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ABSTRACT

Preferential Bayesian Optimization (PBO) is a sample-efficient method to learn
latent user utilities from preferential feedback over a pair of designs. It relies on a
statistical surrogate model for the latent function, usually a Gaussian process, and
an acquisition strategy to select the next candidate pair to get user feedback on.
Due to the non-conjugacy of the associated likelihood, every PBO step requires a
significant amount of computations with various approximate inference techniques.
This computational overhead is incompatible with the way humans interact with
computers, hindering the use of PBO in real-world cases. Building on the recent
advances of amortized BO, we propose to circumvent this issue by fully amortizing
PBO, meta-learning both the surrogate and the acquisition function. Our method
comprises a novel transformer neural process architecture, trained using reinforce-
ment learning and tailored auxiliary losses. On a benchmark composed of synthetic
and real-world datasets, our method is several orders of magnitude faster than the
usual Gaussian process-based strategies and often outperforms them in accuracy.

1 INTRODUCTION

Learning the latent utility function of a given user from its feedback is a task that is becoming
increasingly important in the era of personalization, with applications ranging from the optimization
of visual designs (Koyama et al., 2020), thermal confort (Abdelrahman & Miller, 2022), proportional
integral controller (Coutinho et al., 2024), or robotic gait (Li et al., 2021). As humans are typically
better at comparing two options rather than assessing their absolute value (Kahneman & Tversky,
2013), current solutions often leverage data based on preferential feedback, the outcome of a pairwise
comparison also referred to as a duel (Chu & Ghahramani, 2005).

Preferential Bayesian Optimization (PBO, González et al. (2017)) is the gold standard method
for optimizing black-box functions from sequential duel feedback. To learn the latent utility of a
human subject, PBO operates in a Bayesian framework and classically relies on a Gaussian Process
(GP) prior (Rasmussen & Williams, 2006) and a probit or logit likelihood (Brochu et al., 2010).
Due to the non-conjugacy of the preferential likelihood, approximation techniques are required for
posterior inference (Takeno et al., 2023). The obtained posterior is then plugged into an acquisition
function, which selects the next pair of candidate designs to display to the user, in a way that balances
exploration and exploitation (Garnett, 2023). Approximating the posterior and maximizing the
acquisition function results in a significant computational overhead, which may hinder the use of PBO
in real-world cases, as the user would have to wait an extended period of time before each iteration.

To circumvent this issue, amortization (Amos, 2023), or pre-computing solutions and learning an
ML model to approximate them, has emerged as a promising solution, effectively enabling rapid
and still accurate on-line computation with sophisticated models, trading off the speed to off-line
computations. Amortization has been successfully applied to Simulation-based inference (Cranmer
et al., 2020; Gloeckler et al., 2024), sequential Bayesian experimental design (Foster et al., 2021),
and more relevantly, vanilla Bayesian Optimization (Maraval et al., 2023; Song et al., 2024).

Beyond speed gains, an interesting characteristic of amortization with regards to BO and PBO is that
it can jointly model the probabilistic surrogate and the acquisition function, two modules that are
usually treated independently in BO. This provides two powerful advantages: rather than guessing
which combination of GP kernel and acquisition function works best for a given task through various
heuristics, these are now learned from data. In the end, the model will directly predict the acquisition
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Figure 1: Leveraging synthetic and existing BO datasets, PABBO learns an acquisition policy in an
end-to-end manner, thus directly amortizing the design proposal step. Contrary to existing methods,
at inference time, PABBO only relies on preference data. Our method outperforms GP-based strategies
and dramatically speeds up the optimization.

function values. However, current end-to-end black-box optimization methods predict acquisition
function values for single designs. Translating this task in the preferential framework requires
predicting acquisition values for pairs of designs, suggesting novel network architectures and training
procedures. To the best of our knowledge, amortization has not yet been employed in a PBO setting.

Contributions.

• We introduce PABBO, the first end-to-end framework for Preferential Amortized Black-Box
Optimization (Table 1). PABBO directly outputs acquisition function values for candidate pairs,
conditioned on observed data, and handles preferential feedback through a novel transformer-
based architecture.

• We present a reinforcement learning-based pre-training scheme to directly learn acquisition
function values for pairs. Due to the sparsity of the rewards, in a similar spirit as Maraval et al.
(2023), we add an auxiliary loss, but based on binary classification instead of regression, due to
the preferential nature of the data. Figure 1 displays the PABBO workflow.

• On a set of synthetic and real-world examples, PABBO provides speedups of several orders of
magnitude against GP-based methods, often outperforming them, even on unseen examples
during pre-training, thus demonstrating its impressive in-context optimization capability. We
conclude by illustrating the robustness of PABBO through a series of ablation studies.

Method Preference
Feedback Amortization End-to-End

training Reference

BO ✗ ✗ ✗ (Garnett, 2023)
qEUBO ✓ ✗ ✗ (Astudillo et al., 2023)
qEI ✓ ✗ ✗ (Siivola et al., 2021)
qTS ✓ ✗ ✗ (Hernández-Lobato et al., 2017)
PFN ✗ ✓ ✗ (Müller et al., 2023)
NAP ✗ ✓ ✓ (Maraval et al., 2023)

PABBO ✓ ✓ ✓ This work

Table 1: PABBO is the first end-to-end framework for Preferential Amortized Black-Box Optimization.
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2 PRELIMINARIES

2.1 PREFERENTIAL BLACK-BOX OPTIMIZATION

The goal of preferential black-box optimization (PBBO) is to determine the optimal solution x∗ =
argmaxx∈X f(x) using the duel feedback x ≻ x′, signifying a preference of x over x′. The
preference structure is governed by the latent function f : X→ R defined over the subset X ⊂ Rd:

x ≻ x′ ⇐⇒ f(x) + ε > f(x′) + ε′, (1)

where ε and ε′ are i.i.d. realizations of the normal distribution N (0, σ2
noise).

