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Abstract

Charts play important roles in visualization,
reasoning, and communication in data analysis
and idea exchange between humans. However,
vision-language models (VLMs) still lack ac-
curate understanding of the details and struggle
to extract fine-grained structural information
from charts. Such limitations in chart ground-
ing also hinder their capability to compare mul-
tiple charts and reason about their difference.
In this paper, we develop a novel “ChartAlign
Benchmark (ChartAB)” to provide a full-
spectrum evaluation of VLMs in chart ground-
ing tasks, i.e., extracting tabular data, allocating
visualization elements, and recognizing various
attributes from charts of diverse types and com-
plexities. We develop a JSON template to facili-
tate the calculation of evaluation metrics specif-
ically designed for each grounding task. By
applying a novel two-stage inference workflow,
the benchmark can further evaluate VLMs’ ca-
pability of aligning and comparing elements/at-
tributes in two charts. Our analysis of eval-
uations on several recent VLMs sheds novel
insights on their perception biases, weaknesses,
robustness, and hallucinations in chart under-
standing. These observations expose the fine-
grained discrepancies among VLMs in chart
understanding tasks and indicate specific skills
that need to be strengthened in existing VLMs.

1 Introduction

Recent large multimodal models (LMMs) such as
vision-language models (VLMs) have achieved re-
markable breakthroughs in aligning vision modal-
ity with language models, so challenging language-
level reasoning can be performed on visual input
signals, opening the possibility of various appli-
cations that naturally depend on interactions be-
tween the two modalities. One critical class of
applications is chart understanding and reasoning,
which has broad applications in finance, data sci-
ence, mass media, biology and other scientific dis-

coveries, and where ideas and information are ex-
changed through visualizations. In these applica-
tions, measuring the numerical values in charts,
comparisons between visual elements (e.g., bars
or curves), correspondence between colors/num-
bers/names/markers, and recognition of attributes
are critical skills for downstream tasks. Most of
them require accurate grounding of the structured
details in charts. Moreover, dense alignment of ele-
ments in multiple charts is also a widely demanded
skill in practical scenarios. These raise new open
challenges to VLMs.

Instead of focusing on charts, existing VLMs
have been mainly pretrained and finetuned on natu-
ral images and common questions/instructions that
are not fully compatible with chart understanding
tasks. Unlike perceiving objects’ shape, pose, and
semantic meanings in natural images, accurate mea-
surements and comparison of geometric/graphic
components, understanding of their structure and
layout, and manipulation of their positions and rich
texts are more important to the perception and rea-
soning with chart images. However, it is usually
challenging for VLMs to gain these capabilities,
leading to hallucinations and misinterpretations in
chart-centric tasks.

Despite recent growing interest in chart-related
tasks, the VLMs and benchmarks specifically
designed for charts usually focus on simple
QA tasks that cannot comprehensively assess
the capabilities of VLMs in grounding and
understanding components in charts for more
general-purpose tasks. Moreover, the alignment
of layout and components between multiple charts
has not been explored in previous works. Hence,
there is still a lack of benchmarks focusing on
evaluating the above critical skills on grounding
and dense alignment of charts.

In this paper, we take the first step towards eval-
vating and analyzing general-purpose VLMs on
chart grounding and multi-chart dense alignment.



We split the information to be grounded in a chart
into two categories: (1) the visualized data, and (2)
the chart attributes (e.g., colors, style, legend, sizes,
positions) specifying the visualization design, com-
ponents, and layout. The grounding task is defined
as extracting the data table and the attributes from
each chart image, while the dense alignment is to
find the difference between two charts. These two
tasks are the upstream tasks or critical subroutines
in various chart-centric applications.

To this end, we develop a comprehensive bench-
mark using pairs of similar charts to evaluate mod-
els’ performance on the two tasks regarding each
type of information in the two categories. To create
a pair of similar charts, we perturb an existing chart
by randomly changing (1) one or a few data cells
in the data table, and/or (2) an attribute in the script
used to generate the original chart. To maximize
the potential of VLMs and evaluate their full
capability, we propose a multi-stage information
extraction and QA pipeline, in which the VLMs are
first queried with a grounding task of specified in-
formation in each chart, followed by comparing the
grounding results for the two charts. It harnesses
specified JSON templates to guide the grounding
and alignment of different types of information.
We further propose several novel evaluation
metrics to address the symmetry and ambiguity
of various types of information, facilitating the
quantitative comparison among different VLMs.

Our analysis reveals the weaknesses of exist-
ing VLMs in chart perception and understanding
for dense grounding and alignment. The observed
mistakes reflect their biases and hallucinations on
some chart components, providing several critical
insights to improve VLMs. The evaluation results
also reflect how the differences between models,
chart types, and queried data/attributes affect the
benchmarking performance. We further evaluate
the robustness of VLMs in accurately extracting
data from charts under different design choices of
visualizations, e.g., before and after changing the
chart type or colors. Our contributions and ad-
vantages are summarized below:

* We introduce the first comprehensive benchmark
“ChartAB” to systematically evaluate VLMs’ ca-
pabilities on dense grounding and multi-chart
alignment of visualized data and attributes of
components in chart images.

