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Abstract

Rigorous statistical evaluations of large language
models (LLMs), including valid error bars and sig-
nificance testing, are essential for meaningful and
reliable performance assessment. Currently, when
such statistical measures are reported, they typi-
cally rely on the Central Limit Theorem (CLT).
In this position paper, we argue that while CLT-
based methods for uncertainty quantification are
appropriate when benchmarks consist of thou-
sands of examples, they fail to provide adequate
uncertainty estimates for LLM evaluations that
rely on smaller, highly specialized benchmarks.
In these small-data settings, we demonstrate that
CLT-based methods perform very poorly, usually
dramatically underestimating uncertainty (i.e. pro-
ducing error bars that are too small). We give
recommendations for alternative frequentist and
Bayesian methods that are both easy to imple-
ment and more appropriate in these increasingly
common scenarios. We provide a simple Python
library for these Bayesian methods at https://
github.com/sambowyer/bayes_evals.

1. Introduction
Benchmarks provide a systematic way for measuring the
capabilities and risks of large language models (LLMs), for
tracking progress over time as well as enabling performance
comparison across different models. Such language model
evaluations (“LLM evals”) inform critical decisions about
model selection and deployment. However, current bench-
marking practices rarely quantify the inherent statistical un-
certainty in these evals, which can substantially undermine
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the validity of and confidence in the reported results (Marie
et al., 2021; Reuel et al., 2024; Biderman et al., 2024).

Recent works have recognized the importance of statistical
rigour in LLM evals and the need to improve it, for instance,
through the inclusion of error bars (Dror et al., 2018; Miller,
2024; Madaan et al., 2024; Hermann et al., 2024). When
such uncertainty estimates are reported at all, they are most
often asymptotic, based on Central Limit Theorem (CLT).

In this position paper, we take it as read that LLM evals
should come with error bars. Instead, we ask about the best
way to compute those error bars. Here, we argue that while
CLT-based methods work well in LLM evals with thou-
sands of examples, they systematically fail to provide
valid uncertainties for smaller, specialized benchmarks,
which are becoming increasingly common. In these set-
tings, accurate uncertainty quantification requires more
appropriate frequentist or Bayesian methods.

Many prominent LLM benchmarks such as Big Bench (Sri-
vastava et al., 2023), MMLU (Hendrycks et al., 2021a),
GSM8K (Cobbe et al., 2021), have large evaluation sets,
on the order of hundreds to thousands. Such benchmarks
focus on relatively straightforward tasks that many LLMs
have largely saturated (e.g. high school science questions),
and generally do not accurately represent the tasks LLMs
are used for in practical real-world applications (Raji et al.,
2021; Hardy et al., 2025). In contrast, both industry practi-
tioners developing proprietary benchmarks, and researchers
evaluating advanced capabilities of frontier models, such as
advanced reasoning, multi-turn tool use or tasks involving
specialized domain expertise, increasingly focus on more
targeted and representative benchmarks with very high qual-
ity labels. These benchmarks are much more expensive to
construct and therefore tend to involve far fewer examples,
often on the order of tens to hundreds per task.

There are plenty of examples that illustrate this trend. For
instance, CUAD (Hendrycks et al., 2021b) is a specialized
contract understanding dataset that consists of 510 labelled
documents across 25 contract types. It required extensive
annotation efforts from law students and reviews from ex-
perienced attorneys, with an estimated cost of around $2
million. FrontierMath (Glazer et al., 2024; Pillay, 2024)—
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a new benchmark developed through a collaboration with
over 60 expert mathematicians—contains around 300 prob-
lems across 23 categories, some of which have fewer than
3 samples. Other benchmarks relevant to today’s frontier
models include AIME with 15 competition math problems,
SWE Bench Verified, containing 500 samples across 4 dif-
ficulty levels (Jimenez et al., 2024), MLE Bench with 75
Kaggle competitions (Chan et al., 2025), and LiveBench,
which frequently updates tasks across 6 categories, currently
averaging 55 examples per task (White et al., 2025).

Furthermore, even large benchmarks such as Big Bench are
often broken down into smaller sub-tasks. As data from two
different sub-tasks cannot possibly be considered indepen-
dent and identically distributed (IID), we cannot naively use
the size of the overall dataset to justify applying the CLT.
Instead, each sub-task should be treated separately, and be-
cause these sub-tasks are typically much smaller, CLT-based
approaches again become unreliable.

In this paper, we show that CLT-based confidence intervals
can be extremely problematic in these small data regimes.
To make robust comparisons against alternative methods,
both frequentist and Bayesian, we conduct a large suite of
experiments with realistic simulated data, where the true
parameter values are known. We construct various inter-
vals and measure their coverage, that is, the proportion of
times those intervals contain the ground truth. We find that,
particularly with smaller datasets, the CLT produces unre-
liable intervals that fail to achieve their target confidence
level, also known as nominal coverage. This is true across
a variety of settings: when evaluating a single model and
when comparing two models, both with IID and clustered
questions.

In simpler settings, such as computing error bars for a single
model on IID data, we find that there are more appropriate,
non-CLT-based frequentist methods that perform as well
as Bayesian methods. However, in more complex settings,
such frequentist methods are less readily available, while
Bayesian methods allow us to easily extend to cases such
as clustered data (e.g. the reading comprehension task dis-
cussed above) or when dealing with arbitrary metrics that
are not averages of IID variables (e.g. F -scores).

2. The Central Limit Theorem and
Frequentist Uncertainty Quantification

The Central Limit Theorem is a foundational result in fre-
quentist statistical inference. It states that, for sufficiently
large sample size N , the sampling distribution of the sam-
ple mean will be approximately normal, regardless of the
distribution of the original population.

Formally, if X1, . . . , XN are independent and identically
distributed random variables with mean µ ∈ R and finite
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Figure 1: Error bars on LangChain tool-use benchmark.
95% intervals for model accuracy on N=20 questions. The
CLT produces invalid intervals, extending beyond [0, 1] or
collapsing to zero, highlighting its unreliability in practical
settings. The alternative frequentist and Bayesian methods
we advocate yield valid and well-calibrated intervals even
in this small-data regime. See Appendix B for more results.

variance σ2 > 0, then
√
N(µ̂− µ)

d−→ N
(
0, σ2

)
as N → ∞, (1)

where µ̂ = 1
N

∑N
i=1 Xi is the sample mean. Put differently,

the distribution of µ̂ is arbitrarily close to N (µ, σ2

N ) for large
enough N . The result extends verbatim to the multivariate
setting: if each Xi is a p-dimensional random vector with
mean µ and covariance Σ, then µ̂ = 1

N

∑N
i=1 Xi is approx-

imately N (µ, Σ
N ) then for large N (Van der Vaart, 2000).

The CLT underlies many common frequentist methods for
uncertainty quantification, such as confidence intervals and
hypothesis tests. To apply it in practice, however, we need
to know population variance σ2. Of course we rarely know
σ2 and so we estimate it empirically by the sample variance,
S2 = 1

N−1

∑N
i=1(Xi − µ̂)2. By Slutsky’s theorem, replac-

ing σ2 with its consistent estimator S2 in Eq.1 preserves the
asymptotic normality (see e.g. Theorem 11.3.2 in Lehmann
et al., 2022), so that we have

√
N(µ̂− µ) ≈ N (0, S2).

The standard error of the sample mean, SE(µ̂), is the stan-
dard deviation of the sampling distribution of µ̂, and equals
SE(µ̂) =

√
S2
/N .

2.1. CLT-Based Confidence Intervals

For a desired confidence level 1 − α, typically 95% (α =
0.05) or 99% (α = 0.01), the general form of a two-sided
CLT-based confidence interval (CI) for the mean µ is

CI1−α(µ) = µ̂± zα/2 SE(µ̂), (2)
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where zα/2 is the α/2-th quantile of the standard normal
distribution (e.g. z0.025 ≈ 1.96 for a 95% CI).

Two independent samples Often we want to compare
the means µA and µB from two independent samples with
sizes NA and NB and sample variances SA and SB . The
parameter of interest is then usually their difference µA−µB .
Under the independence assumption, the variance of the
difference in sample means is the sum of their individual
variances, so the standard error of the difference is SE(µ̂A−
µ̂B) =

√
S2
A/NA + S2

B/NB. The 1 − α confidence interval
for µA − µB then follows the same template as Eq.2:

CI1−α(µA−µB) = (µ̂A− µ̂B)±zα/2 SE(µ̂A− µ̂B). (3)

Two paired samples In many scenarios, the two samples
are paired, meaning each observation in sample A is natu-
rally matched with one in sample B. Let (XA,i, XB,i) for
i = 1, . . . , N and define the difference Di = XA,i −XB,i.
The parameter of interest for which we wish to construct
a confidence interval is µD = E[Di]. This setup arises
often, for example in before-after studies where measure-
ments are taken on the same subjects before and after a
treatment or models are evaluated before and after inter-
ventions such as RLHF. The CLT applies directly to the
differences D1, . . . , DN , which we treat as a single sample
and the form of the confidence interval the same as in Eq.2:

CI1−α(µD) = µ̂D ± zα/2 SE(µ̂D). (4)

2.2. CLT-Based Hypothesis Testing

There is a direct correspondence between null hypothesis
significance testing (NHST) and confidence intervals: for
a two-sided test at significance level α, we reject H0 if
and only if the 1− α confidence interval not contain zero.
The relationship extends to one-sided tests with appropriate
modifications (see §3.5, 5.4 in Lehmann et al., 2022).