By definition of PBBO, we only have access to a dataset D made of the human observations of m
duel feedbacks {li}mi=1 = {xi ≻ x′

i}mi=1, with xi and x′
i being the winner and the loser of the duel,

respectively, and li a binary variable recording the location of preferred instance in a query. No
information about the latent function is provided, e.g., its analytic form, convexity, or regularity.

2.2 AMORTIZATION

Amortization is a data-driven approach that involves training a model, often a neural network, on
a large set of pre-collected tasks. The goal is to enable the model to capture and leverage shared
information across these tasks, thus learning how to make predictions efficiently on similar tasks in the
future. This process allows the model to perform approximate inference rapidly during the inference
stage, since knowledge from related tasks encountered during training has already been internalized.

Recently, amortization has been introduced to BO, either amortizing the surrogate model (Müller
et al., 2023), the acquisition function (Swersky et al., 2020; Volpp et al., 2020), or directly end-to-end
training system (Yang et al., 2024; Maraval et al., 2023; Chen et al., 2022). Our work aims to employ
a fully end-to-end trained system that learns how to optimize functions directly from preference data.

Designing a task-specific architecture is crucial to efficiently utilize data in amortized learning.
Conditional neural processes (CNPs; Garnelo et al. 2018), as a meta-learning framework built on
Deep Sets (Zaheer et al., 2017), are particularly well-suited for tasks like BO (Maraval et al., 2023;
Müller et al., 2023), where historical queries are permutation-invariant. Transformer-based neural
processes (Nguyen & Grover, 2022; Müller et al., 2022) extend this idea by leveraging the attention
mechanism to more effectively capture interactions between points.

2.3 REINFORCEMENT LEARNING

Reinforcement Learning (RL) has recently found success in the Black-Box Optimization realm (Volpp
et al., 2020; Hsieh et al., 2021; Maraval et al., 2023), due to its ability to yield non-myopic acquisition
strategies. This leads to better performances since these strategies consider the influence of future
evaluations up to a given horizon determined by the available budget T . An RL problem is defined
as a Markov Decision Process (MDP)M = (S,A,P,R, γ), S and A stand for the state and action
spaces, respectively, P : S×A×S → [0, 1] is the state transition model, andR is the reward function
which encompasses a given optimization goal. The goal is to learn a probability distribution over
state-action pairs π(at|st), referred to as a policy, such that π maximizes the discounted expected
returns with discount factor γ ∈ [0, 1], which defines the degree of myopia of the policy.

3 PREFERENTIAL AMORTIZED BLACK-BOX OPTIMIZATION (PABBO)

To solve the problem introduced in Section 2.1 in an amortized manner, PABBO proceeds as illustrated
in Figure 2. In brief, PABBO directly outputs acquisition values for candidate pairs through the
policy πθ, which is parameterized by a transformer backbone and an acquisition head. To stabilize
the training, we additionally employ a prediction head for an auxiliary preference prediction task.
Section 3.1 describes the MDP we employ for learning the policy πθ, Section 3.2 details the conception
of the pre-training dataset accordingly to the neural process framework, and Section 3.3 focuses on
the transformer architecture and the loss functions involved in its actual training.
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Figure 2: Flowchart of PABBO (left), together with a zoom on our proposed transformer block (right).
We use reinforcement learning to guide the acquisition head in proposing valuable query pairs, and
apply an auxiliary BCE loss to the prediction head to stabilize the training of the transformer.

3.1 POLICY LEARNING

Unlike current PBO methods, we leverage RL to learn a non-myopic policy πθ. For a single task, our
RL problem is formulated as follows:

• States: st = [Ht, t, T ], where Ht = {(xi,1,xi,2, li)}t−1
i=1 contains the optimization history

made of (t− 1)-step queries and preferences.
• Actions: at = (xt,1,xt,2), the next query pair.
• Rewards: rt = max1≤i≤t max{yi,1, yi,2}, the best objective function values observed so far

with yi,1 and yi,2 being associated to inputs xi,1 and xi,2, respectively.

State transitions consist in updating the optimization history with the selected next query and
preference feedback,Ht+1 = Ht ∪ {(xt,1,xt,2, lt)}. We seek a policy maximizing the cumulative
rewards along the entire optimization trajectory while performing well on average across tasks
sampled from ptasks. Rewards rt denote the maximal objective function values observed at step
t. Such values are always available in synthetic pre-training datasets, like GP draws. If the latent
function values are unavailable during pre-training, ranking data can be used to obtain a score for each
point as the reward. We show in Section 5.4 that this substitution does not greatly alter performance.

3.2 PRE-TRAINING DATA ARCHITECTURE

The PABBO workflow involves a pre-training phase, where a policy is learned on all meta-tasks, and
an inference phase, where the trained model is applied to predict acquisition values on a new task
directly. Our approach effectively amortizes the optimization process over multiple tasks, allowing
rapid inference by leveraging the shared structure learned during pre-training. The pre-training
dataset for each meta-task features three parts:

• A context set D(c) = {(x(c)
i,1 ,x

(c)
i,2 , l

(c)
i )}t−1

i=1 containing all past queries and preferences.

• A query set D(q) = {(x(q)
i )}Si=1 consisting of S locations that the model considers for the

next step, which will be further combined into a candidate query pair set Q = {(x(q)
i ,x

(q)
j ) |

x
(q)
i ,x

(q)
j ∈ D(q), i ̸= j} of size M . In a training iteration, we randomly sample S query points,

and candidate query pairs are chosen from all possible pairwise combinations within this set.
At inference time, query points are sampled across the search space from a quasi-random Sobol
sequence, and all possible pairs from the full set of combinations are considered. S should be
set to a sufficiently large value and scaled with data dimension to ensure adequate exploration.

