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ABSTRACT

Sobolev training for neural networks, a technique that integrates target derivatives
into the training process, has demonstrated significantly faster convergence to-
wards lower test errors when compared to conventional loss functions. However,
to date, the effect of this training has not been understood comprehensively. This
paper presents analytical evidence that Sobolev training accelerates the conver-
gence of rectified linear unit (ReLU)-networks in the student–teacher framework.
The analysis builds upon the analytical formula for the population gradients of
ReLU networks with centered spherical Gaussian input. Further, numerical ex-
amples were considered to show that the results may be extended to multi-layered
neural networks with various activation functions and architectures. Finally, we
propose the use of Chebyshev spectral differentiation as a solution to approximate
target derivatives and address prior limitations on using approximated derivatives.
Overall, this study contributes to a deeper understanding of the dynamics of ReLU
networks in the student–teacher setting and highlights the convergence accelera-
tion achieved through Sobolev training, known as Sobolev acceleration.

1 INTRODUCTION

In recent years, deep learning has witnessed tremendous growth and development, achieving re-
markable success across various scientific and engineering domains. This success can be attributed
to the development of novel deep neural network architectures such as U-Net Ronneberger et al.
(2015), ResNet He et al. (2016), AlexNet Krizhevsky et al. (2017), RNN encoder–decoder Cho
et al. (2014), and Transformer Vaswani et al. (2017) and powerful optimization techniques includ-
ing Adam Kingma & Ba (2014); Ruder (2016) and RMSprop Riedmiller & Braun (1993). These
developments have resulted in significant advancements in computer vision Shorten & Khoshgoftaar
(2019); Voulodimos et al. (2018) and natural language processing Young et al. (2018); Otter et al.
(2020). More recently, reflecting physics in training, deep learning has gained significant attention
in the field of applied and computational mathematics, particularly for scientific computing. This
development has opened up new avenues for the modeling and simulation of complex physical sys-
tems, such as fluid dynamics, materials science, and quantum mechanics, among others Karniadakis
et al. (2021).

However, despite these impressive accomplishments, our understanding of the training dynamics of
neural networks remains limited. This knowledge gap represents a significant challenge in the field
of deep learning and motivates continued research aimed at developing a deeper understanding of
the inner workings of these powerful models. As an initial effort to analyze the networks, researchers
have focused on their expressive power. Following the seminal work by Cybenko (1989), many stud-
ies have improved the density argument for the neural networks in Cybenko (1989); for instance,
Hornik et al. (1989) generalized the result to multilayer neural networks and Li (1996) proved the
density argument in the Sobolev spaces. In contrast to the concrete knowledge of the density argu-
ment, when the gradient descent is considered, the training dynamics of neural networks are only
partially discovered owing to their nonconvex nature.

To analytically study the training dynamics of shallow neural networks with rectified linear unit
(ReLU) activation under gradient descent, a line of research Tian (2017); Li & Yuan (2017); Zhang
et al. (2019) adopts a student–teacher framework, assuming the presence of a ground truth teacher
network with the same architecture as that of the student network. Another line of research focuses
on overparameterization, including Du et al. (2018); Chizat & Bach (2018); Arora et al. (2019);
Allen-Zhu et al. (2019); Zou et al. (2020). Notably, Jacot et al. (2018) introduced the notion that

1



Under review as a conference paper at ICLR 2024

the training of a neural network can be characterized by a constant kernel, referred to as the neural
tangent kernel (NTK), in the infinite width limit. Furthermore, Wang et al. (2022) extended this
concept to physics-informed neural networks (PINNs). They derived the NTK for these networks
and demonstrated its convergence to a constant kernel.

The authors of Czarnecki et al. (2017) proposed to minimize the Sobolev norms of an error func-
tion rather than the L2-norm, and named this training process as Sobolev training. They proved
that Sobolev training significantly reduced the sample complexity of training and demonstrated its
ability to achieve considerably lower test error compared to the conventional L2-loss function. The
impact of Sobolev training has extended across various fields, prompting extensive research. For
instance, for PINNs, Son et al. (2023) introduced multiple loss functions tailored to Sobolev train-
ing, enhancing the training process. In another application, Vlassis & Sun (2021) harnessed Sobolev
training to refine smoothed elastoplasticity models. Kissel & Diepold (2020) proposed to leverage
approximated derivatives when the target derivatives are unavailable. The potential of Sobolev train-
ing was further exemplified by Cocola & Hand (2020), who demonstrated the global convergence
of this approach for overparameterized networks. More recently, Yu et al. (2023) showcased how
Sobolev loss functions could effectively manage the spectral bias of neural networks.