To illustrate this connection, consider testing whether a
population mean µ equals some hypothesized value µ0. The
classical setup defines a null hypothesis H0 : µ = µ0 and an
alternative, H1 : µ ̸= µ0 (or a one-sided e.g. H1 : µ > µ0).
By the CLT and Slutsky’s Theorem, we have that

Tone-sample =
µ̂− µ0

SE(µ̂)
=

√
N(µ̂− µ0)

S

follows a standard normal distribution asymptotically. We
reject the null hypothesis H0 at a pre-specified significance
level α (usually α = 0.05 or 0.01) if |T | > zα/2 for the two-
sided test, or if T > zα (or T < −zα) for the one-sided test.
Otherwise, we fail to reject H0. This is exactly equivalent
to checking if the (1− α) confidence interval excludes µ0.

Similarly, when comparing two sample means (independent
or paired), testing whether their difference (µA−µB or µD)
is zero is equivalent to checking if zero lies within the CI.

This equivalence means that both approaches share the same
assumptions and limitations, particularly their reliance on
asymptotic normality and independent sampling, making
them equally unreliable in the small data regimes.

Special case: Bernoulli data When Xi
IID∼ Bernoulli(θ),

the variance of the distribution is completely determined by
the mean: Var(Xi) = θ(1− θ). Using its sample estimate
S2 = θ̂(1− θ̂), the standard error simplifies to

SE(θ̂) =

√
θ̂(1− θ̂)

N
, where θ̂ =

1

N

N∑
i=1

Xi. (5)

This gives us the well-known formula for the confidence
interval of a proportion, which has been recommended by
and used in several recent works for LLM evals (e.g. Madaan
et al., 2024; Miller, 2024; Dubey et al., 2024).

3. Failures of the CLT for LLM Evals
We show that CLT-based CIs break down in many settings in
the context of LLM evals with small sample sizes. Each sub-
section includes an experiment presenting a different failure
mode, following the evaluation protocol outlined below.

Experimental setup In each experiment, we sample 100
values of the underlying model performance parameter, θ,
from a specified prior distribution. For each θ, we generate
200 independent datasets of sizes N = 3, 10, 30 and 100,
giving us a total of 80,000 LLM eval datasets. This large
number of datasets ensures that our results are robust to
the randomness in the data generation procedure. We ad-
ditionally repeated experiments five times with different
random seeds (affecting both the sampled parameters and
datasets), resulting in standard errors in coverage on the
order of 10−3 or lower (see Appendix G). For every dataset,
we construct a range of interval methods for 100 different
nominal coverage levels, 1− α, ranging from 0.8 to 0.995.

Interval methods In all experiments, we use at least three
methods to construct intervals:

• CLT-based confidence intervals, as described in § 2.1.
• Bootstrap confidence intervals which are obtained

by resampling the original data K times (with re-
placement) to generate a distribution of the estimator
{θ̂(k)}Kk=1 and taking the empirical α/2 and 1− α/2
quantiles to form the interval. Since bootstrap perfor-
mance depends greatly on K (Davidson & MacKinnon,
2000), we use a large K = 10, 000 throughout.

• Bayesian credible intervals derived from the posterior
of θ, computed either exactly for conjugate models or
approximated using importance sampling. Credible
intervals are not unique; in our experiments, we report
quantile-based intervals (QBI), either analytic or em-
pirical. Highest posterior density intervals (HDI) is a
common alternative which we ablate in Appendix J.
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Figure 2: IID question setting. Coverage vs. confidence level (top) and vs. interval width (bottom) for various interval-
calculation methods on the value of θ. While all methods approach the ideal 1 − α coverage line for large N , only the
Bayesian credible interval and Wilson confidence intervals achieve this for small N .

Evaluation metrics Frequentist confidence intervals and
Bayesian credible intervals are fundamentally different in
their interpretation. A 95% confidence interval means that
under repeated sampling (as we do here), 95% of the com-
puted intervals will contain the true θ. A 95% credible
interval has a 95% (posterior) probability of containing θ. In-
deed, confidence intervals are commonly misinterpreted as
credible intervals (Hubbard, 2011; Greenland et al., 2016).

Despite these differences in interpretation, we evaluate both
methods on the same frequentist criterion—coverage prob-
ability, which we estimate as the empirical proportion of
intervals that contain the true θ. To highlight differences
at the high confidence levels (i.e., 95% and above), which
are most relevant in practice, we use logit-logit axes when
plotting empirical versus nominal coverage. We also report
mean absolute distance from nominal coverage, averaged
across α and experiment repeats, which we refer to as ‘cov-
erage error’; this is shown on log-log axes against sample
size N . We additionally record the average interval width,
which we report in Appendix H, along with ablations on the
choice of the data generating prior in Appendix I.

3.1. Failure of CLT-Based Confidence Intervals in IID
Questions Setting

It is common to assume that benchmarks contain IID ques-
tions, so that each eval outcome is a Bernoulli trial with
some underlying probability of success θ. Under this as-
sumption, we compute the standard standard error of the
empirical mean θ̂ using Eq. 5. However, this expression
raises an immediate problem: as θ̂ approaches 0 or 1, the
confidence interval shrinks towards 0, incorrectly suggesting

certainty. In small-data settings, it is perfectly possible that
the model gets all questions right (θ̂ = 1) or wrong (θ̂ = 0).
In either case, the CLT-based interval (Eq.2) vanishes, since
SE(θ̂) = 0, which is clearly not right. Additionally, when
θ̂ or 1− θ̂ is less than 1/(1 + N/z2

α), the boundaries of the
interval would fall outside the valid [0, 1] range. As Fig.1
shows, both of these problems do occur in practice.

While these issues might occur in practice only rarely, they
do highlight that the assumptions underlying the asymptotic,
CLT-based approaches may not be suitable for LLM evals,
at least in smaller data regimes. In that case, we expect to
see broader failures of CLT-based confidence intervals.

To empirically test this hypothesis, we evaluate the coverage
of different types of intervals by generating data from
θ ∼ Beta(1, 1) yi ∼ Bernoulli(θ) for i = 1, . . . N. (6)

This simulation framework mimics the common LLM eval
scenario described at the start of this subsection, with true
model accuracy θ uniformly distributed between 0 and 1.

In addition to the three primary interval methods, here we
consider two additional frequentist approaches designed
specifically for Bernoulli trials: the approximate Wilson
score interval (WS, Wilson, 1927) and the exact Clopper-
Pearson interval (CP, Clopper & Pearson, 1934), which we
describe in Appendix A for completeness.

The results are shown in Fig.2: the top row plots the con-
fidence level against the empirical coverage. We find that
both CLT-based and bootstrap CIs show poor calibration, as
the actual coverage is well below the nominal 1− α level,
indicated by the gray dashed line. This is a fairly catas-
trophic failure: the whole point of a confidence interval, by
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Figure 3: Clustered questions setting. Coverage vs. confidence level for various interval-calculation methods on the value
of θ. See Appendix H for interval widths. Importantly, note that in a small-data regime, neither simple CLT nor clustered
CLT intervals produce correct coverage. Methods ignoring the clustered structure of the data are shown as dotted lines.

construction, is to get the right coverage. As an example, in
the N=100 column we see that 95% CLT-based intervals
achieve a coverage of only 92.5%. This leads to a significant
difference in interval width: the corresponding Gaussian
quantiles (used in Eq.2) for confidence 0.95 and 0.925 are
z0.025 ≈ 1.96 and z0.0125 ≈ 1.78. Furthermore, looking at
the width of these intervals (bottom row in Fig.2), we find
that CLT-based or bootstrap CIs are inefficient—they are
wider than needed for any given coverage.

In contrast, we find that simple Bayesian methods based
on a Beta-Bernoulli distribution, and the frequentist WS in-
terval perform well. While approximate, WS demonstrates
favourable coverage and length properties and is generally
preferred to the exact CP, which is overly conservative (too
wide) in practice (Agresti & Coull, 1998; Newcombe & Nur-
minen, 2011). Interestingly, the CP interval can be shown
to be equivalent to the Bayesian credible interval but with
the uniform prior removed (Thulin, 2014). In other words,
the Bayesian approach can be seen as providing a form of
shrinkage of the CP interval thus mitigating over-coverage.