• A prediction set D(p) = {(x(p)
i,1 ,x

(p)
i,2 , l

(p)
i )}Ni=1 containing N queries and preferences. Sim-

ilarly, we generate D(p) by sampling pairwise combinations of a set of random points.
This prediction set is used to compute an auxiliary binary classification loss: for each op-
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timization step, we randomly sample a subset of D(p) which refers as prediction context set
D(ctxpred) = {(x(ctxpred)

i,1 ,x
(ctxpred)
i,2 , l

(ctxpred)
i )}N(ctxpred)

i=1 , and all the points from the rest of P

queries will be considered as a prediction target set D(tarpred) = {(x(tarpred)
i )}N(tarpred)

i=1 . The model
is required to estimate the latent function values for each point in D(tarpred) conditioned on
D(ctxpred), and further recover the preference relationship of a possible pair.

It is worth mentioning that no reward information can leak from the query set to the prediction set as
entirely different instances are assigned to each set.

3.3 MODEL ARCHITECTURE

PBBO differs from standard BO in two aspects: (1) preferential outcomes instead of exact latent
function values are observed, and (2) a pair of points is expected as the next query instead of a single
point. To address these challenges, PABBO leverages novel data encoding and decoding structures,
efficiently handling pairwise preference data. At the center of PABBO’s architecture lie conditional
neural processes, a class of models quite amenable for handling the sets that naturally arise due to
the permutation invariance of the optimization history. Specifically, the PABBO model architecture,
presented in Figure 2, consists of four main components: the data embedder femb, transformer block
ftfm, prediction head fp, and the acquisition head fa.

Firstly, inputs from all parts of the dataset are mapped into a shared embedding space via the data
embedder femb. The first and second instance within a pair xi,1,xi,2 and their corresponding
preference li are encoded separately with individual MLPs into embeddings of the same size and
added up as E = E(xi,1) ⊕ E(xi,2) ⊕ E(li). For parts D(q) and D(tarpred) containing only a single
instance xi, E = Exi . This gives us embeddings E(c),E(p),E(ctxpred) and E(tarpred) corresponding to
D(c), D(q),D(ctxpred) and D(tarpred), respectively.

Next, embeddings are passed through the transformer block ftfm, which captures the interactions
between different parts of a meta-dataset. Dependencies between elements are controlled with
masking in self-attention layers of ftfm. Precisely, D(c), the observations collected by the current step,
can be attended by other elements in D(c) and all the query points in D(q), while each query point
can only be attended by itself. Our interest is the Transformer outputs for query set λ(q) = fftm(E(q)).
The same rule applies for the prediction context set D(ctxpred) and prediction target set D(tarpred),
leading to the transformer outputs λ(tarpred) = fftm(E(tarpred)). These outputs λ = [λ(q),λ(tarpred)] are
then processed with different decoders according to their specified task needs.

Subsequently, λ(q) are combined into pairs {(λ(q)
i ,λ

(q)
j ) | (x(q)

i ,x
(q)
j ) ∈ Q)} according to the

candidate query pair set Q1. Each pair (λ(q)
i ,λ

(q)
j ) passes through the acquisition head fa along with

current step t and budget T to predict the acquisition function value qi,j = fa(λ
(q)
i ,λ

(q)
j , t, T ) for

associated query pair. This allows us to form a policy for proposing the next-step query (xt,1,xt,2)

from Q by mapping the outputs of fa, q = {qi,j | (x(q)
i ,x

(q)
j ) ∈ Q}, to a categorical distribution

using the SoftMax function:

πθ((x
(q)
i ,x

(q)
j ) | Ht, t, T ) =

expqi,j∑
qm∈q expqm

. (2)

As defined in Section 3.1, the best objective function value obtained so far is chosen as the immediate
reward when training this policy, since the goal is to find the global optimum as efficiently as
possible. To further pursue a non-myopic solution, we consider the cumulative reward across the
entire query trajectory, incorporating a discount factor γ, which controls the rate at which future
rewards are discounted. The loss function is then written as the negative expected reward over the
entire optimization trajectory:

L(q) = −
T∑

t=1

γt−1rt log πθ((x
(q)
t,1 ,x

(q)
t,2 ) | Ht, t, T ). (3)

1 To reduce computational costs from evaluating all the possible pairwise combinations between query points,
which are of size O(S2), we randomly sample M ≪ S2 pairs as Q for each meta-task during pre-training.
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In addition to the forward process through fa, we handle the sparsity of rewards by introducing an
auxiliary path leading to the prediction head fp to encourage the learning of latent function shape
from preferential data. For each prediction target point x(tarpred)

i ∈ D(tarpred), fp parameterizes a
Gaussian distribution:

p
(
yi|x(tarpred)

i

)
= N

(
y
(tarpred)
i ; (µi, σ

2
i ) := fp

(
λ
(tarpred)
i

))
. (4)

Using independent Gaussian likelihoods is common in the Neural Processes community (Garnelo
et al., 2018). Correlations can be accounted for if the downstream task requires it (Markou et al.,
2022). A similar choice is often found in PBO, using the probit likelihood (Brochu et al., 2010).

At any two target points x(tarpred)
i and x

(tarpred)
j that constitute a query pair inD(p), the predicted latent

function values ȳ(tarpred)
i and ȳ

(tarpred)
j are obtained by sampling from p, thus capturing the randomness

in the process as described by Equation 1. The final preference is l̄(tarpred) := σ(ȳ
(tarpred)
j − ȳ

(tarpred)
i )

with σ the Sigmoid function. As mentioned, at each optimization step, we generate a prediction task
with different contexts by shuffling the prediction set D(p), creating different splits of D(ctxpred) and
D(tarpred) to fully utilize the data. fp is trained by minimizing the binary cross entropy (BCE) loss
between predicted preferred location l̄(tarpred) and the ground truth l(tarpred) on all the prediction tasks:

L(p) = −
T∑

t=1

P∑
i=1

[
l
(tarpred)
t,i log(l̄

(tarpred)
t,i ) + (1− l

(tarpred)
t,i ) log(1− l̄

(tarpred)
t,i )

]
, (5)

where l
(tarpred)
t,i and l̄

(tarpred)
t,i represent the ground truth and predicted preference between a possible

pair of prediction target points at step t, respectively.