This study aimed to establish a theoretical foundation for understanding the accelerated conver-
gence achieved by Sobolev training in comparison to conventional L2 training. While this accel-
eration phenomenon has been observed in various studies Son et al. (2023); Lu et al. (2022), the
existing analytical tools, particularly those related to derivative losses Cocola & Hand (2020); Yu
et al. (2023); Wang et al. (2022), are unable to explain the effect comprehensively. In this study, we
adopted a student–teacher framework for ReLU networks, building upon the approach introduced in
Tian (2017). We established and proved the acceleration effect within the context of gradient flow,
specifically for the population loss function defined over spherical Gaussian input data. Further,
we proposed the use of Chebyshev spectral differentiation to adopt Sobolev training even when the
target derivative was unavailable. Consequently, we empirically showed that the proposed method
overcame the limitations of the existing method, that is, the finite difference scheme. Furthermore,
we empirically validated the acceleration effect across a range of generalized scenarios, encom-
passing empirical loss minimization under non-Gaussian inputs, multilayered networks, and diverse
activation functions and optimizers.

1.1 CONTRIBUTIONS

• We presented a proof of Sobolev acceleration, covering both H1 and H2 norms, for a
specific class of ReLU-activated networks in the student–teacher framework. We achieved
this by deriving analytical formulas for the population gradient flow of the L2, H1, and H2

norms.
• We illustrated our analysis through numerical examples, thereby demonstrating its gener-

alization to a practical scenario. In particular, empirical risk minimization using stochastic
gradient descent (SGD) was demonstrated for various learning rates and batch sizes.

• We empirically demonstrated the Sobolev acceleration as a general phenomenon in training
neural networks, considering various activation functions and architectures including the
Fourier feature networks Tancik et al. (2020), and SIREN Sitzmann et al. (2020).

• We proposed to leverage the Chebyshev spectral differentiation to approximate target func-
tion derivatives, particularly when the target derivative was unavailable. Our experimental
results demonstrated that the proposed method surpassed existing finite difference schemes.

• We also applied Sobolev training for training the denoising autoencoder and demonstrated
both convergence acceleration and improved generalization.

2 THEORETICAL RESULTS IN SOBOLEV ACCELERATION

2.1 SOBOLEV TRAINING

Regression problems aim to minimize the error between the hypothesis function(in our case, a neural
network) and the target function. In other words, a minimization problem is solved
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minimize
θ

Ex∼P

[
(uθ(x)− f(x))2

]
≈ minimize

θ

1

N

N∑
i=1

|uθ(xj)− f(xj)|2,

where uθ is a hypothesis, f is a target function, and P is a data distribution. However, Sobolev
training aims to minimize both the expected squared difference and the expected squared difference
of derivatives

minimize
θ

Ex∼P

[
(uθ(x)− f(x))2 + |∇xuθ(x)−∇xf(x)|2

]
≈ minimize

θ

1

N

N∑
i=1

[
|uθ(xj)− f(xj)|2 + |∇xuθ(xj)−∇xf(xj)|2

]
.

In Czarnecki et al. (2017), the authors provided evidence that Sobolev training reduces the sample
complexity of training and achieved considerably higher accuracy and stronger generalization. Later,
Lu et al. (2022) demonstrated implicit Sobolev acceleration, and Son et al. (2023) showed that
Sobolev training expedited the training of neural networks for regression and PINNs. In this section,
we theoretically confirm this acceleration effect of Sobolev training.

We assume the presence of a teacher network to facilitate the computation of the derivatives of the
target. Without this assumption, proving the acceleration of Sobolev training becomes challenging
owing to the absence of relational information between the target and its derivative. For example,
Cocola & Hand (2020) proved the convergence of Sobolev training in the NTK regime. However,
as the labels for the target and its derivative were defined as separate vectors, this approach could
not provide insights into the relationship between the two components in the Sobolev loss func-
tion, which hindered further derivation of the acceleration results. In contrast, our analysis, while
constrained to neural networks with simple architectures, offer a concrete understanding of Sobolev
acceleration.

2.2 H1 LOSS WITH RELU ACTIVATION

Let N be the number of samples and d be the input dimension. We assume that the data follows the
d−dimensional centered spherical Gaussian distribution X ∈ RN×d ∼ N(0, Id×d). In this setting,
we prove the Sobolev acceleration effect for ReLU-type neural networks in the student–teacher
setting, where a student parameter learns a teacher parameter w∗, which defines a target function.
We compare the dynamics of the error function V (w) = ∥w−w∗∥2 for the loss functions defined by
different Sobolev norms, L2, H1, and H2(only in Section 2.3). We compute the analytical formulas
of the dynamics under the gradient flow ẇ = −∇wEX∼N(0,I)(J(w;X)) of the population loss
function EX∼N(0,I)(J(w;X)), where J is a loss function. The error dynamics is expressed as
follows:

V̇ (w) = −(w − w∗)T∇wEX∼N(0,I)(J(w;X)).

In this section, we prove that the convergence V → 0 is accelerated by the Sobolev loss functions.

We begin by mentioning the convergence result for a single ReLU node.

Theorem 1 (Theorem 5 in Tian (2017)). Let g(x;w) = σ(wTx) be a neural network with a single
ReLU node, where w, x ∈ Rd, and σ(x) = max(0, x). We define the population loss function as

L(w) = EX

 1

2N

N∑
j=1

(g(xj ;w)− g(xj ;w
∗))2

 , (1)

for a teacher parameter w∗ and consider the gradient flow ẇ = −∇wL(w). If w0 ∈ {w : ∥w −
w∗∥ < ∥w∗∥}, then dV

dt = −(w − w∗)T∇wL < 0 and wt → w∗ as t → ∞.