We would, therefore, recommend using WS or Bayesian
intervals in practice. Both methods are easy to apply. WS
(and CP) are implemented in SciPy. The posterior for Beta-
Bernoulli is available in closed form:
P (θ|y1:N ) = Beta

(
1 +

∑N
i=1yi, 1 +

∑N
i=1(1− yi)

)
, (7)

so we can use the quantiles of the Beta distribution:

Snippet 1: Analysis for a single model

1 from scipy.stats import binomtest, beta
2
3 # y is a length N binary "eval" vector
4 S, N = y.sum(), len(y) # total successes & questions
5 result = binomtest(k=S, n=N)
6
7 # 95% Wilson score and Clopper-Pearson intervals
8 wilson_ci = result.proportion_ci("wilson", 0.95)
9 cp_ci = result.proportion_ci("exact", 0.95)

10
11 # Bayesian Credible interval
12 posterior = beta(1+S, 1+(N-S))
13 bayes_ci = posterior.interval(confidence=0.95)

3.2. Failure of CLT-Based Confidence Intervals in
Clustered Questions Setting

The previous discussion was based on the simplest setting:
one LLM and IID questions. Miller (2024) emphasizes
that the CLT-based approach is flexible enough to apply to
more complex settings, such as when questions are clustered.
Examples include reading comprehension benchmarks that
have multiple questions about a single passage of text (e.g.
Dua et al., 2019; Choi et al., 2018; Lai et al., 2017; Rajpurkar
et al., 2018; Shi et al., 2023). We would expect that LLMs
might find some passages of text easier to understand than
others, which would result in varying performance—better
accuracy on simpler passages and lower accuracy on more
complex passages. Importantly, this introduces non-IID
structure in the responses which must be accounted for.
To address this, Miller (2024, Sec. 2.2) suggests using
clustered standard errors (Abadie et al., 2023). This is a
post-hoc adjustment to account for the correlation among
the T clusters with Nt questions each and

∑T
t=1 Nt = N :

SEclust. =

√√√√SE2
CLT +

1

N2

T∑
t=1

Nt∑
i=1

∑
j ̸=i

(yi,t − ȳ)(yj,t − ȳ).

Here yi,t ∈ {0, 1} is the success on question i of task t, and
ȳ = 1

N

∑T
t=1

∑Nt

i=1 yi,t. To assess the effectiveness of this
approach, we use data from the following generative model:

d ∼ Gamma(1, 1), θ ∼ Beta(1, 1)

θt ∼ Beta(dθ, d(1− θ)), yi,t ∼ Bernoulli(θt).
(8)

Here, d controls the the range of difficulties of the tasks or
clusters (i.e. the concentration), θ is the global performance
of the model, and is the quantity we are trying to infer,
while θt is the performance on a given task. Note that
E [θt | θ] = θ, so θ controls the expected accuracy on any
given task. If d is large then θt is always close to θ, which
indicates lower correlations between questions within a task.
In contrast, if d is small, then θt is further from θ, implying
larger correlations between questions in a task/cluster.
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Figure 4: Independent model comparison setting. Coverage vs confidence level for various interval-calculation methods
when comparing two independent means θA and θB for both the difference (Diff) and odds ratio (OR) metrics. The diagonal
gray dashed line represents the expected coverage, 1− α. The CLT is not applicable to the OR.

To perform inference in this model, we can integrate out
θt so that the total number of correct answers in task t is
given by Yt ∼ BetaBin(Nt, dθ, d(1 − θ)). For simplicity,
we use importance sampling (IS) with the prior as proposal:
θ ∼ β(1, 1) and d ∼ Gamma(1, 1). Then the importance
weights {w(k)}Kk=1 are given by the Beta-Binomial likeli-
hood of the data Yt under each (θ(k), d(k)):

w(k) =
∏T

t=1 BetaBin(Yt;Nt, d
(k)θ(k), d(k)(1− θ(k))).

We use these weights to resample (with replacement) our
collection of samples {θ(k)}Kk=1 and calculate credible inter-
vals using the relevant percentiles in the resulting collection.
Simple Python code for this IS is provided in Appendix E.1.

Fig.3 compares the three primary methods under both the
IID and clustered question assumption along with the CP
and WS intervals (which also assume IID data). To our
knowledge there are no readily available frequentist meth-
ods, tailored to such clustered data that can be applied in
here. Of all interval calculation methods we consider, only
the Bayesian method based on a clustered model (Eq. 8)
achieves the right coverage across different sample sizes.

3.3. Failure of CLT-Based Confidence Intervals in
Independent Model Comparison Setting

We often wish not only to construct a confidence interval
for the performance of a single model, but also to compare
two models. Consider the setup from § 3.1 but now we have
two language models, A and B. Let θA and θB be the true
probabilities of success of models A and B, each of which
is independently generating Bernoulli outcomes as in the
model defined in Eq.6. This setup is applicable, for example,
when we only have access to the empirical accuracies, θ̂A
and θ̂B , and not the per-question binary data, itself (yA;i

and yB;i), or when models are evaluated on different sets of
questions. In these cases, there are two main approaches for
comparing θA and θB :

• looking at their difference, Diff = θA− θB , and check-
ing if 0 lies within its (1− α) confidence interval.

• looking at their odds ratio, OR = θA/(1−θA)
θB/(1−θB) , and

checking if 1 lies within its (1−α) confidence interval.

A confidence interval including the respective null value (0
for the difference, 1 for the odds ratio) suggests that θA and
θB are statistically indistinguishable at level α.

With the CLT, we can only construct a confidence interval
on the difference in performances, since the odds ratio is
a non-linear transformation of the parameters. Whilst the
CLT guarantees asymptotic normality for the difference of
proportions, it does not extend to their ratio or odds ratio
(more on this in § 3.5). As shown by the solid orange curves
in Fig. 4, the CLT-based interval from Eq. 3 has coverage
far below the target level when N is small. Although better
frequentist methods exist, e.g. the hybrid score interval in-
troduced in Newcombe (1998), they are harder to implement
and are not available in standard libraries.

For odds ratio analysis, the standard frequentist method to
obtaining confidence intervals involves inverting the Fisher’s
exact test (FET, Fisher, 1922), which guarantees coverage of
at least 1− α at any dataset size and any pair of parameters.
However, similarly to the CP exact interval for a single
proportion, FET tends to be overly conservative, especially
for small N , as shown by the dotted orange curves in Fig.4.

The Bayesian approach is able to give us credible intervals
for both the difference and the odds ratio. To construct these,
we draw samples from the exact posterior (Eq.7), compute
the metric of interest and take the empirical quantiles. As
Fig.4 shows, the Bayesian intervals achieves excellent cov-
erage across all sample sizes for both metrics.

Altham (1969) showed that Fisher’s exact test corresponds
to our Bayesian analysis if we use highly conservative priors,
θA ∼ Beta(1, 0) and θB ∼ Beta(0, 1). These improper pri-
ors effectively assume the most extreme scenario—perfect
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Figure 5: Paired model comparison setting. Coverage vs. confidence level for various interval-calculation methods on the
value of θA − θB . Methods ignoring the paired structure of the data—assuming instead IID questions and answers from
model A and from model B, as per § 3.1—are shown as dotted lines.

performance for model A and worst possible performance
for model B, which helps explain the over-coverage.

With small data, we recommend Bayesian intervals for the
difference or odds ratio. It can be implemented as follows:

Snippet 2: Bayesian analysis: Model comparison

1 # y_A and y_B are vectors of evals for two models
2 import numpy as np
3
4 S_A, S_B = y_A.sum(), y_B.sum()
5 # draw posterior samples (ps)
6 ps_A = beta(1 + S_A, 1 + (N - S_A), size=2000)
7 ps_B = beta(1 + S_B, 1 + (N - S_B), size=2000)
8
9 # posterior difference and 95% QBI

10 ps_diff = ps_A - ps_B
11 bayes_diff = np.percentile(ps_diff, [2.5, 97.5])
12
13 # posterior odds ratio and 95% QBI
14 ps_or = (ps_A / (1 - ps_A)) / (ps_B / (1 - ps_B))
15 bayes_or = np.percentile(ps_or, [2.5, 97.5])

Remark 1 (Bayesian model comparison). A key benefit of
the Bayesian approach to model comparison is that we can
easily compute probabilities that one model outperforms
another. Given posterior samples, θ(k)m ∼ p(θm | ym,1:N ),
for models m ∈ {A,B}, we can calculate:

P(θA > θB | yA;1:N , yB;1:N ) =
1

K

K∑
k=1

1[θ
(k)
A > θ

(k)
B ].

We cannot make such probabilistic statements in frequen-
tist inference since the parameters are treated as fixed (but
unknown) constants and probabilities only refer to hypothet-
ical repetitions of the data.

3.4. Failure of CLT-Based Confidence Intervals in
Paired Model Comparison Settings

It is important to also consider model comparison in the
paired setting, where two models have been evaluated on
the same set of questions. A natural approach is to construct
a CLT-based interval on θA − θB using Eq.4 which directly
takes into account the paired structure of the data. Paired
intervals are advantageous because evaluating both models
on the same questions lets common question-specific effects

cancel out, which reduces variance. This leads to a more
precise comparison if the outcomes are positively correlated,
though negative correlation might increase variance.

To simulate paired evals data, we first sample probabilities of
success for each model, alongside a correlation ρ = 2ρ̂− 1:

θA, θB ∼ Beta(1, 1), ρ̂ ∼ Beta(4, 2).

This formulation encourages positive correlations, which
is expected in the context of LM evals: when models are
evaluated on the same questions, factors such as question
difficulty tend to affect both models similarly, leading to pos-
itively correlated performance (more details in Appendix C).

Next, we sample N points from a bivariate Gaussian

(a1, b1), . . . , (aN , bN )
IID∼ N

((
Φ−1(θA)
Φ−1(θB)

)
,

(
1 ρ
ρ 1

))
,

where Φ(·) is the standard univariate Gaussian CDF. This
parameterisation of the Gaussian covariance ensures that
each 2D point has unit variances and correlation ρ. Mean-
while, the choice of the Gaussian’s mean ensures that if we
obtain binary eval outcomes for model A and model B by
considering the sign of ai and bi respectively:

yA;i = 1[ai > 0], yB;i = 1[bi > 0],

and the marginal probabilities of success for both models
are as desired, that is, P(yA;i) = θA and P(yB;i) = θB .