The final objective L for policy learning combines the two losses: L := L(q) + λL(p). We fix λ = 1
in all the experiments. In practice, we warm up the model with only the prediction task by setting
L = L(p) in the initial training steps, the rationale being that the policy can only perform well once
the shape of the latent function has been learned. Algorithm 1 describes the complete meta-learning
training procedure, and Algorithm 2 describes how PABBO operates at test-time on a new task.

Algorithm 1 Preferential Amortized Black-box Optimization (PABBO)

Require: K meta-tasks, candidate query pair set size M , discount factor γ, query budget T
for each training iteration do

initialize D(p),D(q), sample Q of size M , setH0 ← {∅}
for t = 1, . . . , T do ▷ start policy learning

(xt,1,xt,2) ∼ πθ(· | Ht, t, T ) ▷ sample next query pair from policy
lt = xt,1 ≻ xt,2 ▷ comparison of yt,1 and yt,2 sampled via (Equation 4)
rt =max1≤i≤t max{yt,1, yt,2} ▷ collect immediate reward
Ht+1 ← Ht ∪ {(xt,1,xt,2, lt)} ▷ update history
Q← Q\{(xt,1,xt,2)} ▷ update query set
infer prediction target preference l̄(tarpred) ▷ auxiliary prediction task
D(p) → D(ctxpred) ∪ D(tarpred) ▷ update prediction dataset

end for
Update PABBO using L := L(q) + λL(p) (Equations 3 and 5)

end for

4 RELATED WORK

Preferential Black-Box Optimization. While PBBO has been tackled using techniques like dueling
bandits (Bengs et al., 2021) or Reinforcement Learning (Myers et al., 2023; Rafailov et al., 2024), the
bulk of the work points to the Preferential Bayesian Optimization field. The latter mostly hinges on
an approximate GP surrogate, with vastly different results depending on the approximate inference
scheme (Takeno et al., 2023), and several dedicated acquisition functions have been proposed. These
include dueling Thompson sampling, or EUBO, a decision-theoretic AF (Lin et al., 2022). Unlike
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standard BO, deriving regret bounds for PBO is cumbersome. Only one work has done so (Xu et al.,
2024), although convergence can be demonstrated, e.g. for dueling Thompson sampling (Astudillo
et al., 2024). Lastly, Bayesian Neural Networks were also trialed (Huang et al., 2023a).

PBO has been extended to various settings: handling a batch of queries q > 2 (Siivola et al., 2021;
Astudillo et al., 2023), heteroscedastic noise (Sinaga et al., 2024) and multi-objective optimiza-
tion (Astudillo et al., 2024). On another note, preferential relations x1 ≻ x2 have been leveraged to
enhance vanilla BO loops: Hvarfner et al. (2024) investigate a user-defined prior that is integrated to
the GP surrogate, whereas Adachi et al. (2024) allow the prior to be iteratively updated.

Amortization and Meta-Learning. Our architecture is closely related to Conditional Neural
Processes (CNPs) (Garnelo et al., 2018; Kim et al., 2019; Huang et al., 2023b; Jha et al., 2022),
and its more recent variant, Transformer-based Neural Processes (Nguyen & Grover, 2022; Müller
et al., 2022). CNPs have primarily focused on amortizing the predictive posterior distribution via
supervised learning on a collection of datasets, whilst our approach employs reinforcement learning
to train an optimization policy.

In recent years, multiple works have explored training neural networks to directly amortize black-box
optimization (Chen et al., 2017; Yang et al., 2024; Maraval et al., 2023; Amos, 2023; Song et al.,
2024; Müller et al., 2023; Chen et al., 2022). These methods typically rely on direct function utilities
for training. Recent advancements also include the use of large language models to assist in Bayesian
Optimization (Liu et al., 2024; Chen et al., 2024). However, to the best of our knowledge, no existing
work has yet attempted to directly amortize optimization based on preferential feedback data.

Besides, since PBBO can be viewed as a sequential experimental design (SED) problem (Rainforth
et al., 2024), our work is also related to research on amortized SED. This line of work primarily
revolves around Deep Adaptive Design (DAD; Foster et al. 2021), whose key contribution is the
development of a comprehensive framework to amortize experimental design. Subsequent work has
extended this approach to settings with unknown likelihoods (Ivanova et al., 2021) and has leveraged
reinforcement learning to further improve performance (Blau et al., 2022; Lim et al., 2022). Our
work can be seen as a specialized application of SED with specific downstream objectives.

Preference tuning for language models. Finally, recent advancements in preference learning
have further expanded its application in tuning the language models, particularly in tasks such
as reinforcement learning with human feedback (RLHF) to align large-scale models with user
preferences. Christiano et al. (2017) proposes a framework for guiding policy optimization in RL with
human preference feedback, which has been applied to several natural language tasks (Zaheer et al.,
2017; Stiennon et al., 2020). While those works focus on relatively small models and specific tasks,
InstructGPT (Ouyang et al., 2022) extends it to large-scale models like GPT-3, allowing alignment
with user instructions across a wide range of tasks. Recently, Rafailov et al. (2024) proposes Direct
Preference Optimization (DPO), which shows that language models can be directly trained on
preference data without explicit reward modeling or RL optimization, significantly simplifying the
preference learning pipeline. While PABBO and these works both leverage preference feedback, they
serve fundamentally different purposes: language model alignment aims to steer model behavior
towards desired outputs in text spaces, whereas PABBO focuses on efficient optimization of black-box
functions, requiring different architectural designs and optimization strategies.

5 EXPERIMENTS

We evaluate PABBO on synthetic functions, described in Section 5.1, and against real-world examples
from the BO literature: hyperparameter optimization (Section 5.2) and human preferences datasets
(Section 5.3). Subsequently, Section 5.4 presents a series of ablation studies: replacing the latent
values in the rewards by pure rankings, examining different discount factor values γ in Equation 3,
and varying the number of query locations on which the acquisition function values are predicted.