This theorem states that for a neural network with a single ReLU node, global convergence can be
achieved depending on the initial parameter w0. In the next theorem, which is our first result, we
prove that using the H1 loss function, the convergence of V can be accelerated to 0.
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Theorem 2. Let g(x;w) = σ(wTx) be a neural network with a single ReLU node, where w, x ∈ Rd,
and σ(x) = max(0, x). We define the population loss function in H1 space as

H(w) = EX

(
1

2N

N∑
j=1

(g(xj ;w)− g(xj ;w
∗))2 + ∥∇xg(xj ;w)−∇xg(xj ;w

∗)∥2
)
,

for a teacher parameter w∗ and consider the gradient flow ẇ = −∇wH(w) =: −∇w(L + J ). If
w0 ∈ {w : ∥w − w∗∥ < ∥w∗∥}. Then,

dV

dt
= −(w − w∗)T∇wH < −(w − w∗)T∇wL < 0,

where L is given in 1, and hence, the convergence w → w∗ is accelerated.

Proof. We provide a sketch of the proof, with the complete derivation presented in the Appendix.
By definition, ∇wH = ∇wL + ∇wE( 12∥∇xg(X;w) − ∇xg(X;w∗)∥2). We prove the theorem
by computing an analytical formula of the gradient of H1 seminorm term. Note that ∇xg(x;w) =
σ′(wTx)w = 1wT x>0w.

∇wJ =
(π − θ)

2π
(w − w∗) +

θ

2π
w,

, where θ denotes the angle between w and w∗. Therefore,

dV

dt
= −(w − w∗)T (∇w(L+ J )) =: −

(
∥w∗∥
∥w∥

)T

(M1 +M2)

(
∥w∗∥
∥w∥

)
.

For θ ∈ (0, π/2], both M1,M2 are positive definite, and hence, the conclusion follows.

2.3 H2 LOSS WITH RELU2 ACTIVATION

We now demonstrate the same effect for higher-order derivatives. As the ReLU function is now twice
weakly differentiable, we considered a neural network with a single ReLU-square node, which has
been widely considered in the literature Yu et al. (2018); Cai & Xu (2019),

g(x) =
(
σ(wTx)

)2

,

where w, x ∈ Rd. We show the global convergence of the neural network with one ReLU2 node in
L2 and the acceleration of the convergence in H1, H2 spaces.

Theorem 3. Let g(x;w) =
(
σ(wTx)

)2
be a neural network with a single ReLU2 node, where

w, x ∈ Rd, and σ(x) = max(0, x). We define the population loss function in H2 space by

I(w) = EX

(
1

2N

N∑
j=1

(g(xj ;w)− g(xj ;w
∗))2 + ∥∇xg(xj ;w)−∇xg(xj ;w

∗)∥2

+ ∥∇2
xg(xj ;w)−∇2

xg(xj ;w
∗)∥2

)
,

=: I1(w) + I2(w) + I3(w),

for a teacher parameter w∗ and consider the gradient flow ẇ = −∇wI(w). If w0 ∈ {w : ∥w −
w∗∥ < ∥w∗∥}. Then,

−(w − w∗)T∇wIj(w) < 0, for j = 1, 2, 3,

and hence, the convergence of V = ∥w−w∗∥2 is accelerated under the gradient flow that minimizes
the higher order Sobolev loss functions.

Proof. The strategy is nearly identical to that in the proof of Theorem 2. We computed the analytical
formula for the population gradients ∇wIj for j = 1, 2, and, 3, and compared the gradient flows of
V = ∥w − w∗∥2. The complete proof is presented in the Appendix.
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3 SOBOLEV TRAINING WITH CHEBYSHEV SPECTRAL DIFFERENTIATION

One major obstacle to applying Sobolev training is that it requires additional derivative information.
However, recent studies have reported that Sobolev training works well even when the derivative
information is unavailable by relying on approximated derivatives obtained through numerical tech-
niques. For example, Kissel & Diepold (2020) applied the finite difference scheme, and Yu et al.
(2023) utilized spectral differentiation to approximate derivatives in the context of Sobolev training
for autoencoders. However, the finite difference scheme is vulnerable to the combination of L2 and
H1 seminorm loss functions, such that one of the two often dominates the other and hinders the
training. In addition, the spectral differentiation used in Yu et al. (2023) is built upon the periodicity
assumption of the solution. To overcome these limitations, we proposed to leverage the Chebyshev
spectral differentiation Trefethen (2000), which is among the most successful numerical differen-
tiation methods. The Chebyshev spectral differentiation can be implemented by multiplying the
differentiation matrix DChev presented in Trefethen (2000).

