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Abstract

We study the robust geometric median problem in Euclidean space Rd, with a focus
on coreset construction. A coreset is a compact summary of a dataset P of size n
that approximates the robust cost for all centers c within a multiplicative error ε.
Given an outlier count m, we construct a coreset of size Õ(ε−2·min{ε−2, d}) when
n ≥ 4m, eliminating the O(m) dependency present in prior work [39, 40]. For the
special case of d = 1, we achieve an optimal coreset size of Θ̃(ε−1/2 + m

n ε−1),
revealing a clear separation from the vanilla case studied in [40, 1]. Our results
further extend to robust (k, z)-clustering in various metric spaces, eliminating
the m-dependence under mild data assumptions. The key technical contribution
is a novel non-component-wise error analysis, enabling substantial reduction of
outlier influence, unlike prior methods that retain them. Empirically, our algorithms
consistently outperform existing baselines in terms of size-accuracy tradeoffs and
runtime, even when data assumptions are violated across a wide range of datasets.

1 Introduction

Geometric median, also known as the Fermat-Weber problem, is a foundational problem in computa-
tional geometry, whose objective is to identify a center c ∈ Rd for a given dataset P ⊂ Rd of size n
that minimizes the sum of Euclidean distances from each data point to c. The given objective function,
while simple and user-friendly, suffers from significant robustness problems when exposed to noisy or
adversarial data [13, 15, 14, 32, 24]. For example, an adversary could add a few distant noisy outliers
to the main cluster. These points could deceive the geometric median algorithm into incorrectly
positioning the center closer to these outliers to minimize the cost function. Such susceptibility
to outliers has been a considerable obstacle in data science and machine learning, prompting a
substantial amount of algorithmic research on the subject [15, 32, 29, 53, 49].

Robust geometric median. We consider robust versions of the geometric median problem, specifi-
cally a widely-used variant that introduces outliers [13]. Formally, given an integer m ≥ 0, the goal
of robust geometric median is to find a center c ∈ Rd that minimizes the objective function:

cost(m)(P, c) := minL⊂P :|L|=m

∑
p∈P\L dist(p, c), (1)

where L represents the set of m outliers w.r.t. c and dist(p, c) = ∥p − c∥2 denotes the Euclidean
distance from p to center c. Intuitively, outliers capture the points that are furthest away and these are
typically considered to be noise. When the number of outliers m = 0, the robust geometric median
problem simplifies to the vanilla geometric median. This problem (together with its generalization:
robust (k, z)-clustering) has been well studied in the literature [15, 7, 29, 2, 23, 53]. However, the
presence of outliers introduces significant computational challenges, particularly in the context of
large-scale datasets [52, 50, 51, 53]. For example, the approximation algorithm for robust geometric
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median proposed by [52] requires Õ(nd+1(n−m)d)2; and [2] presents a fixed-parameter tractable
(FPT) algorithm with f(ε,m) · nO(1) time. These challenges have driven extensive research on data
reduction algorithms designed for limited hardware and time constraints.

Coreset. To tackle the computational challenge, we study coresets, which are (weighted) subsets
S ⊆ P such that the clustering cost cost(m)(S, c) approximates cost(m)(P, c) within a factor of
(1± ε) for all center sets c ∈ Rd, where ε > 0 is a given error parameter.3 A coreset preserves key
geometric information while substantially reducing the dataset size, thus serving as a compact proxy
for the original dataset P . Consequently, applying existing approximation algorithms to the coreset
significantly improves computational efficiency. Moreover, coresets can be reused in future analyses
of P , reducing redundant computation and saving storage resources. Finally, the size of the coreset
reflects the intrinsic complexity of the problem, making the study of optimal coreset size a research
topic of independent interest.

Coreset for vanilla geometric median (m = 0) has been extensively studied across different di-
mensions d [28, 16, 18, 19, 1, 22] (see Appendix A.2 for details). When d = 1, [37] proposed a
coreset of size Θ̃(ε−1/2). Subsequently, [1] extended this result by constructing an optimal coreset
of size Θ̃(ε−d/(d+1)) for dimension d = O(1). Moreover, for high dimensions d > ε−2, the optimal
coreset size is Θ̃(ε−2) [18, 21]. In contrast, the study of coreset for robust geometric median is
far from optimal, even in the simplest case of d = 1. Early work either required an exponentially
large coreset size [27] or involved relaxing the outlier constraint [39]. A notable recent advancement
by [39] overcame these limitations, proposing a coreset of size O(m) + Õ(ε−3 · min{ε−2, d}),
using a hierarchical sampling framework based on [9]. Further improvements reduced the core-
set size to O(m) + Õ(ε−2 · min{ε−2, d}) [40]. A recent paper [42] presented a coreset size
O(mε−1 + Vanilla size) via a novel reduction from the robust case to the vanilla case.

All previous coreset sizes for robust geometric median contain the factor m. However, the outlier
number m could approach Ω(n) in real-world scenarios [25, 12, 30, 10]. For instance, the PageBlocks
dataset has n = 5473 points with m ≈ 0.1n outliers [10]. Such m results in an inefficient coreset
size, raising a natural question: Can we eliminate the O(m) term from the coreset size?

At first glance, one might assume the answer is negative, as [39] establishes a coreset lower bound
of Ω(m). However, their worst-case instance critically relies on an extremely large number of
outliers, specifically with m = n − 1. This requirement can be relaxed to n − m = o(n) (see
Theorem 1.1). Motivated by this, we investigate the possibility of eliminating the O(m) dependency
when n−m = Ω(n), and show that this condition is both necessary and sufficient. Under this setting,
we obtain a coreset of size Õ(ε−2 ·min{ε−2, d}) (see Theorem 1.3).

Nevertheless, this size is substantially larger than that of the vanilla case across all dimensions.
For instance, when d = 1, our coreset size is Õ(ε−2), whereas the vanilla case achieves a size of
only Θ̃(ε−1/2) [37]; thus, our bound is likely not optimal. On the other hand, our lower bound
in Theorem 1.1 suggests that the optimal coreset size should indeed depend on m. This raises a
natural question: What is the optimal coreset size for robust geometric median, and how does it vary
with m? Answering this question sheds light on when the complexity of robust geometric median
fundamentally diverges from that of the vanilla case.

1.1 Our contributions

In this paper, we study (optimal) coreset sizes for the robust geometric median problem. See Table 3
in the appendix for a summary. We begin with a lower bound result (proof in Section C).

Theorem 1.1 (Coreset lower bound for robust geometric median). Let 0 < ε < 0.5 and n > m ≥ 1.
There exists a dataset P ⊂ R of size n such that any ε-coreset of P for the robust geometric median
problem must have size Ω( m

n−m ).

2Here, Õ(n) denotes O(n · polylog(n)), hiding logarithmic factors.
3Here, the computation of cost(m)(S, c) excludes points of total weight m; see Appendix A.1 for the formal

definition.
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This theorem indicates that when n −m = o(n), which implies m = Θ(n), the coreset size is at
least Ω

(
m

n−m

)
= m

o(m) , which depends on m. This extends the previous result in [39] to general m.
Thus, n−m = Ω(n) is a necessary condition for eliminating the O(m) term from the coreset size.

Accordingly, we assume n ≥ 4m for the algorithmic results, where the constant 4 ensures the inlier
number n−m is sufficiently larger than the outlier number m. We first state our result when d = 1.
Theorem 1.2 (Optimal coreset for robust 1D geometric median). Let n,m ≥ 1 be integers and
ε ∈ (0, 1). Assume n ≥ 4m. There is a linear algorithm that given dataset P ⊂ R of size n, outputs
an ε-coreset for robust 1D geometric median of size Õ(ε−

1
2 + m

n ε−1) in O(n) time. Moreover, there
exists a dataset X ⊂ R of size n such that any ε-coreset must have size Ω(ε−

1
2 + m

n ε−1).

This theorem provides the optimal coreset size for the robust 1D geometric median problem. Since
m ≤ n, the coreset size is at most Õ(ε−1), which is independent of m. Thus, we eliminate the O(m)
dependency in the coreset size compared to previous bounds [40, 42]. In particular, relative to the
bound O(m) + Õ(ε−2) in [40], our result also improves the ε-dependence from ε−2 to at most ε−1.

The theorem also shows how the coreset size increases as m grows. When m ≤
√
εn, our coreset

size is dominated by Õ(ε−1/2) since m
n ε−1 ≤ ε−1/2. This size matches the coreset size Õ(ε−1/2)

for vanilla 1D geometric median as given in [40]. As m increases from
√
εn to n

4 , our coreset
size is dominated by the term Õ(mn ε−1), which is a linear function of m growing from Õ(ε−1/2)

to Õ(ε−1). This size suggests that the complexity of robust 1D geometric median is higher than
vanilla 1D geometric median in this range of outlier number m.