Baselines. Our approach is benchmarked against three GP-based acquisition strategies from the PBO
realm: qEUBO (Astudillo et al., 2023), qEI (Siivola et al., 2021) and qTS (Hernández-Lobato et al.,
2017). We also include a strategy where candidate pairs are acquired at random. While qEUBO is a
principled preferential acquisition strategy, qEI and qTS are effectively batch BO strategies used in a
PBO setting, a solution commonly employed in the field. For instance, qTS samples two draws from
the posterior, maximizes each draw, and provides each maximizer as a candidate pair for comparison.
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Figure 3: Simple regret and inference time on synthetic examples. Mean ± std computed across
5 runs with random starting pairs for GP examples, 30 runs for the others. PABBO consistently
achieved the lowest simple regret across all tasks while offering a 10× speedup.

As performance metric, we consider the simple regret f(x∗) − f(xbest
T ) where xbest

T =
argmaxt∈{1,...,T} f(xt). For pre-training, the (discounted) cumulative simple regret was used
(Equation 3), sending a stronger and less sparse signal than simple regret. But because our goal is
human preferences optimization, e.g., finding the best sushi product for a given user, we report simple
regret at inference time. However, for completeness, Figure 7 reports cumulative simple regret.

Implementation. PABBO is implemented using PyTorch (Paszke et al., 2019). Hyperparameter
settings can be found in Supplementary Section A.5. For qEUBO, qEI and qTS, we used the imple-
mentation from the BoTorch library (Balandat et al., 2020). Code will be available upon acceptance.

5.1 SYNTHETIC FUNCTIONS

We begin by benchmarking PABBO on two types of synthetic functions. The first type involves
30 draws from the same GPs that were used to build the pre-training dataset (See Supplementary
Section A.3 for the data generation process). We refer to this case as the in-distribution. The second
type refers to classical test functions: the Forrester, Branin, and Beale functions. These functions were
not part of the pre-training dataset used by PABBO, hence we refer to this case as out-of-distribution.

At each training epoch, we generate B different GP samples, to which a quadratic bowl is added to
increase the chances of a draw exhibiting a global optimum. Then, we draw 200D points, where D is
the dimension of x, half of which for the auxiliary prediction task and the rest for the optimization
task. For synthetic functions, the query set size was set to S = 256.

Results are displayed in Figure 3 and clearly illustrate the superiority of PABBO, against GP-based
alternatives in terms of simple regret. While this is expected for the in-distribution case, given the low
dimensionality of the problems compared to our model architecture, in the out-of-distribution setting,
PABBO also achieves the lowest simple regret across all three examples. Of note, the random strategy
often outperforms certain GP baselines. Regarding inference speed, PABBO offers an average 12-fold
speed-up over the fastest GP-based strategy across 5 problems, consistently over the whole trial.

Additionally, PABBO successfully recovers at least one of the three global optima of the Branin func-
tion (Figure 18, left panel), and correctly identifies the global optimum of the Forrester function (right
panel). Beyond convergence to an optimum, PABBO also accurately learned the shape of each function
from preference data, a modality that only allows identification up to a monotonous transformation.
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Figure 4: Simple regret on different search spaces from the HPO-B benchmark and human preferences
datasets. Mean ± std computed across 30 runs with random starting pairs. Attached to each
PABBO baseline is a number corresponding to S, the size of the query set. PABBO significantly
outperformed all the baselines on HPO-B tasks and ranks first for human preferences datasets.

5.2 HYPERPARAMETER OPTIMIZATION

Next, we consider hyperparameter optimization (Pineda Arango et al., 2021). This challenge emulates
the task an ML expert would face when optimizing the hyperparameter of a given model, performing
comparisons rather than assigning a scalar utility to each hyperparameter set. The HPO-B benchmark
contains multiple search spaces, each corresponding to the optimization of different ML models.

Each search space contains multiple meta-datasets from different meta-tasks, and each meta-dataset
collects a list of hyperparameter configurations with their response values, {(xi, yi)}ni=1, allowing us
to simulate preference for any two configurations given their responses. All the meta-datasets within
a search space have been categorized into three splits: meta-train, meta-validation, and meta-test.

We choose three representative search spaces and pre-train our model on the meta-train split associated
with each space, further splitting each set into two equal-sized, non-overlapping parts beforehand for
the auxiliary prediction and optimization tasks (see Supplementary Section A.7). For evaluation, we
draw S = 1024 points from each meta-datasets of the meta-test split of the search space, allowing us
to assess the average performance of our model and the baselines across all meta-datasets.

In all examples, PABBO improves over GP-based methods by a significant margin (Figure 4, first
three panels), even reaching convergence three times as fast than qTS, the best GP-based strategy, for
search spaces No. 7609 and 5636. It is worth noticing that on these higher-dimensional problems, all
methods now clearly outperform the random acquisition strategy.

5.3 HUMAN PREFERENCES

We experiment with our model pre-trained with synthetic GP samples on two real-world human
preference datasets: the Candy2 and Sushi3 datasets. The Candy dataset provides the full ranking of 85
different candies from pairwise preference via online studies. Each candy object contains 2 continuous
features, sugarpercent and pricepercent. The Sushi dataset collects a preference score by
asking users to rate 100 different types of sushi on a five-point-scale. The overall score for each sushi
is obtained by averaging across users. Each sushi contains 4 continuous features. Following Siivola
et al. (2021), we generalize both datasets to continuous space by performing linear extrapolation, and
the out-of-bound values are filled with their nearest neighbors in the original dataset.

For both examples, we report the simple regret achieved by our model when using a query set of
size S ∈ {256, 512}. For the Candy dataset, even though the problem is only 2-dimensional, we
observe a nonnegligible difference for different values of S, switching from worst (PABBO 256) to
best (PABBO 512) performance. (Figure 4, fourth panel). Results are more consistent for the Sushi
dataset. Both problems are characterized by a large variance in the results for all baselines.

5.4 ABLATION STUDY

This last experimental section investigate whether certain modeling choices and hyperparameter
values may have a significant impact on the performance of PABBO .

