend, sizes,086

positions) specifying the visualization design, com-087

ponents, and layout. The grounding task is defined088

as extracting the data table and the attributes from089

each chart image, while the dense alignment is to090

find the difference between two charts. These two091

tasks are the upstream tasks or critical subroutines092

in various chart-centric applications.093

To this end, we develop a comprehensive bench-094

mark using pairs of similar charts to evaluate mod-095

els’ performance on the two tasks regarding each096

type of information in the two categories. To create097

a pair of similar charts, we perturb an existing chart098

by randomly changing (1) one or a few data cells099

in the data table, and/or (2) an attribute in the script100

used to generate the original chart. To maximize101

the potential of VLMs and evaluate their full102

capability, we propose a multi-stage information103

extraction and QA pipeline, in which the VLMs are104

first queried with a grounding task of specified in-105

formation in each chart, followed by comparing the106

grounding results for the two charts. It harnesses107

specified JSON templates to guide the grounding108

and alignment of different types of information.109

We further propose several novel evaluation110

metrics to address the symmetry and ambiguity111

of various types of information, facilitating the112

quantitative comparison among different VLMs.113

Our analysis reveals the weaknesses of exist-114

ing VLMs in chart perception and understanding115

for dense grounding and alignment. The observed116

mistakes reflect their biases and hallucinations on117

some chart components, providing several critical118

insights to improve VLMs. The evaluation results119

also reflect how the differences between models,120

chart types, and queried data/attributes affect the121

benchmarking performance. We further evaluate122

the robustness of VLMs in accurately extracting123

data from charts under different design choices of124

visualizations, e.g., before and after changing the125

chart type or colors. Our contributions and ad-126

vantages are summarized below:127

• We introduce the first comprehensive benchmark128

“ChartAB” to systematically evaluate VLMs’ ca-129

pabilities on dense grounding and multi-chart130

alignment of visualized data and attributes of131

components in chart images.132

• We propose a holistic evaluation suite, includ-133

ing a multi-stage pipeline converting charts into134

JSON files with specific templates for tasks re- 135

garding data/attributes, and a rating scheme of 136

the grounding/alignment performance based on 137

VLMs’ answers. 138

• Our evaluation and analysis of existing VLMs 139

expose their weaknesses in fine-grained under- 140

standing of charts, hallucinations, and their vi- 141

sion encoders’ biases in perceiving critical fea- 142

tures/structures of charts. 143

• We evaluate the robustness of chart grounding 144

and alignment under perturbations of chart at- 145

tributes. It provides novel insights for the design 146

of high-quality charts. 147

2 Related Work 148

VLMs for Charts. Early methods like FigureQA 149

(Kahou et al., 2017) and PlotQA (Methani et al., 150

2020) focused on traditional architecture and rule- 151

based reasoning. Subsequent methods (DePlot 152

(Liu et al., 2022a), MatCha (Liu et al., 2022b), 153

StructChart (Xia et al., 2023)) worked on module- 154

based augmentation for efficient grounding of chart- 155

data and plot-code for downstream applications. 156

Recent methods focus on an integrated multi-task 157

paradigm. ChartAssistant (Meng et al., 2024) uti- 158

lizes mixed visual encoding and augmented pre- 159

training for robust multi-task abilities. ChartVLM 160

(Xia et al., 2024) applies a difficulty-based cascad- 161

ing decoding mechanism to augment the model’s 162

reasoning abilities using intermediate representa- 163

tions. Increasingly, general-purpose VLMs have 164

shown remarkable abilities in chart cognition and 165

reasoning. 166

The task-specificity in chart-specific VLMs from 167

instruction-tuned datasets make them infeasible for 168

general or newer tasks. The strong performing gen- 169

eral purpose VLMs with task flexibility are hence 170

evaluated in our benchmark experiments. 171

Chart Understanding Benchmarks. are in- 172

tended for tasks like question answering (PlotQA 173

(Methani et al., 2020), ChartQA (Masry et al., 174

2022)), summarization (Chart-to-text (Kantharaj 175

et al., 2022b)), explanation-generation (OpenCQA 176

(Kantharaj et al., 2022a)). Multi-task benchmarks 177

including ChartLlama (Han et al., 2023), ChartX 178

(Xia et al., 2024) rely on GPT-4 (Achiam et al., 179

2023) driven data curation, and agglomerating of 180

modality information for downstream cognition 181

tasks. Recent works specifically focus on expand- 182

ing QA scope to overcome increased saturation by 183
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VLMs, for example CharXiv (Wang et al., 2024b)184

