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Abstract—A key challenge in learning task and motion plan-
ning in open domains is how to acquire diverse and generalizable
skills for robots. Recent research in one-shot imitation learning
has shown promise in transferring trained policies to new tasks
based on demonstrations. This feature is attractive for enabling
robots to acquire new skills and improving task and motion
planning. However, due to limitations in the training dataset,
the current focus of the community has mainly been on simple
cases, such as push or pick-place tasks, relying solely on visual
guidance. In reality, there are many complex skills, some of which
may even require both visual and tactile perception to solve. This
paper aims to unlock the potential for an agent to generalize
to hundreds of real-world skills with multi-modal perception.
To achieve this, we have collected a dataset comprising over
110,000 contact-rich robot manipulation sequences across diverse
skills, contexts, robots, and camera viewpoints, all collected in
the real world. Each sequence in the dataset includes visual,
force, audio, and action information, along with a corresponding
human demonstration video. We have invested significant efforts
in calibrating all the sensors and ensuring a high-quality dataset.
The dataset is made publicly available 1.

I. INTRODUCTION

Enabling robots to learn new skills with minimal effort is
one of the ultimate goals of the robot learning community, as
it can significantly advance task and motion planning in un-
structured environments. Recent research in one-shot imitation
learning [9, 12] and emerging foundation models [2, 4] paints
an exciting picture of skill transfer to new tasks based on task
descriptions. This paper shares the same aspiration.

While the future is promising, most research in robotics
only demonstrates the effectiveness of their algorithms on
simple cases, such as pushing, picking, and placing objects
in the real world. Two main factors hinder the exploration
of more complex tasks in this direction. Firstly, there is a
lack of large and diverse robotic manipulation datasets in
this field [2], despite the community’s long-standing eagerness
for such datasets. This suggests the existence of systematic
problems in our data collection paradigm that impede the
collection of complex manipulation tasks. Secondly, most
methods focus solely on visual guidance control, yet it has
been observed in physiology that humans with impaired digital
sensibility struggle to accomplish many daily manipulations
with visual guidance alone [19]. This indicates that more
sensory information should be considered in order to learn
various manipulations in open environments.

1Please visit our project page at rh20t.github.io

To address these problems, we revisit the data collection
process for robotic manipulation. In most imitation learning
literature, expert robot trajectories are manually collected
using simplified user interfaces like 3D mice, keyboards, or
VR remotes. However, these control methods are inefficient
and pose safety risks when the robot engages in rich-contact
interactions with the environment. The main reasons are the
unintuitive nature of controlling with a 3D mouse or keyboard,
and the inaccuracies resulting from motion drifting when
using a VR remote. Additionally, tele-operation without force
feedback degrades manipulation efficiency for humans. In this
paper, we equipped the robot with a force-torque sensor and
employed a haptic device with force rendering for precise and
efficient data collection. With the goal that the dataset should
be representative, generalized, diverse and close to reality,
we collect around 150 skills with complicated actions other
than simple pick-place. These skills were either selected from
RLBench [17] and MetaWorld [37], or proposed by ourselves.
Many skills require the robot to engage in contact-rich interac-
tions with the environment, such as cutting, plugging, slicing,
pouring, folding, rotating, etc. We have used multiple different
robot arms commonly found in labs worldwide to collect our
dataset. The diversity in robot configurations can also aid
algorithms in generalizing to other robots. So far, we have col-
lected around 110,000 sequences of robotic manipulation and
110,000 corresponding human demonstration videos for the
same skills. This amounts to over 40 million frames of images
for the robotic manipulation sequences and over 10 million
frames for the human demonstrations. Each robot sequence
contains abundant visual, tactile, audio, and proprioception
information from multiple sensors. The dataset is carefully
organized, and we believe that a dataset with such diversity
and scale is crucial for the future emergence of foundation
models in general skill learning, as promising progress has
been witnessed in the NLP and CV communities [5, 30, 21].