* We propose a holistic evaluation suite, includ-
ing a multi-stage pipeline converting charts into

JSON files with specific templates for tasks re-
garding data/attributes, and a rating scheme of
the grounding/alignment performance based on
VLMSs’ answers.

* Our evaluation and analysis of existing VLMs
expose their weaknesses in fine-grained under-
standing of charts, hallucinations, and their vi-
sion encoders’ biases in perceiving critical fea-
tures/structures of charts.

* We evaluate the robustness of chart grounding
and alignment under perturbations of chart at-
tributes. It provides novel insights for the design
of high-quality charts.

2 Related Work

VLMs for Charts. Early methods like FigureQA
(Kahou et al., 2017) and PlotQA (Methani et al.,
2020) focused on traditional architecture and rule-
based reasoning. Subsequent methods (DePlot
(Liu et al., 2022a), MatCha (Liu et al., 2022b),
StructChart (Xia et al., 2023)) worked on module-
based augmentation for efficient grounding of chart-
data and plot-code for downstream applications.
Recent methods focus on an integrated multi-task
paradigm. ChartAssistant (Meng et al., 2024) uti-
lizes mixed visual encoding and augmented pre-
training for robust multi-task abilities. ChartVLM
(Xia et al., 2024) applies a difficulty-based cascad-
ing decoding mechanism to augment the model’s
reasoning abilities using intermediate representa-
tions. Increasingly, general-purpose VLMs have
shown remarkable abilities in chart cognition and
reasoning.

The task-specificity in chart-specific VLMs from
instruction-tuned datasets make them infeasible for
general or newer tasks. The strong performing gen-
eral purpose VLMs with task flexibility are hence
evaluated in our benchmark experiments.

Chart Understanding Benchmarks. are in-
tended for tasks like question answering (PlotQA
(Methani et al., 2020), ChartQA (Masry et al.,
2022)), summarization (Chart-to-text (Kantharaj
et al., 2022b)), explanation-generation (OpenCQA
(Kantharaj et al., 2022a)). Multi-task benchmarks
including ChartLlama (Han et al., 2023), ChartX
(Xia et al., 2024) rely on GPT-4 (Achiam et al.,
2023) driven data curation, and agglomerating of
modality information for downstream cognition
tasks. Recent works specifically focus on expand-
ing QA scope to overcome increased saturation by



VLMs, for example CharXiv (Wang et al., 2024b)
focuses on charts in research papers, SciGraphQA
(Li and Tajbakhsh, 2023) evaluates multi-turn QA,
ChartQAPro (Masry et al., 2025) includes diverse
visualizations such as dashboards, infographs, and
flexible questions (hypothetical, unanswerable). T
he QA driven benchmarks limit model’s ability
to question-specific encodings and fail to evaluate
understanding of finer-level chart details.

Visual Grounding has been extensively utilized
for augmenting dense-level abilities. DePlot (Liu
et al., 2022a) trained transformer for image-to-
csv generation utilizing novel table comparison
for evaluation. MatCha (Liu et al., 2022b) devel-
oped image to data-table & plot-code derendering
for subsequent downstream tasks. Beyond charts:
Grounded-SAM model (Ren et al., 2024) utilizes
Grounding-DINO (Liu et al., 2024) for enhanced
dense-level open-set object tracking. BLIP-2 (Li
et al., 2023) is extensively integrated with VLMs
for VQA related tasks. LlaVa-grounded (Zhang
et al., 2024) has enabled detailed text description
of multi-object natural images utilzing image-text
grounding for instruction tuning.

The above works showcase inference augmenta-
tion with grounding to expand model capabilities
especially for finer-level tasks requiring precision
in values.

Multi-Image Reasoning. Multiple benchmarks
have been developed on evaluating VLM’s multi-
image reasoning. MMMU'’s (Yue et al., 2024) en-
compasses interleaved examples with multi-images
mainly from medical, cartoon, art and technical do-
mains. MUIRBench’s (Wang et al., 2024a) multi-
chart based diagram QnA questions are focsed on
coarse-level understanding. MMIR’s (Zhao et al.,
2024) chart understanding section is centered on
cross-modal alignment i.e. chart-image & plotting-
code correctness matching. MileBench’s (Song
et al., 2024) semantic understanding tasks contain
text-rich images attending to text extraction and un-
derstanding in domain of image-OCR, documents
and slides.

Current multi-image reasoning paradigm’s chart
understanding centers on traditional image-based-
QA, image-to-code, image-to-OCR, interleaved
text-image tasks missing evaluation of finer-level
understanding of chart’s plot attributes and data.