focuses on charts in research papers, SciGraphQA185

(Li and Tajbakhsh, 2023) evaluates multi-turn QA,186

ChartQAPro (Masry et al., 2025) includes diverse187

visualizations such as dashboards, infographs, and188

flexible questions (hypothetical, unanswerable). T189

he QA driven benchmarks limit model’s ability190

to question-specific encodings and fail to evaluate191

understanding of finer-level chart details.192

Visual Grounding has been extensively utilized193

for augmenting dense-level abilities. DePlot (Liu194

et al., 2022a) trained transformer for image-to-195

csv generation utilizing novel table comparison196

for evaluation. MatCha (Liu et al., 2022b) devel-197

oped image to data-table & plot-code derendering198

for subsequent downstream tasks. Beyond charts:199

Grounded-SAM model (Ren et al., 2024) utilizes200

Grounding-DINO (Liu et al., 2024) for enhanced201

dense-level open-set object tracking. BLIP-2 (Li202

et al., 2023) is extensively integrated with VLMs203

for VQA related tasks. LlaVa-grounded (Zhang204

et al., 2024) has enabled detailed text description205

of multi-object natural images utilzing image-text206

grounding for instruction tuning.207

The above works showcase inference augmenta-208

tion with grounding to expand model capabilities209

especially for finer-level tasks requiring precision210

in values.211

Multi-Image Reasoning. Multiple benchmarks212

have been developed on evaluating VLM’s multi-213

image reasoning. MMMU’s (Yue et al., 2024) en-214

compasses interleaved examples with multi-images215

mainly from medical, cartoon, art and technical do-216

mains. MUIRBench’s (Wang et al., 2024a) multi-217

chart based diagram QnA questions are focsed on218

coarse-level understanding. MMIR’s (Zhao et al.,219

2024) chart understanding section is centered on220

cross-modal alignment i.e. chart-image & plotting-221

code correctness matching. MileBench’s (Song222

et al., 2024) semantic understanding tasks contain223

text-rich images attending to text extraction and un-224

derstanding in domain of image-OCR, documents225

and slides.226

Current multi-image reasoning paradigm’s chart227

understanding centers on traditional image-based-228

QA, image-to-code, image-to-OCR, interleaved229

text-image tasks missing evaluation of finer-level230

understanding of chart’s plot attributes and data.231

3 ChartAB: Chart Grounding and 232

Alignment Benchmark 233

We present ChartAlignBench: the first dataset for 234

evaluating dense-level alignment in charts across 235

following 3 tasks: Data Alignment, Plot-Attribute 236

Alignment, Robustness. The 3 alignment tasks con- 237

sist of ∼ 3,600, ∼ 2,000, ∼ 3,300 instances respec- 238

tively. For Data Alignment & Plot-Attribute Align- 239

ment, each instance consists of pair of chart-images 240

diverging in finer-level chart-data & plot-attribute 241

respectively. For Robustness, each instance con- 242

tains 5 pairs of chart-images, each pair with iden- 243

tical chart-data divergence but variation in a plot- 244

attribute across the 5 pairs.

1-Cell
20.9%

2-Cell
10.7%

3-Cell
8.2%

Color
10.7%

Legend
8.2%

Text Style
5.2%

Robustness
36.1%

DATA
39.7%

PLOT ATTRIBUTE
24.1%

ROBUSTNESS
36.1%

Figure 1: Statistics of tasks in ChartAB.

245

3.1 Grounding of Single Chart 246

VLM’s multi-modal capabilities are tend to be con- 247

strained due to cross-modal bottlenecks. 248

Dense-level understanding is constrained due 249

to multiple reasons. The vision-encoder driven 250

global embedding for image doesn’t include object- 251

level representations. The prompt dependent task- 252

learning of the models lack robustness against vari- 253

ation in prompt variations making them unsuitable 254

for generalization and diverse application. 255

Multi-image reasoning also shows weakness. 256

Each image is evaluated as separate entity and lacks 257

any sequence-level comparison between images. 258

The use of inter-leaved learning for evaluation of 259

twined text & image inputs shows attention bias to- 260

wards a specific image. Model’s prompt-text under- 261

standing suffers from position-reference ambiguity 262

leading to hallucinations and mixed-up references 263

due to absence of spatial anchoring. 264
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Grounding of chart-image to textual form en-265

