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Abstract

Vision Transformers (ViTs) are widely used in a variety of applications, while
they usually have a fixed architecture that may not match the varying computa-
tional resources of different deployment environments. Thus, it is necessary to
adapt ViT architectures to devices with diverse computational overheads to achieve
an accuracy-efficient trade-off. This concept is consistent with the motivation
behind Learngene. To achieve this, inspired by polynomial decomposition in
calculus, where a function can be approximated by linearly combining several
basic components, we propose to linearly decompose the ViT model into a set
of components called learngenes during element-wise training. These learngenes
can then be recomposed into differently scaled, pre-initialized models to satisfy
different computational resource constraints. Such a decomposition-recomposition
strategy provides an economical and flexible approach to generating different
scales of ViT models for different deployment scenarios. Compared to model
compression or training from scratch, which require to repeatedly train on large
datasets for diverse-scale models, such strategy reduces computational costs since
it only requires to train on large datasets once. Extensive experiments are used to
validate the effectiveness of our method: ViTs can be decomposed and the decom-
posed learngenes can be recomposed into diverse-scale ViTs, which can achieve
comparable or better performance compared to traditional model compression and
pre-training methods. The code for our experiments is available in the supplemental
material.

1 Introduction

The pre-training Vision Transformers (ViTs) [13] have become fundamental to various applications,
including image classification [59, 7], object detection [29, 52], semantic segmentation [46, 67],
and multimodal tasks [63, 58]. However, these ViTs typically have a standard and relatively fixed
architecture, which poses challenges for deployment in diverse real-world settings, i.e., devices in
different application scenarios have different computational capabilities, making standard, fixed-size
ViTs unsuitable for direct deployment. Furthermore, the storage demands of a traditional ViT may
exceed the capabilities of certain devices. For instance, the memory size for the ViT-B/16 model [13]
with 86M parameters is approximately 320 MB, while some devices may find this prohibitive
due to inherent physical constraints, e.g., the limited RAM capacity of the Raspberry Pi 1 with
256MB-512MB of RAM.
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Figure 1: Comparison between Knowledge Distillation
(KD) (left) and our method (right). KD requires N times
of training with the teacher model on data to produce
N different scale models for N clients. In contrast, our
method requires only a single training to decompose
the teacher model into different learngenes that can be
economically and flexibly recomposed into models with
diverse layers to meet different client needs.
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Figure 2: After using PCA to re-
duce the dimension of the parame-
ters of a well-trained ViT, we find
that the parameters of the most lay-
ers have an approximately linear
correlation with their layer position.
More details are given in the sup-
plementary material.

To address this limitation, researchers have developed various compression techniques [6, 62, 55, 28]
to reduce the model size to make them suitable for the application scenarios while meantime maximum
preserving the model ability. Typical approaches including micro-architecture design[23], model
pruning[14, 68], quantization[43], and knowledge distillation[62]. However, in these approaches,
the architecture of the smaller model, such as the number of layers, is predetermined and thus lacks
the flexibility to meet the diverse needs of real-world deployment scenarios. Consider the scenario
depicted in Figure 1: to obtain N models of different sizes for different devices, the knowledge
distillation methods need to go through N separate trainings. Striking a balance between flexibility
and accuracy is challenging and often requires complex training strategies to ensure satisfactory
model performance.

Then we may ask, is there a way to more flexibly and economically generate N smaller models from a
large one, while maintaining the performance of the smaller ones? In calculus, we know that a function
can be approximated by linearly combining several basic components with corresponding weighted
coefficients at various levels of precision, e.g., Taylor series [45], Chebyshev Polynomial of the First
Kind [31], Fourier series [47] and so on. Such a mathematical theorem induces two engineering
insights: (1) a function can be decomposed into a series of basic components, i.e., the polynomial
terms, and (2) we can combine an appropriate number of the basic components to approximate
a function with a certain degree of precision. Motivated by these insights, we explore whether a
large ViT can be incrementally decomposed into basic components, which we term “learngenes”,
mimicking the behavior of organismal genes as proposed by [49, 51]. In their innovative learning
framework, critical knowledge is continuously condensed as learngenes during the evolution of the
ancestry model, which are then inherited to initialize descendant models of varying sizes. Similarly,
in our approach, we propose to decompose a large ViT into a set of learngenes, encapsulating critical
knowledge from the original model. These learngenes can then be flexibly recomposed to initialize
ViT models of different scales, adapting to diverse deployment scenarios.

Specifically, to achieve this, we propose that each layer W of the ViT can be decomposed into some
basic learngenes: A1, ...,AN , where each An includes all submodules in W , such as Multiheaded
Self-Attention (MSA), Multi-Layer Perceptron (MLP), Feed Forward Networks (FFN), and so on.
However, a ViT contains many layers and if we specify a learngene space for each layer, then an
L-layer ViT requires a total of N × L basic learngenes, which still requires a large amount of
computation to decompose. Interestingly, as shown in Figure 2 of [54], the parameters of most layers
in the well-trained ViT of [13] have an approximately non-decreasing trend after PCA dimension
reduction. Among several possible fitting functions, the linear function is used here for its simplicity
and effectiveness in approximating this trend. Thus we further assume that different layers of a ViT
can also be linearly decomposed into the same learngene space, which means that we can also share
the decomposed learngene across different layers in recomposition.
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To summarize, we assume that the parameters of the l-th layer can be got by

Wl =

N∑
n=1

a(l, n)×An, (1)

where a(l, n) are the linear combination coefficients, which are pre-defined and depend on the layer
and learngene. Here, “pre-defined” denotes that a(l, n) satisfies a pre-defined role, e.g., we find
that the first-kind Chebyshev polynomial formula is a suitable one, and does not require adjustment
during training. Also, when recomposing, given the layer rank l and which learngenes should be
used, we can first compute the values of a(l, n) and then directly use the Equation 1 to construct the
parameters of a ViT with any layer.