We remark that the size lower bound Ω(ε−
1
2 + m

n ε−1) holds for any dimension d ≥ 1. In contrast, for
d = O(1), the tight coreset size for the vanilla geometric median is Θ̃(ε−d/(d+1)) [1]. This implies
that when m ≥ Ω(n · εd/(d+1)), our coreset size lower bound exceeds Ω(ε−d/(d+1)), resulting in a
gap between the coreset sizes for the robust and vanilla versions of geometric median.
Theorem 1.3 (Coreset for robust geometric median in Rd). Let n,m, d ≥ 1 be integers and ε ∈ (0, 1).
Assume n ≥ 4m. There exists a randomized algorithm that given a dataset P ⊂ Rd of size n, outputs
an ε-coreset for the robust geometric median problem of size Õ(ε−2 min

{
ε−2, d

}
) in O(nd) time.

Compared to previous bounds O(m) + Õ(ε−2 min
{
ε−2, d

}
) [40] and O(mε−1) + Õ(ε−2) [42],

this theorem eliminates the O(m) term in the coreset size when n ≥ 4m. This result can be extended
to various metric spaces (Section E.2).

Finally, we extend this theorem to handle the robust (k, z)-clustering problem (Definition F.1), which
encompasses robust k-median (z = 1) and robust k-means (z = 2). To capture the additional
complexity introduced by k, we propose the following geometric assumption.
Assumption 1.4 (Assumptions for robust (k, z)-clustering). Given a dataset P ⊂ Rd of n
points and an ε-approximate center set C⋆ ⊂ Rd of P for robust (k, z)-clustering. De-
fine P ⋆

I := argminPI⊂P,|PI |=n−m

∑
p∈PI

dist(p, C⋆) to be the inlier points w.r.t. C⋆, where
dist(p, C⋆) := minc∈C⋆ dist(p, c). Let {P ⋆

1 , . . . , P
⋆
l } ⊂ P ⋆

I denote the k inlier clusters induced by
C⋆, where each P ⋆

i contains points in P ⋆
I whose closest center is c⋆i . We assume the followings: 1)

mini∈[k] |P ⋆
i | ≥ 4m; 2) maxp∈P⋆

I
dist(p, C⋆)z ≤ 4k

∑
p∈P⋆

I
dist(p, C⋆)z/|P ⋆

I |.

The first condition directly generalizes the assumption n ≥ 4m, which requires that the size of each
inlier cluster is more than the outlier number m. The second excludes “remote inlier points” to C⋆,
which could play a similar role as outliers. This condition holds for several real-world datasets (see
Table 4), demonstrating its practicality. Now we propose the following result.
Theorem 1.5 (Coreset for robust (k, z)-clustering). Let n, k, d ≥ 1 be integers and ε ∈ (0, 1). There
exists a randomized algorithm that given a dataset P ⊂ Rd of size n satisfying Assumption 1.4,
outputs an ε-coreset for robust (k, z)-clustering of size Õ(k2ε−2z min

{
ε−2, d

}
) in O(nkd) time.

It improves upon the previous result O(m) + Õ(k2ε−2z min
{
ε−2, d

}
) in [39, 40] by eliminating

the O(m) term. Furthermore, the result can also be extended to various metric spaces (Section F.3).

Empirically, in Section 4, we evaluate the performance of our coreset algorithms on six real-world
datasets. We compare the size-error tradeoff against baselines [39, 40], and across all tested sizes, our
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algorithms consistently achieve lower empirical error. For instance, for robust geometric median on
the Census1990 dataset, our method produces a coreset of size 1000 with an empirical error of 0.012,
while the baseline produces a coreset of size 2300 with an empirical error slightly higher than 0.013
(Figure 2). Moreover, our algorithms provide a speedup compared to baselines for achieving the
same level of empirical error (see e.g., Table 2). Additionally, we show that our algorithms remain
practically effective, regardless of which data assumption in the theoretical results is violated, further
demonstrating the practical utility of our algorithms (Section G).

1.2 Technical overview

We outline the technical ideas and novelty for Theorems 1.2 and 1.3. Our approach introduces a
novel non-component-wise error analysis for coreset construction, enabling a substantial reduction
in the number of outlier points rather than preserving them all. In contrast, previous algorithms
divide the dataset P into multiple components, and their approach requires aligning the number of
outliers between P and S in every component. This idea, as we will show, inherently introduces
an Ω(m)-sized coreset. Furthermore, for the 1D case, our new algorithm offers a more refined
partitioning of inlier points, enabling an adaptation of the vanilla coreset construction and leading to
the optimal coreset size.

1.2.1 Overview for Theorem 1.2 (d = 1)

Revisiting coreset construction for vanilla 1D geometric median. Recall that [37] first partitions
dataset P = {p1, . . . , pn} ⊂ R into Õ(ε−1/2) buckets, where each bucket Bi is a consecutive
subsequence {pl, pl+1 . . . , pr} (see Definition 2.1). They select a mean point µ(B), assign a weight
|B| for each bucket B, and output their union as a coreset such that ∀c ∈ R,∑

i∈[T ] |cost(Bi, c)− |Bi| · dist(µ(Bi), c)| ≤ ε · cost(P, c). (2)

This follows that only the bucket containing c contributes a non-zero error at most ε · cost(P, c)
(see Lemma B.1). To handle the additional outliers for the robust case, a natural idea is to extend
Inequality (2) in the following manner: for each center c ∈ R and each tuple (m1, . . . ,mT ) ∈ ZT

≥0

of outlier numbers per bucket (with
∑

i∈[T ] mi = m),∑
i∈[T ] |cost(mi)(Bi, c)− (|Bi| −mi) · dist(µ(Bi), c)| ≤ ε · cost(m)(P, c). (3)

This bounds the induced error |cost(mi)(Bi, c) − (|Bi| −mi) · dist(µ(Bi), c)| of each bucket Bi

when aligning the outlier numbers within this bucket for dataset P and coreset S.

Prior work [39, 40] utilized this component-wise error analysis for robust coreset construction. They
show that at most three buckets Bi could induce a non-zero error, including a bucket that contains c
and two “partially intersected” buckets with 0 < mi < |Bi| that contain both inlier and outlier points
relative to c. Thus, to prove Inequality (3), it suffices to ensure that the maximum induced error
|cost(mi)(Bi, c)− (|Bi| −mi) · dist(µ(Bi), c)| of these three buckets is at most ε · cost(m)(P, c)/3.
However, it is possible that cost(m)(P, c)≪ cost(P, c), which presents a significant challenge for
this guarantee compared to the vanilla case. To overcome this obstacle, prior work [39, 40] includes
the “outmost” m points of P into the coreset to ensure zero induced error from them, resulting in an
O(m) size dependency.

First attempt to eliminate the O(m) dependency. We first observe that a subset PM =
{pm+1, . . . , pn−m} ⊂ P of size n−2m acts as inliers w.r.t. any center c ∈ R. The condition n ≥ 4m
guarantees the existence of this PM with |PM | = n−2m ≥ 2m. Since cost(m)(P, c) ≥ cost(PM , c)
by the construction of PM , cost(m)(P, c) is intuitively not “too small”, which is useful for eliminating
the O(m) dependency in analysis. A natural idea is to apply the vanilla coreset construction method
given by [37] to PM and also include P − PM in the coreset S. This attempt yields a coreset of
size 2m+ Õ(ε−1/2), which already improves the previous bound of O(m) + Õ(ε−2) by [40]. To
eliminate the O(m) term, it is essential to significantly reduce points in P − PM .

Our first attempt is to further decompose P − PM into buckets and utilize the component-wise error
analysis in Inequality (3). As discussed earlier, the critical step is to ensure |cost(mi)(Bi, c)− (|Bi|−
mi) · dist(µ(Bi), c)| ≤ ε

3 · cost
(m)(P, c) for two partially intersecting buckets induced by c with

0 < mi < |Bi|. To achieve this, we study the relative location of such buckets with respect to c
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(Lemma 2.3), enabling us to partition the buckets based on the scale of cost(m)(P, c), similar to the
vanilla method (see Lines 1-5 of Algorithm 1). However, this partitioning approach is applicable only
for c ∈ PM , where the scale of cost(m)(P, c) is well-controlled (see Lemma D.1). Consequently, the
challenge remains to control the induced error of these buckets for c /∈ PM .