Much like in the clustered setting (§ 3.2), we perform
Bayesian inference on the posterior distribution of θA − θB
using importance sampling, drawing K=10, 000 samples
from the prior as the proposal distribution. Details and code
for this can be found in Appendix E.2. We also present an
‘unpaired Bayes’ method in which we construct credible in-
tervals on θA−θB by sampling from the posteriors obtained
for each of θA and θB separately as in § 3.3.

We see in Fig. 5 that all non-Bayesian methods severely
underperform when it comes to achieving nominal cover-
age for small N . Moreover, the advantages of Bayesian
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Figure 6: F1-score error bars. Coverage vs. confidence level for Bayesian and bootstrap intervals. The CLT is not directly
applicable due to the non-linearity of the F1-score, so we use the the delta method to construct a CLT-based CI.

inference for enabling direct probabilistic comparison, as
discussed in Remark 1, apply equally well in this setting.
We would recommend using the paired Bayes method as
it can account for correlations and thus produce narrower
intervals. The unpaired Bayes is also a reasonable and easier
to implement alternative (see Appendix I.4 for ablations).

3.5. Failure of CLT-Based Confidence Intervals When
Metrics Are Not Simple Averages

Many metrics for LLM evals cannot be represented as sim-
ple averages of IID variables, in which case the CLT cannot
be used to construct confidence intervals at all. We already
saw this issue with the odds ratio in § 3.3, but the problem
extends to many other widely used metrics. Indeed, some
recent work, e.g. the Llama 3 report, acknowledges this lim-
itation and omits reporting confidence intervals for metrics
that are not simple averages (see p.29 in Dubey et al., 2024).

For many tasks (e.g. retrieval), it makes sense to not only
track whether a model gave a correct or incorrect response,
but also whether that response was a true positive (TP), true
negative (TN), false positive (FP), or a false negative (FN).
These counts form a 2×2 contingency table known as a
confusion matrix. The outcome yi can therefore be viewed
as a draw from a Categorical distribution with some param-
eter θ := (θTP, θFP, θFN, θTN), and the total counts in each
category Nconf := (NTP, NFP, NFN, NTN) is a draw from a
Multinomial(N,θ). To simulate an evaluation dataset we
sample ground truth parameters from a uniform Dirichlet
prior, which is conjugate to the categorical likelihood:

θ ∼ Dirichlet(1, 1, 1, 1),

yi ∼ Categorical(θ),

θ | y1:N ∼ Dirichlet(1 +Nconf).

(9)

Many metrics derived from the confusion matrix, e.g. Fβ-
scores, MCC or G-score, are non-linear in θ, so the CLT
is not applicable (Caelen, 2017). Under standard regularity
conditions, the delta method (Oehlert, 1992) can be used to
in conjunction with the CLT to approximate the sampling

distribution of smooth non-linear functions of estimators via
a first-order Taylor expansion (see Appendix A for details).

As an example, consider the F1 score, which is the harmonic
mean of precision and recall:

F1 = 2
precision · recall
precision+ recall

, (10)

where precision= NTP
NTP+NFP

and recall = NTP
NTP+NFN

.

Our empirical evaluation is therefore focused only on com-
paring Bayesian credible intervals based on the model from
Eq.9 against the bootstrap, with results presented in Fig.6.
The Bayesian intervals closely track the nominal coverage,
while the bootstrap ones systematically under-cover. We
therefore recommend using Bayesian intervals in practice.
The next code snippet demonstrates how to implement this
approach. To show robustness to the choice of interval, we
also include highest density intervals (HDIs), with results
shown in Fig.39 in the Appendix.

Snippet 3: Bayesian credible interval for F1 score

1 from numpy.random import dirichlet
2 from arviz import hdi
3
4 # confusion_arr is np.array([N_TP,N_FP,N_FN,N_TN])
5 ps = dirichlet(confusion_arr + 1, 2000)
6 f1_samples = calculate_f1(ps) # implements Eq.10
7
8 # 95% HDI and QBI
9 bayes_hdi = hdi(f1_samples, hdi_prob=0.95)

10 bayes_qbi = np.percentile(f1_samples, [2.5, 97.5])

4. Alternative Views
It may be argued that CLT-based methods are usually suffi-
cient in practice when their assumptions are satisfied. We
do not disagree. However, we argue that it is safer to use
the more robust strategies laid out in this paper, which are
just as easy to apply (as demonstrated throughout), perform
no worse for large N and perform substantially better in the
increasingly common small-N setting. This is especially im-
portant since knowing whether a certain N is “large enough”
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Table 1: Summary of interval methods and their key properties. Coverage describes whether a method is able to provide
at least the desired nominal coverage in small-sample settings. Efficiency describes how tight and precise the resulting
intervals are given the nominal coverage (e.g., CLT-based intervals can be invalid or too wide). The computational cost of
all methods is negligible compared to the cost of running the LLM evals, though we indicate their relative costs to facilitate
comparison across methods.

Coverage
small N

Efficiency
small N

Computational
cost

Easy to
implement

CLT ✗ ✗ Very low Yes
CLT-based variants (e.g. Delta method) ✗ ✗ Very low Moderate

Custom frequentist (e.g. Wilson) ✓ ✓ Very low Moderate
Bootstrap ✗ ✗ Low Moderate

Bayes (conjugate) ✓ ✓ Very low Yes
Bayes (importance sampling) ✓ ✓ Low Moderate

for the CLT to hold—a vague and unhelpful framing of
the problem—would be extremely context-dependent and
difficult to determine a priori. A key reason we chose to
word the title of this paper as we did is to avoid implying
the existence of some hard-valued N∗ below which the CLT
is always invalid and unjustifiable, and above which it is
always sound and reliable.

We argued that Bayesian credible intervals can be useful
and flexible alternatives to CLT-based confidence intervals,
particularly in settings where other frequentist methods are
either too complicated or non-existent. Two common crit-
icisms of Bayesian methods are that they are sensitive to
the choice of a prior and that they can be computationally
expensive. It is worth exploring these points in some detail
with respect to the Bayesian methods discussed above.

Throughout this paper we use broad, non-informative, uni-
form priors over model performance to ensure that error
bars are determined only by the benchmark results, and not
by strong prior beliefs about how we might expect a certain
model to perform. Whilst incorporating such information
into an informative or subjective prior can lead to tighter
error bars, it comes with important caveats. First, achieving
optimal coverage and efficiency (i.e. producing the smallest
interval width) requires knowing the true underlying prior
information (Severini, 1993). In practice, this information
is typically unavailable or unreliable. Second, subjective
priors are often viewed as controversial: the choice of a spe-
cific prior can be arbitrary or unjustified, which in turn will
introduce unwanted biases (Efron, 1986; Gelman, 2008).

Nonetheless, considering the impact of priors is critical in
any Bayesian procedure. In Appendix I we explore the
effect of prior mismatch across each of the experimental
settings (§3.1–3.5). In these ablations, we continue to use
our non-informative uniform prior for inference, but con-
sider scenarios where we could incorporate additional prior
information. For example, Fig.18 and Fig.19 consider the
cases where a model is expected to perform well or badly,

respectively. We find that Bayesian coverage performance
generally does not fall below that of CLT-based methods
and often still outperforms them, especially for small N .

Finally, the added computational cost of Bayesian infer-
ence is negligible compared to the overall cost of bench-
mark construction and running the LLM evals themselves
(see Appendix F), making it a worthwhile trade-off for im-
proved accuracy in uncertainty quantification. In Table 1 we
summarise these comparisons in terms of interval quality,
computational cost and ease of implementation.

5. Conclusion
In this position paper, we argued against using the CLT to
construct confidence intervals for LLM evals because the
assumptions—a large number of independent samples—are
rarely satisfied. LLM evals often have highly structured
correlations among questions, correlated model outputs, and
rely on increasingly smaller, specialized benchmarks. The
CLT also does not apply to common metrics like F -scores
that are not simple averages of IID variables. Of the alterna-
tives that we examined, we found that boostrap intervals also
perform poorly, while more appropriate frequentist methods
and Bayesian credible intervals are much more reliable. We
provided examples and code demonstrating how easy it is
to implement these methods, and we recommend adopting
them as standard practice for modern LLM evaluations.
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A. Frequentist Confidence Intervals
A.1. Confidence Intervals Based on the t-Distribution

When the data is normally distributed with unknown mean and variance, X1, . . . , XN
IID∼ N (µ, σ2), the Student’s t-

distribution provides an exact finite sample solution for confidence intervals (and hypothesis tests):

CI1−α(µ) = µ̂± tα/2,ν SE(µ̂), (11)

where tα/2,ν is the α/2-th quantile of the Student’s t-distribution with ν = N − 1 degrees of freedom. When N ≈ 30 (or
above), the t-distribution is close to the standard normal (e.g. t0.025,29 = 2.045 vs z0.025 = 1.960).

Confidence intervals based on Eq.11 are often used even when the data is not normally distributed. In this case, the following
assumptions are required for exactness:

• The sample mean, µ̂, is approximately normally distributed (which by the CLT holds for large enough sample sizes).