3 ChartAB: Chart Grounding and
Alignment Benchmark

We present ChartAlignBench: the first dataset for
evaluating dense-level alignment in charts across
following 3 tasks: Data Alignment, Plot-Attribute
Alignment, Robustness. The 3 alignment tasks con-
sist of ~ 3,600, ~ 2,000, ~ 3,300 instances respec-
tively. For Data Alignment & Plot-Attribute Align-
ment, each instance consists of pair of chart-images
diverging in finer-level chart-data & plot-attribute
respectively. For Robustness, each instance con-
tains 5 pairs of chart-images, each pair with iden-
tical chart-data divergence but variation in a plot-
attribute across the 5 pairs.
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20.9%
Color
10.7% DATA
39.7%
PLOT ATTRIBUTE
24.1%
ROBUSTNESS
Legend 36.1%
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5.2%
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Figure 1: Statistics of tasks in ChartAB.

3.1 Grounding of Single Chart

VLM’s multi-modal capabilities are tend to be con-
strained due to cross-modal bottlenecks.

Dense-level understanding is constrained due
to multiple reasons. The vision-encoder driven
global embedding for image doesn’t include object-
level representations. The prompt dependent task-
learning of the models lack robustness against vari-
ation in prompt variations making them unsuitable
for generalization and diverse application.

Multi-image reasoning also shows weakness.
Each image is evaluated as separate entity and lacks
any sequence-level comparison between images.
The use of inter-leaved learning for evaluation of
twined text & image inputs shows attention bias to-
wards a specific image. Model’s prompt-text under-
standing suffers from position-reference ambiguity
leading to hallucinations and mixed-up references
due to absence of spatial anchoring.



Grounding of chart-image to textual form en-
ables extraction of rich semantic meaning for per-
forming subsequent dense-alignment for the chart
image-pairs. The tokenization of different visual
components into textual format allows element-
wise representation and correspondence ability be-
tween specific chart objects. And prevents any at-
tention bias or prompt sensitive alterations in model
outputs. The approach shows cognitive parallels
to human understanding of charts: first parsing
their structure (i.e. axes, legends, marks), and then
mapping to semantic information.

3.2 Dense Alignment between Two Charts

The fundamental model inference for the dense-
alignment evaluation involves comparing 2 simi-
lar looking charts-images, which differ in (1) data
points OR (2) plot attributes. The task is struc-
tured as pair comparison instead of single chart-
grounding as we want to evaluate end-to-end model
ability of identifying finer-level differences be-
tween the charts. It is intended to mirror human-
analysis of chart data, which focuses on compara-
tive reasoning. A visualization practitioner while
developing charts also tries to iterate across designs
by applying finer changes each time (e.g. changing
a color, text size). In a task involving identification
of pair-wise changes allows dense-alignment labels
to be clearly and consistently defined, and provide
rich supervision for model learning.

Following are the tasks for evaluating model
ability to detect dense-level alignment to analyze
distinctive chart perception and reasoning abilities.

3.2.1 Data Alignment

The task evaluates data alignment in image-pairs,
i.e. difference in values of cells in the data-table
which is visualized by the charts. The finer-level
cell-changes involves performing (1) /-cell change,
(2) 2-cell change, (3) 3-cell change between the
chart images. The task aims to analyze model’s
ability to perceive change in visual encoding prop-
erty (e.g. position, shape, size) in the chart image,
and ability to map it to the specific cell i.e. row
& column header in data-table modality. Along
with measure of the cell-change utilizing the visual
components of image describing scale and values.

3.2.2 Plot-Attribute Alignment

The task evaluates plot-attribute alignment in
image-pairs, i.e. difference in values of attributes
which are part of the plotting-design. We assess

the capability through three alignment tasks:- (1)
color alignment, (2) legend alignment, (3) text-style
alignment. The plot-alignment task aims to analyze
model’s ability to perceive finer-level visual design
changes.

The details are ediscussed in the Appendix (A.1).

3.2.3 Robustness

The task evaluates robustness of data-alignment
against variation of plot attributes namely: colors,
legend, text-style. A set of multiple chart-pairs
with same pair-wise data value difference but vari-
ation in a plot attribute is utilized to infer impact
on data-alignment ability of model from changes
in the attribute values across the set. The task aims
to analyze model’s ability to consistently deliver
accurate data alignment under variations of chart
plot’s design. Robust model is expected to gener-
ate unchanged response despite the plot changes
while variation in model responses can be utilized
to quantify the susceptibility to plot design changes.
Hence providing measure of data-alignment robust-
ness against plot attribute.

Figure 2: Multi-step approach of o4-mini reasoning
model on color-alignment evaluation example.

3.3 A Two-Stage Evaluation Pipeline

The two-stage approach fundamentally envisions
the dense-alignment task as decomposable into sub-
tasks utilizing the visual-to-text grounding to per-
form finer-level analysis. The task decomposition
enables splitting complex finer-level reasoning into
smaller steps for efficient element-wise compar-
isons and handling model biases.