The optimization problem for Sobolev training is

minimize
θ

1

N

N∑
i=1

[
|uθ(xj)− f(xj)|2 + |∇xuθ(xj)−∇xf(xj)|2

]
This becomes

minimize
θ

1

N

 N∑
i=1

[
|uθ(xj)− f(xj)|2

]
+ ∥vec(∇xuθ(xj))−DChevvec(f(xj))∥22

 ,

for the Chebyshev nodes {xj}Nj=1. The Chebyshev spectral differentiation can also be implemented
using the fast Fourier transform (FFT), as described in Trefethen (2000).

4 EXPERIMENTS

4.1 ANALYTICAL FORMULAS FOR THE POPULATION GRADIENTS

We verified the analytical formulas for the population gradients presented in Section 2. We randomly
sampled w∗ from the standard normal distribution and added a uniform random vector e s.t. ∥e∥ ≤
∥w∗∥ to w∗ to obtain w = w∗ + e and ∥w − w∗∥ ≤ ∥w∗∥. We employed two neural networks

gi(x;w) = (σ(wTx))i, and gi(x;w
∗) = (σ(w∗T

x))i,

for i = 1, 2 with parameters w, and w∗, respectively. Subsequently, the error between the analyt-
ical formula (e.g., ∇wJ ,∇wIj) and the Monte-Carlo approximation of the population loss under
spherical Gaussian distribution was computed by varying the input dimensions and the number of
samples. Figure 2 shows the log–log plots for mean square errors between the analytical formu-
las and the Monte-Carlo approximations. For example, we computed 1

2N

∑N
i=1 ∇w∥∇xg(xj ;w)−

∇xg(xj ;w
∗)∥22 using automatic differentiation, and computed its discrepancy to ∇wJ . In all cases,

the error decreased linearly in the log-log scale, as the number of samples increased. Moreover, the
errors were sufficiently small even in relatively high dimensions.

4.2 EMPIRICAL RISK MINIMIZATION UNDER STOCHASTIC GRADIENT DESCENT

Our theoretical results relied on the gradient flow dynamics of the population loss function, assum-
ing an infinitesimal learning rate. However, in practical settings, we often use stochastic gradient
descent(SGD), which incorporates mini-batch gradient descent of the empirical loss function, with
relatively large learning rates. In this subsection, we demonstrate through numerical examples that
the Sobolev acceleration effect persists in empirical loss minimization with SGD.

We again randomly considered w∗ ∈ Rd and selected w such that ∥w − w∗∥ ≤ ∥w∗∥.
We used SGD to minimize the empirical loss functions 1

2N

∑N
i=1(g(xj ;w) − g(xj ;w

∗))2 and
1

2N

∑N
i=1(g(xj ;w) − g(xj ;w

∗))2 + ∥∇xg(xj ;w) − ∇xg(xj ;w
∗)∥2, where g(x;w) = σ(wTx)
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Figure 1: Log–log plots of the mean square errors(MSE) versus the number of samples. MSEs are
computed between the analytical formulas ∇wJ ,∇wIj and empirical expected values. Errors tend
to decrease as the number of samples increase across all input dimensions.

Figure 2: Comparison of convergence of L2 training(dashed lines) and H1 training(solid lines). (a),
(b): Losses and errors for different learning rates. (c), (d): Losses and errors for different batch
sizes. In all cases, Sobolev training clearly accelerates the convergence of both loss and error. We
can also observe that Sobolev training achieves a better local minimum in terms of both loss and
error.

and N=10,000. We explored a range of relatively large learning rates: [1e-1, 1e-2, 1e-3, 1e-4]. Fig-
ures 1(a) and (b) illustrate the MSE loss values and the errors ∥w−w∗∥, respectively, during training
for various learning rates in log–log scales. Figures 1 (c) and (d) show the MSE loss values and the
errors, respectively, for different batch sizes in [64, 256, 1024, 4096]. As evident, Sobolev training
expedited convergence and yielded superior local minima in terms of both loss and error.

4.3 SOBOLEV ACCELERATION FOR VARIOUS ARCHITECTURES

Setup. We first present empirical evidence that the Sobolev acceleration is a general phenomenon
occurring across various activation functions and architectural setups and not limited to the student–
teacher setting under Gaussian input with a single ReLU or ReLU2 node. In other words, we now
consider the following generic (L2−)regression problem:

minimize
w

1

2N

N∑
j=1

(
u(xj ;w)− f(xj)

)2
,

and Sobolev training for the same problem:

minimize
w

1

2N

N∑
j=1

(
u(xj ;w)− f(xj)

)2
+ ∥∇xu(xj ;w)−∇xf(xj)∥22,

where f is a target function, for various neural networks u(x;w).