Obstacle for c /∈ PM . Unfortunately, to ensure Inequality (3) holds for c /∈ PM , the number of
constructed buckets in P −PM must be at least Ω(m). To see this, we provide an illustrative example
in Section A.3, where there is a collection P1 of (n−m) points condensed into a small interval, and
a collection P2 of m points that are exponentially far from each other. We show that for any bucket
containing two points p, q ∈ P2 with p < q, the induced error of this bucket could be much larger
than cost(m)(P, c). Thus, to ensure Inequality (3) holds, all points in P2 must be included in the
coreset, leading to a size of Ω(m). Therefore, a new error analysis beyond Inequality (3) is required.

Key approach. W.L.O.G., we assume c > pn−m, i.e., c is to the right of PM . The key idea is to
develop a novel non-component-wise error analysis beyond Inequality (3): we regard |cost(m)(P, c)−
cost(m)(S, c)| as a single entity and study how it changes as c shifts to the right from pn−m. Let f ′

P (c)

and f ′
S(c) denote the derivative of cost(m)(P, c) and cost(m)(S, c) respectively. Then the induced

error can be rewritten as |cost(m)(P, c)−cost(m)(S, c)| ≤ |cost(m)(P, pn−m)−cost(m)(S, pn−m)|+∫ c

pn−m
|f ′

P (x) − f ′
S(x)|dx. We can ensure cost(m)(P, pn−m) = cost(m)(S, pn−m) by an extra

bucket-partitioning step (see Line 8 of Algorithm 1). Thus, it suffices to ensure
∫ c

pn−m
|f ′

P (x) −
f ′
S(x)|dx ≤ ε · cost(m)(P, c).

A key geometric observation is that f ′
P (c) equals the difference between the number of inliers in P

located to the left of c and those to the right of c; a similar relationship holds for f ′
S(c). For c, let mi

and m′
i denote the number of outliers in bucket Bi relative to dataset P and coreset S, respectively.

By the geometric observation, we conclude that |f ′
P (c)− f ′

S(c)| ≤
∑

i |mi−m′
i|+2|Bc|, where Bc

denotes the bucket containing c. Therefore,
∫ c

pn−m
|f ′

P (x)− f ′
S(x)|dx ≤ (

∑
i |mi −m′

i|+ 2|Bc|) ·
dist(pn−m, c) (see Lemma D.3). Thus, it suffices to ensure (

∑
i |mi−m′

i|+2|Bc|)·dist(pn−m, c) ≤
ε ·cost(m)(P, c). This desired property can be achieved by limiting the size of each bucket in P −PM

to be at most O(εn), which ensures
∑

i |mi −m′
i| ≤ O(εn) for all c ∈ PM (see Lemma D.2).

We remark that, due to the misalignment of outlier counts, a single bucket may induce an arbitrarily
large error in our analysis. However, these bucket-level errors can cancel out, and the overall error
remains well controlled. To the best of our knowledge, this represents the first non-component-wise
error analysis in the coreset literature, which may be of independent research interest. To demonstrate
the power of our new error analysis, we apply it to the aforementioned obstacle instance—a case that
previous component-wise analyses cannot solve (Appendix A.3).

Coreset size analysis. Note that the coreset size equals the number of buckets. We partition PM

into Õ(ε−1/2) buckets using the vanilla coreset construction method [37]. The analysis for c ∈ PM

and c /∈ PM results in at most Õ(ε−1/2) buckets for the former and O
(
m
n ε−1

)
buckets for the latter.

Therefore, the total coreset size is Õ(ε−1/2 + m
n ε−1) (see Lemma 2.4).

This coreset size is shown to be tight. To see this, we construct a worst-case example in Section D.6,
where the m outliers are partitioned into m

n ε−1 intervals, each containing εn points, with the interval
scales increasing exponentially. If the coreset omits all points from any such interval, each point
within it contributes an error of 2·cost(m)(P,c)

n , resulting in a total error of 2ε · cost(m)(P, c)—which
is unacceptably large. Thus, to control the error, the coreset must include at least one point from each
interval, yielding a lower bound of m

n ε−1 on the coreset size.

1.2.2 Overview for Theorem 1.3 (general d)

The obstacle of the traditional component-wise analysis remains in the high-dimensional case,
motivating us to adopt the non-component-wise analysis framework. However, due to the increased
complexity of candidate center distribution, a straightforward extension of the 1D analysis would
involve using an ε-net to partition the center space, as in [35], but this introduces an O(ε−d) factor in
the coreset size. To overcome this, we leverage the concept of the ball range space, as explored in
previous works [9, 39], which allows us to effectively describe high-dimensional spaces.
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Our Algorithm 2 takes a uniform sample SO of size Õ(ε−2 min{ε−2, d}) from the “outmost” m
points of P to include in the coreset, in contrast to including them all as in [39, 38]. To analyze
the error induced by SO, we examine errors caused by “outlier-misaligned” points—those that act
as outliers (or inliers) in P but as inliers (or outliers) in S with respect to a fixed c. The induced
error for each such point is bounded by cost(m)(P,c)

m when n ≥ 4m (see Lemmas E.3, E.4, and E.5).
To ensure the total error remains within O(ε) · cost(m)(P, c), it suffices for the number of such
outlier-misaligned points to be O(εm). The key geometric insight is that this condition holds when
SO serves as an ε-approximation for the ball range space on L⋆ (see Lemma E.6). This approximation
is guaranteed by ensuring |SO| = Õ(ε−2 min{ε−2, d}), as established in Lemma E.2.

To our knowledge, this analysis is the first to apply the range space argument to outlier points. The
range space argument leverages the fact that the VC dimension of Rd is at most O(d) and can
be further reduced to Õ(ε−2) by dimension reduction. This enables us to generalize results to
various metric spaces via the notion of VC dimension (or doubling dimension), as well as to robust
(k, z)-clustering; see Appendix E.2 and F.

2 Optimal coreset size when d = 1

Let P = {p1, . . . , pn} ⊂ R with p1 < p2 < . . . < pn. Denote L(c) := argminL⊆P,|L|=m cost(P −
L, c) to be the set of outliers of P w.r.t. a center c, and P

(c)
I = P − L(c) to be the set of inliers. Let

c⋆ := argminc∈R cost(m)(P, c) be an optimal center. Let L⋆ = L(c⋆) and P ⋆
I = P

(c⋆)
I .

Buckets and cumulative error. We introduce the definition of bucket proposed by [35] associated
with related notions, which is useful for coreset construction when d = 1 [34, 37].

Definition 2.1 (Bucket and associated statistics). A bucket B is a continuous subset {pl, pl+1, . . . , pr}
of P for some 1 ≤ l ≤ r ≤ n. Let N(B) := r − l + 1 represents the number of points within B,

µ(B) :=
∑

p∈B p

N(B) represents the mean point of B, and δ(B) :=
∑

p∈B |p − µ(B)| represents the
cumulative error of B.

A basic idea for vanilla coreset construction in 1D case is to partition P into multiple buckets B and
then retain a point µ(B) with weight N(B) as the representative point of B in coreset. This idea
works since each bucket induces an error at most δ(B); see Lemma B.1. Thus, we have the following
theorem that provides the optimal coreset for vanilla 1D geometric median [37]

Theorem 2.2 (Coreset for vanilla 1D geometric median [37]). There exists algorithm A, that
given an input data set P ⊂ R and ε ∈ (0, 1), A(P, ε) outputs an ε-coreset of P for
vanilla 1D geometric median with size Õ(ε−

1
2 ) in O(|P |) time.

We will apply A to the “inlier subset” of P , say the set of middle n − 2m points PM =
{pm+1, . . . , pn−m}. Let PL = {p1, . . . , pm} and PR = {pn−m+1, . . . , pn}. Any continuous
subsequence of length n−m of P must contain PM , implying that all points in PM must be inliers
w.r.t. any center c ∈ R. This motivates us to apply the vanilla method A to PM .

As discussed in Section 1.2, we then partition PL an PR into buckets, which requires an understanding
of the relative position between the inlier subset P (c)

I and c. Define rmax := maxp∈P⋆
I
|p − c⋆|,

cL := c⋆ − rmax and cR := c⋆ + rmax. We present the following lemma (proof in Appendix B.2).

Lemma 2.3 (Location of P (c)
I ). Let c ∈ PM be a center with c < c⋆ and P

(c)
I ̸= P ⋆

I . Let pl be the
leftmost point of P (c)

I . Then dist(pl, cL) ≤ 2 · dist(c, c⋆).