It is inspired from the multi-step approach used
in SOTA reasoning models. Fig. 2 shows an ex-
ample color-alignment evaluation for the 0o4-mini
model. The model’s thought-stream shows ini-
tial grounding of an entity’s color from each of
two chart images respectively, followed by dense-
alignment on the grounded color information. This
multi-step approach of the model validates our task
decomposition approach and its ability for efficient
multi-image dense alignment.



Fig. 3 describes the data-alignment pipeline.
First-stage results in an intermediate text with se-
mantic information on data of the chart image. The
interpretable nature and element-wise representa-
tion enables subsequent reasoning for dense-level
alignment. Second-stage involves VLM reason-
ing by applying discriminative comparison on the
grounded results from first-stage as input informa-
tion, for the specific dense-alignment task.

(1) Pipeline details and (2) Essentiality of
second-stage are discussed in the Appendix (A.3).

3.4 Dataset Curation

We apply perturbation based approach to generate
ChatAlignBench dataset along with ground-truth,
from the ChartX dataset as source dataset. Details
are discussed in Appendix (A.2).

3.5 Evaluation metric

All alignment evaluation scores are normalized
to [0, 10]. We average scores across the chart-type
(e.g. bar-chart, line-chart) for all chart-pairs cor-
responding to them. We prepared the evaluation
criteria for effectively differentiating model per-
formance across tasks, and quantify performance
aspects for chart data and plot attributes part of
dense alignment.

The alignment evaluation metrics are discussed
in the Appendix (A.4).

We also performed grounding analysis to eval-
uate the grounding stage ability of the models.
Grounding being for elements of single image, we
calculate an image’s grounding score and average
it across all the chart images. Grounding evalu-
ation: (1)legend grounding (discussed in Fig. 8)
& (2) text-style (discussed in Fig. 10), we simply
apply categorical correctness. (3) Color grounding
(discussed in 9) is evaluated using L2 distance:

gcolor = \/(T - f)Q + (g - 9)2 + (b - 6)2 (1)
4 Experiments

4.1 Experimental Setup

Models We evaluate diverse open source mod-
els: Phi-3.5 vision-instruct (Abdin et al., 2024),
InternVL-2.5 8B (Chen et al., 2024), LLaVA-1.6
Mistral 7B (Liu et al., 2023), QWEN-2.5 VL 8B
(Bai et al., 2025). And GPT-40 (Hurst et al., 2024)
as the proprietary model.

4.2 Ablations

We performed ablation experiments to vigorously
compare differing approaches to our 2-stage ap-
proach.

The ablation experiments aimed to thoroughly
compare single-stage based alignment approaches
for performing multi-image reasoning vis-a-vis our
two-stage approach. The ablation techniques:-

(1) stitched-charts inference: The chart-pair im-
ages are vertically concatenated resulting in a sin-
gle image of stitched chart-pairs which undergo
single-stage inference.

(2) multi-image inference: The VLM inputs mul-
tiple images, and contextualizes output based on
the input images with aim of better understand-
ing across of finer-level alignment in multi-image
reasoning.

The ablation experiments analyzed Phi-3.5
model’s performance on data-alignment task. As
shown in table. 1, the single-stage approach fared
poorly compared to out two-stage approach reaf-
firming the two-stage approach. Multi-image in-
ference showed the weakest performance. Despite
increasing training efforts towards improved VLM
training, the models still face issues in reason-
ing ability on fine-grained tasks. Stitched-charts
approach showed better results than multi-image,
however they too underperformed vis-a-vis our two-
stage approach. The comparatively stronger image
self-attention capabilities seem to augment multi-
image by utilzing the stitched connection. However
the better prevailing capabilities of two-stage ap-
proach capture the gain of grounding generation.
The VLM’s multi-modal understanding though
improving still suffers from finer-level nuances
missed by information loss in image-encoding and
cross-attention mechanisms.

4.3 Key Findings and Analysis

VLMs’ dense grounding and alignment of
data/color information are not satisfying on
complex charts.

Compared to simpler and more common charts,
e.g., bar/line charts and numbered bar/line charts,
dense grounding/alignment on complex charts such
as 3D/box/radar/rose/multi-axes charts with more
components and irregular layouts is more chal-
lenging to most VLMs. Despite the similar align-
ment performance for legend (Fig. 6) and fext-style



Chart 1
Production in manufacturing industry from 2011 to 2015

2401 — production A (million units)
Production B (million units)
| —— Production C (million units)

Units (million)

Chart 2
Production in manufacturing industry from 2011 to 2015

300 — Production A (million units)
Production B (million units)
—— Production C (million units)

250

Units (million)
N
S
3

-
G
3

50

. ; > o
& s & & = & s & & &
Year Year
' VLM ‘
Task: DATA (CSV) GROUNDING Prompt format: Chart <IMAGE>, generate table for chart data.
Chart 1 Data table Chart 2 Data table
Year A B c Year ion A ion B ion C
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2011 100 200 150 2011 100 200 150
2012 120 160 170 2012 67 160
2013 130 210 150 2013 130 210 150
2014 140 220 190 2014 140 190
2015 180 240 210 2015 180 240 210

Task: DATAALIGNMENT

VLM ‘

Prompt format: Given <CHART 1 TABLE> and <CHART 2 TABLE> compare chart data and answer of form <JSON format>.