Such decomposition-recomposition strategy has the following two distinctive characteristics. First,
such a decomposition strategy provides us with a novel training mechanism that allows us to iteratively
train each learngene An in an incremental way. Specifically, to train the first learngene A1, we train
a ViT where the parameter of the l-th layer is Wl = a(l, 1)×A1. Then we begin to train the second
learngene A2 by constructing a ViT where Wl = a(l, 1)×A1 + a(l, 2)×A2. During training, A1

is fixed and only the parameters of A2 are updated. Then such a process is iterated a few times until
all learngenes are trained. Compared to traditional pre-training methods, the decomposition approach
not only generates a series of learngenes, but also yields a variety of pre-trained models with different
scales during training. Importantly, the decomposed model achieves comparable performance to the
pre-training method under the same parameters and training epochs.

Second, after decomposition, the decomposed learngenes can be flexibly recomposed into diverse
scale ViTs with different depths without training. Meanwhile, we can use only an appropriate number
of learngenes instead of all of them for recomposition to achieve dynamic accuracy-efficiency trade-
offs. For example, we can use the previous 6 learngenes {A1, ...,A6} to recompose a 4-layer ViT
where the k-th layer is initialized as Wk =

∑6
n=1 a(k, n)×An, where a(k, n) is still pre-defined

by satisfying a specific role, e.g., the first-kind Chebyshev polynomial coefficients. In contrast to
model compression methods where each training only targets a specific model size, which is not
flexible enough to meet the needs of real-world deployment scenarios.

Finally, our experiments demonstrate the viability of linear decomposition and subsequent linear
recomposition for ViT models. During decomposition, we observe that incrementally increasing
the number of learngenes allows the performance to match that of a classically trained, integral ViT
model. In recomposition, we can flexibly use an appropriate number of decomposed learngenes to
construct ViTs of different layers. This method achieves performance comparable to other model
compression methods, while facilitating the economical generation of models for diverse client
requirements, e.g., reducing the training cost by 80× when generating the same number of models
with diverse scales and initializations.

2 Related work

In this paper, we present a method that decomposes the parameters of the ViT model into a series
of learngenes combined by polynomial coefficients. Then, the decomposed learngenes are used to
flexibly recompose new ViT models with diverse scales. Thus, we discuss related works including
model initialization and model compression which have similarities with the decomposition and
recomposition of our method, respectively.

Model Initialization. Model initialization plays an important role in the training of deep neural
networks, affecting both the rate of convergence and the quality of generalization. Fundamental
methods, such as Xavier initialization [15] and Kaiming initialization [21], have been seminal in this
domain. However, a recent trend is to use pre-trained models for initialization, as shown by studies
such as [20, 5, 57, 32, 50]. This practice revolves around using these pre-trained models as a starting
point, and then fine-tuning them for specific tasks. While such pre-trained models offer a superior
initialization point, often outperforming the likes of Xavier and Kaiming initialization and ensuring
faster training convergence, they come with their own challenges. Their large architectural footprint
makes them unsuitable for direct deployment across various application scenarios, especially given
the varying computing capabilities of devices. Furthermore, these pre-training methods often require
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large amounts of data and computational resources, making it difficult to build specialized models for
individual tasks.

Model Compression Model compression [9, 55, 34] is a key area in deep learning, especially for
deployment on resource-constrained devices. Micro-architecture requires the design of specific model
architectures to meet different computational resource requirements, but the optimal architecture
often varies depending on the required model size. Model pruning [64, 65] is a method that involves
iteratively training the model, trimming less critical parameters, and subsequently fine-tuning for var-
ious model sizes. Quantization [18, 56, 14], which modulates the precision of model parameters,also
requires unique iterative adjustments and potential retuning for each accuracy target. Meanwhile,
knowledge distillation [33, 2], a concept popularized by [22], uses a more comprehensive teacher
model to guide the training of a smaller student model. If we want to obtain N student models, we
need to train the model for N times. A common drawback of these techniques is the lack of flexibility:
generating N models of different sizes typically requires N times the computational and time cost.

Prompt Tuning Visual Prompt Tuning (VPT) have also been proposed to improve parameter
efficiency. For example, Eˆ2VPT [17], which reduces tunable parameters through learnable prompts
and pruning, and by works like Facing the Elephant in the Room [16] that examine optimal conditions
for VPT based on task and data distribution. Methods such as AdapterFusion [41] and Prefix-
Tuning [27] use small, task-specific modules or tunable prefixes to allow efficient model adaptation
without full retraining. In multimodal tasks, Learnable In-Context Vector (L-ICV) [40] addresses
in-context learning (ICL) challenges by improving VQA performance with reduced computational
costs by distilling task information into a single learnable vector. While these approaches reduce
the number of tunable parameters, they still lack flexibility in deployment. For instance, generating
N models of different sizes often requires N separate tuning or retraining processes, leading to
significant computational overhead.