II. RELATED WORKS

We briefly review related works in zero/one-shot imitation
learning, robotic manipulation datasets, and vision-force learn-
ing methods.

a) Dataset: Our community has been striving to create
a large-scale and representative dataset for a significant period
of time. Previous research in one-shot imitation learning has
either collected robot manipulation data in the real world [12]
or in simulation [25]. However, their datasets are usually small

https://rh20t.github.io


Fig. 1: Sampled RBG images from RH20T. Our dataset contains diverse skills, robots, viewpoints, objects, backgrounds, etc.
Note that these images are center-cropped for better visualization. A more detailed illustration of all the tasks are given in
Appendix B.

and the tasks are simple. Some attempts have been made to
create large-scale real robot manipulation datasets [13, 26, 32,
8, 20, 18]. For example, RoboTurk [26] developed a crowd-
sourcing platform and collected data on three tasks using mo-
bile phone-based tele-operation. MIME [32] collected 20 types
of manipulations using Baxter with kinesthetic teaching, but
they were limited to a single robot and simple environments.
RoboNet [8] gathered a significant amount of robot trajectories
with various robots, grippers, and environments. However, it
mainly consists of random walking episodes due to the chal-
lenges of performing meaningful skills. BC-Z [18] presents
a manipulation collection of 100 “tasks”, but as pointed out
in [25], they are combinations of 9 verbs and 6-15 objects.
Similarly, RT-1 [4] also collects a large-scale manipulation
dataset but focuses on a limited set of skills. These datasets
lack diversity in skill settings and, more importantly, they do
not include the crucial force modality during manipulation.
Our goal is to address these gaps and provide a dataset with
a wider range of skills and more comprehensive information,
including the force modality.

b) Zero/One-shot imitation learning: The objective of
training policies that can transfer to new tasks based on
robot/human demonstrations is not new. Early works [31, 27,
13] focused on imitation learning using high-level states such
as trajectories. Recently, researchers [12, 9, 38, 16, 36, 29, 28,
39, 14, 33, 3, 35, 7, 24, 18, 25] have started exploring raw-
pixel inputs with the advancement of deep neural networks.
Additionally, the requirement of demonstrations has been
reduced by eliminating the need for actions. Recent approaches
have explored various one-shot task descriptors, including
images [16, 3], language [33, 24], robot video [12, 7, 25], or
human video [36, 18]. These methods can be broadly classified
into three categories: model-agnostic meta-learning [12, 36,
16, 3, 39], conditional behavior cloning [9, 7, 18, 25], and
task graph construction [14, 15]. While significant progress has
been made in this direction, these approaches only consider

visual observations and primarily focus on simple robotic
manipulations such as reach, pick, push, or place. Our dataset
offers the opportunity to take a step further by enabling
the learning of hundreds of skills that require multi-modal
perception within a single imitation learning model.

c) Multi-Modal Learning of Vision and Force: Force
perception plays a crucial role in manipulation tasks, providing
valuable and complementary information when visual percep-
tion is occluded. The joint modeling of vision and force in
robotic manipulation has recently garnered interest within the
research community [10, 23, 11, 22, 1, 6, 34]. However, most
of these studies overlook the asynchronous nature of different
modalities and simply concatenate the signals before or after
the neural network. Moreover, the existing research primarily
focuses on designing multi-modal learning algorithms for spe-
cific tasks, such as grasping [6], insertion [22], twisting [10], or
playing Jenga [11]. The question of how to effectively handle
multi-modal perception at different frequencies for various
skills in a coherent manner remains open in robotics. Our
dataset presents an opportunity for exploring multi-sensory
learning across diverse real-world skills.

III. RH20T DATASET

We introduce our robotic manipulation dataset, Robot-
Human demonstration in 20TB (RH20T), to the community.
Fig. 1 shows an overview of our dataset.