A symmetric observation can be made for c > c⋆. Note that cost(m)(P, c) > cost(PM , c) ≥ O(n) ·
dist(c, c⋆) ≥ O(n) ·dist(pl, cL). This lower bound for cost(m)(P, c) motivates us to select the cumu-
lative error bound for the bucket containing point pl as εn · dist(pl, cL). Thus, we partition PL ∪ PR

into disjoint blocks according to points’ distance to cL and cR, a concept inspired by [37]. Concretely,
we partition the four collections PL∩(−∞, cL), PL∩ [cL,∞), PR∩(−∞, cR], PR∩(cR,∞)
into blocks, respectively. Due to symmetry, we only define the blocks in PL∩(−∞, cL) below. Blocks
for other parts follow similarly and are provided in Appendix B.3; see Figure 1 for a visualization.
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(a) (b)

Figure 1: Illustration of the block partition. The blue square marks the optimal solution c⋆, and the
blue triangle cL denotes the left boundary of the inlier set P ⋆

I , with distance rmax = dist(cL, c
⋆).

Figure 1(a) partitions the one-dimensional space left of PM into disjoint blocks based on each
point’s position relative to cL: points farther than rmax form Bfar, and those within 2εrmax form B0.
Figure 1(b) shows the logarithmic subdivision of inner blocks B(L)

i within distance rmax from cL.

Outer blocks (Bfar): Define B
(L)
far as the set of points that are far from cL, where

B
(L)
far := {p ∈ PL ∩ (−∞, cL) | dist(p, cL) ≥ rmax} . (4)

Inner blocks (Bi): Define B
(L)
0 as the set of points that are close to cL, where

B
(L)
0 := {p ∈ PL ∩ (−∞, cL) | dist(p, cL) < 2εrmax} . (5)

For the remaining points, partition them into blocks B(L)
i based on exponentially increasing distance

ranges for i = 1, . . . ,
⌈
log2(ε

−1)
⌉
, where

B
(L)
i := {p ∈ PL ∩ (−∞, cL) | 2iεrmax ≤ dist(p, cL) < 2i+1εrmax}. (6)

The algorithm. Our algorithm (Algorithm 1) consists of three stages. In Stage 1, we construct a
coreset SM for PM using AlgorithmA for vanilla 1D geometric median (Theorem 2.2), ensuring that
cost(SM , c) ∈ (1± ε) · cost(PM , c) for any center c ∈ R. In Stage 2, we divide sets PL and PR into
outer and inner blocks by Equations (4)-(6), and greedily partition these blocks into disjoint buckets
B with bounded δ(B) and N(B) in Lines 3-6. In Stage 3, we ensure that cost(m)(P, pn−m) =
cost(m)(S, pn−m) and cost(m)(P, pm+1) = cost(m)(S, pm+1) to control induced error when c /∈
PM . Finally, we add the mean point µ(B) of each bucket B with weight N(B) into SO, and return
SO ∪ SM as the coreset of P .

By construction, the coreset size |S| is exactly the number of buckets. Therefore, we have the
following lemma that proves the coreset size in Theorem 1.2. Its proof can be found in Section D.2.

Lemma 2.4 (Number of buckets). Algorithm 1 constructs at most Õ(ε−
1
2 + m

n ε−1) buckets.

Key proof idea of Theorem 1.2. Using Lemma 2.3, we can control the error from partially
intersected buckets when c ∈ PM (Lemma D.1). For c /∈ PM , let mi and m′

i be the number of
outliers in bucket Bi for P and S, respectively. We show that the total misaligned outliers satisfy∑

i∈[q] |mi −m′
i| ≤ εn

4 (Lemma D.2). In this case, the error is also bounded by |cost(m)(P, c) −
cost(m)(S, c)| ≤ (

∑
i∈[q] |mi − m′

i| + εn
8 ) · dist(c, PM ) ≤ ε · cost(m)(P, c) (Lemma D.3). The

complete proof can be found in Appendix D.

3 Improved coreset sizes for general d ≥ 1

We present Algorithm 2 for Theorem 1.3. In Line 1, we construct L⋆ as the set of outliers of P w.r.t.
c⋆ and P ⋆

I = P − L⋆ as the set of inliers. We construct coresets for P ⋆
I and L⋆ separately. In Line 2,

we take a uniform sample SO from L⋆ as the coreset of L⋆. This step is the key for eliminating the
O(m) dependency in the coreset size. In Line 3, we use the following theorem by [40] to construct a
coreset SI for P ⋆

I . The coreset S is the union of SO and SI (Line 5). In Section F, we show how to
generalize this algorithm to robust (k, z)-clustering (Algorithm 3).
Theorem 3.1 (Restatement of corollary 5.4 in [40]). There exists a randomized algorithm Ad that in
O(nd) time constructs a weighted subset SI ⊆ P ⋆

I of size Õ(ε−2 min
{
ε−2, d

}
), such that for every

dataset PO of size m, every integer 0 ≤ t ≤ m and every center c ∈ Rd, |cost(t)(PO ∪ P ⋆
I , c) −

cost(t)(PO ∪ SI , c)| ≤ ε · cost(t)(PO ∪ P ⋆
I , c) + 2ε · cost(P ⋆

I , c
⋆).
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Algorithm 1 Coreset construction for 1D
Input: A dataset P = {p1, . . . , pn} ⊂ R with p1 < . . . < pn, and ε ∈ (0, 1).
Output: An ε-coreset S

1: Set PM ← {pm+1, . . . , pn−m}, PL ← {p1, . . . , pm}, PR ← {pn−m+1, . . . , pn}.
2: Construct SM ← A(PM , ε

3 ) by Theorem 2.2.
3: Compute an optimal center c⋆ of P for robust 1D geometric median. Let P ⋆

I be the set of inliers
w.r.t. c⋆, and rmax := maxp∈P⋆

I
dist(p, c⋆), cL ← c⋆ − rmax, cR ← c⋆ + rmax.

4: Given cL and cR, divide PL and PR into outer blocks B(L)
far and B

(R)
far by Equation (8), and inner

blocks B(L)
i , B(LR)

i , B(RL)
i and B

(R)
i (0 ≤ i ≤

⌈
log2(ε

−1)
⌉
) by Equations (9)-(10).

5: For each non-empty inner block Bi, divide Bi into disjoint buckets {Bi,j}j≥0 in a greedy way:
each bucket Bi,j is a maximal set with δ(Bi,j) ≤ 2i·ε2nrmax

288 and N(Bi,j) ≤ εn
16 .

6: If B(L)
far is non-empty, divide Bfar into disjoint buckets {B(L)

far,j}j≥0 in a greedy way: each bucket

B
(L)
far,j is a maximal set with N(B

(L)
far,j) ≤

εn
16 . The same for B(R)

far .

7: Compute the inlier set P (pm+1)
I with respect to center c = pm+1 and the inlier set P (pn−m)

I with
respect to center c = pn−m respectively.

8: If there exists some bucket B such that both B∩P (pm+1)
I and B \P (pm+1)

I are non-empty, divide
B into two buckets B ∩ P

(pm+1)
I and B \ P (pm+1)

I . Do the same thing for P (pn−m)
I .

9: For every B, add µ(B) with weight N(B) into SO.
10: Return S ← SO ∪ SM .

Algorithm 2 Coreset Construction for General d
Input: A dataset P ⊂ Rd, ε ∈ (0, 1) and an O(1)-approximate center c⋆ ∈ Rd

Output: An ε-coreset S
1: L⋆ ← argminL:|L|=m cost(P − L, c⋆), P ⋆

I ← P − L⋆

2: Uniformly sample SO ⊆ L⋆ of size Õ(ε−2 min
{
ε−2, d

}
). Set ∀p ∈ SO, wO(p)← m

|SO| .
3: Construct (SI , wI)← Ad(P

⋆
I ) by Theorem 3.1.

4: For any p ∈ SO, define w(p) = wO(p) and for any p ∈ SI , define w(p) = wI(p).
5: Return S ← SO ∪ SI and w;

The theorem tells that SI serves as an ε-coreset for the combination of P ⋆
I and any possible set of

outliers PO. The flexible choice of PO is useful for our analysis. To estimate the error induced by
SO, we introduce the key lemma below, whose proof can be found in Section E.1.

Lemma 3.2 (Induced error of SO). For any center c ∈ Rd, we have |cost(m)(P, c)− cost(m)(SO ∪
P ⋆
I , c)| ≤ O(ε) · cost(m)(P, c).

Proof of Theorem 1.3. Fix a center c ∈ Rd. Let PO = SO and t = m in Theorem 3.1, we have
|cost(m)(SO ∪ P ⋆

I , c) − cost(m)(SO ∪ SI , c)| ≤ ε · cost(m)(SO ∪ P ⋆
I , c) + 2ε · cost(P ⋆

I , c
⋆). By

Lemma 3.2, we have |cost(m)(P, c)− cost(m)(SO ∪P ⋆
I , c)| ≤ O(ε) · cost(m)(P, c). Adding the two

inequalities above, we have |cost(m)(P, c)− cost(m)(S, c)| ≤ O(ε) · cost(m)(P, c).

The runtime is dominated by Line 1 and Line 3 that costs O(nd) time by Theorem 3.1, making the
total overhead O(nd). This completes the proof of Theorem 1.3.