ables extraction of rich semantic meaning for per-266

forming subsequent dense-alignment for the chart267

image-pairs. The tokenization of different visual268

components into textual format allows element-269

wise representation and correspondence ability be-270

tween specific chart objects. And prevents any at-271

tention bias or prompt sensitive alterations in model272

outputs. The approach shows cognitive parallels273

to human understanding of charts: first parsing274

their structure (i.e. axes, legends, marks), and then275

mapping to semantic information.276

3.2 Dense Alignment between Two Charts277

The fundamental model inference for the dense-278

alignment evaluation involves comparing 2 simi-279

lar looking charts-images, which differ in (1) data280

points OR (2) plot attributes. The task is struc-281

tured as pair comparison instead of single chart-282

grounding as we want to evaluate end-to-end model283

ability of identifying finer-level differences be-284

tween the charts. It is intended to mirror human-285

analysis of chart data, which focuses on compara-286

tive reasoning. A visualization practitioner while287

developing charts also tries to iterate across designs288

by applying finer changes each time (e.g. changing289

a color, text size). In a task involving identification290

of pair-wise changes allows dense-alignment labels291

to be clearly and consistently defined, and provide292

rich supervision for model learning.293

Following are the tasks for evaluating model294

ability to detect dense-level alignment to analyze295

distinctive chart perception and reasoning abilities.296

3.2.1 Data Alignment297

The task evaluates data alignment in image-pairs,298

i.e. difference in values of cells in the data-table299

which is visualized by the charts. The finer-level300

cell-changes involves performing (1) 1-cell change,301

(2) 2-cell change, (3) 3-cell change between the302

chart images. The task aims to analyze model’s303

ability to perceive change in visual encoding prop-304

erty (e.g. position, shape, size) in the chart image,305

and ability to map it to the specific cell i.e. row306

& column header in data-table modality. Along307

with measure of the cell-change utilizing the visual308

components of image describing scale and values.309

3.2.2 Plot-Attribute Alignment310

The task evaluates plot-attribute alignment in311

image-pairs, i.e. difference in values of attributes312

which are part of the plotting-design. We assess313

the capability through three alignment tasks:- (1) 314

color alignment, (2) legend alignment, (3) text-style 315

alignment. The plot-alignment task aims to analyze 316

model’s ability to perceive finer-level visual design 317

changes. 318

The details are ediscussed in the Appendix (A.1). 319

3.2.3 Robustness 320

The task evaluates robustness of data-alignment 321

against variation of plot attributes namely: colors, 322

legend, text-style. A set of multiple chart-pairs 323

with same pair-wise data value difference but vari- 324

ation in a plot attribute is utilized to infer impact 325

on data-alignment ability of model from changes 326

in the attribute values across the set. The task aims 327

to analyze model’s ability to consistently deliver 328

accurate data alignment under variations of chart 329

plot’s design. Robust model is expected to gener- 330

ate unchanged response despite the plot changes 331

while variation in model responses can be utilized 332

to quantify the susceptibility to plot design changes. 333

Hence providing measure of data-alignment robust- 334

ness against plot attribute. 335

Figure 2: Multi-step approach of o4-mini reasoning
model on color-alignment evaluation example.

3.3 A Two-Stage Evaluation Pipeline 336

The two-stage approach fundamentally envisions 337

the dense-alignment task as decomposable into sub- 338

tasks utilizing the visual-to-text grounding to per- 339

form finer-level analysis. The task decomposition 340

enables splitting complex finer-level reasoning into 341

smaller steps for efficient element-wise compar- 342

isons and handling model biases. 343

It is inspired from the multi-step approach used 344

in SOTA reasoning models. Fig. 2 shows an ex- 345

ample color-alignment evaluation for the o4-mini 346

model. The model’s thought-stream shows ini- 347

tial grounding of an entity’s color from each of 348

two chart images respectively, followed by dense- 349

alignment on the grounded color information. This 350

multi-step approach of the model validates our task 351

decomposition approach and its ability for efficient 352

multi-image dense alignment. 353
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Fig. 3 describes the data-alignment pipeline.354