Data Alignment JSON
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“row name": "2012", "row name": "2014", "row name": "2012",
"column name": "Production A", “column name": "Production B", "column name": "Production C",

"value in chart 1": 120,
"value in chart 2": 67
+ h

“value in chart 1": 220,
"value in chart 2": 309

"value in chart 1": 170,
“value in chart 2": 52

}

Figure 3: Two-Stage Evaluation Pipeline of data alignment in ChartAB. The first stage focuses on grounding the
data visualized in each chart to a table, while the second stage requires the VLMs to find the difference between the
two charts’ tables and output a JSON file listing the different cells in the two tables. Evaluation of other attributes
adopts similar multi-stage pipelines, with details in the Appendix.

Type Approach Bar Bar# 3DBar Line Line# Radar Rose Box Multi-axes
|-stage Multi-chart 4.8 7.4 4.7 33 4.7 4.9 3.1 32 33

€ Stitched-chart 5.0 4.8 3.0 4.5 35 3.0 2.7 2.8 32
2-stage  Ours 6.5 8.3 4.1 6.1 6.3 3.8 34 29 35

Table 1: Ablation study of 1-stage vs. 2-stage evaluations on data alignment (1-cell change) task. Mean scores
across nine chart types show that our 2-stage evaluation reflects VLMs’ greatest potential on chart alignment.

DATA ALIGNMENT: 1-Cell Change
D-Bar
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LlaVa-1.6
—— InternVL-2.5

—— QWEN-2.5-VL
bar_chart_num —— GpT.40
line_chay
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Figure 4: Comparing VLM:s on data alignment tasks
when two charts’ data tables differ in only one cell.
Llava-1.6 is worse than most other VLMs. QWEN-2.5-
VL outperforms GPT-40 on most chart types. Related
discussion can be found below Finding 1.

(Fig. 7) between simple vs. complex charts, the
color alignment (Fig. 5) and data alignment (Fig. 4)
on complex charts are much poorer than those on
simple charts. The color grounding requires identi-
fying each component’s visual encoding and corre-
sponding color, while the data grounding needs to
find the mapping from visual encoding to tabular
values. Hence, complex layouts with more compo-
nents make these tasks more difficult. In contrast,
identifying the position of legends and text styles
(which both have limited options) is easier and less
affected by the chart complexity.

Most VLMs suffer from biases when allocating
the position of legends.



COLOR ALIGNMENT
D-Bar

— Phi-3.5
Llava-1.6
— InternVL-2.5
—— QWEN-2.5-VL
bar_chart_num — GpT-40

Figure 5: Color alignment between two charts on fine-
grained visual elements (e.g., bars, lines, sector). VLMs
perform better on simpler and more common charts.
Related discussion can be found below Finding 1.

The grounding of the legend’s position (Fig. 8)
suffers from a strong bias of pretrained VLMs. The
Phi-3.5 model shows the strongest prior towards
the upper-left position. The 7-8B scale VLMs,
e.g., LlaVa-1.6, Inten-VL-2.5, QWEN-2.5-VL, all
show a similar level of bias but towards the upper-
right position instead. The GPT-40 model exhibits
the minimal bias among all evaluated VLMs The
grounding bias strongly affects the legend align-
ment (Fig. 6) where Phi-3.5 performs the worst,
GPT-40 has the best performance, while the other
3 models’ performance is similar and between Phi-
3.5 and GPT-4o.

line_
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—— QWEN-2.5-VL
—— GPT-40

barchart_num

line_chatt/rdm

Figure 6: Legend alignment of legend positions
between two charts. Each VLM shows similar perfor-
mance across different chart types. Phi-3.5 performs the
worst while GPT-4o is the best among all five VLMs.
Related discussion can be found below Finding 1&2.

VLMs’ weak color recognition ability.

As shown in Fig. 9, all models’ color grounding
error (L2 distance in RGB space) has a median
exceeding 50. This suggests their inability to

understand color shades beyond common ones,
e.g., red, blue, green, etc., which exposes their
weaknesses in color recognition. The lack of color
understanding affects the perception of detailed
differences in charts and leads to mismatches
in color-related/conditioned reasoning tasks.