Various activations As an initial illustrative example, we compared the Sobolev acceleration for
standard fully connected neural networks with different activation functions. The target function
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Figure 3: MSE versus training iterations for different activation functions. Each network comprises
three hidden layers, each of which has 64 hidden nodes. We train the networks for 50,000 training
epochs. H1 training accelerates convergence in all cases, while the H2 loss function enhances
training specifically for the sine activation function.

was set as f(x, y) = sin(10 ∗ (x + y)) + (x − y)2 − 1.5x + 2.5y + 1 on (x, y) ∈ [1, 4] × [−3, 4]
and a fully connected neural network with 2-64-64-64-1 hidden nodes was employed along with an
ADAM(Kingma & Ba (2014)) optimizer. The learning rate was 1e-4 to minimize the loss functions
for 50,000 epochs. We selected ReLU, Leaky ReLU, ReLU-squared, Tanh, and Sine functions as
the activation functions. The results are presented in Figure 3. For all activation functions, Sobolev
training with H1 loss function resulted in a significantly faster convergence than the L2 training.
However, the H2 loss function expedited the training only for the sine activation function. Notably,
Sobolev training was considerably more powerful when applied with the sine activation function.
As reported by Sitzmann et al. (2020), the periodic activation function enables the network to learn
the high-frequency features. We believe that the Sobolev loss function intensifies the sine-activated
network to be more robust in learning high-frequency features of the target function as discussed in
a recent study Yu et al. (2023).

Sobolev Training for Fourier feature networks and SIRENs Tancik et al. (2020) proved that
standard neural networks prefer to learn low-frequency components than the higher ones. They pro-
posed Fourier feature networks, which were very simple but powerful architectures that explicitly
incorporated sinusoidal features before the first hidden layer, to overcome this ”spectral bias.” Spec-
tral bias is also considered in the Sobolev training literature, as reported by Yu et al. (2023). The
loss function with the Sobolev norm can modulate the spectral bias in training neural networks. We
demonstrated that Fourier feature networks trained using Sobolev loss functions exhibit significantly
greater robustness to spectral bias compared to those trained using the conventional L2 loss function.
Another line of research, known as SIREN, was introduced in Sitzmann et al. (2020), which utilized
periodic activation functions in conjunction with a principled initialization. SIREN has been proven
to robustly capture complex signals and derivatives and we expect Sobolev training to solidify the
robustness of SIRENs.

Here, we demonstrated a substantial improvement achieved by combining Sobolev training and the
Fourier features and SIREN in solving regression problems on two multi-scale functions. We used
the target functions f1(x) = sin(2πx) + sin(20πx), on [−1, 1], and f2(x) = x + sin(2πx4) on
[0, 2] which is known to be challenging for neural networks to learn Wang et al. (2021). To build
the Fourier feature networks, we built a fully connected network with 64-64-1 hidden nodes upon
64 Fourier features with randomly generated frequencies. To implement SIREN, we used a fully
connected network with 1-64-64-64-1 nodes under uniform initialization and sine activation function
as in Sitzmann et al. (2020). Figure 4 shows the acceleration of Sobolev training for the Fourier
feature networks or SIREN. For the standard MLP, H1 training barely accelerated the convergence
in learning f1 whereas the acceleration was observed in the early stage of training for f2. H1

training for the standard MLP yielded an error level similar to that of L2 trained Fourier feature
network and SIREN. Moreover, Sobolev training for Fourier features and SIREN converged rapidly
to much smaller errors compared to L2-trained standard MLP.
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Figure 4: MSE versus training epochs for different architectures. To alleviate the randomness and
oscillatory behavior of the errors, we repeatedly trained 100 networks and averaged the errors. Three
architectures are compared: the standard MLP, Fourier feature networks, and SIREN.

Figure 5: (a): MSEs for different loss functions during training. We compared four loss functions:
L2, exact H1, FDM-based H1, and the Chebyshev spectral differentiation based H1. (b): Actual
computation times to achieve certain error levels of [1e-3, 1e-4, 1e-5].

4.4 SOBOLEV TRAINING WITH APPROXIMATED DERIVATIVES

We now present comparative experiments demonstrating that Sobolev training with approximated
derivatives using the proposed Chebyshev spectral differentiation outperformed the finite differ-
ence method (FDM) and sometimes exact derivatives. We considered a target function, the Acklev
function f(x, y) = −20 exp(−0.2

√
0.5(x2 + y2)) − exp(0.5(cos (2πx) + cos (2πy))) + e + 20,

(x, y) ∈ [−2, 2]2, from Czarnecki et al. (2017). We trained a neural network of 2-64-64-64-1 nodes
with the hyperbolic tangent activation function using the ADAM optimizer with a learning rate of
1e-4. Figure 5 (a) shows the errors during training in log scale for different loss functions: L2, exact
H1, H1 based on FDM, and H1 based on the Chebyshev spectral differentiation. The proposed
method achieved error levels almost equivalent to those in the exact derivative case, thereby sug-
gesting that we can leverage the benefits of Sobolev training without requiring additional derivative
information. Surprisingly, our method exhibited slightly faster convergence than the exact derivative
case for this target function. In our experiments, the FDM-based approach converged to an unde-
sired local minimum, specifically a constant solution that resulted in a large L2 loss and zero H1

seminorm loss. The actual computation times required to achieve specific error levels of [1e-3, 1e-4,
1e-5] are presented in Figure 5 (b) for these loss functions. Owing to the efficient computation of
tensor multiplication, our method achieved error levels of [1e-3, 1e-4] without significantly increas-
ing computation time compared to the L2 loss function, and reached 1e-5 MSE considerably faster
than the L2 loss function.
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Figure 6: Results of the denoising autoencoders for the ϵ1 noise case are presented in the top row,
and those for the ϵ2 noise case are shown in the bottom row. The first column illustrates convergence
acceleration, the second column displays test inputs with amplified noises, and the third and fourth
columns present the corresponding reconstruction results.