4 Empirical results

We implement our coreset construction algorithm and compare its performance to several baselines.
All experiments are conducted on a PC with an Intel Core i9 CPU and 16GB of memory, and the
algorithms are implemented in C++ 11.

Baselines. We compare our algorithm with two baselines: 1) Method HJLW23 proposed by [39],
which directly includes L⋆ in the coreset and samples points from P ⋆

I . 2) Method HLLW25 proposed
by [40], improves the sample size from P ⋆

I in [39].
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(a) Census1990 (b) Twitter (c) Adult

Figure 2: Tradeoff between coreset size |S| and empirical error ε̂(S).

Setup. We conduct experiments on six datasets from diverse domains, including social networks,
demographics, and disease statistics, with sample sizes ranging from (104) to (105) and feature
dimensions from 2 to 68, as summarized in Table 4. These datasets cover those used in baseline [39],
ensuring fair comparison. In each dataset, numerical features are extracted to create a vector for
each record and the outlier number is set to 2% of the dataset size. To simplify computation, we
subsample 105 points from the Twitter and Census1990 datasets, and 104 points from the Athlete
and Diabetes datasets, respectively. We use k-means++ to compute an approximate center c⋆.

Size-error tradeoff. We evaluate the tradeoff between coreset size and empirical error. Given
a (weighted) subset S ⊆ P and a center c ⊂ Rd, we define the empirical error ε̂(S, c) :=
|cost(m)(P,c)−cost(m)(S,c)|

cost(m)(P,c)
, where lower values indicate better coreset performance for c. It is difficult

to estimate the performance for every center. So we sample 500 centers ci ∈ Rd, where each ci is
drawn uniformly from P without replacement. Like in the literature [39], we evaluate the empirical
error ε̂(S) := maxi∈[500] ε̂(S, ci). We vary the coreset size |S| from m to 2m, and compute the
empirical error ε̂(S). For each size and each algorithm, we run the algorithm 10 times, compute their
empirical errors ε̂(S), and report the average of 10 empirical errors.

Figure 2 presents the empirical results illustrating the size-error tradeoff on the Census1990, Twitter
and Adult datasets. As shown in Figures 2, our coreset algorithm consistently achieves the lowest
empirical error among all methods. Moreover, unlike the baselines, which require a coreset of size
at least m, our method attains the same level of error with a coreset size smaller than m. For
example, with the Census1990 dataset, our method yields a coreset of size 1000 with an empirical
error of 0.012, while the best baseline needs size 2300 to achieve a worse error of 0.013. Results
for other datasets are presented in Section G. We also perform statistical tests across six real-world
datasets by comparing the ratio of empirical errors between our algorithm and baselines, which further
demonstrates that our algorithm consistently outperforms the baselines; see Table 1. The results
show that both ε̂(S2)/ε̂(S1) and ε̂(S3)/ε̂(S1) are consistently bigger than 1, demonstrating that our
coreset consistently yields lower empirical error than the baselines. This confirms the applicability of
our coreset across real-world datasets.

Speed-up baselines. In this experiment, we compare the coreset of size 2m constructed by the
HLLW25 baseline and coreset of size m constructed by Algorithm 2. We repeat the experiment 10
times and report the averages. The result is listed in Table 2. The construction time of our coreset is
similar to that of the baseline HLLW25. However, our algorithm achieves a speed-up over HLLW25
(a 2× reduction in the running time on the coreset), while achieving the same level of empirical error.

Additional experiment. In Section G.1, we demonstrate the robustness of our Algorithm 2 when the
assumption n ≥ 4m is violated or dataset is noisy. In Sections G.2, G.3, and G.4, we implement our
algorithms for the 1D case, robust k-median, and k-means, respectively, and conduct similar experi-
ments. The results show improved performance on real-world datasets, even when the theoretical
data assumptions are violated, further highlighting the practical robustness of our algorithms.

5 Conclusion and future work

We investigate coreset construction for robust geometric median problem, successfully eliminating
the size dependency on the number of outliers. Specifically, for the 1D Euclidean case, we achieve
the first optimal coreset size. Furthermore, our results generalize to robust clustering applications.
Empirically, our algorithms achieve a superior size-error balance and a runtime acceleration.
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Table 1: Statistical comparison of different coreset construction methods for robust geometric median.
The coreset S1 represents our coreset, S2 represents the coreset constructed by the baseline HJLW23,
and S3 the coreset constructed by baseline HLLW25. For each empirical error ratio ε̂(S2)/ε̂(S1)
and ε̂(S3)/ε̂(S1), we report the mean value over 20 runs, with the subscript indicating the standard
deviation.

Coreset Size Census1990 Twitter
ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1) ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1)

2200 3.2532.063 2.6451.458 1.7930.644 1.6670.479
3200 1.2570.842 1.2510.632 1.3430.234 1.2830.197
4200 1.3030.692 1.1680.739 1.2440.152 1.2460.148

Coreset Size Bank Adult
ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1) ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1)

1200 1.6470.972 1.3601.018 1.4670.287 1.0940.542
1700 1.0100.654 1.0280.574 2.1490.884 2.4161.002
2200 1.0100.654 1.0260.674 1.0890.360 1.1720.537

Coreset Size Athlete Diabetes
ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1) ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1)

210 5.1723.634 4.2001.944 5.7003.303 5.8682.952
310 2.4671.564 1.4270.660 1.5670.800 1.3320.653
410 1.6580.881 1.0450.449 1.3601.103 1.2160.943

This work opens several intriguing research directions. One immediate problem is to optimize the
coreset size for d > 1 or k > 1, particularly in cases where the size diverges from that of the vanilla
setting. Extending robust coresets to the streaming model is a valuable but challenging direction.
The primary obstacle is their lack of mergeability, as outlier interactions across different data chunks
prevent the compositional updates essential for streaming algorithms. It is also interesting to explore
whether our non-component-wise analysis can be applied to other robust machine learning problems,
such as robust regression and robust PCA.

Table 2: Comparison of runtime between our Algorithm 2 and baseline HLLW25. For each dataset,
the coreset size of baseline HLLW25 is 2m and the coreset size of ours is m. We use Lloyd algorithm
given by [7] to compute approximate solutions cP and cS for both the original dataset P and coreset
S, respectively. “COSTP ” denotes cost(m)(P, cP ) on the original dataset P . “COSTS” denotes
cost(m)(P, cS) on the coreset constructed by METHOD. TX is the running time on the original
dataset. TS is the running time on coreset. TC is the construction time of the coreset.

DATASET COSTP METHOD COSTS TX TC TS

CENSUS1990 5.099×106
OURS 5.100×106 63.425 6.876 1.284

HLLW25 5.099×106 6.950 2.629

TWITTER 7.307×106
OURS 7.310×106 41.816 3.233 0.633

HLLW25 7.307×106 3.259 1.278

BANK 7.815×106
OURS 7.760×106 16.555 1.427 0.308

HLLW25 7.765×106 1.477 0.677

ADULT 3.418×109
OURS 3.412×109 16.907 1.632 0.310

HLLW25 3.411×109 1.596 0.597

ATHLETE 1.460×105
OURS 1.467 ×105 2.92 0.320 0.055

HLLW25 1.463 ×105 0.321 0.104

DIABETES 1.781×105
OURS 1.786×105 3.977 0.366 0.062

HLLW25 1.788×105 0.360 0.135
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Table 3: Comparison of the state-of-the-art coreset size and our results for robust geometric median
and robust k-median in Rd. Robust k-median is a generalization of robust geometric median; see
Definition F.1 when z = 1.

PARAMETERS d,k PRIOR RESULTS OUR RESULTS (ASSUMING n ≥ 4m)

d = 1 k = 1
O(m) + Õ(ε−2)[40]
Õ(mε−1) + VANILLA SIZE[42]
Ω(m) [39]

Õ(ε−
1
2 + m

n
ε−1) (THEOREM 1.2)

Ω(ε−
1
2 + m

n
ε−1) (THEOREM 1.2)

d > 1 k = 1
O(m) + Õ(ε−2 ·min{ε−2, d})[40]
Õ(mε−1) + VANILLA SIZE[42]
Ω(m) [39]

Õ(ε−2 ·min{ε−2, d}) (THEOREM 1.3)
Ω(ε−

1
2 + m

n
ε−1) (THEOREM 1.2)

d > 1 k > 1
O(m) + Õ(k2ε−2 ·min{ε−2, d})[40]
Õ(min{kmε−1,mε−2}) + VANILLA SIZE[42]
Ω(m)[39]

Õ(k2ε−2 ·min{ε−2, d})
(THEOREM 1.5, UNDER ASSUMPTION 1.4)

A Omitted details in Section 1

A.1 Formal definition of coreset

In this section, we define the coreset for robust geometric median. For preparation, we first generalize
the cost function cost(m) to handle weighted datasets.
Definition A.1 (Generalized cost function). Let m be an integer. Let S ⊆ Rd be a weighted dataset
with weights w(p) for each point p ∈ S. Let w(S) :=

∑
p∈S w(p). Define a collection of weight

functionsW := {w′ : S → R+ |
∑

p∈S w′(p) = w(S)−m ∧ ∀p ∈ S,w′(p) ≤ w(p)}. Moreover,
we define the following cost function on S: ∀c ∈ Rd, cost(m)(S, c) := minw′∈W

∑
p∈S w′(p) ·

dist(p, c).