Therefore, we introduce a novel training approach where we decompose the ViT model into different
learngenes. These decomposed learngenes can be recomposed to generate models of diverse scales,
making them adaptable to downstream tasks with different computational resource requirements.
Additionally, by using these learngenes, the recomposed models also provide a good initialization.
This results in improved performance and faster convergence in downstream tasks compared to
learning from scratch.

3 Method

We propose to decompose a Vision Transformer (ViT) into a series basic learngenes that each layer
of the ViT can be linearly recomposed by these learngenes. Figure 3 outlines the whole pipeline
of our method, where Section 3.1 shows how to decompose the ViT into the basic learngenes and
in Section 3.2, we detail how to get these learngenes during training. After decomposition, Section 3.3
demonstrates how to flexibly recompose these learngenes into diverse ViTs with different depths to
achieve a the balance between parameter efficiency and model performance.

3.1 Decomposing the ViT

As discussed in Section 1, motivated by calculus, we propose to decompose a ViT into different basic
learngenes where each layer of the ViT is the linear composition of these learngenes. Formally, given
the basic learngenes A1, ...,AN , the parameters of the l-th layer Wl can be got by Equation 1. Note
that Wl represents the general term of the parameters in the l-th layer of a ViT, which can be the
modules such as the Multi-head Self Attention (MSA), Multi-layer Perceptron (MLP), and Layer
Normalization (LN). In other words, each module of a ViT layer can be decomposed into a series of
basic learngenes. For the coefficients a(l, n), we assume that they satisfy a pre-defined polynomial
such as the Taylor series, the first kind Chebyshev polynomial, or the Fourier series. Through
preliminary experiments presented in Section 4.2.1, we find that the first kind Chebyshev polynomial
is particularly well suited for our purposes. Therefore, we use it as an example for the decomposition
coefficients in the following content. The first kind Chebyshev polynomial, represented by Tn(x), is
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Figure 3: Decomposition and Recomposition. The upper part illustrates the decomposition process,
where a ViT model is gradually recomposed into several learngenes. At each stage, only the newly
added learngenes are trained, while the previously trained learngenes remain frozen. The lower part
shows the recomposition process with two examples. The first initializes a 2-layer ViT with three
learngenes trained by “without constraints" , while the second initializes a 3-layer ViT with four
learngenes trained by “with constraints". Note that the flame icons indicate that the parameters of the
layer are trained, while the snowflake icons indicates that the parameters are frozen.

defined recursively as follows:

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x) for n ≥ 1.

(2)

Figure 2, it was observed that the parameters of each layer in the ViT have an approximately linear
increasing trend. We assume that different layers of a ViT share the same learngene space, and the
polynomial coefficients used to compose the learngenes are layer-dependent. This means that for
Tn = (x), where x = l−1

L , and the coefficient a(l, n) is defined as follows:

a(l, n) = Tn(
l − 1

L
). (3)

To avoid confusion, we use an example to show how to calculate these coefficients. Suppose the ViT
model we decompose is a 12-layer ViT, in the other words, L is equal to 12. For the second layer and
the third order learngene, the formula to calculate a(2, 3) is as follows:

a(2, 3) = 2× 2− 1

12
× T2(

2− 1

12
)− T1(

2− 1

12
). (4)

And for the fourth layer and the third-order learngene, the formula to calculate a(4, 3) is

a(4, 3) = 2× 4− 1

12
× T2(

4− 1

12
)− T1(

4− 1

12
). (5)

Note that the first kind Chebyshev polynomial is recursive, so in each layer the coefficients of the
subsequent learngenes are influenced by the coefficients of the previous learngenes.

3.2 Learning the Basic Learngenes

Here we introduce how to obtain the basic learngenes during training. Suppose we want to decompose
a L-th layer ViT into N learngenes. We iteratively use more learngenes, following Equation 1, to
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construct and train the ViT. During training, in each iteration, only the newly added learngenes are
trained, and all the previously used learngenes are fixed. More specifically, in the first iteration, we
only use the first learngene A1 to build the ViT following Equation 1, i.e., Wl = a(l, 1)A1, and
train this ViT. After the first iteration, we add the second learngene A2 into the Equation 1, i.e.,
Wl = a(l, 1)A1 + a(l, 2)A2, and then continue training this ViT on classification again. However,
in this iteration, only the second learngene A2 will be trained, while A1 will be fixed. Then, we will
iterate this process until all N learngenes are trained in turn.

When training each learngene, we use the training objectives following MiniViT [62], where the total
loss L contains two terms: the classification cross-entropy loss Lce and the distillation loss Ldl. The
classification cross-entropy loss Lce is as follows:

Lce = −
∑
j

∑
i

yij log(ϕi(zj)). (6)

Here, yij denotes the ground truth label for the i-th class of the j-th data instance, expressed in a
one-hot encoded format. The function ϕ represents the softmax operation, and zj is the logit output
corresponding to the j-th data instance from the model comprising with learngenes. Next, we define
the distillation loss as follows:

Ldl = KL(zt||zs), (7)
where zt denotes the logits output of the teacher model, zs denotes the logits output of the model
comprising with learngenes and KL represents the Kullback-Leibler divergence loss.