A. Properties of RH20T

RH20T is designed with the objective of enabling general
robotic manipulation, which means that the robot can perform
various skills based on a task description, typically a human
demonstration video, while minimizing the notion of rigid
tasks. The following properties are emphasized to fulfill this
objective.

a) Diversity: The diversity of RH20T encompasses mul-
tiple aspects. To ensure task diversity, we selected 48 tasks
from RLBench [17], 29 tasks from MetaWorld [37], and



Fig. 2: On the left side are the multi-view images. On the right side, we display the point cloud generated by fusing the RGBD
data from these multi-view cameras. The red pyramids indicate the camera poses. Additionally, the robot model is rendered in
the scene based on the joint angles recorded in our dataset. In the right image, it is evident that all the cameras are calibrated
with respect to the robot’s base frame, and all the recorded data are synchronized in the temporal domain.

Fig. 3: Statistics on the amount of robotic manipulation for
different tasks.

introduced 70 self-proposed tasks that are frequently encoun-
tered and achievable by robots. Hundreds of objects were
collected to accomplish these tasks. To ensure applicability
across different robot configurations, we used 4 popular robot
arms, 4 different robotic grippers, and 3 types of force-torque
sensors, resulting in 7 robot configurations. More details about
the robot configurations can be found in Appendix A.

To enhance environment diversity, we frequently replaced
over 50 table covers with different textures and materials,
and introduced irrelevant objects to create distractions. Ma-
nipulations were performed by tens of volunteers, ensuring
diverse trajectories. To increase state diversity, for each skill,
volunteers were asked to change the environmental conditions
and repeat the manipulation 10 times, including variations
in object instances, locations, and more. Additionally, we
conducted robotic manipulation experiments involving human
interference, both in adversarial and cooperative settings. Fur-
ther details about each task are provided in Appendix B.

b) Multi-Modal: We believe that the future of robotic
manipulation lies in multi-modal approaches, particularly in
open environments, where data from different sensors will
become increasingly accessible with advancements in tech-
nology. In the current version of RH20T, we provide vi-
sual, tactile, audio, and proprioception information. Visual

Fig. 4: Statistics on the execution time of different robotic
manipulations in our dataset.

perception includes RGB, depth, and binocular IR images
from three types of cameras. Tactile perception includes 6
DoF force-torque measurements at the robot’s wrist, and some
sequences also include fingertip tactile information. Audio data
includes recordings from both in-hand and global sources.
Proprioception encompasses joint angles/torques, end-effector
Cartesian pose and gripper states. All information is collected
at the highest frequency supported by our workstation and
saved with corresponding timestamps. More details are given
in Table. 2 in Appendix A. An example sampled from our
dataset is shown in Fig. 2.

c) Scale: Our dataset consists of over 110,000 robot
sequences and an equal number of human sequences, with
more than 50 million images collected in total. On average,
each skill contains approximately 750 robot manipulations.
Fig.3 provides a detailed breakdown of the number of ma-
nipulations across different tasks in the dataset, showing a
relatively uniform distribution. Fig.4 presents statistics on the
manipulation time for each sequence in our dataset. Most
sequences have durations ranging from 10 to 100 seconds.
With its substantial volume of data, our dataset stands as the
largest in our community at present.



Fig. 5: Example of data hierarchy: The leaf nodes in the
hierarchy consist of human demonstrations (highlighted in
green) and robot manipulations (highlighted in red, only the
right-est example is shown in the figure). We can pair a robot
manipulation sequence with human demonstration videos cap-
tured from different viewpoints, scenes, human subjects, and
environments. Zoom in to explore the details of various human
demonstrations.

d) Data Hierarchy: Humans can accurately understand
the semantics of a task based on visual observations, regardless
of the viewpoint, background, manipulation subject, or object.
We aim to provide a dataset that offers dense <human demon-
stration, robot manipulation> pairs, enabling models to learn
this property. To achieve this, we organize the dataset in a tree
hierarchy based on intra-task similarity. Fig. 5 illustrates an
example tree structure and the criteria at different levels. Leaf
nodes with a more recent common ancestor are more closely
related. For each task, millions of <human demonstration,
robot manipulation> pairs can be constructed by pairing leaf
nodes with a common ancestor at different levels.