Consequently, the VLMs’ performance in color
alignment tasks (Fig. 5) is consistent with that on
color grounding. These results suggest improving
the color understanding capability by adding more
color-sensitive data or tasks in VLMS’ pretraining
and finetuning stages.

TEXT-STYLE ALIGNMENT
3D-Bar

—— Phi-3.5
LlaVa-1.6

— InterVL-2.5
bar_SRart_num  —— QWEN-2.5-VL
—— GPT40

o'
line_chaft-nuf {

Figure 7: Text-style (size, weight, font family)
alignment. Worst: QWEN-2.5-VL, Best: GPT-4o.
Differences between chart types are not consistent
across VLMs. Related discussion can be found below
Finding 1&4.

VLMs’ text-style grounding and alignment per-
formance is poor in general, and it varies across
text size, weight, and font family.

Fig. 10 shows that most VLMs fail to detect the
correct text size and font family, suffering from
an accuracy below 20% (except GPT-40’s perfor-
mance on font family alignment). These indicate
a lack of knowledge on these two text attributes.
VLMs’ performance on text weight ((light/nor-
mal/bold)) is much better (~60%) and close to each
other, but still not satisfying. Although LLMs can
select reasonable text sizes in code generation for
plots, they tend to rely on the default sizes in their
priors or relative sizes to other chart components.
They still lack sufficient capability to identify text
sizes in chart images.
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Figure 8: Confusion matrix of legend position grounding for each VLM. The dark non-diagonal entries highlight
the fail patterns and biases of incorrectly identifying position-¢ as position-j. Phi-3.5 exhibits a severe bias towards
upper-left position while GPT-40 shows the minimal bias. More discussion is provided below Finding 2.
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Figure 9: Color recognition in grounding performance
measured by L2 errors in RGB space. The error
distribution of each VLM is visualized by a box
plot. Median of the errors for all models exceeds 50,
indicating weak color recognition capability. More
discussion can be found below Finding 3.

VLMs’ weak scaling law on chart grounding
and alignment tasks.

We fail to observe a clear scaling law on the eval-
uated models of different scales, i.e., Phi-3.5 (3B),
LlaVa-1.6-Mistral (7B), Intern-VL-2.5 & QWEN-
2.5-VL (8B), GPT-40 (proprietary). The Phi-3.5
model shows better or on-par alignment when com-
pared with Llava-1.6 and Intern-VL-2.5 on all ex-
cept data/text style/legend alignment (Fig. 3, 5, 7,
6). In addition, Fig. 7 shows that Qwen-2.5 is the
weakest baseline in text style alignment. The cur-
rent chart understanding benchmarks heavily focus
on QA (as discussed in 2), but cannot fully capture
the detailed information. The chart-specific VLMs
are constrained by their task-specific architecture
(as discussed in 2).

Text Style Predictions

Model
Phi-3.5
Llava-1.6
InternVL-2.5
QWEN-2.5-VL
GPT-40

0.8

Accuracy

=}

o
i

I
IS

0.2

0.0 size weight

Text Style Characteristic
Figure 10: Text-style grounding and alignment on
size, weight, and font family. Most VLMs suffer from
a low accuracy on size and font family, indicating a
lack of related knowledge in VLM training. Further
discussion can be found below Finding 4.

fontfamily

5 Conclusion

In this work, we present ChartAB the first bench-
mark to comprehensively evaluate fine-grained
chart grounding and multi-chart dense alignment
capabilities of general-purpose vision-language
models (VLMs). Through rigorous evaluations
across diverse chart types and VLMs, we uncover
consistent challenges faced by current models, in-
cluding perceptual biases, hallucinations, and lim-
ited spatial understanding, particularly on complex
and information-dense visualizations.

Our benchmark facilitates detailed assessment
across dimensions such as data extraction, color
and legend grounding, and robustness to visual
variations. These insights expose specific areas
for improvement in chart perception and reason-
ing, offering valuable guidance for future VLM
development. The consistent superiority of our
two-stage pipeline further emphasizes the necessity
of grounding-based decomposition for achieving
human-parallel chart understanding.

Limitations
Our work has the following limitations:-

* Model Training: We focus on zero-shot evalu-



ations for our work, and don’t assess few-shot
or instruction tuned performance. They may
yield better performance but deflect from the
problem statement of general purpose VLM’s
dense-level understanding.

* Real-World Chart Corpus: Various datasets
contain more sophisticated real-world exam-
ples. However due to requirement of precise
ground-truth for dense-alignment evaluation,
we chose the ChartX dataset due to availability
of plotting-code and corresponding csv data.

* Limited Task Diversity: The ChartAB focuses
only on dense-alignment evaluation, missing
the high-level reasoning or related dense-level
downstream tasks. The work intended to per-
form a comprehensive evaluation of various
dense alignment tasks and grounding based
two-stage evaluation hence missed those as-
pects.
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A Appendix

A.1 Dense Alignment between Two Charts:
Pot-Attribute Alignment

Color Alignment evaluates alignment of encoding
colors, i.e. difference in colors of visual encodings
representing chart data: bars in bar chart, lines in
line chart, segments/spokes in rose chart etc.