Thus, the loss function for learngene-wise training integrates both cross entropy and distillation losses
as follows:

Lall = Lce + Ldl. (8)

3.3 Recomposing the ViTs

After the training process, the ViT model is decomposed into several learngenes. Consequently, these
learngenes linearly composed by polynomial coefficients are serve as initialization for ViT models
for diverse downstream tasks. It is important to note that, the linear coefficients are pre-defined by
Equation 3, which means that these coefficients will not be updated during fine-tuning the recomposed
models. The initialization of ViT models with layers of different depth use a suitable number of
learngenes from Equation 3, with the number of layers L adapted to fit the available computational
resources. Based on the above decomposition formulas, the ViT models consisting of L layers can be
initialized as follows:

Wl = a(l, 1)A1 + a(l, 2)A2 + . . .+ a(l, k)Ak, (9)

where Wl denotes the parameters of the l-th layer in the ViT models, k is the number of learngenes
used for initialization.

After initializing the ViT models, there are two ways to train the model as shown in the lower part
of Figure 3. The first one is that Equation 9 merely provides an initialization for the ViT models. In
this way, the ViT models are trained without being constrained by Equation 9, the parameters of each
layer Wl are updated independently, i.e., the number of trainable parameters correlates with the layer
number of the recomposed models. The second one is that the parameters of each layer of the ViT
models are still constrained by Equation 9. In other words, during training, the ViT models update the
parameters of the k learngenes used for initialization, not the parameters of Wl. Consequently, the
number of trainable parameters in the model depends on the number of learngenes used. Therefore,
not only can we choose an appropriate number of learngenes to initialize models with an appropriate
number of layers, but we can also choose different training methods based on computational resources
as discussed in Section 4.2.3.

4 Experiments

In this section, we first describe the implementation details of the decomposition and recomposition
processes of ViT in Section 4.1. Followed by experiments to validate that the ViT model can
be decomposed into a series of learngenes and the feasibility of the ViT models that are flexibly
composed of these learngenes in Section 4.2.
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4.1 Implementation Details

4.1.1 Datasets

To train each learngene, we use ImageNet-1K [12], which contains approximately 1.2M training
images across 1000 classes and 50K validation images. After recomposing ViT models of different
layers with learngenes, we adapt them on 9 diverse downstream datasets, which include 3 object
classification tasks: CIFAR-10 [26], CIFAR-100 [26], and Tiny-ImageNet [1]; 5 fine-grained classifi-
cation tasks: iNaturalist-2019 [66], Food-101 [4], Oxford Flowers-102 [35], Stanford Cars [25], and
Oxford-IIIT Pets [38]; 1 texture classification task: DTD [10]. Each dataset presents unique chal-
lenges, ranging from basic object recognition to more specialized classification based on fine-grained
visual differences and texture patterns.

4.1.2 Details of Decomposition and Recomposition

Decomposition. Our approach to decompose the ViT model into different learngenes is based on the
DeiT architecture [48]. To train the learngenes, we use a distillation strategy with the RegNet-16GF
[42] as the teacher model. We train a total of 12 learngenes because there are 12 layers in DeiT.
Constrained by computational resources, instead of training each learngene sequentially, we divided
the training process into five phases, with learngene counts of {1, 2, 4, 8, 12}. For example, during
the third training phase, only the two newly added learngenes are trained, while the two previously
trained learngenes are frozen. In each phase, the model is trained for 100 epochs with an initial 5
warmup epochs.

Recomposition. In the recomposition, we can choose different number of learngenes to flexibly
generate the ViT models with different layers, such as {2, 4, 6, 8, 10, 12} layers. First, we determine
the appropriate number of learngenes and number of layers of the ViT models based on computing
resources. Then we use the pre-defined Equation 3 to calculate the polynomial coefficients. Following
the Equation 9 can be used to initialize the parameters of the ViT models. After the models are
initialized,they can be trained in one of two ways as mentioned in Section 4.2.3.

Computing resources. The resource cost of our method includes the decomposition and recompo-
sition. In decomposition, it takes 500 epochs to obtain 12 learngenes, while recomposition requires
no additional training to use different number of decomposed learngenes to initialize different layer-
based models. Since the number of layers of ViTs ranges from 1 to 12, and each layer can be
initialized with 12 different numbers of learngenes, there are a total of 12×12 combinations of
ViTs with different sizes and different initializations. Then if we try to get all these student ViTs
by pre-training/distillation, we need to respectively train each one individually. Taking [62] as an
example, training one student takes 300 epochs, then 12 × 12 × 300=43.2K epochs are required in
total.

4.2 Results and Analyses

In this paper, we have two elementary assumptions of Equation 2. Firstly, a ViT can be decomposed
into a series of basic learngenes. Secondly, ViTs with diverse depths can be flexibly recomposed by
parts or all of these learngenes. Here, we first determine the polynomial coefficients for decomposition
and recomposition based on the experiments in Section 4.2.1. Then we implement experiments to
validate these two major assumptions in Section 4.2.2 and Section 4.2.3, respectively.

4.2.1 Choosing Suitable Polynomial Coefficients

Table 1: Results of ViTs with different
decomposition coefficients.