First-stage results in an intermediate text with se-355

mantic information on data of the chart image. The356

interpretable nature and element-wise representa-357

tion enables subsequent reasoning for dense-level358

alignment. Second-stage involves VLM reason-359

ing by applying discriminative comparison on the360

grounded results from first-stage as input informa-361

tion, for the specific dense-alignment task.362

(1) Pipeline details and (2) Essentiality of363

second-stage are discussed in the Appendix (A.3).364

3.4 Dataset Curation365

We apply perturbation based approach to generate366

ChatAlignBench dataset along with ground-truth,367

from the ChartX dataset as source dataset. Details368

are discussed in Appendix (A.2).369

3.5 Evaluation metric370

All alignment evaluation scores are normalized371

to [0, 10]. We average scores across the chart-type372

(e.g. bar-chart, line-chart) for all chart-pairs cor-373

responding to them. We prepared the evaluation374

criteria for effectively differentiating model per-375

formance across tasks, and quantify performance376

aspects for chart data and plot attributes part of377

dense alignment.378

The alignment evaluation metrics are discussed379

in the Appendix (A.4).380

We also performed grounding analysis to eval-381

uate the grounding stage ability of the models.382

Grounding being for elements of single image, we383

calculate an image’s grounding score and average384

it across all the chart images. Grounding evalu-385

ation: (1)legend grounding (discussed in Fig. 8)386

& (2) text-style (discussed in Fig. 10), we simply387

apply categorical correctness. (3) Color grounding388

(discussed in 9) is evaluated using L2 distance:389

Gcolor =

√
(r − r̂)2 + (g − ĝ)2 + (b− b̂)2 (1)390

4 Experiments391

4.1 Experimental Setup392

Models We evaluate diverse open source mod-393

els: Phi-3.5 vision-instruct (Abdin et al., 2024),394

InternVL-2.5 8B (Chen et al., 2024), LLaVA-1.6395

Mistral 7B (Liu et al., 2023), QWEN-2.5 VL 8B396

(Bai et al., 2025). And GPT-4o (Hurst et al., 2024)397

as the proprietary model.398

4.2 Ablations 399

We performed ablation experiments to vigorously 400

compare differing approaches to our 2-stage ap- 401

proach. 402

The ablation experiments aimed to thoroughly 403

compare single-stage based alignment approaches 404

for performing multi-image reasoning vis-a-vis our 405

two-stage approach. The ablation techniques:- 406

(1) stitched-charts inference: The chart-pair im- 407

ages are vertically concatenated resulting in a sin- 408

gle image of stitched chart-pairs which undergo 409

single-stage inference. 410

(2) multi-image inference: The VLM inputs mul- 411

tiple images, and contextualizes output based on 412

the input images with aim of better understand- 413

ing across of finer-level alignment in multi-image 414

reasoning. 415

The ablation experiments analyzed Phi-3.5 416

model’s performance on data-alignment task. As 417

shown in table. 1, the single-stage approach fared 418

poorly compared to out two-stage approach reaf- 419

firming the two-stage approach. Multi-image in- 420

ference showed the weakest performance. Despite 421

increasing training efforts towards improved VLM 422

training, the models still face issues in reason- 423

ing ability on fine-grained tasks. Stitched-charts 424

approach showed better results than multi-image, 425

however they too underperformed vis-a-vis our two- 426

stage approach. The comparatively stronger image 427

self-attention capabilities seem to augment multi- 428

image by utilzing the stitched connection. However 429

the better prevailing capabilities of two-stage ap- 430

proach capture the gain of grounding generation. 431

The VLM’s multi-modal understanding though 432

improving still suffers from finer-level nuances 433

missed by information loss in image-encoding and 434

cross-attention mechanisms. 435

4.3 Key Findings and Analysis 436

Finding 1

VLMs’ dense grounding and alignment of
data/color information are not satisfying on
complex charts.

437

Compared to simpler and more common charts, 438

e.g., bar/line charts and numbered bar/line charts, 439

dense grounding/alignment on complex charts such 440

as 3D/box/radar/rose/multi-axes charts with more 441

components and irregular layouts is more chal- 442

lenging to most VLMs. Despite the similar align- 443

ment performance for legend (Fig. 6) and text-style 444
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Chart 1 Chart 2

Chart 1 Data table

Data Alignment JSON

Task: DATA ALIGNMENT Prompt format: Given <CHART 1 TABLE> and <CHART 2 TABLE> compare chart data and answer of form <JSON format>.

VLM

VLM
Task: DATA (CSV) GROUNDING Prompt format: Chart <IMAGE>, generate table for chart data. 

Chart 2 Data table

Figure 3: Two-Stage Evaluation Pipeline of data alignment in ChartAB. The first stage focuses on grounding the
data visualized in each chart to a table, while the second stage requires the VLMs to find the difference between the
two charts’ tables and output a JSON file listing the different cells in the two tables. Evaluation of other attributes
adopts similar multi-stage pipelines, with details in the Appendix.

Type Approach Bar Bar # 3D Bar Line Line # Radar Rose Box Multi-axes

1-stage Multi-chart 4.8 7.4 4.7 3.3 4.7 4.9 3.1 3.2 3.3
Stitched-chart 5.0 4.8 3.0 4.5 3.5 3.0 2.7 2.8 3.2

2-stage Ours 6.5 8.3 4.1 6.1 6.3 3.8 3.4 2.9 3.5

Table 1: Ablation study of 1-stage vs. 2-stage evaluations on data alignment (1-cell change) task. Mean scores
across nine chart types show that our 2-stage evaluation reflects VLMs’ greatest potential on chart alignment.

bar_chart

bar_chart_num

3D-Bar

line_chart

line_chart_num

radar

rose

box

multi-axes

1.8
3.6

5.4
7.2

9.0

DATA ALIGNMENT: 1-Cell Change

Phi-3.5
LlaVa-1.6
InternVL-2.5
QWEN-2.5-VL
GPT-4o

Figure 4: Comparing VLMs on data alignment tasks
when two charts’ data tables differ in only one cell.
Llava-1.6 is worse than most other VLMs. QWEN-2.5-
VL outperforms GPT-4o on most chart types. Related
discussion can be found below Finding 1.