Intuitively, to compute cost(m)(S, c), we find a weighted subset S′ of S with total weight w(S)−m
that minimizes its vanilla cost to c. Thus, this cost(m)(S, c) serves as the cost function for robust
geometric median on a weighted set. Note that for the unweighted case where w(p) = 1 for all p ∈ S,
this cost function reduces to that in Equation (1).

Next, we define the notion of coreset for robust geometric median.
Definition A.2 (Coreset for robust geometric median). Given a point set P ⊂ Rd of size n ≥ 1,
integer m ≥ 1 and ε ∈ (0, 1), we say a weighted subset S ⊆ P together with a weight function
w : S → R+ is an ε-coreset of P for robust geometric median if w(S) = n and for any center
c ∈ Rd, cost(m)(S, c) ∈ (1± ε) · cost(m)(P, c).

This formulation ensures that the weighted coreset S provides an accurate approximation of the
original dataset P ’s cost for all centers c, within a tolerance specified by ε.

A.2 Other related work

Coreset for robust clustering. A natural extension of robust geometric median is called robust (k, z)-
Clustering, attracting considerable interest for its coreset construction techniques in the literature [27,
38, 39, 41, 53]. In early work, [27] proposed a coreset construction method for the robust k-median
problem, which requires an exponentially large size (k +m)O(k+m)(ε−1d log n)2. Recently, [39]
improved the coreset size to O(m) + Õ(k3ε−3z−2) via a hierarchical sampling framework proposed
by [9]. Following this, [40] further improved the size to O(m) + Õ(k2ε−2z−2). More recently, [42]
proposed a new coreset of size O(min{kmε−1,mε−2z})+Vanilla size. We give Table 3 to compare
our theoretical results with prior work.

Coreset for other clustering problems. Coreset construction for other variants of (k, z)-Clustering
problems has also been extensively studied, including vanilla clustering [35, 16, 26, 9, 18, 19,
37, 41], capitalized clustering [9, 20], fair clustering [17, 5] and fault-tolerant clustering [44, 33].
Specifically, for vanilla (k, z)-clustering recent advancements by [19, 18, 41], produced a coreset
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of size Õ(min
{
kε−z−2, k

2z+2
z+2 ε−2

}
). When ε ≥ k−

1
z+2 , the coreset upper bound kε−z−2 is shown

to be optimal by a recent breakthrough [41]. Furthermore, a recent study [37] has investigated the
coreset bounds when d is small.

A.3 An illustrative example for the obstacle of Inequality (3)

Recall that we partition the input dataset P ⊂ R into disjoint buckets {B1, . . . , BT }, constructs
a representative point µ(Bi) with weight |Bi| for each bucket and takes their union as a coreset
S of P for robust 1D geometric median. Also, recall that prior work [39, 40] use Inequality (3)
for error analysis, i.e., for any center c ∈ R and any tuple of outlier numbers (m1, . . . ,mT ) with∑

i∈[T ] mi = m,∑
i∈[T ]

|cost(mi)(Bi, c)− (|Bi| −mi)dist(µ(Bi), c)| < ε · cost(m)(P, c). (7)

In this section, we provide an example in which this inequality only holds if |S| = Ω(m).

Construct the dataset P as follows: for i = 1, . . . , n − m, pi = i
n ; for n − m + 1 ≤ i ≤ n,

pi = n3(i−n+m). We show that the Inequality (7) only holds if each pj forms its own isolated
bucket. Assume, for the sake of contradiction, that there exists a bucket Bq = {pi, . . . , pj} such that
|Bq| > 1 and j > n−m.

Case 1: If i ≤ n − m, let c = 0. Then we have that the inlier set with respect to c is P
(c)
I =

{p1, . . . , pn−m}. Thus,

cost(m)(P, c) = cost(P
(c)
I , c) =

n−m∑
t=1

t

n
< n.

Let m1 = . . . = mq−1 = 0, mq = j − n+m and mt = |Bt| for q + 1 ≤ t ≤ T . We have∑
i∈[T ]

|cost(mi)(Bi, c)− (|Bi| −mi)dist(µ(Bi), c)|

= |cost(mq)(Bq, c)− (|Bq| −mq)dist(µ(Bq), c)|
> (|Bq| −mq) · µ(Bq)− n (cost(mq)(Bq, c) ≤ cost(m)(P, c) < n)

≥ µ(Bq)− n (|Bq| = j − i+ 1, i ≤ n−m)

=

∑
p∈Bq

p

|Bq|
− n

> n2 − n

> ε · cost(m)(P, c), (cost(m)(P, c) < n)

which leads to a contradiction with Inequality (7).

Case 2: If i > n−m, let c = pi. Then P
(c)
I = {pi−n+m+1, . . . , pi}. In this case, we have

cost(m)(P, c) =
∑

p∈P
(c)
I

d(p, pi) ≤ (n−m) · n3(i−n+m).

Note that |Bq ∩ P
(c)
I | = 1, which means |Bq| −mq = 1, then we have∑

i∈[T ]

|cost(mi)(Bi, c)− (|Bi| −mi)dist(µ(Bi), c)|

≥ |cost(mq)(Bq, c)− (|Bq| −mq)dist(µ(Bq), c)|
= dist(µ(Bq), c) (cost(mq)(Bq, c) = dist(pi, c) = 0)

=

∑
p∈Bq

p

|Bq|
− pi

> n3(i−n−m) · (n2 − 1)

> ε · cost(m)(P, c), (cost(m)(P, c) ≤ (n−m) · n3(i−n+m))
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which leads to a contradiction with Inequality (7). Overall, Inequality (7) does not hold if {pj} does
not form a separated bucket.

Non-component-wise analysis breaks the obstacle. We then show how to adapt our new non-
component-wise analysis to this example, which allows a more careful bucket decomposition. The
key is that in our analysis, the induced error of the aforementioned bucket Bq = {pi, . . . , pj} with
j > n−m is 0, due to allowing the misaligned outlier numbers in each bucket. Below illustrate the
above two cases.

Case 1: If i ≤ n−m, c = 0, then only the bucket Bq may induce an error. Since j > n−m, we
have pj ≥ n3, thus

µ(Bq) =

∑
p∈Bq

p

|Bq|
>

n3

n
= n2 > max

p∈P
(c)
I

dist(p, c).

Therefore, Bq will be totally regarded as an outlier which induces 0 error, thus cost(m)(S, c) =

cost(m)(P, c).

Case 2: If i > n−m, c = pi, then P
(c)
I = {pi−n+m+1, . . . , pi}. Let the bucket BL = {pl, . . . , pr}

with l ≤ i− n+m+ 1, r ≥ i− n+m+ 1 denote the leftmost bucket containing at least one inlier.
Therefore, only the buckets BL and Bq may induce an error. For Bq , we have dist(µ(Bq), c) > (n2−
1)dist(p1, c), thus Bq induces 0 error. For BL, the induced error is bounded by εn · n3(i−n−m) ≤
ε · cost(m)(P, c), since, in our framework, the size of each bucket in P − PM is restricted to at most
O(εn). In summary, the total error is bounded by ε · cost(m)(P, c).

Thus, non-component-wise analysis significantly reduces bucket-wise errors in this example, which
is crucial for proving S is a coreset.

B Omitted details in Section 2

B.1 Property of buckets

In Section 2, we introduce a useful notion called bucket. The following lemma shows that the coreset
error on each bucket B is bounded by δ(B). Recall that cost(B, c) =

∑
p∈B dist(p, c) for any point

set B ⊂ R and center c ∈ R.

Lemma B.1 (Error analysis for buckets [34]). Let B = {pl, . . . , pr} ⊆ P for 1 ≤ l ≤ r ≤ n be a
bucket and c ∈ R be a center. We have

1. if c ∈ (pl, pr), |cost(B, c)−N(B) · dist(µ(B), c)| ≤ δ(B);

2. if c /∈ (pl, pr), |cost(B, c)−N(B) · dist(µ(B), c)| = 0.