• The quantity S2(N−1)
σ2 follows a Chi-Squared distribution with N−1 degrees of freedom, χ2(N−1), that is independent

of the sample mean, µ̂.

Recall that in § 2, we relied on the Slutsky’s theorem to deal with the unknown variance. For smaller sample sizes, if the two
assumptions above are approximately satisfied, the t-based intervals can have better properties than z-based ones. However,
for the binary LLM evals we consider here, the variance S2 is not independent of the sample mean. Nevertheless, in Fig.7
we show the properties of a t-based interval for the independent model comparison setting, where we construct intervals on
the difference in means θA − θB .
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Figure 7: Independent model comparison setting. Intervals for the difference in means θA − θB .

Fig. 7a shows more favourable coverage properties compared to the CLT-based intervals. However, these intervals are
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extremely wide (Fig.7b) with width exceeding 1 for small N . Given that the interval [0, 1] achieves 100% coverage for any
N , the t-based intervals are clearly not useful.

A.2. Wilson Score Intervals

The Wilson score (WS) interval (Wilson, 1927) is applicable when constructing CIs for a single model’s accuracy. It has
improved coverage properties over the CLT approximation, particularly with small sample sizes.

Given Bernoulli data yi
IID∼ Bernoulli(θ), i = 1, . . . , N , the WS interval is:

CI1−α,Wilson(θ) =
θ̂ +

z2
α/2

2N

1 +
z2
α/2

N

±
zα/2
2N

1 +
z2
α/2

N

√
4Nθ̂(1− θ̂) + z2α/2 (12)

where zα/2 is the α/2-th quantile of the standard normal distribution. (Note that the centre of the interval is no longer the
sample mean θ̂—this helps to avoid the interval from collapsing to zero-width or extending past [0, 1].)

To arrive at this, we first take a normal approximation of the binomial with the sample standard deviation given by√
θ(1− θ)/N :

zα/2 ≈
θ − θ̂√

θ(1− θ)/N
. (13)

Rearranging this we get a quadratic in θ

θ(1− θ)z2α/2 = (θ − θ̂)2 (14)

0 = (N + z2α/2)θ
2 − (2Nθ̂ + z2α/2)θ +Nθ̂2 (15)

which we can solve using the standard quadratic formula to find the upper and lower values of θ for the 1− α confidence
interval

p =
(2Nθ̂ + z2α/2)±

√
(2Nθ̂ + z2α/2)

2 − 4(N + z2α/2)(Nθ̂2)

2(N + z2α/2)
(16)

=
2Nθ̂ + z2α/2

2(N + z2α/2)
±

√
4N2θ̂2 + 4Nθ̂z2α/2 + z4α/2 − 4N2θ̂2 − 4Nθ̂2z2α/2

2(N + z2α/2)
(17)

=
2Nθ̂ + z2α/2

2(N + z2α/2)
±

zα/2

√
4Nθ̂ − 4Nθ̂2 + z2α/2

2(N + z2α/2)
(18)

=
2Nθ̂ + z2α/2

2(N + z2α/2)
±

zα/2

√
4Nθ̂(1− θ̂) + z2α/2

2(N + z2α/2)
(19)

=
θ̂ +

z2
α/2

2N

1 +
z2
α/2

N

±
zα/2
2N

1 +
z2
α/2

N

√
4Nθ̂(1− θ̂) + z2α/2. (20)

Thus arriving at Eq.12.

A.3. Clopper-Pearson Intervals

Similarly to WS, the Clopper-Pearson (CP) interval (Clopper & Pearson, 1934) is applicable when constructing CIs for
a single model’s accuracy. It is an exact method based on the cumulative binomial distribution, albeit often yielding
conservative (wider) intervals.

Given Bernoulli data yi
IID∼ Bernoulli(θ), i = 1, . . . , N , the CP interval is defined as containing all values of θ for which a

two-sided binomial hypothesis test with significance level α does not reject the null hypothesis H0 : θ = θ̂ in favour of the
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alternative H1 : θ ̸= θ̂, resulting in a coverage that is guaranteed to be at least 1− α. We may write the CP interval as

CI1−α,CP(θ) = [θlower, θupper], (21)

where θlower and θupper are such that (denoting ȳ = 1
N

∑N
i=1 yi)

N∑
k=Nȳ

(
N

k

)
θklower(1− θlower)

n−k =
α

2
(22)

Nȳ∑
k=0

(
N

k

)
θkupper(1− θupper)

n−k =
α

2
. (23)

It can be shown (Thulin, 2014) that the values of θlower and θupper are given by

θlower = B

(
α

2
,

N∑
i=1

yi, 1 +

N∑
i=1

(1− yi)

)
(24)

θupper = B

(
1− α

2
, 1 +

N∑
i=1

yi,

N∑
i=1

(1− yi)

)
(25)

where B(α, a, b) is the α-th quantile of the Beta(a, b) distribution.

A.4. Delta Method

As discussed in § 3.5, in some settings the metric we are interested in is not θ itself, but some value g(θ) (such as the
F1-score). The usual way to estimate g(θ) is to use the plug-in estimator g(θ̂), where θ̂ is the maximum likelihood estimate
of θ. In this case, the CLT cannot be directly applied to obtain confidence intervals for g(θ).

Under standard regularity conditions, the delta method (Oehlert, 1992) can be used in conjunction with the CLT to
approximate the sampling distribution of such metrics. By the (multivariate) CLT we have

√
n(θ̂ − θ⋆)

d−→ N (0,Σ) (26)

Let g : θ 7→ g(θ) be a differentiable function. Then

√
n(g(θ̂)− g(θ))

d−→ N (0,∇g(θ)⊤Σ∇g(θ)). (27)

This allows us to construct an approximate (1− α) confidence interval for g(θ) as follows:

CI1−α(g(θ)) = g(θ̂)± zα/2

√
1

n
∇g(θ̂)⊤Σ∇g(θ̂). (28)

As before, we can rely on Slutsky’s theorem and use the sample covariance Σ̂ if the population covariance is unknown.

A.5. Delta method for the F1 score

Let θ = (θTP, θFP, θFN, θTN)
⊤. The F1 score can be written as

g(θ) = F1 =
2θTP

2θTP + θFP + θFN
=

2θTP

d
d := 2θTP + θFP + θFN. (29)
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Then we have for the gradient ∇g(θ):

∇g(θ) =



∂g

∂θTP

∂g

∂θFP

∂g

∂θFN

∂g

∂θTN


=



2(θFP + θFN)

d2

−2θTP

d2

−2θTP

d2

0


=



2(1− F1)

d

−F1

d

−F1

d

0


(30)

For the covariance of θ we have:

Cov(θ) =
1

N

(
diag(θ)− θθ⊤

)
(31)

The sample estimates of θ, Cov(θ) and F1 are:

θ̂ =

(
NTP

N
,
NFP

N
,
NFN

N
,
NTN

N

)⊤

(32)

Cov(θ) =
1

N

(
diag

(
θ̂
)
− θ̂ θ̂⊤

)
(33)

F̂1 =
2NTP

2NTP +NFP +NFN
(34)

which we use to get the sample variance of g(θ) = F1 as per Eq.27:

Var(F1) = ∇g(θ)⊤ Σ∇g(θ) (35)

≈ ∇g(θ̂)⊤ Cov(θ̂)∇g(θ̂) (36)

=
1

N
∇g(θ̂)⊤

[
diag(θ̂)− θ̂ θ̂⊤]∇g(θ̂) (37)

=
F̂1 (1− F̂1) (2− F̂1)

N d
(38)

=
F̂1 (1− F̂1) (2− F̂1)

2NTP +NFP +NFN
(39)

Thus the standard error is

SE(F̂1) =

√
F̂1(1− F̂1)(2− F1)

2NTP +NFP +NFN
, (40)

and the approximate two-sided 100(1− α)% confidence interval is

CI1−α(F1) = F̂1 ± z1−α/2

√
F1(1− F1)(2− F1)

2NTP +NFP +NFN
. (41)
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B. Real-World Eval Error Bars
B.1. Full LangChain Eval Error Bars

Here we present the error bars on all LLMs present in the Langchain dataset in Fig.8 for which we could find response data
publicly on all N = 20 questions1. The evals represent model success on Langchain’s 26-tool typewriter task, in which
LLM agents must spell out strings of letters by using 26 tools which each represent a letter of the alphabet. Below, we
clarify the more specific names of some of the LLMs in the figure, with the GPT models marked by a † being the ones
shown in Fig.1.

• GPT-4†: gpt-4-1106-preview

• Mixtral-8-7B: mixtral-8x7b-instruct

• GPT-3.5†: gpt-3.5-turbo-0613-openai

• GPT-4‡: gpt-4-0613

• GPT-3.5‡: gpt-3.5-turbo-1106

• Llama-2-70B: llama-v2-70b-chat

• Mistral-7B: mistral-7b-instruct

• Llama-2-13B: llama-v2-13b-chat

Claude-2.1
GPT-4

Mixtral-8x7B
GPT-3.5

GPT-4
GPT-3.5

Llama-2-70B

Mistra
l-7B

Llama-2-13B
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0.4

0.6

0.8

1.0
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cu

ra
cy
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CLT

Wilson
Clopper-Pearson

Bootstrap
Empirical Mean

Figure 8: Error bars on Langchain Tool-use Benchmark. Extended version of Fig.1. The benchmark consists of N = 20
questions and we show 95% confidence/credible intervals for the model accuracy, with the empirical mean shown in black.