Taylor Chebyshev Fourier Legendra
Accuracy 74.80% 77.73% 77.09% 73.13%

In the decomposition and recomposition, there are sev-
eral choices of the polynomial coefficients for Equation
3, e.g., Taylor series, the first kind Chebyshev polyno-
mial, Fourier series and Legendre series. To select the
appropriate polynomial coefficients, we perform a sim-
ple experiment in which the ViT model is decomposed
into 12 learngenes. We then use these polynomial coefficients to compose these learngenes and train
them simultaneously for 100 epochs. The results are presented in Section 4.2.1, it can be observed
that when using the first kind Chebyshev Polynomial coefficients, we have the highest performance:
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77.73% accuracy. Therefore, we use the first kind Chebyshev polynomial coefficients in Equations 1
and 9 in the subsequent decomposition and recomposition experiments.

4.2.2 Decomposing the ViT
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Figure 4: The accuracy of our method is compared
with that of DeiT-B and SN-Net on ImageNet-1K.

In Section 3.2, we show that the basic learn-
genes decomposed from the ViT model, i.e.,
DeiT-Base, can be trained incrementally, a
method named ICT. Figure 4(a) also shows
the result of training all learngenes simulta-
neously under the same training settings, a
method called SCT. The process of incremen-
tal training is visually represented in Figure 4,
where it is evident that as the number of learn-
genes increases, the accuracy of the ViT model composed of these learngenes not only improves, but
also surpasses the results of SCT.

In particular, at 12 learngenes, the accuracy of the ViT model reaches 83.70%, which is comparable to
the performance of DeiT-Base, where the parameters in different layers are initialized independently.
The results shown by DeiT in Figure 4(a), which are the same as the training method used in the
decomposition, are obtained by training with the loss function in Equation 8, with 500 epochs of
training. Thus, after separately learning each linear learngene of the ViT, the performance can achieve
the results of the classical ViT which is trained as a whole, confirming the earlier assumption in
Section 1 that the parameters of ViT can be linearly decomposed.

Moreover, we also compare the decomposition results with SN-Net [37] in Figure 4(b), which
describes the generation of differently scaled ViTs on ImageNet-1k. The results show that the models
obtained by decomposition outperform those stitched by SN-Net from DeiT-Tiny, DeiT-Small, and
DeiT-Base. The computational cost for both approaches is as follows: our method totals 800 epochs,
consisting of 300 epochs for training DeiT-Base and 500 for the decomposition. In contrast, SN-Net
incurs 1150 epochs, with each of DeiT-Tiny/Small/Base requiring 300× 3 epochs, plus an additional
50× 5 epochs for five stitched models. Thus, our method demonstrates not only better performance
but also greater efficiency in computational cost.

4.2.3 Recomposing the ViTs

After training, these learngenes can be flexibly recomposed into ViT models with different layers
according to Equation 9. To validate the effectiveness of recomposing ViTs with diverse depths by
using different numbers of learngenes, we perform the following experiments.

Evaluating Learngene Number and Layer Depth Effects on Model Performance. As mentioned
in Section 1, the decomposed learngenes can be used to initialize ViT models with different layers to
satisfy the computational resource requirements. Additionally, Section 3.3 introduces two ways for
training the reconstituted ViT models. The first method, named “w/o const” means that Wl calculated
by Equation 9 only provides an initialization, and the parameters of each layer are independent. The
second method, named “w/ const” is that the parameters of each layer still satisfy Equation 9. Due to
space limitations, some experimental results are presented in the Appendix.

In Figure 5, we have two dimensions: the depth of the network and the number of the learngenes
used to recompose. From these figures, first, we can find that when recomposing a deeper ViT or
using more basic learngenes to recompose ViTs, the performance will also improve in most cases,
whether “w/ const” or “w/o const” are used. In addition, increasing the number of layers tends to have
a greater impact on the preform of the models. Second, on each graph, there is a boxed area bounded
by red contours that represents 95% of the maximum value on each graph. Therefore, if the computer
resources of clients are limited, they can choose to build VITs with fewer layers and initialize with
fewer learngenes to achieve better resource-performance trade-off. For example, in Figure 5(g), the
6-layer ViT model initialized by only 1 learngene can achieve 95% of the best performance.

Figures 5(f) and 5(g) also show a comparison between the “w/ const” and “w/o const” training
methods. However, it should be noted that when the number of layers exceeds the number of
learngenes, the model trained by the “w/o const” method consumes more memory than the “w/
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(a) Tiny-IMNET (b) Food-101 (c) CIFAR10 (d) Flowers

(e) Tiny-IMNET (f) Food-101 (g) CIFAR10 (h) Flowers

Figure 5: Performance of ViTs with different layers initialized with different learngenes on down-
stream datasets. The first row shows the results with the “w/o const” training method, the second row
is trained with “w/ const”. The second row also shows the differences between the two, where “+”
indicates improvement and “−” indicates degradation. The boxed areas bounded by the red contours
represent regions where the accuracy is within 95% of the maximum value of each graph.
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Figure 6: Comparative results. The ViTs are initialized with two different recomposition cases and
trained by corresponding methods, i.e., one is trained with constraint and the other is trained without
constraint, and then compared with the performance of differently scaled pre-trained models and
models obtained by model compression methods.

const”. Therefore, for downstream clients with limited computational resources who want better
performance. They can construct a ViT model with a higher number of layers, initialize it with a
smaller number of learngenes, and then use “w/ const” training method. For example, a 12-layer ViT
model initialized with two learngenes requires 86MB of memory using the “w/o const” method, but
only 14.3MB using the “w/ const” method. On Food-101, it achieves 89.34% performance with “w/
const” and 90.44% with “w/o const”. Despite the slightly lower performance, the “w/ const” method
significantly reduces memory usage by about 12 times.