B.2 Proof of Lemma 2.3

Proof of Lemma 2.3. We prove the lemma by contradiction. Suppose there exists a center c ∈ PM

satisfying that c < c⋆ and P
(c)
I ̸= PI , and the leftmost point pl of P (c)

I satisfies dist(pl, cL) >
2dist(c, c⋆). Then by the assumption of c, we have pl < cL, thus pl /∈ P ⋆

I . For any points p in P ⋆
I ,

we have

dist(p, c) ≤ dist(p, c⋆) + dist(c, c⋆) (Triangle Inequality)
≤ rmax + dist(c, c⋆) (Definition of rmax)

< rmax + dist(pl, cL)− dist(c, c⋆) (dist(pl, cL) > 2dist(c, c⋆))

= dist(pl, c)

This implies that any point in P ⋆
I must be in P

(c)
I . However, since |P ⋆

I | = |P
(c)
I | = n −m, P (c)

I
cannot contain any other point not in P ⋆

I . This contradicts pl /∈ P ⋆
I . Thus, dist(pl, cL) ≤ 2dist(c, c⋆)

holds.
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B.3 Complete definition of blocks

Now we provide the complete definition of blocks, which are used in our algorithm 1. Recall that
rmax = maxp∈P⋆

I
|p− c⋆|, cL = c⋆ − rmax and cR = c⋆ + rmax. Then we divide the sets PL and

PR into disjoint blocks as follows:

Outer blocks (Bfar): Define B
(L)
far and B

(R)
far as the set of points that are far from cL and cR, where

B
(L)
far := { p ∈ PL ∩ (−∞, cL) | dist(p, cL) ≥ rmax } ,

B
(R)
far := { p ∈ PR ∩ (cR,∞) | dist(p, cR) ≥ rmax } .

(8)

Inner blocks (Bi): Define B
(L)
0 , B(LR)

0 , B(R)
0 , and B

(RL)
0 as the set of points that are close to cL or

cR, where
B

(L)
0 := { p ∈ PL ∩ (−∞, cL) | dist(p, cL) < 2εrmax } ,

B
(LR)
0 := { p ∈ PL ∩ [cL,∞) | dist(p, cL) < 2εrmax } ,

B
(R)
0 := { p ∈ PR ∩ (cR,∞) | dist(p, cR) < 2εrmax } ,

B
(RL)
0 := { p ∈ PR ∩ (−∞, cR] | dist(p, cR) < 2εrmax } .

(9)

For the remaining points, partition them into blocks B(L)
i , B(LR)

i , B(R)
i and B

(RL)
i based on expo-

nentially increasing distance ranges for i = 1, . . . ,
⌈
log2(ε

−1)
⌉
, where

B
(L)
i := { p ∈ PL ∩ (−∞, cL) | 2iεrmax ≤ dist(p, cL) < 2i+1εrmax },

B
(LR)
i := { p ∈ PL ∩ [cL,∞) | 2iεrmax ≤ dist(p, cL) < 2i+1εrmax },

B
(R)
i := { p ∈ PR ∩ (cR,∞) | 2iεrmax ≤ dist(p, cR) < 2i+1εrmax },

B
(RL)
i := { p ∈ PR ∩ (−∞, cR] | 2iεrmax ≤ dist(p, cR) < 2i+1εrmax }.

(10)

B.4 Justifying the selection of the optimal center

In previous coreset constructions [39], it is hard to obtain the exact value of optimal center c⋆, so
an approximate center is generally used instead. However, when d = 1, P ⋆

I is always a continuous
subsequence of P . Suppose P ⋆

I = {pi, . . . , pj}, we have c⋆ = p⌊ j+i
2 ⌋. This indicates that P ⋆

I and
c⋆ can be computed in polynomial time in robust 1D geometric median. Additionally, computing an
O(1)-approximation of c⋆ is also sufficient for our algorithm to remain valid, which only results in a
factor of O(1) difference in the coreset size.

C Proof of Theorem 1.1: coreset lower bound for robust geometric median

We first construct a bad instance P := {p1, . . . , pn} ⊂ R, where pi = i for i ∈ [m] and pj = x for
m < j ≤ n, x→∞.

W.l.o.g, we assume n−m is an even number and n−m ≤ (m−1)/2. Suppose (S,w) is an ε-coreset
of size |S| < m

2(n−m)+1 for robust geometric median on P . Define SI := S ∩ {pm+1, . . . , pn} and
SO := S ∩{p1, . . . , pm}. There exists 2(n−m) consecutive points pi+1, ..., pi+2(n−m) not in S for
some i ∈ [m− 2(n−m)]. Let the center c = i+ (n−m) + 1

2 . Then we have

cost(m)(P, c) = 2((
1

2
) + (

1

2
+ 1) + . . .+ (

1

2
+

n−m

2
− 1))

≤ (n−m)2

2
.

(11)

We claim that w(SO) + w(SI)−m ≥ (1− ε) · (n−m). Fix a center c′ = x+ 1. If w(SO) > m,
we have cost(m)(P, c′) = n−m and cost(m)(S, c′)→∞, leading to an unbounded error. Therefore
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we only need to consider the case w(SO) ≤ m and our claim can be verified by as follow:

cost(m)(S, c′)

cost(m)(P, c′)
=

w(SO)−m+ w(SI)

n−m
→ (1± ε). (12)

By this claim, we have

cost(m)(S, c) ≥ (n−m+ 0.5) · (w(SO) + w(SI)−m)

≥ (n−m+ 0.5) · (1− ε) · (n−m) (Inequality (12))

> (1 + ε) · ( (n−m)2

2
) (0 < ε < 0.5)

≥ (1 + ε) · cost(m)(P, c) (Inequality (11)).

In summary, we have cost(m)(S, c) ≥ (1 + ε) · cost(m)(P, c), which contradicts the definition of
ε-coreset. We conclude that, each ε-coreset of P is of size Ω( m

n−m ).

D Proof of Theorem 1.2: optimal coreset size for robust 1D geometric median

In this section, we provide the complete proof of Theorem 1.2 for both upper and lower bounds.

D.1 Proof of the upper bound in Theorem 1.2

Now we show that our coreset S obtained by Algorithm 1 is an ε-coreset of P .

In the following discussion, we define S(c)
I and S⋆

I as follows. Given a weighted set S of total weight
n and a center c ∈ R, let S(c)

I := argmin
S

(c)
I ⊆S,

∑
s∈S

(c)
I

w(s)=n−m
cost(S

(c)
I , c) be the set of inliers

of S, where w(s) represents the weight of s in S
(c)
I and is at most the weight of s in S. Moreover, let

S⋆
I represents S(c⋆)

I , which exactly contains every µ(B) of each bucket B in P ⋆
I with weight |B|.

First, we consider the case that c ∈ PM . Note that regardless of the position of c, at most three
buckets can induce the error: the bucket containing c, and the buckets containing the endpoints of
P

(c)
I on either side. Actually, the coreset error in PM is already controlled by the vanilla coreset

construction algorithm A. Thus, we only have to consider the cumulative error of the buckets that
partially intersect with P

(c)
I on either side. We will show that this error is controlled by the carefully

selected cumulative error bound of each inner block. Moreover, we adapt the analysis for the vanilla
case in [37] to the robust case, as shown in Lemma D.1. This allows us to avoid considering the error
caused by the misaligned outliers in P and S, which still suffice to ensure that the coreset error is
bounded. The proof of Lemma D.1 is deferred to Section D.3.

Lemma D.1 (Error analysis for c ∈ PM ). When center c ∈ (pm+1, pn−m), |cost(m)(P, c) −
cost(m)(S, c)| ≤ ε · cost(m)(P, c).

Now we analyze the case that c is not in PM . Assume P is divided into disjoint buckets B1, . . . , Bq ,
from left to right. Fix a center c ∈ R, for each bucket Bi (i ∈ [q]), define mi := |Bi \ P (c)

I | and
m′

i := |Bi \ S(c)
I |, which represent the number of outliers in Bi with respect to c. Obviously we

have
∑

i mi =
∑

i m
′
i = m. The following lemma shows that the number of inliers in each bucket

for P (c)
I and S

(c)
I remains roughly consistent, which indicates that cost(m)(P, c) and cost(m)(S, c)

increase almost equally.
Lemma D.2. For any center c ∈ R,

∑
i∈[q]

|mi −m′
i| ≤ εn

4 .

Let Γ := supc∈R
∑
i∈[q]

|mi −m′
i|, then we have Γ ≤ εn

4 . For c /∈ PM , we consider the derivative

of the cost value with respect to c, and gives an upper bound of the induced error in Lemma D.3.
Combined with the upper bound of Γ, we conclude that the induced error is O(εn · dist(c, c⋆)),
which is bounded by O(ε) · cost(m)(P, c) obviously. The main idea is similar to that of the proof of
Theorem 2.1 in [37]. We defer the proof of Lemma D.2 and D.3 to Sec D.4 and D.5, respectively.