(Fig. 7) between simple vs. complex charts, the 445

color alignment (Fig. 5) and data alignment (Fig. 4) 446

on complex charts are much poorer than those on 447

simple charts. The color grounding requires identi- 448

fying each component’s visual encoding and corre- 449

sponding color, while the data grounding needs to 450

find the mapping from visual encoding to tabular 451

values. Hence, complex layouts with more compo- 452

nents make these tasks more difficult. In contrast, 453

identifying the position of legends and text styles 454

(which both have limited options) is easier and less 455

affected by the chart complexity. 456

Finding 2

Most VLMs suffer from biases when allocating
the position of legends.

457
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bar_chart

bar_chart_num

3D-Bar

line_chart

line_chart_num

radar

rose

box

multi-axes

1.8

3.6

5.4

7.2

9.0

COLOR ALIGNMENT

Phi-3.5
LlaVa-1.6
InternVL-2.5
QWEN-2.5-VL
GPT-4o

Figure 5: Color alignment between two charts on fine-
grained visual elements (e.g., bars, lines, sector). VLMs
perform better on simpler and more common charts.
Related discussion can be found below Finding 1.

The grounding of the legend’s position (Fig. 8)458

suffers from a strong bias of pretrained VLMs. The459

Phi-3.5 model shows the strongest prior towards460

the upper-left position. The 7-8B scale VLMs,461

e.g., LlaVa-1.6, Inten-VL-2.5, QWEN-2.5-VL, all462

show a similar level of bias but towards the upper-463

right position instead. The GPT-4o model exhibits464

the minimal bias among all evaluated VLMs The465

grounding bias strongly affects the legend align-466

ment (Fig. 6) where Phi-3.5 performs the worst,467

GPT-4o has the best performance, while the other468

3 models’ performance is similar and between Phi-469

3.5 and GPT-4o.470

bar_chart

bar_chart_numline_chart

line_chart_num

radar rose

2.0

4.0

6.0

8.0

10.0

LEGEND ALIGNMENT
Phi-3.5
LlaVa-1.6
InternVL-2.5
QWEN-2.5-VL
GPT-4o

Figure 6: Legend alignment of legend positions
between two charts. Each VLM shows similar perfor-
mance across different chart types. Phi-3.5 performs the
worst while GPT-4o is the best among all five VLMs.
Related discussion can be found below Finding 1&2.

Finding 3

VLMs’ weak color recognition ability.
471

As shown in Fig. 9, all models’ color grounding472

error (L2 distance in RGB space) has a median473

exceeding 50. This suggests their inability to474

understand color shades beyond common ones, 475

e.g., red, blue, green, etc., which exposes their 476

weaknesses in color recognition. The lack of color 477

understanding affects the perception of detailed 478

differences in charts and leads to mismatches 479

in color-related/conditioned reasoning tasks. 480

Consequently, the VLMs’ performance in color 481

alignment tasks (Fig. 5) is consistent with that on 482

color grounding. These results suggest improving 483

the color understanding capability by adding more 484

color-sensitive data or tasks in VLMs’ pretraining 485

and finetuning stages. 486

bar_chart

bar_chart_num

3D-Bar

line_chart

line_chart_num

rose

box

multi-axes

0.8

1.6

2.4

3.2

4.0

TEXT-STYLE ALIGNMENT

Phi-3.5
LlaVa-1.6
InternVL-2.5
QWEN-2.5-VL
GPT-4o

Figure 7: Text-style (size, weight, font family)
alignment. Worst: QWEN-2.5-VL, Best: GPT-4o.
Differences between chart types are not consistent
across VLMs. Related discussion can be found below
Finding 1&4.

Finding 4

VLMs’ text-style grounding and alignment per-
formance is poor in general, and it varies across
text size, weight, and font family.