e) Compositionality: RH20T includes not only short
sequences that perform single manipulations but also long
manipulation sequences that combine multiple short tasks. For
example, a sequence of actions such as grabbing the plug,
plugging it into the socket, turning on the socket switch, and
turning on the lamp can be considered as a single task, with
each step also being a task. This task composition allows us
to investigate whether mastering short sequences improves the
acquisition of long sequence tasks.

B. Data Collection and Processing

Unlike previous methods that simplify the tele-operation
interface using 3D mice, VR remotes, or mobile phones, we
place emphasis on the importance of intuitive and accurate
tele-operation in collecting contact-rich robot manipulation
data. Without proper tele-operation, the robot could easily
collide with the environment and generate significant forces,
triggering emergency stops. Consequently, previous works
either avoid contact [18] or operate at reduced speeds to
mitigate these risks.

a) Collection: Figure 6 shows an example of our data
collection platform. Each platform contains a robot arm with

Fig. 6: Illustration of our data collection platform

force-torque sensor, gripper and 1-2 inhand cameras, 8-10
global cameras, 2 microphones, a haptic device, a pedal and a
data collection workstation. All the cameras are extrinsically
calibrated before conducting the manipulation. The human
demonstration video is collected on the same platform by
human with an extra ego-centric camera. Tens of volunteers
conducted the robotic manipulation according to our task
lists and text description. We make our tele-operation pretty
intuitive and the average training time is less than 2 hours.
The volunteers are also required to specify ending time of
the task and give a rating from 0 to 9 after finishing each
manipulation. 0 denotes the robot enters the emergency state
(e.g., hard collision), 1 denotes the task fails and 2-9 denotes
their evaluation of the manipulation quality. The success and
failure cases have a ratio of around 10:1 in our dataset.

b) Processing: We preprocess the dataset to provide a
coherent data interface. The coordinate frame of all robots
and force-torque sensors are aligned. Different force-torque
sensors are tared carefully. The end-effector Cartesian pose
and the force-torque data are transformed into the coordination
system of each camera. Manual validation is performed for
each scene to ensure the camera calibration quality.

IV. DISCUSSION AND CONCLUSION

In this paper we present the RH20T dataset for diverse
robotic skill learning. We believe it can facilitate many areas
in robotics including learning for task and motion planning.
The current limitations of this paper are that (i) the cost of
data collection is expensive and (ii) the potential of robotic
foundation models is not evaluated on our dataseet. We have
tried to duplicate the results of some recent robotic foundation
models but haven’t succeeded yet due the limit of computing
resources. Thus, we decide to open source the dataset at
this stage and hope to promote the development of this area
together with our community. In the future, we hope to extend
our dataset to broader robotic manipulation, including dual-
arm and multi-finger dexterous manipulation.
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Appendix A Hardware configuration used in our dataset

Configuration Robot Gripper 6DoF F/T Sensor Tactile Sensor Camera
Cfg 1 Flexiv Dahuan AG95 OptoForce None 8 global, 1 in-hand
Cfg 2 Flexiv Dahuan AG95 ATI Axia80-M20 None 7 global, 1 in-hand
Cfg 3 UR5 WSG50 ATI Axia80-M20 None 7 global, 1 in-hand
Cfg 4 UR5 Robotiq-85 ATI Axia80-M20 None 7 global, 1 in-hand
Cfg 5 Franka Franka Franka None 7 global, 2 in-hand
Cfg 6 Kuka Robotiq-85 ATI Axia80-M20 None 8 global, 2 in-hand
Cfg 7 Kuka Robotiq-85 ATI Axia80-M20 USkin (4×4) 8 global, 2 in-hand

Table 1: Hardware specification of different configurations. For the camera, we adopted Intel Re-
alSense D435, D415 and L515 in our experiments. For all the human demonstration, we use the
same global cameras and an extra ego-centric camera. The in-hand cameras on the robots are not
used when collecting human demonstration videos.