Legend Alignment evaluates alignment of legend,
i.e. difference in position of legend in the charts.

Text-Style Alignment evaluates alignment of text
characteristics namely (1) size, (2) weight i.e. de-
gree of boldness (3) font-family i.e. style of font
applied. The text in chart corresponds to following
chart sections: title, legend, axes-labels, axes-ticks.

Overall plot-alignment task aims to analyze
model’s ability to perceive change in visual de-
sign characteristics (e.g. visual encodings, axes,
labels, legends) in the chart image, and semantic
understanding to map it to specific plot attribute.
And ability to precisely predict the attribute value
from representation and component structure of the
chart.

A.2 Dataset Curation

We used ChartX dataset (Xia et al., 2024) as source
dataset for our ChartAlignBench curation. ChartX
contains plotting-code and csv data-table for the
chart with extremely high level of precision thus
offering the flexibility for performing finer-level
changes along with ground-truth generation capa-
bilities. It contains diverse chart types of varying
complexities, and chart data from multiple domains.
Hence enabling analysis across charts of varying
difficulties.

We utilize perturbations for generating fine-
grained variations for given chart thus helping build
dense-alignment pairs. Chart’s plotting-code is per-
turbed for precise data or plot-attribute changes
based on rigorous formatting check using regex-
based search and replace, resulting in chart image
generation from code execution.

The csv availability and plot-attribute informa-
tion enable accurate ground-truth generation. Gen-
erated pairs for data alignment and plot-attribute
alignment include randomly assigned changes, and



robustness sets include diverse plot attribute values
for meticulous and unbiased evaluation.

We selected 9 diverse chart-types with ability
to apply to perform chart-data and plot-attribute
perturbations: (1) simple charts: bar chart, bar-
numbered chart, line chart, line-numbered chart,
(2) complex charts: 3D chart, box chart, radar chart,
rose chart, multi-axes chart.

A.3 A Two-Stage Evaluation Pipeline: Details
& Essentiality of second-stage

We utilize natural-language based instructions for
zero-shot inference to enable simple execution with
minimal task specific nuances for strong general-
ization across various models.

VLM outputs follow JSON based formatting due
to precise nature of the key-value structure which
is essential for element specific information seri-
alization for finer-analysis, along with flexibility
for variations in completion of grounding and fine-
grained analysis. The alignment JSON contains
finer-level attributes for which the charts differ, and
the values for corresponding attribute in the two
charts. E.g. for data-alignment (as shown in Fig.
3) the finer-level attributes changed between the
charts i.e. cells are identified by their row & col-
umn header, along with its values in the chart-pairs,
i.e. value in chart-1 & value in chart-2 respectively.

Second-stage forms essential part of evaluation
pipeline. Analyzing dense-alignment ability re-
quires performing end-to-end evaluation of VLMs.
Grounding determines the chart information, and
impacts the subsequent finer-level analysis. How-
ever correct grounding doesn’t imply correct align-
ment. The VLM needs to make semantic corre-
spondence between chart elements in the ground-
ing result which is non-uniform and differs for each
VLM. Moreover the hallucinating nature of VLMs
make grounding output susceptible to ambiguities
and vagueness, in which case the additional second-
stage reasoning on the grounding result helps build
a better overall understanding of VLM capabilities.
Second-stage also allows utilization of additional
contextual information (e.g. Chain-of-Thoughts)
for the alignment task. Ultimately we analyze
VLM’s dense-alignment ability the way humans
do looking at overall understanding, and at seman-
tic shifts not captured by grounding.

A.4 Evaluation metric: Alignment

Alignment evaluation is done by calculating sim-
ilarity of VLM’s evaluation response JSON vis-
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a-vis the ground-truth anchor. The JSON encom-
passes finer-level constituents (e.g. bars of bar
chart with color-difference in color-alignment task)
which differ between the chart-pairs along with
their specific value, and are evaluated for their cor-
rectness.

A.4.1 Plot-Attribute Alignment

For Plot-attribute alignment score, the accuracy
for each IV constituent is calculated for the chart-
pair (chart-1 & chart-2), and averaged for all con-
stituents to get the score. The Accuracy A; is cal-
culated based on the alignment task, contrasting
the evaluation response value with the ground-truth
value.