487

Fig. 10 shows that most VLMs fail to detect the 488

correct text size and font family, suffering from 489

an accuracy below 20% (except GPT-4o’s perfor- 490

mance on font family alignment). These indicate 491

a lack of knowledge on these two text attributes. 492

VLMs’ performance on text weight ((light/nor- 493

mal/bold)) is much better (∼60%) and close to each 494

other, but still not satisfying. Although LLMs can 495

select reasonable text sizes in code generation for 496

plots, they tend to rely on the default sizes in their 497

priors or relative sizes to other chart components. 498

They still lack sufficient capability to identify text 499

sizes in chart images. 500
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Figure 9: Color recognition in grounding performance
measured by L2 errors in RGB space. The error
distribution of each VLM is visualized by a box
plot. Median of the errors for all models exceeds 50,
indicating weak color recognition capability. More
discussion can be found below Finding 3.

Finding 5

VLMs’ weak scaling law on chart grounding
and alignment tasks.

501

We fail to observe a clear scaling law on the eval-502

uated models of different scales, i.e., Phi-3.5 (3B),503

LlaVa-1.6-Mistral (7B), Intern-VL-2.5 & QWEN-504

2.5-VL (8B), GPT-4o (proprietary). The Phi-3.5505

model shows better or on-par alignment when com-506

pared with Llava-1.6 and Intern-VL-2.5 on all ex-507

cept data/text style/legend alignment (Fig. 3, 5, 7,508

6). In addition, Fig. 7 shows that Qwen-2.5 is the509

weakest baseline in text style alignment. The cur-510

rent chart understanding benchmarks heavily focus511

on QA (as discussed in 2), but cannot fully capture512

the detailed information. The chart-specific VLMs513

are constrained by their task-specific architecture514

(as discussed in 2).515
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Figure 10: Text-style grounding and alignment on
size, weight, and font family. Most VLMs suffer from
a low accuracy on size and font family, indicating a
lack of related knowledge in VLM training. Further
discussion can be found below Finding 4.

5 Conclusion 516

In this work, we present ChartAB the first bench- 517

mark to comprehensively evaluate fine-grained 518

chart grounding and multi-chart dense alignment 519

capabilities of general-purpose vision-language 520

models (VLMs). Through rigorous evaluations 521

across diverse chart types and VLMs, we uncover 522

consistent challenges faced by current models, in- 523

cluding perceptual biases, hallucinations, and lim- 524

ited spatial understanding, particularly on complex 525

and information-dense visualizations. 526

Our benchmark facilitates detailed assessment 527

across dimensions such as data extraction, color 528

and legend grounding, and robustness to visual 529

variations. These insights expose specific areas 530

for improvement in chart perception and reason- 531

ing, offering valuable guidance for future VLM 532

development. The consistent superiority of our 533

two-stage pipeline further emphasizes the necessity 534

of grounding-based decomposition for achieving 535

human-parallel chart understanding. 536

Limitations 537

Our work has the following limitations:- 538

• Model Training: We focus on zero-shot evalu- 539
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ations for our work, and don’t assess few-shot540