Configuration Modal Size Frequency

Cfg 1-7

RGB image 1280×720×3 10 Hz
Depth image 1280×720 10 Hz

Binocular IR images 1280×720 10 Hz
Robot joint angle 7 10 Hz
Robot joint torque 7 10 Hz

Gripper Cartesion pose 7 100 Hz
Gripper width 1 10 Hz

6DoF F/T 6 100 Hz
Audio N/A 30 Hz

Cfg 7 Tactile 2×16×3 200 Hz
Table 2: Data information of different configurations. The first 9 data modality are the same for all
robot configurations. The last data modality of fingertip tactile sensing is only available in Cfg 7.



Appendix B Task Specification of RH20T

Table 3: Task description for our dataset. “Src.” denotes the source of the task. Note that the task
IDs are not necessarily continuous.

Items Task
Desc. Src. Items Task

Desc. Src. Items Task
Desc. Src.

1. Press
the button
from top
to bottom

Meta-
World

2. Pull out
a napkin

Self-
Proposed

3. Press
three
buttons
from left
to right in
sequence

RLBench

4. Pick
up a block
on the left
and move
it to the
right

Meta-
World

5. Ap-
proach
and touch
the side of
a block

Meta-
World

6. Use the
gripper
to push
a block
from left
to right

Meta-
World

7. Hold a
block with
the gripper
and sweep
it from left
to right on
the table

Meta-
World

8. Grab a
block and
place it at
the des-
ignated
location

RLBench

9. Take
out one
Hanoi
block and
throw it
aside

RLBench

10. Place
the hand-
set of the
telephone
on the
corre-
sponding
phone
cradle

RLBench 11. Water
the plant RLBench

12. Push
the soccer
ball into
the goal

Meta-
World

13. Place
the block
on the
scale

RLBench

14. Re-
move the
object
from the
scale

RLBench 15. Play
the drum

Self-
Proposed

16. Hit the
pool ball RLBench

17. Put
the pen
into the
pen holder

RLBench 18. Play
Jenga RLBench



Items Task
Desc. Src. Items Task

Desc. Src. Items Task
Desc. Src.

19. Play
the first
move as
black in
the upper
right cor-
ner of the
Go board

Self-
Proposed

20. Turn
on the
desk lamp
by press-
ing the
button

RLBench

21. Turn
off the
desk lamp
by press-
ing the
button

RLBench

22. Wave
the flag

Self-
Proposed

23. Turn
on the
power
strip by
pressing
the button

Self-
Proposed

24. Turn
off the
power
strip by
pressing
the button

Self-
Proposed

25. Un-
fold a
piece of
paper

Self-
Proposed

26. Use
the grip-
per to
push and
close the
drawer

Meta-
World

28. Grasp
the handle
and close
the drawer

RLBench

29. Grasp
the handle
and open
the drawer

RLBench
30. Pour
out the
test tube

Self-
Proposed

31. Cover
the box

Meta-
World

32. Slide
the outer
casing
onto the
gift box

Self-
Proposed

33. Grasp
one block
to sweep
the other
block onto
the mark

Meta-
World

34.
Stack the
squares
into a
pyramid
shape

RLBench

35. Pick
up one
small
block

RLBench
36. Shake
the test
tube

Self-
Proposed

37. Stack
the blocks
in a verti-
cal line of
five

RLBench

38. Pick
up the cup RLBench

39. Pour
the water
from one
cup into
another
empty cup

blabla 40. Stack
the cups RLBench

41. Clean
the table-
top with a
sponge

RLBench

42. Screw
the lid
onto the
jar

RLBench

43. Un-
screw the
lid from
the jar

RLBench



Items Task
Desc. Src. Items Task

Desc. Src. Items Task
Desc. Src.