1The raw evals data can be found along with code to reproduce all experiments in this paper at https://github.com/
sambowyer/no_clt_paper.
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B.2. Math Arena AIME 2025 II Error Bars

In Fig.9 we present error bars for all models on the Math Arena AIME 2025 II benchmark (Balunović et al., 2025; AIME II,
2025). We take each model’s first attempt at each of the N = 15 questions and compute 95% confidence/credible intervals
using the methods laid out in § 3.1. Note that we again observe CLT-based error bars collapsing to zero-width (as do
bootstrap error bars) and extending past [0, 1].
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Figure 9: Error bars at 95% confidence level computed for all models available on the Math Arena AIME 2025 II Benchmark
(N = 15).
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Figure 10

C. Simulating Correlated Paired-Model Eval Data
In § 3.4, we wanted to generate pairs of eval results for two LLMs, A and B, such that the responses between the two models
were correlated. In order to maintain control on the marginal values of θA and θB , we sample these uniformly in the same
way as in the rest of the paper:

θA, θB
IID∼ Beta(1, 1) = Uniform[0, 1]. (42)

However, to induce correlation between evals we clearly can’t just use these values as Bernoulli parameters independently.
First, we sample a correlation coefficient ρ = 2ρ̂ − 1 where ρ̂ ∼ Beta(4, 2), leading to the distribution of ρ shown in
Fig.10a. The preference for positive correlations follows on from real-world intuition: we’d expect results from two LLMs
to be positively correlated much more of the time than negatively correlated.

Next, we sample N points, {(ai, bi)}Ni=1, on a bivariate Gaussian with unit variances and correlation coefficient ρ:

(ai, bi)
IID∼ N

(
(µA µB)

⊤,Σ
)
, (43)

µA = Φ−1(θA), (44)

µB = Φ−1(θB), (45)

Σ =

(
1 ρ
ρ 1

)
, (46)

where Φ is the standard univariate Gaussian CDF.

Since the marginal distributions of ai and bi are standard Gaussians centred at µA and µB respectively, we have that
(ai − µA), (bi − µB) ∼ N (0, 1) and therefore

P(ai > 0) = 1− P(ai − µA < −µA) = 1− Φ(−µA) = Φ(µA) = θA, (47)
P(bi > 0) = 1− P(bi − µB < −µB) = 1− Φ(−µB) = Φ(µB) = θB . (48)

Hence, if we assign binary eval outcomes for both LLMs according to the signs of ai and bi for i = 1, . . . , N , we arrive at
Bernoulli marginals, as desired:

yA;i = 1[ai > 0], (49)
yB;i = 1[bi > 0]. (50)

The choice of the covariance matrix Σ ensures that the evals for the two LLMs are are correlated with the desired level of
correlation ρ.
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We illustrate this data generation procedure in Fig.10b. We generate a paired eval dataset with a positive correlation of
ρ = 0.7 between the two models, A and B. The success probabilities are θA = 0.6 and θB = 0.9. The points in the scatter
plot are samples from a bivariate Gaussian distribution with mean

(
Φ−1(θA) Φ−1(θB)

)⊤
= (0.25 1.28)⊤ (denoted

with a blue cross), unit variance and correlation 0.7. The threshold lines at a = 0 (dashed orange horizontal line) and b = 0
(dashed brown vertical line) divide the space into four quadrants, each corresponding to a different combination of binary
outcomes yA and yB , as labelled in the corners.

See Appendix E.2 for details on how inference is done in this model via importance sampling.

D. Pass@K Metric
In § 3.5 we examined F1 scores as a metric more immediately amenable to Bayesian than frequentist analysis, but many
other metrics would also fit in here too. For example, consider the common pass@K metric, which reports the proportion of
runs in which a model gives the correct answer within its first K (IID) generations.

In the Bayesian setting, we can infer a Bernoulli posterior over the probability of a single generation on a single question
being correct for a certain model. This can then easily be used to compute error bars for the probability of at least 1 in K
(IID) generations being correct.

However, since we’re really interested in a single number that measures the performance of a model on all the questions in a
dataset, we’d need a hierarchical Bayesian model with a per-model latent variable, which captures the average probability of
a single generation being correct on a single, randomly chosen question. This might look similar to the hierarchical clustered
model from § 3.2, but with a hierarchy over models rather than tasks. This model could also be extended to have an hierarchy
over both models and questions/tasks. It is unclear to us how best to construct a corresponding CLT-based/frequentist
interval.

20



Position: Don’t Use the CLT in LLM Evals With Fewer Than a Few Hundred Datapoints

E. Python Code for Importance Sampling
Here we provide simple code for performing the importance sampling mentioned in § 3.2 and § 3.4. For a review of
importance sampling techniques, see (Tokdar & Kass, 2010).

In general, importance sampling for Bayesian inference works by drawing some K samples, {θ(k)}Kk=1, of a latent variable
θ from some proposal distribution Q and computing their importance weight as the ratio between the likelihood under the
generative model P (Y, θ) and the proposal Q(θ),

w(k) =
P (Y, θ)

Q(θ)
(51)

where Y is our data. Using Bayes’ rule, we can rewrite this to show that if our proposal is simply the prior, Q(θ) = P (θ),
then the importance weights are directly given by the likelihood

w(k) =
P (Y, θ(k))

Q(θ(k))
(52)

=
P (Y |θ(k))P (θ(k))

Q(θ(k))
(53)

= P (Y |θ(k)). (54)

Then we can, for example, approximate the posterior expectation of the latent θ using normalised versions of the importance
weights

ŵ(k) =
w(k)∑K
i=1 w

(i)
(55)

since

Eθ∼P (·|Y )[θ] =

∫
θP (θ|Y )dθ (56)

=

∫
θ
P (Y |θ)P (θ)

P (Y )
dθ (57)

=

∫
θ
P (Y |θ)Q(θ)

P (Y )
dθ (58)

= Eθ∼Q(·)

[
θ
P (Y |θ)
P (Y )

]
(59)

≈ 1

K

K∑
k=1

θ(k)ŵ(k). (60)

E.1. Importance Sampling in the Clustered Setting

The generative model for the clustered setting is as follows:

d ∼ Gamma(1, 1) (61)
θ ∼ Beta(1, 1) (62)
θt ∼ Beta(dθ, d(1− θ)) (63)

yi,t ∼ Bernoulli(θt). (64)

To perform Bayesian inference on θ we integrate out θt:
Yt ∼ BetaBin(Nt, dθ, d(1− θ)). (65)

where Yt =
∑Nt

i=1 yi,t is the total number of correct answers in task t. As described in the main text, we use the prior as a
proposal to obtain K = 10, 000 samples {(θ(k), d(k))}Kk=1 which have an associated importance weight:

w(k) =

T∏
t=1

BetaBin(Yt;Nt, d
(k)θ(k), d(k)(1− θ(k))). (66)
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We then resample the set {θ(k)}Kk=1 with repeats using the weights {w(k)}Kk=1 and report credible intervals by taking the
relevant percentiles of the resulting set of posterior samples.

Snippet 4: Bayesian analysis for clustered evals

1 # S_t, N_t: np.arrays of length T with total
2 # sucesses & questions per task
3 import numpy as np
4 from scipy.stats import betabinom
5
6 # set number of samples, K
7 K = 10_000
8
9 # get K samples from the prior (with extra dimension for broadcasting over tasks)

10 thetas = np.random.beta(1,1, size=(K,1))
11 ds = np.random.gamma(1,1, size=(K,1))
12
13 # obtain weights via the likelihood (sum the per-task log-probs)
14 log_weights = betabinom(N_t, (ds*thetas), (ds*(1-thetas))).logpmf(S_t).sum(-1)
15
16 # normalise the weights
17 weights = np.exp(log_weights - log_weights.max())
18 weights /= weights.sum()
19
20 # obtain samples from the posterior
21 posterior = thetas[np.random.choice(K, size=K, replace=True, p=weights)]
22
23 # Bayesian credible interval
24 bayes_ci = np.percentile(posterior, [2.5, 97.5])

E.2. Importance Sampling in the Paired Setting

In the paired setting we use the following generative model, as shown in Appendix C:

θA ∼ Beta(1, 1) (67)
θB ∼ Beta(1, 1) (68)
ρ̂ ∼ Beta(4, 2) (69)
ρ = 2ρ̂− 1 (70)

(ai, bi)
IID∼ N (µ,Σ) , (71)

yA;i = 1[ai > 0], (72)
yB;i = 1[bi > 0], (73)

for i = 1, . . . , N , such that

µ =
(
Φ−1(θA) Φ−1(θB)

)T
(74)

Σ =

(
1 ρ
ρ 1

)
, (75)

where Φ is the standard univariate Gaussian CDF.