4.5 SOBOLEV TRAINING FOR THE DENOISING AUTOENCODERS

Autoencoders can be applied to image-denoising tasks by taking noisy input images and train-
ing them to output the corresponding original images. This task can be naturally integrated with
Sobolev training, as first considered in Yu et al. (2023). We present several numerical experiments
that demonstrate the accelerated convergence and improved generalization ability achieved through
Sobolev training using the denoising autoencoders equipped with Convolutional Neural Networks
(CNNs).

We utilize a simple autoencoder comprising an encoder and a decoder, each consisting of three
convolution layers with LeakyReLU activations. The Adam optimizer with a learning rate of 5e-
3 is employed. The input image is contaminated with two types of noise: ϵ1 ∼ N(0, σ2

1), and
ϵ2 = σ2 sin(2πη(x+y)), where x, y ∈ [0, 1], ϵ1 follows a normal distribution, and ϵ2 is deterministic
noise with a specific amplitude and frequency.

The first column of Figure 6 illustrates the convergence acceleration achieved through Sobolev train-
ing in both noise settings. The second column shows the noisy inputs generated from the MNIST
dataset (LeCun et al., 2010). During training, the autoencoders are exposed to noisy inputs generated
by adding ϵ1 ∼ N(0, 1/4) and ϵ2 = 0.3 sin(2π(x + y)). Subsequently, the trained autoencoders
are tested with significantly amplified noise levels: ϵ1 ∼ N(0, 1) and ϵ2 = 0.3 sin(20π(x + y)).
This testing phase aims to assess the improved generalization performance of Sobolev training. In
Figure 6, the second column displays the test noisy images, while the third and fourth columns
showcase the test reconstruction results of L2 and H1 trained autoencoders, respectively. These
results highlight the enhanced generalization ability achieved through Sobolev training.

5 CONCLUSION

Sobolev acceleration is a convergence acceleration phenomenon of training neural networks that has
been empirically observed in previous studies. Although restricted to a relatively simple architec-
ture, this paper presents the first rigorous theoretical evidence of Sobolev acceleration by considering
the gradient flow dynamics of the student–teacher setting. Not limiting ourselves to theoretical find-
ings, we presented several empirical observations that implied that Sobolev acceleration is a general
phenomenon occurring in various architectures, including the Fourier features and SIREN. Addi-
tionally, we proposed to leverage the Chebyshev spectral differentiation, which can achieve spectral
accuracy, to approximate the target derivative for use in Sobolev training. We demonstrated that the
proposed method significantly improved the error of various regression problems and overcame the
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limitations of the finite difference scheme. Finally, we provide more practical experiments with the
MNIST dataset demonstrating both the acceleration and improved generalization of Sobolev train-
ing. As a concluding remark, we intend to delve deeper into the analysis of the gradient flow of
Sobolev loss functions for neural networks with various architectures in our future work.
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A APPENDIX

A.1 PROOF OF THEOREMS

Theorem A.1 (Theorem 2). Let g(x;w) = σ(wTx) be a neural network with a single ReLU node,
where w, x ∈ Rd, and σ(x) = max(0, x). We define the population loss function in H1 space as

H(w) = EX

(
1

2N

N∑
j=1

(g(xj ;w)− g(xj ;w
∗))2 + ∥∇xg(xj ;w)−∇xg(xj ;w

∗)∥2
)
,

for a teacher parameter w∗ and consider the gradient flow ẇ = −∇wH(w) =: −∇w(L + J ). If
w0 ∈ {w : ∥w − w∗∥ < ∥w∗∥}. Then,

dV

dt
= −(w − w∗)T∇wH ≤ −(w − w∗)T∇wL < 0,

where L is given in 1, and hence, the convergence w → w∗ is accelerated.

Proof. By definition, ∇wH = ∇wL + ∇wE( 12∥∇xg(X;w) − ∇xg(X;w∗)∥2). We prove the
theorem by computing an analytical formula of the gradient of H1 seminorm term. Note that
∇xg(x;w) = σ′(wTx)w = 1wT x>0w.