or instruction tuned performance. They may541

yield better performance but deflect from the542

problem statement of general purpose VLM’s543

dense-level understanding.544

• Real-World Chart Corpus: Various datasets545

contain more sophisticated real-world exam-546

ples. However due to requirement of precise547

ground-truth for dense-alignment evaluation,548

we chose the ChartX dataset due to availability549

of plotting-code and corresponding csv data.550

• Limited Task Diversity: The ChartAB focuses551

only on dense-alignment evaluation, missing552

the high-level reasoning or related dense-level553

downstream tasks. The work intended to per-554

form a comprehensive evaluation of various555

dense alignment tasks and grounding based556

two-stage evaluation hence missed those as-557

pects.558
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A Appendix 707

A.1 Dense Alignment between Two Charts: 708

Pot-Attribute Alignment 709

Color Alignment evaluates alignment of encoding 710

colors, i.e. difference in colors of visual encodings 711

representing chart data: bars in bar chart, lines in 712

line chart, segments/spokes in rose chart etc. 713

Legend Alignment evaluates alignment of legend, 714

i.e. difference in position of legend in the charts. 715

Text-Style Alignment evaluates alignment of text 716

characteristics namely (1) size, (2) weight i.e. de- 717

gree of boldness (3) font-family i.e. style of font 718

applied. The text in chart corresponds to following 719

chart sections: title, legend, axes-labels, axes-ticks. 720

Overall plot-alignment task aims to analyze 721

model’s ability to perceive change in visual de- 722

sign characteristics (e.g. visual encodings, axes, 723

labels, legends) in the chart image, and semantic 724

understanding to map it to specific plot attribute. 725

And ability to precisely predict the attribute value 726

from representation and component structure of the 727

chart. 728

A.2 Dataset Curation 729

We used ChartX dataset (Xia et al., 2024) as source 730

dataset for our ChartAlignBench curation. ChartX 731

contains plotting-code and csv data-table for the 732

chart with extremely high level of precision thus 733

offering the flexibility for performing finer-level 734

changes along with ground-truth generation capa- 735

bilities. It contains diverse chart types of varying 736

complexities, and chart data from multiple domains. 737

Hence enabling analysis across charts of varying 738

difficulties. 739

We utilize perturbations for generating fine- 740

grained variations for given chart thus helping build 741

dense-alignment pairs. Chart’s plotting-code is per- 742

turbed for precise data or plot-attribute changes 743

based on rigorous formatting check using regex- 744

based search and replace, resulting in chart image 745

generation from code execution. 746

The csv availability and plot-attribute informa- 747

tion enable accurate ground-truth generation. Gen- 748

erated pairs for data alignment and plot-attribute 749

alignment include randomly assigned changes, and 750
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robustness sets include diverse plot attribute values751

for meticulous and unbiased evaluation.752

We selected 9 diverse chart-types with ability753

to apply to perform chart-data and plot-attribute754

perturbations: (1) simple charts: bar chart, bar-755

numbered chart, line chart, line-numbered chart,756

(2) complex charts: 3D chart, box chart, radar chart,757

rose chart, multi-axes chart.758

A.3 A Two-Stage Evaluation Pipeline: Details759

& Essentiality of second-stage760

We utilize natural-language based instructions for761

zero-shot inference to enable simple execution with762

minimal task specific nuances for strong general-763

ization across various models.764

VLM outputs follow JSON based formatting due765

to precise nature of the key-value structure which766

is essential for element specific information seri-767

alization for finer-analysis, along with flexibility768

for variations in completion of grounding and fine-769

grained analysis. The alignment JSON contains770

finer-level attributes for which the charts differ, and771

the values for corresponding attribute in the two772

charts. E.g. for data-alignment (as shown in Fig.773

3) the finer-level attributes changed between the774

charts i.e. cells are identified by their row & col-775

umn header, along with its values in the chart-pairs,776

i.e. value in chart-1 & value in chart-2 respectively.777

Second-stage forms essential part of evaluation778

pipeline. Analyzing dense-alignment ability re-779

quires performing end-to-end evaluation of VLMs.780

Grounding determines the chart information, and781

impacts the subsequent finer-level analysis. How-782

ever correct grounding doesn’t imply correct align-783

ment. The VLM needs to make semantic corre-784

spondence between chart elements in the ground-785

ing result which is non-uniform and differs for each786

VLM. Moreover the hallucinating nature of VLMs787

make grounding output susceptible to ambiguities788

and vagueness, in which case the additional second-789

stage reasoning on the grounding result helps build790

a better overall understanding of VLM capabilities.791

Second-stage also allows utilization of additional792

contextual information (e.g. Chain-of-Thoughts)793

for the alignment task. Ultimately we analyze794

VLM’s dense-alignment ability the way humans795

do looking at overall understanding, and at seman-796

tic shifts not captured by grounding.797

A.4 Evaluation metric: Alignment798

Alignment evaluation is done by calculating sim-799

ilarity of VLM’s evaluation response JSON vis-800

a-vis the ground-truth anchor. The JSON encom- 801

passes finer-level constituents (e.g. bars of bar 802

chart with color-difference in color-alignment task) 803

which differ between the chart-pairs along with 804

their specific value, and are evaluated for their cor- 805

rectness. 806

A.4.1 Plot-Attribute Alignment 807

For Plot-attribute alignment score, the accuracy 808

for each N constituent is calculated for the chart- 809

pair (chart-1 & chart-2), and averaged for all con- 810

stituents to get the score. The Accuracy Ai is cal- 811

culated based on the alignment task, contrasting 812

the evaluation response value with the ground-truth 813

value. 814

Score = 10·

(
1

N

N∑
i=1

Ai (chart1) +Ai (chart2)

)
(2) 815

Legend Accuracy: The legend position accuracy 816

using the manhattan distance, the position associ- 817

ated with the 3 by 3 grid: 818

Alegend = 1− 1

5
Manhattan(position, ˆposition)

(3) 819

Color Accuracy: The color accuracy is calcu- 820

lated using L1 distance: 821

Acolor = 1−1

3

∑
i∈{R,G,B}

|intensityi − ˆintensityi|
255

(4) 822
Text Accuracy: The text alignment accuracy is 823

calculated by correctness of size, weight, fontfam- 824
ily respectively. 825

Atext style =

1

4

∑
i∈{title,legend,ticks,labels}

(0.4 · ⊮[sizei = ˆsizei]

+0.3 · ⊮[weighti =
ˆweighti]

+0.3 · ⊮[fontfamilyi =
ˆfontfamilyi])