To perform Bayesian inference on θA − θB , we again use importance sampling where we draw K = 10, 000 samples from
the prior as a proposal to obtain {(θ(k)A , θ

(k)
B , ρ(k))}Kk=1. Then we calculate the importance weights as

w(k) =

N∏
i=1

p(yA;i, yB;i|θ(k)A , θ
(k)
B , ρ(k)). (76)

In order to calculate this quantity, we break the problem into four cases, based on the possible combinations of success/failure
for model A and model B. For a single question i ∈ [N ], we have

p(yA;i, yB;i|θ(k)A , θ
(k)
B , ρ(k)) =


θ
(k)
AB := P(ai, bi > 0) if ai = bi = 1,

θ
(k)

AB⊥ := P(ai, > 0, bi < 0) if ai = 1 and bi = 0

θ
(k)

A⊥B
:= P(ai, < 0, bi > 0) if ai = 0 and bi = 1

θ
(k)

A⊥B⊥ := P(ai, bi < 0) if ai = bi = 0.

(77)
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If we can figure out the values of θ(k)AB , θ
(k)

AB⊥ , θ
(k)

A⊥B
, and θ

(k)

A⊥B⊥ , then we just need the number of occurrences of each
combination in the data in order to evaluate Eq.76:

w(k) =

N∏
i=1

p(yA;i, yB;i|θ(k)A , θ
(k)
B , ρ(k)) (78)

= (θ
(k)
AB)

S(θ
(k)

AB⊥)
T (θ

(k)

A⊥B
)U (θ

(k)

A⊥B⊥)
V , (79)

where

S =

N∑
i=1

yA;iyB;i, (80)

T =

N∑
i=1

yA;i(1− yB;i), (81)

U =

N∑
i=1

(1− yA;i)yB;i, (82)

V =

N∑
i=1

(1− yA;i)(1− yB;i). (83)

Now, note that

θ
(k)

A⊥B⊥ = P(a(k)i , b
(k)
i < 0) = Φ2(0, ;µ

(k),Σ(k)), (84)

where Φ2 is the bivariate Gaussian CDF (parameterised by µ(k) and Σ(k))), which can be calculated numerically. Specifically,
we adopt the simple approximation derived in Tsay & Ke (2023), an implementation of which can be found at https:
//github.com/sambowyer/bayes_evals.

Knowing θ
(k)

A⊥B⊥ allows you to calculate the other three probabilities, since we know the following:

1 = θ
(k)
AB + θ

(k)

AB⊥ + θ
(k)

A⊥B
+ θ

(k)

A⊥B⊥ , (85)

θ
(k)
A = θ

(k)
AB + θ

(k)

AB⊥ , (86)

θ
(k)
B = θ

(k)
AB + θ

(k)

A⊥B
. (87)

Thus, we can calculate the importance weights from Eq.78 with the following relationships:

θ
(k)
AB = θ

(k)

A⊥B⊥ + θ
(k)
A + θ

(k)
B − 1, (88)

θ
(k)

AB⊥ = 1− θ
(k)
B − θ

(k)

A⊥B⊥ , (89)

θ
(k)

A⊥B
= 1− θ

(k)
A − θ

(k)

A⊥B⊥ . (90)

As in the previous section, App. E.1, we obtain a collection of K posterior samples, {(θ(k,posterior)
A , θ

(k,posterior)
B )}Kk=1, by

resampling the set {(θ(k)A , θ
(k)
B )}Kk=1 with repeats using the weights {w(k)}Kk=1. To calculate our credible intervals on the

value of θA − θB , we take the relevant percentiles from the set {θ(k,posterior)
A − θ

(k,posterior)
B }Kk=1.
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Snippet 5: Bayesian analysis for paired evals

1 # y_A, y_B: length N binary "eval" vectors
2 import numpy as np
3 from numpy.random import beta
4 from scipy.stats import norm
5 from binorm import binorm_cdf # 2D Gaussian CDF, defined elsewhere
6
7 # set number of samples, K
8 K = 10_000
9

10 # get K samples from the prior (with extra dimension for broadcasting over questions)
11 theta_As = beta(1,1, size=K)
12 theta_Bs = beta(1,1, size=K)
13 rhos = 2*beta(4,2, size=K) - 1
14
15
16 # 2x2 contingency table (flattened)
17 S = (y_A * y_B).sum(-1) # S = A correct, B correct
18 T = (y_A * (1 - y_B)).sum(-1) # T = A correct, B incorrect
19 U = ((1 - y_A) * y_B).sum(-1) # U = A incorrect, B correct
20 V = ((1 - y_A) * (1 - y_B)).sum(-1) # V = A incorrect, B incorrect
21
22 # calculate the bivariate normal mean
23 mu_As = norm(0,1).ppf(theta_As)
24 mu_Bs = norm(0,1).ppf(theta_Bs)
25
26 # Calculate probabilities of each cell in the 2x2 table
27 theta_V = binorm_cdf(x1=0, x2=0, mu1=mu_As, mu2=mu_Bs, sigma1=1, sigma2=1, rho=rhos)
28 theta_S = theta_As + theta_Bs + theta_V - 1
29 theta_T = 1 - theta_Bs - theta_V
30 theta_U = 1 - theta_As - theta_V
31
32 # Due to numerical issues, we need to handle the case where the probabilities are not in [0,1]
33 # (probabilities may be very small and negative instead of 0)
34 valid_idx = (theta_S > 0) & (theta_T > 0) & (theta_U > 0) & (theta_V > 0)
35 log_weights = S*np.log(theta_S[valid_idx]) + T*np.log(theta_T[valid_idx]) + \
36 U*np.log(theta_U[valid_idx]) + V*np.log(theta_V[valid_idx])
37
38 # normalise the weights
39 weights = np.zeros(K)
40 weights[valid_idx] = np.exp(log_weights - log_weights.max())
41 weights /= weights.sum()
42
43 # obtain samples from the posterior
44 posterior = (theta_As - theta_Bs)[np.random.choice(K, size=K, replace=True, p=weights)]
45
46 # Bayesian credible interval
47 bayes_ci = np.percentile(posterior, [2.5, 97.5])
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F. Computational Cost
In Fig.11 we report the mean computation time of the different methods discussed in § 2.1, § 3.2, and § 3.4 averaged over
1000 repeated runs on a single CPU.

Whilst we observe the Bayesian (and bootstrap) methods taking longer than the CLT-based methods, in the few-data setting
of this paper the computational cost of all of these methods is trivial. (The longest compute-time was 200 milliseconds
for the largest Bayesian model in Fig.3.) In the case where N is much larger and compute cost starts to grow, the faster
CLT-based methods would perform acceptably.
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Figure 11: Computational time. Time (in milliseconds) required to compute error bars on a set of N evals with different
methods. Results are averaged over 1000 repeats on a single CPU, and error bars (which are close to zero) report standard
errors.
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G. Robustness of Experiments to Random Seeding
In Fig.12 we show an alternative version of Fig.2 (comparing various methods in the IID setting of § 3.1) in which results
are averaged over five runs using different random seeds. Error bars representing standard errors are shown in faint colours
but are generally very small (on the order of 10−3 or smaller) and therefore often hard to identify. This suggests that the
experiment methodology is robust to the randomness inherent in the data generating procedure.
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Figure 12: IID question setting. Coverage vs. confidence level (top) and coverage vs. width (bottom) for various methods.
Coverage error denotes the mean absolute difference between true and nominal coverage for each method at a given value of
N . Error bars are given as faint lines around the means representing the standard error over 5 repeated experiments.
These error bars are very small, suggesting that each experiment successfully extracts values very close to true coverage per
method.
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H. Interval Width vs. Coverage Plots
Here we present expanded versions of Fig.3, Fig.4 and Fig.5 which include the original coverage vs. confidence level
results in their top rows as well as a bottom row showing coverage vs. interval width. Fig.13 presents these results for the
clustered question setting of § 3.2, Fig.14 shows the independent model comparison setting of § 3.3, and Fig.15 shows the
paired question setting of § 3.4.

In each case, we observe that, much like in § 3.1, the Bayesian methods tend to generate much more efficient (i.e. narrower)
error bars for a given coverage than CLT- and bootstrap-based methods.
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Figure 13: Clustered questions setting. Coverage vs. confidence level (top) and vs. interval-width (bottom) for various
interval-calculation methods on the value of θ. Methods ignoring the clustered structure of the data—assuming instead IID
questions as per § 3.1—are shown as dotted lines. Results are averaged over 100 values of θ ∼ Beta(1, 1), each with 200
repeated experiments with randomly generated datasets.
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Figure 14: Independent model comparison setting. Coverage vs. interval-width for various interval-calculation methods.
The top row includes intervals for the difference, θA − θB , whilst the bottom row shows intervals for the odds ratio. Note
that in the odds ratio methods, we have dropped infinite width values for the method based on the Fisher exact test, which
accounted for 43.5%, 17%, 6.5% and 1.9% for N = 3, 10, 30 and 100, respectively. We have also clipped bootstrap widths
as it produced extremely large (order 1e14, essentially infinite) intervals.
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Figure 15: Paired questions setting. Coverage vs. confidence level (top) and vs. interval-width (bottom) for various
interval-calculation methods on the value of θA − θB . Methods ignoring the paired structure of the data—assuming instead
IID questions and answers from model A and from model B, as per § 3.1—are shown as dotted lines. Results are averaged
over 100 values of θA, θB ∼ Beta(1, 1), each with 200 repeated experiments with randomly generated datasets.
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Figure 16: Probability density functions. Beta(10, 10) (left); Beta(100, 20) (centre); Beta(20, 100) (right).