∇wJ := ∇wE
(

1

2N
∥∇xg(X;w)−∇xg(X;w∗)∥2

)
= ∇wE

(
1

2N

N∑
j=1

∥1wT xj>0w − 1w∗T xj>0w
∗∥2

)

= E
(

1

N

N∑
j=1

(1wT xj>0w − 1wT xj>01w∗T xj>0w
∗)

)

=
1

N

N∑
j=1

(
P(wTxj > 0)w − P(wTxj > 0 ∧ w∗T

xj > 0)w∗
)

=
(π − θ)

2π
(w − w∗) +

θ

2π
w,

where θ denotes the angle between w, and w∗. Therefore,

dV

dt
=− (w − w∗)T (∇w(L+ J ))

=− (w − w∗)T∇wL − (w − w∗)T
(
(π − θ)

2π
(w − w∗) +

θ

2π
w

)
=−

(
∥w∗∥
∥w∥

)T (
sin(2θ) + 2π − 2θ −(2π − θ) cos(θ)− sin(θ)

−(2π − θ) cos(θ)− sin(θ) 2π

)(
∥w∗∥
∥w∥

)
−
(
∥w∗∥
∥w∥

)T (
2π − 2θ −(2π − θ) cos(θ)

−(2π − θ) cos(θ) 2π

)(
∥w∗∥
∥w∥

)
=:−

(
∥w∗∥
∥w∥

)T

(M1 +M2)

(
∥w∗∥
∥w∥

)
.

For θ ∈ (0, π/2), both M1,M2 are positive definite, and hence, the conclusion follows.

Theorem A.2 (Theorem 3). Let g(x;w) =
(
σ(wTx)

)2
be a neural network with a single ReLU2

node, where w, x ∈ Rd, and σ(x) = max(0, x). We define the population loss function in H2 space

13
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as

I(w) = EX

(
1

2N

N∑
j=1

(g(xj ;w)− g(xj ;w
∗))2 + ∥∇xg(xj ;w)−∇xg(xj ;w

∗)∥2

+ ∥∇2
xg(xj ;w)−∇2

xg(xj ;w
∗)∥2

)
,

=: I1(w) + I2(w) + I3(w),

for a teacher parameter w∗ and consider the gradient flow ẇ = −∇wI(w). If w0 ∈ {w : ∥w −
w∗∥ < ∥w∗∥}. Then,

−(w − w∗)T∇wIj(w) < 0, for j = 1, 2, 3,

and hence, the convergence of V = ∥w−w∗∥2 is accelerated under the gradient flow that minimizes
higher order Sobolev loss functions.

Proof. We sequentially compute the analytical formulas of ∇wIj(w).

∇wI1(w) = ∇wE
(

1

2N

N∑
j=1

(σ(wTxj)
2 − σ(w∗T

xj)
2)2

)

= E
(

1

N

N∑
j=1

(σ(wTxj)
2 − σ(w∗T

xj)
2)∇w(σ(w

Txj)
2)

)

= E
(

2

N

N∑
j=1

(1wT xj>0(w
Txj)

2 − 1w∗T xj>0(w
∗T

xj)
2)1wT xj>0(w

Txj)xj

)

= E
(

2

N

∑
wT xj>0

(wTxj)
2(wTxj)xj −

∑
wT xj>0

w∗T xj>0

(w∗T

xj)
2(wTxj)xj

)

Let F (v, w) =
∑N

j=1 1vT xj>0∧wT xj>0(v
Txj)(w

Txj)
2xj , then ∇wI1(w) = 2

NE(F (w,w) −
F (w,w∗)).

We consider an orthonormal basis e = v
∥v∥ , e⊥ = w/∥w∥−e cos θ

sin θ , where θ = ∠(v, w), and any
orthonormal set of vectors that span the rest. In this coordinate system, e = (1, 0, · · · 0), v =
∥v∥e, w = (∥w∥ cos θ, ∥w∥ sin θ, 0, · · · , 0), and any vector x = (r cosϕ, r sinϕ, z3, · · · zd), where
ϕ = ∠(x, e), r = ∥x∥. Then,

E(F (v, w))

= N

∫
Rd−2

∫ π
2

−π
2 +θ

∫ ∞

0

∥v∥r cosϕ∥w∥2r2 cos2(ϕ− θ)


r cosϕ
r sinϕ
z3
...
zd


e−r2/2

2π
rdrdϕdz3 · · · dzd

=
N∥v∥∥w∥2

2π


cos θ(2 sin θ + 2(π − θ) cos θ) + (π − θ) + sin θ cos θ

sin θ(2 sin θ + 2(π − θ) cos θ)
0
...
0


=

N∥w∥2

2π
((π − θ) + sin θ cos θ)v +

N∥v∥∥w∥
2π

(2 sin θ + 2(π − θ) cos θ)w

Thus, ∇wI1(w) =
(
3∥w∥2w− ∥w∗∥

π ((π−θ)+sin θ cos θ)w− ∥w∥∥w∗∥
π (2 sin θ+2(π−θ) cos θ)w∗).

Now the first inequality follows. Let G = (π − θ) + sin θ cos θ,H = 2 sin θ + 2(π − θ) cos θ, then

14
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the first result follows :

−(w − w∗)T∇wI1(w)

= − 1

π
(3π(∥w∥2 − ∥w∥∥w∗∥)2 + 2∥w∥∥w∗∥(3π∥w∥2 + 2∥w∗∥2(G cos θ +H)

− 2∥w∥∥w∗∥(3π +G+H cos θ)))

= − 1

π
(3π(∥w∥2 − ∥w∥∥w∗∥)2)− 1

2π

(
∥w∗∥
∥w∥

)T

M

(
∥w∗∥
∥w∥

)
< 0,

as

M =

(
2Gcosθ + 2H −(3π +G+H cos θ)

−(3π +G+H cos θ) 6π

)
is positive definite (M11 > 0,M22 > 0, det(M) > 0) for θ ∈ (0, π/2].