Comparative Analysis. We compare our method with pre-training & fine-tuning (Pre-Fin) and
model compression methods. In particular, (1) Pre-Fin: We use the pre-trained DeiT models including
DeiT-Tiny, DeiT-Small and DeiT-Base in [48], and then fine-tune the model for downstream tasks.
(2) Model compression: The methods used include Mini-DeiT-B in [62] and Efficient-ViT [30].

For two training strategies in recomposition, we use different learngene configurations to recompose
models with different numbers of trainable parameters. For the “w/ const”, the parameters of the
model depend on the number of learngenes as in Section 3.3. Therefore, we use the 12-layer ViT
model recomposed by {1, 2, 4, 6, 8, 10, 12} learngenes. For the “w/o const”, the trainable parameters
correlate with the layer number of the model. Here, the number of learngenes is kept at 12 and ViT
models are initialized over {2, 4, 6, 8, 10, 12} layers. Additional dataset results and corresponding
numerical data are in the Appendix due to space limitations.

From Figure 6, we find that when different trainable parameters are used, “w/ const” outperforms
the other methods such as pre-fine and model compression on downstream datasets. For example, in

9



Figure 6(a), when the model with 7.8M parameters is recomposed from a single learngene and trained
with constraints, the accuracy is 72.3%. This performance exceeds that of Efficient ViT, which has
8.8M parameters, by 6.3%. Moreover, “w/o const” performs slightly worse than other methods with
less trainable parameters because the networks have fewer layers. As in Figure 6(b), a 4-layer model
with 28M parameters trained with “w/o const” performs over 9% worse than DeiT-Small with 22M
parameters. However, as the number of layers increases, the performance of models trained with
“w/o const” improves. For example, a 6-layer model with the same number of parameters as MiniViT,
which is a 12-layer model, shows a performance difference of only 1.4%, indicating competitive
results. These comparisons validate that when using suitable training strategy, the recomposed
diverse-scale ViTs have good initialization that by simply training, they can achieve comparable or
better performance than Pre-Fin and model compression methods. Furthermore, by our strategy, an
appropriate number of decomposed learngenes can be selected based on available computational
resources to initialize the models without training from scratch, achieving flexible accuracy and
efficiency trade-offs.

5 Conclusion

In summary, this paper proposes a novel training method for efficiently generating ViTs of varied
sizes to meet diverse computational needs. By employing linear decomposition, a ViT can be
decomposed into basic learngenes, termed as “learngenes”, which encapsulate critical knowledge
from the original model. These learngenes can then be selectively and linearly recomposed to form
ViTs of various layers and sizes. This flexible recomposition provides an economical and adaptive
solution for creating a series of small or medium ViTs tailored to different deployment environments.
Our experiments confirm the effectiveness of this learngene-based decomposition-recomposition
method and show that these recomposed ViTs maintain performance comparable to traditional model
compression techniques while offering greater flexibility and efficiency.
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Figure 7: The parameters of each layer of the pre-trained model and their corresponding layer position
relationships.

A Appendix / supplemental material

In the following section, we present the process of dimensionality reduction applied to the parameters
of each layer in the Vision Transformer (ViT) models in order to observe the interrelationships
between the parameters across different layers. We then supplement the experimental content
presented in the main text, including the experimental results on decomposition and recomposition,
as well as implementation details. Finally, this section concludes with a discussion of the limitations
and societal implications of our method.

A.1 Dimensionality Reduction and Inter-Layer Parameter Relationships in ViTs

Our analysis starts with the aggregation of parameter matrices from the Multihead Self-Attention
(MSA), Multilayer Perceptron (MLP), and Layer Normalization (LN) modules of an extensively
trained Transformer model. Specifically, within the MSA module and given an input x, we first
perform the computation of (xWQ)(xWK)T to determine the attentional outputs for each head. This
then facilitates the derivation of WA for the MSA as follows:

WA = WQWKT

(10)

where WK and WQ, belonging to RD×D, act as transformation parameter matrices for keys and
queries, respectively, where D denotes the dimensionality of the intermediate embeddings. Subse-
quent operations involve the bias vectors for keys and queries, proceeding according to Equation
10. Together with other parameter matrices in the MSA module, we reshape these into vectors and
subject them to L2 normalization.

In the MLP module, we flatten and normalize weight matrices and bias vectors from two linear
transformations. A similar approach is employed in the LN module, where weight matrices and bias
vectors associated with transformation parameters are normalized. Normalized vectors, specific to
each parameter type, are concatenated in alignment with their corresponding layer, culminating in a
synthesized matrix S ∈ RN×DL , where DL symbolizes the normalized vector dimension for each
parameter type, and N signifies the depth of the Transformer.

Principal Component Analysis (PCA) [24] is then utilized to reduce the dimension of each vector in
S to a one-dimensional scalar, primarily for analytical convenience. These reduced vectors are then
combined to form the matrix H ∈ RN×K , with K indicative of the number of parameter types. Each
row of H is interpreted as the representative vector of the corresponding layer. Another iteration of
PCA is performed to compress the rows of H into a one-dimensional domain, resulting in a vector
U ∈ RN . This final vector is used to illustrate the relationship between the sequential positioning
of the layers in the transformer and their respective parameter values, thus illustrating the nuanced
interplay of parameters across the architectural layers.