I. Ablations
I.1. IID Questions Setting

We give the confidence-level vs. width and coverage plots for the setting presented in § 2.1 but where our data does
not come from θ ∼ Beta(1, 1) = Uniform(0,1). Specifically we consider three alternative true priors: Beta(10, 10),
θ ∼ Beta(100, 20) and θ ∼ Beta(20, 100), the probability density functions of which are shown in Fig.16. These three
settings are presented in Fig.17, Fig.18, and Fig.19 respectively. As in § 2.1, results are averaged over 100 values of θ
drawn the given prior, each used to generate 200 random datasets.

We can see that the mismatched prior does affect the coverage of each method, in particular leading to Bayesian credible
intervals that are too wide. However, as the amount of data increases, this problem resolves fairly quickly.
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Figure 17: IID question setting. Coverage of intervals on θ with mismatched θ ∼ Beta(10, 10) prior.

In Fig.20, we also present plots for experiments with fixed θ values, specifically with θ ∈ {0.5, 0.8, 0.95}. With each fixed θ
value, we average results over 3000 simulated datasets. These show much the same behaviour as we saw in Figs. 17-19, but
are useful in that they represent a more frequentist approach to the evaluations, as opposed to the typical Bayesian setting in
which we treat the ‘true’ θ as random rather than fixed.

I.2. Clustered Questions Setting

Similarly to the previous section, we show results in the clustered questions setting (§ 3.2) but with a mismatched true
prior. Fig.21 shows the results for θ ∼ Beta(10, 10), Fig.22 shows the results for θ ∼ Beta(100, 20), and Fig.23 shows the
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Figure 18: IID question setting. Coverage of intervals on θ with mismatched θ ∼ Beta(100, 20) prior.
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Figure 19: IID question setting. Coverage of intervals on θ with mismatched θ ∼ Beta(20, 100) prior.
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Figure 20: IID question setting. Coverage of intervals on θ generated with fixed values of θ ∈ {0.5, 0.8, 0.95}.
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results for θ ∼ Beta(20, 100). As in § 3.2, results are averaged over 100 values of θ drawn the given prior, each used to
generate 200 random datasets.

In each case, we observe close to ideal performance from the clustered Bayes credible intervals, whereas all other methods
tend to struggle to match their nominal coverage for small N .
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Figure 21: Clustered question setting. Coverage of intervals on θ with mismatched θ ∼ Beta(10, 10) prior.
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Figure 22: Clustered question setting. Coverage of intervals on θ with mismatched θ ∼ Beta(100, 20) prior.

Again, we present results generated from fixed values of θ ∈ {0.5, 0.8, 0.95} rather than from a Bayesian prior. With
each fixed θ value, we average results over 3000 simulated datasets (each with a different sampled dispersion parameter
d ∼ Gamma(1, 1). These can be seen in Fig.24 and show much the same behaviour as the previous plots.
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Figure 23: Clustered question setting. Coverage of intervals on θ with mismatched θ ∼ Beta(20, 100) prior.
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Figure 24: Clustered question setting. Coverage of intervals on θ generated with fixed values of θ ∈ {0.5, 0.8, 0.95}.
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I.3. Independent Model Comparison

Similarly to § I.1 and § I.2, we show results for the independent model comparison setting (§ 3.3) but with a mismatched
true prior, i.e. the actual data generating process does not match the prior that we assume for our the Bayesian model.

Specifically, we consider the following settings:

• Neither model A nor model B has a uniform prior: Fig. 25a shows results in which both θA, θB ∼ Beta(100, 20),
whilst Fig.25b presents results in which we have θA ∼ Beta(100, 20) and θB ∼ Beta(20, 100)

• Keep the same prior for θA, that is, Beta(1, 1) = Uniform[0, 1] and vary the prior for θB between Beta(100, 20)
(Fig.26a); Beta(10, 10) (Fig.26b); and Beta(20, 100) (Fig.26c).

• Fixed values for θAand θB as follows: θA ∈ {0.5, 0.8, 0.9} with θB taking values in {θA, θA − 0.3, θA − 0.8} in each
setting. These are shown in Fig.27, Fig.28, and Fig.29 respectively. Results are shown averaged over 3000 simulated
datasets for each (θA, θB) pair.
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(a) Prior used to generate data: θA, θB ∼ Beta(100, 20)
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(b) Prior used to generate data: θA ∼ Beta(100, 20) and θB ∼ Beta(20, 100).

Figure 25: Independent model comparison. Prior mismatch: we use uniform, Beta(1, 1), prior in the Bayesian model
used to construct confidence intervals, whilst at test time the data is generated using a different prior.
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(a) Prior used to generate data: θB ∼ Beta(100, 20)
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(b) Prior used to generate data: θB ∼ Beta(10, 10)
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(c) Prior used to generate data: θB ∼ Beta(20, 100)

Figure 26: Independent model comparison. Prior mismatch: we use uniform, Beta(1, 1), prior in the Bayesian model
used to construct confidence intervals. At test time, the accuracy of model A is sampled from Beta(1, 1) whilst that of
model B is sampled from a different prior.
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Figure 27: Independent model comparison. Success probabilities are fixed at θA = 0.5 and θB ∈ {0.5, 0.47, 0.42}.
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Figure 28: Independent model comparison. Success probabilities are fixed at θA = 0.8 and θB ∈ {0.8, 0.77, 0.72}.
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Figure 29: Independent model comparison. Success probabilities are fixed at θA = 0.95 and θB ∈ {0.95, 0.92, 0.87}.
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I.4. Paired Questions Setting

Similarly to § I.1 and § I.2, we show results for the paired questions setting (§ 3.4) but with a mismatched true prior.
In particular, we keep the same prior for θA (that is, Beta(1, 1) = Uniform[0, 1]) but vary the prior for θB between
Beta(10, 10) (Fig.30); Beta(100, 20) (Fig.31); and Beta(20, 100) (Fig.32). We also present results where neither model
A nor model B has a uniform prior: Fig.33 shows results in which both θA, θB ∼ Beta(100, 20), whilst Fig.34 presents
results in which we have θA ∼ Beta(100, 20) and θB ∼ Beta(20, 100). As in § 2.1, results are averaged over 100 values of
(θA, θB) drawn the specified priors, with each (θA, θB) pair used to generate 200 random datasets.

In each case, we observe the coverage of Bayesian credible intervals approaching the ideal 1− α line at least as quickly (in
terms of an increasing N ) as the paired-CLT confidence intervals. We also observe the paired Bayesian credible intervals
generally outperforming the unpaired Bayesian intervals.
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Figure 30: Paired question model comparison setting. Coverage of intervals on θA − θB with mismatched θB ∼
Beta(10, 10) prior and θA ∼ Beta(1, 1).

Finally, for this section, we also present results with the same fixed values for θAand θB as in § I.3: θA ∈ {0.5, 0.8, 0.9}
with θB taking values in {θA, θA − 0.3, θA − 0.8} in each setting. Results are shown averaged over 3000 simulated datasets
for each (θA, θB) pair. These are shown in Fig.35, Fig.36, and Fig.37 respectively.

Whilst the coverage of both the Bayesian credible intervals and the paired CLT-based confidence intervals are very similar
when θA = θB , we see much more robust behaviour from the Bayesian method when we increase the difference between
θA and θB .
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Figure 31: Paired question model comparison setting. Coverage of intervals on θA − θB with mismatched θB ∼
Beta(100, 20) prior and θA ∼ Beta(1, 1))

0.80 0.95 0.99

0.5

0.9

0.99

0.999

Co
ve

ra
ge

N = 3

0.80 0.95 0.99
Confidence level, 1

N = 10

0.80 0.95 0.99

N = 30

0.80 0.95 0.99

N = 100

0.5 1.0

0.5

0.9

0.99

0.999

Co
ve

ra
ge

0.25 0.50 0.75
Interval Width

0.2 0.4 0.1 0.2

3 10 30 100
N

10 2

10 1

Co
ve

ra
ge

 E
rro

r

Paired Bayes (IS) Unpaired Bayes Paired CLT CLT Bootstrap 1

Figure 32: Paired question model comparison setting. Coverage of intervals on θA − θB with mismatched θB ∼
Beta(20, 100) prior and θA ∼ Beta(1, 1).
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Figure 33: Paired question model comparison setting. Coverage of intervals on θA − θB with mismatched θA, θB ∼
Beta(20, 100) priors.
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Figure 34: Paired question model comparison setting. Coverage of intervals on θA − θB with mismatched priors:
θA ∼ Beta(100, 20), and θB ∼ Beta(20, 100).
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Figure 35: Paired question model comparison setting. Coverage of intervals on θA − θB generated with θA = 0.5 and
θB ∈ {0.5, 0.47, 0.42}.
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Figure 36: Paired question model comparison setting. Coverage of intervals on θA − θB with θA = 0.8 and θB ∈
{0.8, 0.77, 0.72}.
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Figure 37: Paired question model comparison setting. Coverage of intervals on θA − θB with θA = 0.95 and θB ∈
{0.95, 0.92, 0.87}.
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Figure 38: Error bars for the F1-score. Coverage vs. interval-width for various interval-calculation methods.
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Figure 39: Error bars for the F1-score. Coverage vs. confidence level for Bayesian and bootstrap intervals on F1 scores
using highest posterior density interval (HDI) instead of quantile-based interval (QBI), which was presented in Fig.6.

42