Access to latent values during pre-training. Even though latent values are always accessible for
synthetic datasets used for pre-training, this might not be the case for real-world preferential meta
datasets. A simple solution for proposing rewards without access to the true utility is to use rankings

2 Available at data/candy-power-ranking/ 3 Available at https://www.kamishima.net/sushi/
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Figure 5: Ablation studies. mean ± std averaged over 30 runs with random starting pairs, except for
the bottom second panel, where for visibility concerns, we show mean±0.25std. On low dimensional
examples, PABBO maintains similar performance when substituting latent function values for
rankings, and performs as expected when varying the discount factor γ and query set size S.

from a fully ranked set to approximate the latent function values. We trained a 1-and-2-dimensional
models using a pre-training dataset GP samples, substituting classical rewards for each meta-task
by the rankings of corresponding samples. On the 1-dimensional Forrester function, this alternative
version of PABBO still yields decent performances (Figure 5(a)).

Discount factor γ. PABBO learns a policy πθ by taking the future discounted rewards into account
across a time horizon T . A smaller discount factor prioritizes immediate queries, giving more weight
to the early steps in the optimization process. In contrast, as γ approaches 1, the future queries
become increasingly important, reflecting a more balanced consideration of both immediate and
future rewards. We test with different discount factors on the 1-dimensional Forrester problem. The
results in Figure 5(b) align with our expectation. When γ is small, we observe faster convergence
in the early stages. However, since the future rewards are not sufficiently considered, the average
performance over larger steps is less favorable compared to using a larger γ, which balances both
immediate and future rewards, resulting in better long-term optimization outcomes.

Query set size S. At inference time, a continuous search space is discretized into S query locations
sampled from a quasi-random Sobol sequence, used to build a set of candidate query pairs consisting
of all possible pairwise combinations, resulting in O(S2) query pairs. S introduces a trade-off
between performance and inference time: a denser grid guarantees adequate exploration of the search
space, but longer inference times. For the 2-dimensional Branin problem, increasing the grid size
S ∈ [128, 256, 512, 1024] leads to increased inference time, a consequence of the need to embed an
increasing number of candidate pairs (Figure 5(c)). In terms of simple regret, a grid of size S = 1024
achieves the best result, whereas S = 256 offers the best speed/accuracy tradeoff.

6 DISCUSSION

We introduced PABBO, a method to conduct preferential black-box optimization in a fully amortized
manner. Leveraging an offline training phase on both synthetic and existing datasets, PABBO achieves
considerably reduced inference time jointly with top-ranking performances compared to GP alterna-
tives, based on our benchmarks. One way to explain this gap is that our pre-training dataset contains
latent function values, which are always accessible for synthetic datasets, thus giving PABBO a
significant advantage over preferential GPs. This being said, a dedicated ablation study demonstrated
that replacing latent function values with pure rankings did not significantly affect PABBO’s results.

Due to the model architecture and the difficulty of the task, learning to optimize from preferential data,
PABBO requires large amounts of pre-collected data. While synthetic datasets might be expressive
enough, specific applications falling out-of-distribution might pose an issue. More generally, this
raises the question of how the pre-training dataset should be constructed. A current limitation of our
approach is the size of the query set, S, which scales with task dimensionality, increasing inference
times (Figure 5). Preliminary results suggest parallelization may help mitigate this issue. Additionally,
a promising solution for high-dimensional tasks is developing a dimension-agnostic architecture that
can handle inputs of varying dimensions. Currently, PABBO can only handle tasks with the same
dimensionality, requiring separate models for tasks with different dimensions. Such a strategy could
leverage low-dimensional tasks for high-dimensional ones. This is typically useful if the objective
possesses a hidden low-dimensional structure, or decomposes additively. Finally, PABBO directly
outputs acquisition values for a candidate pair, modeling the user’s latent goal, but does not account
for the fact that ultimately, a human is performing the comparison. Introducing dedicated user models
like the one presented by Sinaga et al. (2024) could be an interesting extension to this work.
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A APPENDIX

A.1 FURTHER DETAILS ON PABBO

A.1.1 ALGORITHM FOR EMPLOYING PABBO AT TEST TIME

Algorithm 2 Executing PABBO at test time on a new task

Require: Query set size S, query budget T , initial observationsH0 (possibly empty)
Initialize D(q) with S quasi-random samples
Q = {(xi,xj) ∀(i, j) ∈ {1, . . . , S}2, i ̸= j}
for t = 1, . . . , T do
D(c) ← Ht ▷ update context set
E(c) = femb(D(c)),E(q) = femb(D(q)) ▷ embed context set and query set
λ(q) = ftfm(E(q);E(c)) ▷ Transformers output for query set conditioning on context set
q = {fa(λ(q)

i , λ
(q)
j , t, T ) ∀(xi,xj) ∈ Q} ▷ predict acquisition function values for all query

pairs
πθ(Q | Ht, t, T ) = Categorical(q) ▷ form policy as a Categorical distribution
(xt,1,xt,2) ∼ πθ(Q | Ht, t, T ) ▷ sample next query pair from policy
lt = xt,1 ≻ xt,2 ▷ observe binary preference
Ht+1 ← Ht ∪ {(xt,1,xt,2, lt)} ▷ update history
Q← Q\{(xt,1,xt,2)} ▷ update query set

end for

A.1.2 ON THE TRANSFORMER ARCHITECTURE

PABBO employs separate MLPs for xi,1,xi,2 and li, mapping each of them to separate embeddings
of Transformer input dimension as Exi,1 , Exi,2 , and E(li), with ⊕ denoting the component-wise
addition. When working on the context set D(c) and prediction context set D(ctxpred), which consists
of duels (xi,1,xi,2, li), the token embedding is obtained by adding the individual embeddings up, i.e.
E = Exi,1 ⊕ Exi,2 ⊕ E(li). When processing a single design from the query set D(q) or prediction
target set D(tarpred), we directly use the individual embedding for that design as the token embedding,
i.e., E = Exi,1 . Because (xi,1,xi,2, li) forms a single atomic element in our context set, Transformer
architecture requires all elements in its input sequence to live in the same embedding space: to pass
these preference observations to the transformer, we need to make sure their dimensions are aligned.