We also show the graphs for MoCov3 [8], DINOv2 [36], MAE-B [19] and BEITv2-B [3] in Fig-
ures 7(a) to 7(d), which show that the parameters of the layers have an approximately linear correlation
with the layer position.

A.2 Experiment

A.2.1 Decomposition
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(a) Qualitative Visualization of Each learngene. Uses each of the first six learngenes to initialize the
model separately, showing different characteristics and areas of focus for each learngene.
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(b) Qualitative visualization of the ViT model initialized by incremental learngenes.

Figure 8: Qualitative visualization of decomposed learngenes

Qualitative Visualization of Learngenes. After training, we obtain the decomposed learngenes of
the Vision Transformer (ViT). To analyze their characteristics, we employ Gradient-weighted Class
Activation Mapping (Grad-CAM) [44], which is pivotal in the classification process, to visualize the
feature maps in two scenarios: one where each learngene is used independently to initialize a ViT,
and the other where learngenes are added incrementally to initialize the ViT model.

From Figure 8(a), we find that each learngene focuses on uniquely specific regions, indicating that
the functionalities of the ViT model are decomposed into distinct learngenes. Specifically, the first
learngene focuses on basic shapes and contours. The second learngene detects textures and colors,
such as highlighting leaf textures and bird feather details. The third learngene identifies spatial
features such as insect wings, while the fourth learngene detects finer details such as bird eyes or
insect antennae. The fifth learngene emphasizes image contrast, and the sixth distinguishes between
foreground and background, focusing on depth perception. As shown in Figure 8(b), early learngenes
capture basic shapes and edges, while later learngenes refine the focus on textures, colors, and specific
details such as leaf veins or bird feathers. As learngenes are added, the attention of model shifts to
finer features such as bird beaks, insect wings, and antennae, indicating a progression from general to
detailed feature recognition that is likely to lead to more accurate image classification.

A.2.2 Recomposition

Evaluating Learngene Number and Layer Depth Effects on Model Performance. The experi-
mental results in Figure 9 on these two datasets further verify the findings in the text. The results
in the appendix confirm the observation that deeper network configurations or a larger number of
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(f) CIFAR100 /“w/
const”

(g) INAT /“w/ const” (h) Pets /“w/ const” (i) Cars /“w/ const” (j) DTD /“w/ const”

Figure 9: Performance of ViTs with different layers initialized with different learngenes on down-
stream datasets.
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Figure 10: Comparative results. The ViTs are initialized with two different recomposition cases and
trained by corresponding methods, i.e., one is trained with constraint and the other is trained without
constraint, and then compared with the performance of differently scaled pre-trained models and
models obtained by model compression methods.

decomposed learngenes generally improve ViT performance, whether trained by “w/o const” or “w/
const”. The results also show stable performance beyond certain learngene and layer thresholds,
and provide strategies for optimizing ViT models under resource constraints, such as using fewer
layers and learngenes to achieve near-optimal performance. We also compare the “w/const” and
“w/o const” training methods and find that performance differences decrease as model complexity
increases. In particular, models with higher layers show minimal performance variance between the
two methods, but differ in memory consumption, with “w/o const” requiring more. We recommend
“w/o const” for efficiency in resource-constrained scenarios, as shown by the 12-layer ViT model
initialized with fewer learngenes, which achieves comparable performance with significantly less
memory consumption.

Comparative Results. The experimental results presented in Figure 10 show that a 12-layer Vision
Transformer (ViT) initialized with different numbers of learngenes and trained using the “with
constraint” method, represented by the orange lines in the graphs, outperforms traditional approaches
such as pre-fine tuning and model compression under the same parameter constraints. In addition,
as the number of layers in the model increases to a certain threshold, models initialized with 12
learngenes and trained using the “without constraint” method also outperform these baselines. Thus,
our method strikes a balance between flexibility and model efficiency.

Numerical Results for Comparative Results. Table 2 provide the numerical performance on 9
downstream tasks to compare our methods with pre-training fine-tuning and model compression
methods. The same results are also shown in Figures 6 and 10 of the main paper.
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Table 2: Comparative experiments. Two cases of initializing models with learngenes and their corre-
sponding training approaches, compared with the pre-training fine-tuning and model compression
methods.

Model Para CIFAR10 CIFAR100 Tiny-ImageNet INAT Food Cars Flowers Pets DTD

Model Pretrained

Deit-T 5M 97.85 86.36 76.15 70.1 86.54 79.32 64.69 90.43 65.48
Deit-S 22M 98.63 89.59 80.66 74.88 89.16 88.01 85.92 92.53 67.23
Deit-B 86M 98.92 90.03 87.5 77.43 91.44 91.97 92.54 93.54 72.87

Mini-Deit and Efficient-ViT

Mini-Deit 43M 98.57 90.29 81.54 73.85 90.94 89.68 92.15 93.71 68.83
Efficient-ViT 8.8M 97.1 86.63 74.95 66 86.96 81.2 62.75 89.35 63.67

12 learngenes used to recompose different layers ViTs trained with “w/o const” training method