44. Pick
up a bag
of things

Self-
Proposed

45. Place
the brush
on the pen
rack

Self-
Proposed

46. Put
the cup on
the cup
rack

RLBench

47. Take
the cup off
the cup
rack

RLBench

48. Rotate
the steer-
ing wheel
90 degrees
clockwise

Self-
Proposed

49. Rotate
the steer-
ing wheel
90 degrees
counter-
clockwise

Self-
Proposed

50. Put
the dish
on the
dish rack

Self-
Proposed

51. Take
the dish
off the
dish rack

Self-
Proposed

52. Grab
a bas-
ketball,
release it
and shoot
it into the
basket

Meta-
World

53. Use a
clamp

Meta-
World

54. Catch
the mov-
ing object

Self-
Proposed

55. Trans-
fer liquid
using a
dropper

Self-
Proposed

56. Re-
ceive
something
handed
over by a
human

Self-
Proposed

57. Turn
on the
four but-
tons on
the power
strip

Self-
Proposed

58. Turn
off the
four but-
tons on
the power
strip

Self-
Proposed

59. Turn
the knob
to increase
the vol-
ume of a
speaker

Self-
Proposed

60. Turn
the knob
to de-
crease the
volume
of the
speaker

Self-
Proposed

61. Take
everything
out of the
gift box

Self-
Proposed

62. Put
the toilet
paper on
its holder

Self-
Proposed

63. Use a
shovel to
scoop up
an object

Self-
Proposed

64. Take
the toilet
paper off
its holder

Self-
Proposed

65. Build
with small
Lego
blocks

Self-
Proposed

66. Build
with large
Megabloks

Self-
Proposed

67. Press
a button
from top
to bottom
with ob-
stacles

Meta-
World



Items Task
Desc. Src. Items Task

Desc. Src. Items Task
Desc. Src.

68. Press
a button
horizon-
tally with
obstacles

Meta-
World

69. As-
semble
one piece
of a puz-
zle

RLBench
70. Open
a sliding
window

Meta-
World

71. Close
a sliding
window

Meta-
World

72. Drop
coins into
a piggy
bank

Self-
Proposed

73. Put
things in
the drawer

RLBench

74. Press
the button
horizon-
tally

Meta-
World

75. Finish
setting up
the starting
position of
a chess-
board that
is almost
arranged

Self-
Proposed

76. Stack
blocks
(small
Lego) one
on top of
the other
every time

Self-
Proposed

77. Stack
blocks
(small
Lego)
randomly
one at a
time

Self-
Proposed

78. Close
the mi-
crowave
door

RLBench

79. Open
the mi-
crowave
door

RLBench

80. Flip
over and
spread out
the paper
that is laid
flat on the
table

Self-
Proposed

81. Un-
fold the
leg of the
glasses
(with one
hand)

Self-
Proposed

82. Scoop
water with
a large
spoon
from one
bowl to
another

Self-
Proposed

83. Swat
with a fly-
swatter

Self-
Proposed

84. As-
semble:
Attach the
bubble
ring to the
ball

Meta-
World

85. Re-
move the
bubble ring
from the
assembled
bubble ring
and ball

Meta-
World

86. Dial a
number on
an old ro-
tary phone

Meta-
World

88. Pick
up and
place an
object
with ob-
stacles

Meta-
World

89. Push
an object
with ob-
stacles

Meta-
World

90. Ap-
proach
and touch
an object
with ob-
stacles

Meta-
World

91. Move
an object
from one
box to an-
other

Meta-
World

92. Turn
the hands
of a clock

RLBench



Items Task
Desc. Src. Items Task

Desc. Src. Items Task
Desc. Src.