N
1
Score = 10- (N ; A; (charty) + A; (chart2)>
2

Legend Accuracy: The legend position accuracy
using the manhattan distance, the position associ-
ated with the 3 by 3 grid:

1 ~
Alegend _ 1 _ 5Manhattan(position,position)

3)

Color Accuracy: The color accuracy is calcu-
lated using L1 distance:

lintensity; — intensity;|

Acolor —1_ 1 Z

, 255
i€{R,G,B}
. “)
Text Accuracy: The text alignment accuracy is
calculated by correctness of size, weight, fontfam-
ily respectively.
Atcxt style

1 . -
1 g (0.4 - ¥[size; = size;]
1€ {title,legend, ticks, labels }

40.3 - ¥[weight, = weight;]

&)

+0.3 - ¥[fontfamily, = fontfamily,))

A.4.2 Data Alignment & Robustness

Data Alignment score calculation follows the JSON
correctness discussed in evaluation metrics section.
However data alignment accuracy is calculated for
the combined image-pair, unlike individual image
in plot-attribute. As for data alignment we also eval-
uate the correctness of the finer-level constituent’s
key (i.e. identification) which are the cell’s row &
column name whereas in plot-attribute alignment
only constituent’s value is evaluated. Data align-
ment scores are also averaged for all chart-pairs
in a chart-type. For IV being the number of cell-
change between the image-pairs, data alignment
score is defined as:



N
1
N Z A (chart — pair)

Score = 10- <
i=1

> (6)

The cell accuracy A°!! is determined by the cell’
value accuracy (for each chart), and the evalua-
tion response’s row & column similarity (for chart-

pair).

Al — 0.3 . Sim™" + 0.3 - Sim®”!

@)
4+0.2 - Achart-1 + 0.2 - Valchare2

The row and column name correctness is evalu-
ated using Levenshtein distance based string com-
parison:

®)

Sim' = Levenshtein(i, i)

The cell-value accuracy (for a chart) is evaluated
using the percentage value difference:
) ’0>

Val; = max (1 B <\cell_val — cell_vall
9)

Robustness: Robustness of data alignment over
variation in plot-attribute aims to evaluate model’s
ability to maintain consistent alignment over chang-
ing plot-attributes. The data alignment score is
utilized for developing the robustness evaluation
metric. For robustness, each chart has set of 5 data-
alignment pairs with identical data-alignment but
variation in plot-attribute values. We define p(set)
and o(set) as the mean and standard-deviation re-
spectively of the 5 image-pairs in the robustness
set for a chart.

o(set): It represents the deviation of 5 chart-pairs.
A high value indicates of large difference between
the data-alignment scores of the chart-pairs hence
low robustness.

We define the Robustness metric by averaging
the o(set) for all the charts, for particular config-
uration: i.e. cell-change c, and the altered plot-
attribute p.

cell_value

1
N o (robustness set)
& cell-change=c

plot-attr=p

R(C7p) =

(10)

A.5 Additional Finding & Insights

VLMs’ data grounding and alignment are more
robust to color variations than changes in legend
positions and text styles.
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Fig. 11 shows that robustness is the worst un-
der text-style variations and the best under color
variations. In the visualizations of data, colors are
used to discretize, categorize, and measure chart
constituents. As long as their colors are distin-
guishable, color variations will not affect the data
grounding. In contrast, the text styles and legends
provide critical information about the data via ticks,
labels, and legend items. Moreover, changing leg-
end position may lead to position changes and oc-
clusion of other chart elements. Hence, their vari-
ations have a greater impact on the data ground-
ing/alignment performance.

Robustness Evaluation (3 cell-change)

Attribute Altered
= color

= legend
m—text style

0.6

Robustness score
o o e
w S wu

°
N

°
o

°
o

Figure 11: VLMs’ Robustness of data alignment (3-
cell change) to variations in color, legend, and text-
style. VLLMs show better robustness to color changes
than text-style changes. QWEN-2.5-VL outperforms
the other four VLMs on robustness. More discussion
can be found below Finding 6.

VLMs’ spatial understanding capability affects
several important chart understanding skills.

Chart understanding usually requires an accu-
rate mapping between spatial relationships and the
corresponding numerical values to be visualized.

* Depth understanding: Despite the high-level
similarity between 3D bar charts and (2D) bar
charts, as shown in Fig 4, the data alignment
performance is much poorer on 3D bar charts
due to the lack of depth understanding, which
affects the measurement of scales and values
along axes in the 3D space.

Text vs non-text cues: Rose charts are extended
from bar charts by allowing more polar coor-
dinates with scale differences in radial forms.
However, Fig. 12b reveals a great difference
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(b) Text vs. non-text cues for value scaling in rose
charts.
Figure 12: VLMSs’ spatial understanding is poor on

complex charts. More discussion is provided below
Finding 7.

between the two on data alignment perfor-
mance. This is due to fewer text cues (e.g.,
axes ticks) in rose charts, where non-text cues
such as grid lines cannot be fully leveraged.

e Better performance on numbered charts: num-
bered bar and line charts explicitly place the
data values in the charts, hence facilitating
VLMs to extract the data easily without pre-
cise measurements of the visual elements.
Hence, as shown in Fig. 4, numbered bar/line
charts usually enjoy better performance.
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