Given that PABBO encodes elements separately, for the same type of elements, like x, a shared
embedder can be used across all three sets. This enables parameter sharing for the embedders, as the
same embedder processes all x-type input, regardless of which set they belong to. Model complexity
benefits from this choice as the need to train separate embedding functions for each set is avoided.
Besides, separate embeddings confer distinct semantic meanings to features x and preference labels
l. Thus, separate MLPs can specialize in their respective tasks: feature embedders can focus on
capturing spatial relationships, and preference embedders can focus on binary relationship encoding.
This leads to an increased representation power.

On a similar note, one could have settled for using the same embedding for xi,1 and xi,2. However,
in the particular case of preferential feedback, upon summing Exi,1 and Exi,2 the order information
would have been lost: the network would not know whether xi,1 > xi,2, or the opposite. Therefore,
we opted for separate embedders for Exi,1 and Exi,2 .
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A.2 ADDITIONAL EXPERIMENTS

A.2.1 ABLATION ON THE PRE-TRAINING SYNTHETIC DATASET COMPOSITION
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Figure 6: Ablation study on the composition of the pre-training synthetic dataset on 30 2D GP draws,
with a query set size S = 256. Mean ± std computed across 5 runs with random starting pairs.
PABBO RBF is pre-trained on GP draws sampled using an RBF kernel, whereas PABBO uses the
procedure described in Section A.3. Both baselines use lengthscales l ∼ U([1.5, 2]). As expected,
pre-training on a dataset coming from a mixture of kernels rather than only a RBF kernel
yields better results, due to a more pronounced diversity of the synthetic samples.

A.2.2 CUMULATIVE SIMPLE REGRET
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Figure 7: Cumulative simple regret plots for all experiments carried out in the main text. When
averaged over all tasks, PABBO ranks close to the second position.
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A.2.3 ABLATION STUDY ON LOSS WEIGHT HYPERPARAMETER λ
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Figure 8: Ablation study on the loss weight hyperparameter λ in L = L(q) + λL(p) (Equations 3
and 5) on three 2D functions, with a query set size S = 256. Mean± std computed across 5 runs with
random starting pairs for GP draws, 30 for the others. During the warm-up phase, PABBO is trained
using only the prediction task L(p). We observe a stark contrast depending on the presence or
not of the warm-up phase, which validates the usefulness of the prediction task, mainly as a
tool to stabilize training. Results are mildly affected by different values of λ.
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A.2.4 ABLATION STUDY ON THE DISCOUNT FACTOR γ WITH A LARGER GRID
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Figure 9: Ablation Study on the discount factor γ (Equation 3) on the 1D Forrester function, with
a query set size S = 256. Mean ± std computed across 30 runs with random starting pairs. As
expected, an higher value of γ leads to a lower cumulative simple regret. The picture is more
nuanced for simple regret, even though as we progress towards a large number of iterations,
the conclusion appears to be similar.

A.2.5 HIGH DIMENSIONAL SEARCH SPACE
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Figure 10: Simple regret and cumulative simple regret on a 16-dimensional search space from the
HPO-B benchmark. Mean ± std computed across 30 runs with random starting pairs. We used a
query set size S = 1024 for PABBO. PABBO significantly outperforms all the baselines and ranks
3rd in terms of cumulative simple regret.
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A.2.6 MULTINOMIAL PREDICTIVE ENTROPY SEARCH BASELINE
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Figure 11: Simple regret and inference time on synthetic examples, with additional baseline Multino-
mial Predictive Entropy Search (MPES). Mean ± std computed across 5 runs with random starting
pairs for GP examples, 30 runs for the others. PABBO consistently achieved the lowest simple
regret across all tasks, except for GP1D, while offering a 10× speedup. MPES is an order of
magnitude slower than other GP-based strategies.

A.2.7 ACKLEY 6D FUNCTION
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Figure 12: Simple regret and cumulative simple regret on the 6-dimensional Ackley function. Mean
± std computed across 10 runs with random starting pairs. Using parallelization, we can mimic
a larger query set size for PABBO , thus being able to closely follow the top ranking baselines
qEUBO and qEI. Additionally, “batch” PABBO (13s) achieves significantly faster cumulative
inference time compared to PABBO1024 (40s).
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A.2.8 HARTMANN 6D FUNCTION
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Figure 13: Simple regret and cumulative simple regret on the 6-dimensional Hartmann function.
Mean ± std computed across 10 runs with random starting pairs. We used a query set size S = 1024
for PABBO. PABBO ranks 3rd and does not match the performance of qEUBO and qEI on
this example.

A.2.9 ABLATION ON THE QUERY BUDGET T
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Figure 14: Simple regret and cumulative simple regret on the 1-dimensional Forrester function.
Mean ± std computed across 30 runs with random starting pairs. The variance is mostly driven
by whether or not t/T is passed to the acquisition head or not (see Figure 2, right). When
passing t/T , a large budget T is associated with the fastest convergence and the lowest simple
cumulative regret.

A.2.10 ABLATION ON THE PERCENTAGE OF CONTEXT AND TARGET PREDICTION SET

In the main experiments, we set a total number of samples for the prediction set and randomly
sample D(ctxpred) and assign the remaining pairs as D(tarpred). To examine the effect of the percentage

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

of context and target prediction set, we train different PABBO for prediction task, when setting
N (ctxpred) = 10 with varying N (tarpred) = [1, 10, 100].
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Figure 15: Validation accuracy on 128 1-dimensional GP samples. Increasing the size of D(tarpred)

provides more loss terms during training, thereby enriching the training signal, and resulting
in faster convergence of the network.
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A.3 DETAILS OF SYNTHETIC DATASET

To generate the D−dimensional synthetic data in Section 5.1, we first sample from a GP, where

• The kernel are equally sampled from the RBF, Matérn-1/2, Matérn-3/2 and Matérn-5/2 ker-
nels, with the kernel standard deviation σ ∼ U([0.1, 2]) and lengthscale for each dimension
ld ∼ N (1/3, 0.75) truncated to [0.05, 2].