93. Put
the photo
frame
on the
bracket

RLBench 94. Open
a box RLBench

95. Take
the photo
frame
down
from the
bracket

RLBench

96. Take
something
out of a
drawer

RLBench

100. Stir
the beaker
with a
glass rod

Self-
Proposed

101.
Clean the
table with
a cloth

Self-
Proposed

102.
Scrub the
table with
a brush

Self-
Proposed

103. Drag
the plate
to the goal
post after
holding it
down

Meta-
World

104. Drag
the plate
back after
holding it
down

Meta-
World

105. Put
the object
on the
shelf

Meta-
World

106. Take
the object
down
from the
shelf

Meta-
World

107.
Put the
garbage in
the trash
can

RLBench

108.
Sharpen
the pencil
with a
pencil
sharpener

Self-
Proposed

109. In-
sert the
pencil into
the pencil
sharpener

Self-
Proposed

110. Take
the pencil
out from
the pencil
sharpener

Self-
Proposed

111. Put
the object
with the
corre-
sponding
shape into
the corre-
sponding
hole

RLBench

112. Plug
in the
charger to
the socket

Self-
Proposed

116. Use
the correc-
tion tape
on paper

Self-
Proposed

118. Turn
on the wa-
ter tap

Meta-
World

119. Turn
off the wa-
ter tap

Meta-
World

120. In-
stall the
light bulb
by rotat-
ing it

RLBench

121. Take
out the
light bulb
by rotat-
ing it

RLBench

122. Put
the knife
on the
cutting
board

RLBench

123. Put
the knife
on the
knife rack

RLBench



Items Task
Desc. Src. Items Task

Desc. Src. Items Task
Desc. Src.

124. Push
down the
lever

Meta-
World

125. Pull
up the
lever

Meta-
World

126. Plug
in the
power
cord to the
socket

Self-
Proposed

127. Plug
in the
power cord
of the desk
lamp, turn
on the
socket, and
light up the
desk lamp

Self-
Proposed

128. Plug
in the
USB drive
to the
docking
station

RLBench

129. Plug
in the bulb
holder with
a bulb to
the socket

Self-
Proposed

130. Plug
in the bulb
holder with
a bulb to
the socket
and turn on
the switch
of the bulb

Self-
Proposed

131. Stack
the blocks
into a
pyramid

Self-
Proposed

132. Stack
the blocks
into a cross
shape

Self-
Proposed

200. Insert
the tip of
a large
pipette into
the holder
for large
pipette tips

Self-
Proposed

201. Insert
the tip of
a medium
pipette into
the holder
for medium
pipette tips

Self-
Proposed

202. Insert
the tip of
a small
pipette into
the holder
for small
pipette tips

Self-
Proposed

204. Trans-
fer all large
pipette tips
from one
holder to
another
holder
for large
pipette tips

Self-
Proposed

205. Chop
the scal-
lions

Self-
Proposed

206. Chop
the green
garlic

Self-
Proposed

207. Chop
the chili
peppers

Self-
Proposed

208. Slice
the lotus
root

Self-
Proposed

209. Slice
the carrots

Self-
Proposed

210. Chop
the onions

Self-
Proposed

211. Trans-
fer all
medium
pipette
tips from
one rack
to another
holder for
medium
pipette tips

Self-
Proposed

212. Trans-
fer all small
pipette
tips from
one rack
to another
holder
for small
pipette tips

Self-
Proposed

213. Chop
the orange

Self-
Proposed

215. Chop
the pota-
toes

Self-
Proposed

216.
Chop the
cucum-
ber into
shreds

Self-
Proposed



Items Task
Desc. Src. Items Task

Desc. Src. Items Task
Desc. Src.

217. Plug
in the bulb
holder to
the socket

Self-
Proposed

218. Plug
in the bulb
holder to
the socket,
install the
bulb, turn
on the
socket to
light up the
bulb

Self-
Proposed

222.
Cover the
pot with
the lid

RLBench

223. Take
the cups
off the
shelf and
stack them
together

Self-
Proposed

225.
Put the
bowl into
the mi-
crowave

Self-
Proposed

329. Put
the glass
cup onto
the shelf

Self-
Proposed
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