2layer-12learngene 14.3M 88.75 66.05 59.48 51.19 72.05 22.35 21.43 46.02 40.64
4layer-12learngene 28.7M 96.33 82.35 72.32 66.7 86.29 76.36 43.99 78.64 57.61
6layer-12learngene 43M 98.03 87.75 78.65 69.47 90 88.28 73.67 92.62 68.14
8layer-12learngene 57.3M 98.36 89.49 82.1 71.98 90.91 91.27 89.19 94.2 72.5
10layer-12learngene 71.6M 98.76 90.6 88.01 75.03 91.61 91.99 91.59 94.47 73.67
12layer-12learngene 86M 98.97 91.05 89.16 77.89 92.02 92.68 93.33 94.99 74.73

12 layered models recomposed by different number of learngenes, trained with “w const” training method

12layer-1learngene 7.8M 98.54 88.37 81.85 72.3 89.83 84.61 66.98 90.95 65.8
12layer-2learngene 14.3M 98.65 89.24 83.13 75.21 89.34 89.62 88.98 93.19 67.13
12layer-4learngene 28.7M 98.69 90.91 86.63 76.14 90.83 91.95 92.88 94.69 72.23
12layer-6learngene 43M 98.75 90.69 86.18 76.95 91.37 91.99 93.2 94.63 72.66
12layer-8learngene 57.3M 98.93 90.73 88.44 76.93 91.16 92.43 94.93 94.58 73.35
12layer-10learngene 71.6M 98.86 90.31 88.01 78 91.13 92.42 95.24 94.44 73.4
12layer-12learngene 86M 98.96 91.96 88.45 78.51 91.65 92.68 95.8 95.59 74.52

Table 3: Overview of Classification Datasets
Dataset Name Categories Training Samples Test Samples

CIFAR-10 10 50,000 10,000
CIFAR-100 100 50,000 10,000
Tiny-ImageNet 200 100,000 10,000
INAT-2019 1,010 268,243 64,401
Food-101 101 75,750 25,250
Stanford Cars 196 8,144 8,041
Oxford Flowers 102 2,040 818
Oxford-IIIT Pets 37 3,680 3,669
DTD 47 3,760 1,880

A.3 Implementation Details

A.3.1 Code

We implement the model using PyTorch [39] and the Timm library [53]. The decomposition process
is trained over 500 epochs on four NVIDIA RTX 3090 GPUs, and the recomposed models are trained
over 100 epochs on two NVIDIA RTX 3090 GPUs for each downstream task.

A.3.2 Datasets and Pre-processing

Datasets We adapt the recomposed models on 9 diverse downstream datasets, covering a wide
range of classification challenges. These datasets include 3 object classification tasks: CIFAR-10 [26],
CIFAR-100 [26], and Tiny-ImageNet [1]; 5 fine-grained classification tasks: iNaturalist-2019 [66],
Food-101 [4], Oxford Flowers-102 [35], Stanford Cars [25], and Oxford-IIIT Pets [38]; 1 texture
classification task: DTD [10]. The details of these datasets are in Table 3.

Data Process Following previous works [62], we train and evaluate the decomposition and recom-
position processes on all datasets at a resolution of 224 × 224. The data augmentation techniques
employed include RandAugment [11], Cutmix [60], Mixup [61], and random erasing.

A.3.3 Hyper-parameter

Decomposition We train each learngene using the following setting:
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• Batch Size: We employ distributed training across 4 GPUs, with each GPU handling 128
data instances, resulting in an overall batch size of 512.

• Optimizer: The training of each learngene is optimized using AdamW, with an initial
learning rate of 0.0008 and a weight decay of 0.05.

• Learning Rate Schedule: We apply a cosine learning rate decay, with a warm-up period of 5
epochs.

Recomposition We train the recomposed models on downstream tasks using the following setting:

• Batch Size: We employ distributed training across 2 GPUs, with each GPU handling 128
data instances, resulting in an overall batch size of 256.

• Optimizer: The training of each learngene is optimized using AdamW and a weight decay
of 0.05.

• Learning Rate Schedule: We apply a cosine learning rate decay, with a warm-up period of 5
epochs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims stated in the abstract and introduction are fully supported by
the experimental results presented in the paper, which confirm the effectiveness of our
methodology in adapting Vision Transformers to diverse computational settings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of our method in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our method is inspired by polynomial decomposition in calculus. This paper
primarily investigates the feasibility of the approach, and at this stage we are unable to
provide a comprehensive theoretical underpinning.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our paper provides code in the Supplementary Material and describes the
datasets and hyperparameters used in the Experiments section of the main text and in the
Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

20



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code in the Supplementary Material, and the datasets used in the
paper are all public datasets, which are described in the Appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]

Justification: We provide experimental setting in Experiment section and the hyper-
parameters in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Due to the large size of the datasets, significance tests were not performed, but
consistency was maintained by fixing the random seed during training and evaluation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The appendix details the types and quantities of machines used, although
specific execution times are not provided due to the numerous experiments conducted.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research strictly conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the societal impact of our work in the Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of models or data, hence there are no
associated risks requiring safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The experimental section and appendix provide detailed references to the
datasets used, citing the original sources. In addition, all experimental settings are properly
referenced, ensuring full compliance with the licensing requirements of the assets used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No release of new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or human subjects research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No crowdsourcing or human subjects research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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