Now, we consider ∇wI2(w). Note that ∇xg(x;w) = 21wT x>0(w
x)w.

∇wI2(w) = ∇wE
(

1

2N

N∑
j=1

∥21wT xj>0(w
Txj)w − 21w∗T xj>0(w

∗T

xj)w
∗∥2

)

= E
(

4

N

N∑
j=1

(
1wT xj>0(w

Txj)(w
Tw)xj + 1wT xj>0(w

Txj)
2w

− 1wT xj>0∧w∗T xj>0(w
∗T

xj)(w
Tw∗)xj

− 1wT xj>0∧w∗T xj>0(w
Txj)(w

∗T

xj)w
∗))

Let F (v, w) =
∑N

j=1 1vT xj>0∧wT xj>0(w
Txj)((v

Tw)xj + (vTxj)w), then ∇wI2(w) =
4
NE(F (w,w) − F (w,w∗)). We again consider the orthonormal basis containing e = v

∥v∥ , e⊥ =
w/∥w∥−e cos θ

sin θ . Then,

E(F (v, w))

= N

∫
Rd−2

∫ π
2

−π
2 +θ

∫ ∞

0

∥v∥∥w∥r cos(ϕ− θ)(∥w∥ cos θxj + r cosϕw)
e−r2/2

2π
rdrdϕdz3 · · · dzd

=
N cos θ sin θ

2π
∥w∥2v + N∥v∥∥w∥

2π
(sin θ + 2(π − θ) cos θ)w

Thus, ∇wI2(w) = 4
(
∥w∥2w − cos θ sin θ

2π ∥w∗∥2w − ∥w∥∥w∗∥
2π (sin θ + 2(π − θ) cos θ)w∗). Let

G1 = sin θ + 2(π − θ) cos θ. Consequently,

−(w − w∗)T∇wI2(w)

= − 2

π

(
2π∥w∥4 − cos θ sin θ∥w∗∥2∥w∥2 −G1∥w∥∥w∗∥ cos θ

− 2π∥w∥3∥w∗∥ cos θ + cos2 θ sin θ∥w∗∥3∥w∥+ ∥w∥∥w∗∥3G1

)
= − 2

π

(
2π(∥w∥2 − ∥w∥∥w∗∥ cos θ)2 + ∥w∥∥w∗∥1

2

(
∥w∗∥
∥w∥

)T

M2

(
∥w∗∥
∥w∥

))
< 0,

where

M2 =

(
2G1 + 2 cos2 θ sin θ − cos θ(G1 + sin θ + 2π cos θ)

− cos θ(G1 + sin θ + 2π cos θ) 4π cos θ

)
is positive definite for θ ∈ (0, π/2].

15



Under review as a conference paper at ICLR 2024

Finally, we prove −(w − w∗)T∇wI3(w) < 0. Note that ∇2
xg(x;w) = 21wT x>0ww

T ∈ Rd×d.

∇wI3(w)

= ∇wE
(

1

2N

N∑
j=1

∥∥21wT xj>0ww
T − 21w∗T xj>0w

∗w∗T ∥∥2)

= ∇wE
(

1

2N

N∑
j=1

trace(
(
21wT xj>0ww

T − 21w∗T xj>0w
∗w∗T

)T (21wT xj>0ww
T − 21w∗T xj>0w

∗w∗T

)
))

= ∇wE
(

2

N

N∑
j=1

(
1wT xj>0∥w∥4 − 21wT xj>0∧w∗T xj>0(w

Tw∗)2 + 1w∗T xj>0∥w
∗∥4

))

= E
(

8

N

N∑
j=1

(
1wT xj>0∥w∥2w − 1wT xj>0∧w∗T xj>0(w

Tw∗)w∗))

=
8

N

N∑
j=1

(
P(wTxj > 0)∥w∥2w − P(wTxj > 0 ∧ w∗T

xj > 0)(wTw∗)w∗
)

= 4∥w∥2w − 4(π − θ)

π
(wTw∗)w∗,

where θ denotes the angle between w, and w∗. Hence,

−(w − w∗)T∇wI3(w) = − 4

π

(
π∥w∥4 − (π − θ)∥w∥2∥w∗∥2 cos2 θ − π∥w∥3∥w∗∥ cos θ

+ (π − θ)∥w∥∥w∗∥3 cos θ
)

= − 4

π

(
π(∥w∥2 − wTw∗)2 + (wTw∗)

(
∥w∗∥
∥w∥

)T

M

(
∥w∗∥
∥w∥

))
< 0,

where

M =

(
2(π − θ) (θ − 2π) cos θ

(θ − 2π) cos θ 2π

)
is positive definite and wTw∗ > 0 for θ ∈ (0, π

2 ]. This completes the proof.
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