• Then we sample function mean as the maximal value of m observations from the Normal
distribution N (0, σ2). To account for very high optimum, exp(1) is added to the mean with
a probability of 0.1.

• With the defined prior, we randomly sample an optimum (x∗, 0) inside [−1, 1]D and a total
of N − 1 context points, where N = 100 ∗D. The context set is sampled from GP posterior
conditioned on the optimum by first sampling M − 1 points conditioned on the optimum,
and the rest of N −M points conditioned on these points and the optimum. M = 50 for
1-dimensional data and 100 when D = 2, 3, 4.

• To ensure the existence of global optimum, we additionally add a quadratic bowl at x∗.

• Finally, the function value is y = −(|y|+ 1
8D
∥x∗−x∥2+∆y). The offset ∆y ∼ U([−5, 5]),

makes the maximal value y∗ = (0 +∆y) ∈ [−5, 5].

Figure 16 shows 16 randomly generated 1-dimensional synthetic functions.
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Figure 16: Example of 1-dimensional synthetic data generated using the protocol defined in Supple-
mentary Section A.3. The red dot in each plot indicates the optimum of the sampled function.
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A.4 EXAMPLE OF MASK IN SELF-ATTENTION LAYERS
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Figure 17: Examples of masks. Colored squares represent the elements from the left column can
attend to the elements on the top in the self-attention layers of the Transformer block fftm. (a) An
example of mask for the acquisition process, involving 2 samples from D(c) and 2 points from D(q).
(b) Mask example for the auxiliary prediction process, with 2 samples from D(ctxpred) and 2 points
from D(tarpred).

A.5 HYPERPARAMETERS

The hyperparameter setting we used for all the experiments are detailed in Table 2. Most of them
remain consistent across all the tasks, and we scale up the size of meta-datasets according to the
search space dimension.

A.6 HARDWARE

We train our model using up to 5 Tesla V100-SXM2-32GB GPUs, with training time of roughly
10, 25, and 29 hours for 1-, 2-, and 4-dimensional synthetic data respectively. There is significant
potential to shorten this pre-training process by creating the training samples beforehand, rather
than generating them online. For the HPO-B tasks on search spaces No. 5636 and No. 5859 (6
dimensions) and the search space No. 7609 (9 dimensions), training takes approximately 21.5 hours
per task. We evaluate all the models on 2x64 core AMD EPYC 7713 @2.0 GHz.

A.7 HPO DATASET DESCRIPTION AND EXPERIMENTAL DETAILS

As mentioned in Section 5.2, we experimented on three high-dimensional search spaces from the
HPO-B benchmarks, each corresponding to the hyperparamers of a certain model: No. 5636 for
rpart(29), No. 5859 for rpart(31), and No. 7609 for ranger(16). Both No. 5636 and No.
5859 are 6-dimensional spaces, while No. 7609 is a 9-dimensional space. Meta-datasets within each
space are divided into three splits: meta-train, meta-validation, and meta-test.

An individual model is trained on the meta-train split of each search space. Each meta-dataset is
equally divided beforehand into two parts from which we sample either prediction set D(p) or query
set D(q), so as to prevent any information leak from rewards. The only exception happens when a
meta-dataset has too few data points: we fit a GP to the original data points and sample from the
posterior to generate either D(p) or D(q). As described in Section 3.2, we sample D(p) containing N
queries and preferences and D(q) with S query points from each meta-dataset at the beginning of
each training iteration.
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Model Architecture
Embedding dimension of Transformer 64
Point-wise feed-forward dimension of Transformer 128
Number of self-attention layers in Transformer 6
Number of self-attention heads in Transformer 4
Number of hidden layers in data embedders 3
Number of hidden layers in decoder (fp, fa) 1
Hidden layer dimension of decoder (fp, fa) 128

Training
Number of iterations for warm-up 3000
Total number of training iterations 8000
Horizon of episodes (T ) 64
Learning rate for warm-up 1 · 10−3

Learning rate after warm-up 3 · 10−5

Learning rate decay Cosine decay to 0 over 8000 iterations
Number of meta-tasks in a batch during warm-up (B) 128
Number of meta-tasks in a batch after warm-up (B) 16
Number of trajectories from one meta-task for policy learning 20
Weight on auxiliary loss (λ) 1.0
discount factor (γ) 0.98
Size of query set (S) min(300, 100 ·D)
Size of candidate query pair set (M ) min(300, 100 ·D)
Size of prediction set (N ) min(300, 100 ·D)
Maximal size of prediction context set (N (ctxpred)) 50(D = 1), 100(1 < D ≤ 4), 200(D > 4)

Environment
Number of initial pairs during training 0
Number of initial pairs during evaluation 1
Observation noise of duel feedback (σnoise) 0.0

Table 2: Hyperparameter settings

A.8 DETAILS OF BASELINES

The PBO baselines are implemented based on PairwiseGP model class from
BoTorch. For qEUBO and qEI, BoTorch provides ready-to-use acquisition class
qExpectedUtilityOfBestOption and qExpectedImprovement. For qTS, we
sample two draws from the GP posterior at: (1) locations from quasi-random Sobol sequences for
continuous search spaces, or (2) locations of all candidates for discrete search spaces. The maximum
of each draw are chosen as the next query. Finally, we select a pair of random points for continuous
spaces and a random pair of possible candidates for discrete spaces as a random strategy. Baseline
inputs are all normalized to (0, 1).

A.9 EXAMPLE OF INFERENCE FUNCTION SHAPE AND OPTIMUM ON TEST FUNCTIONS
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Figure 18: Optimum inference and function shape on test functions after 30 optimization steps for
the 2D Branin function (left) and 1D Forrester function (right) trialed in Section 5.1.
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