(5) 826

A.4.2 Data Alignment & Robustness 827

Data Alignment score calculation follows the JSON 828

correctness discussed in evaluation metrics section. 829

However data alignment accuracy is calculated for 830

the combined image-pair, unlike individual image 831

in plot-attribute. As for data alignment we also eval- 832

uate the correctness of the finer-level constituent’s 833

key (i.e. identification) which are the cell’s row & 834

column name whereas in plot-attribute alignment 835

only constituent’s value is evaluated. Data align- 836

ment scores are also averaged for all chart-pairs 837

in a chart-type. For N being the number of cell- 838

change between the image-pairs, data alignment 839

score is defined as: 840
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Score = 10 ·

(
1

N

N∑
i=1

Acell
i (chart− pair)

)
(6)841

The cell accuracy Acell is determined by the cell’842

value accuracy (for each chart), and the evalua-843

tion response’s row & column similarity (for chart-844

pair).845

Acell = 0.3 · Simrow + 0.3 · Simcol

+0.2 · Achart-1 + 0.2 · Valchart-2
(7)846

The row and column name correctness is evalu-847

ated using Levenshtein distance based string com-848

parison:849

Simi = Levenshtein(i, i) (8)850

The cell-value accuracy (for a chart) is evaluated851

using the percentage value difference:852

Vali = max

(
1−

(
|cell_val − ˆcell_val|

cell_value

)
, 0

)
(9)853

Robustness: Robustness of data alignment over854

variation in plot-attribute aims to evaluate model’s855

ability to maintain consistent alignment over chang-856

ing plot-attributes. The data alignment score is857

utilized for developing the robustness evaluation858

metric. For robustness, each chart has set of 5 data-859

alignment pairs with identical data-alignment but860

variation in plot-attribute values. We define µ(set)861

and σ(set) as the mean and standard-deviation re-862

spectively of the 5 image-pairs in the robustness863

set for a chart.864

σ(set): It represents the deviation of 5 chart-pairs.865

A high value indicates of large difference between866

the data-alignment scores of the chart-pairs hence867

low robustness.868

We define the Robustness metric by averaging869

the σ(set) for all the charts, for particular config-870

uration: i.e. cell-change c, and the altered plot-871

attribute p.872

R(c, p) =
1

Nc,p

∑
cell-change=c

plot-attr=p

σ(robustness set)

(10)873

A.5 Additional Finding & Insights874

Finding 6

VLMs’ data grounding and alignment are more
robust to color variations than changes in legend
positions and text styles.

875

Fig. 11 shows that robustness is the worst un- 876

der text-style variations and the best under color 877

variations. In the visualizations of data, colors are 878

used to discretize, categorize, and measure chart 879

constituents. As long as their colors are distin- 880

guishable, color variations will not affect the data 881

grounding. In contrast, the text styles and legends 882

provide critical information about the data via ticks, 883

labels, and legend items. Moreover, changing leg- 884

end position may lead to position changes and oc- 885

clusion of other chart elements. Hence, their vari- 886

ations have a greater impact on the data ground- 887

ing/alignment performance. 888
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Figure 11: VLMs’ Robustness of data alignment (3-
cell change) to variations in color, legend, and text-
style. VLMs show better robustness to color changes
than text-style changes. QWEN-2.5-VL outperforms
the other four VLMs on robustness. More discussion
can be found below Finding 6.

Finding 7

VLMs’ spatial understanding capability affects
several important chart understanding skills.

889

Chart understanding usually requires an accu- 890

rate mapping between spatial relationships and the 891

corresponding numerical values to be visualized. 892

• Depth understanding: Despite the high-level 893

similarity between 3D bar charts and (2D) bar 894

charts, as shown in Fig 4, the data alignment 895

performance is much poorer on 3D bar charts 896

due to the lack of depth understanding, which 897

affects the measurement of scales and values 898

along axes in the 3D space. 899

• Text vs non-text cues: Rose charts are extended 900

from bar charts by allowing more polar coor- 901

dinates with scale differences in radial forms. 902

However, Fig. 12b reveals a great difference 903

12
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(a) Depth estimation in 3D bar charts

(b) Text vs. non-text cues for value scaling in rose
charts.

Figure 12: VLMs’ spatial understanding is poor on
complex charts. More discussion is provided below
Finding 7.

between the two on data alignment perfor-904

mance. This is due to fewer text cues (e.g.,905

axes ticks) in rose charts, where non-text cues906

such as grid lines cannot be fully leveraged.907

• Better performance on numbered charts: num-908

bered bar and line charts explicitly place the909

data values in the charts, hence facilitating910

VLMs to extract the data easily without pre-911

cise measurements of the visual elements.912

Hence, as shown in Fig. 4, numbered bar/line913

charts usually enjoy better performance.914
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