21



Lemma D.3 (Error analysis for c /∈ PM ). When the center c ≤ pm+1 or c ≥ pn−m, |cost(m)(P, c)−
cost(m)(S, c)| ≤ (Γ + εn

8 ) · dist(c, PM ) ≤ ε · cost(m)(P, c).

Now we are ready to prove the upper bound in Theorem 1.2.

Proof of Theorem 1.2 (upper bound). Given a dataset P of size n, we apply Algorithm 1 to P and
obtain the output weighted set S. By Lemma 2.4, Algorithm 1 divides P into Õ(ε−

1
2 + m

n ε−1)
buckets. Note that S contains only the mean point µ(B) of each bucket B. Thus we have |S| =
Õ(ε−

1
2 + m

n ε−1). Combined with Lemma D.1 and D.3, we conclude that S is an ε-coreset of P .

For the runtime, Line 3 cost O(n) time to obtain the optimal center. Recall that P ⋆
I = {pi, . . . , pj} is

a continuous subsequence of P and c⋆ = p⌊ j+i
2 ⌋, since we only consider the one-dimensional case.

Thus, we can compute P ⋆
I and c⋆ in O(n) time, since we can sequentially replace the leftmost point

in the current inliers with the next point from the outliers, and the resulting cost difference can be
computed in O(1) time. Lines 4-6 cost O(n) time, since we can sequentially check whether the next
point can be added to the current bucket, otherwise, we place it into a new bucket. Obviously Lines
7-8 also cost O(n) time. This completes the proof.

D.2 Proof of Lemma 2.4: Number of buckets

Proof of Lemma 2.4. Note that in Line 2, the number of buckets is Õ(ε−
1
2 ) in SM by Theorem 2.2.

For Line 4, there are at most O(log( 1ε )) non-empty blocks. For Line 6, the constraint on N(Bi,j)

generates at most O(mn ε−1) buckets. For Lines 7-8, there are O(1) new one-point buckets.

What remains is to show that each non-empty block contains Õ(ε−
1
2 + m

n ε−1) buckets in Line 5.
Note that each block contains at most m points, thus the constraint on N(Bi,j) generates at most
O(mn ε−1) buckets. Thus we only have to consider the constraint on δ(Bi,j).

Suppose we divide an inner block Bi into t buckets {Bi,j}1≤j≤t due to controlling δ(Bi,j). Since
each Bij is the maximal bucket with δ(Bi,j) ≤ 2i·ε2nrmax

288 , we have δ(Bi,j ∪Bi+1,j) >
2i·ε2nrmax

288 .
Denote Bi,2j−1 ∪Bi,2j by Cj for j ∈ {1, . . . , ⌊ t2⌋}. Let len(B) := maxp∈B p−minp∈B p be the
length of B. Note that δ(B) ≤ N(B) · len(B) holds for every bucket B. Thus we have:

m2iεrmax ≥ N(Bi) · len(Bi) (N(Bi) < m, len(Bi) < 2iεrmax)

≥
⌊ t
2 ⌋∑

j=1

N(Cj)

⌊ t
2 ⌋∑

j=1

|Cj |

≥ (

⌊ t
2 ⌋∑

j=1

N(Cj)
1
2 |Cj |

1
2 )2 (Cauchy-Schwarz Inequality)

≥ (

⌊ t
2 ⌋∑

j=1

δ(Cj)
1
2 )2

> (⌊ t
2
⌋)2 · 2

i · ε2nrmax

288
.

(13)

So we have (⌊ t2⌋)
2 · 2

i·ε2nrmax

288 < m2iεrmax , which implies t ≤ O(ε−
1
2 ). The proof above is similar

to Lemma 2.8 in [40]. Similarly, it is trivial to prove that B0 also satisfies the above inequality.
Since there are O(log(ε−1)) non-empty blocks, the constraint on δ(Bi,j) generates at most Õ(ε−

1
2 )

buckets. Thus Lemma 2.4 holds.

D.3 Proof of Lemma D.1: Error analysis for c ∈ PM

Proof of Lemma D.1. Let LO := PL ∩L⋆, RO := PR ∩L⋆. Recall that L⋆ denote the set of outliers
w.r.t. the optimal center c⋆. W.L.O.G, assume c > c⋆, thus P (c)

I ∩ LO = ∅. Next, we analyze the
induced error in two cases, based on the scale of dist(c, c⋆). When εrmax > dist(c, c⋆), the center
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c is sufficiently close to c⋆, so cost(m)(P, c) ≈ cost(m)(P, c⋆), resulting in a small error. When
εrmax ≤ dist(c, c⋆), we have cost(m)(P, c) > Ω(n · dist(c, c⋆)) > Ω(εnrmax), which matches the
error from any outlier-misaligned bucket B, whose error is at most O(εn)(dist(c, c⋆) + εrmax) by
Lemma 2.3.

Case 1: dist(c, c⋆) > ε
6 · rmax.

If P (c)
I ∩RO = ∅, then we have P (c)

I = P ⋆
I , S(c)

I = S⋆
I . In this case, we directly have cost(m)(S, c) ∈

(1± ε)cost(m)(P, c) by Theorem 2.2.

Next we assume P
(c)
I ∩ RO ̸= ∅. Same as the above lemma, denote the leftmost and rightmost

buckets intersecting P
(c)
I as BL, BR, respectively. Recall that the coreset constructed by A(PM , ε

3 )
is SM . By Theorem 2.2, Algorithm A ensures that

|cost(SM , c)− cost(PM , c)| ≤ ε

3
· cost(PM , c) <

ε

3
· cost(m)(P, c).

Next, we bound the cumulative error of BL and BR. Define γ := max(0, ⌈log(dist(c,c
⋆)

2ε·rmax
)⌉). Obvi-

ously ε
6rmax ≤ dist(c, c⋆) < rmax, thus γ ∈ [0, ⌈log(ε−1)⌉ − 1]. By the definition of γ, we have

dist(c, c⋆) ≤ 2γ+1εrmax. Denote the rightmost point of BR as pr, then it follows that

dist(pr, cR) ≤ 2dist(c, c⋆) (Lemma 2.3)

≤ 2γ+2εrmax. (dist(c, c⋆) ≤ 2γ+1εrmax)

Recall that block B
(R)
i = { p ∈ PR | p > cR, 2

iεrmax ≤ dist(p, cR) < 2i+1εrmax}. So the block
Bi which contains bucket BR satisfies i ≤ γ + 1. By Line 5 in Algorithm 1, any bucket Bi,j in inner
block Bi satisfies δ(Bi,j) ≤ 2i·ε2nrmax

288 . Thus,

δ(BR) ≤
2γ+1 · ε2nrmax

288
.

Similarly,

δ(BL) ≤
2γ+1 · ε2nrmax

288
.

Note that at least ⌊n−m
2 ⌋ points are on the left of c⋆, among which there are at least (⌊n−m

2 ⌋ −m)

inliers w.r.t center c. Moreover, when γ = 0, we simply have dist(c, c⋆) > 2γεrmax

6 by the assumption;
when γ > 0, we have dist(c, c⋆) > 2γεrmax by the definition of γ. Thus,

cost(m)(P, c) ≥ (⌊n−m

2
⌋ −m) · dist(c, c⋆)

>
n

8
· dist(c, c⋆) (n ≥ 4m)

>
2γεnrmax

48
. (dist(c, c⋆) >

2γεrmax

6
)

(14)

Now we are ready to prove our goal |cost(m)(P, c) −
∑

j∈[q](|Bj | −mj) · dist(µ(Bj), c)| ≤ ε ·
cost(m)(P, c). Recall that mj := |Bj \ P (c)

I | for each bucket Bj . Thus for each bucket Bj that is
between BL and BR, we have mj = 0; for BL and BR, we have |BL| −mL = |BL ∩ P

(c)
I | and
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|BR| −mR = |BR ∩ P
(c)
I |. Then we have

|cost(m)(P, c)−
∑
j∈[q]

(|Bj | −mj) · dist(µ(Bj), c)|

≤ |cost(SM , c)− cost(PM , c)|+
∑

p∈BL∩P
(c)
I

dist(p, µ(BL)) +
∑

p∈BR∩P
(c)
I

dist(p, µ(BR))

(Triangle Inequality)
≤ |cost(SM , c)− cost(PM , c)|+ δ(BL) + δ(BR) (Definition of δ(B))

<
ε

3
· cost(m)(P, c) +

2γ · ε2nrmax

72

≤ ε · cost(m)(P, c). (Inequality (14))

Thus by the definition of S(c)
I ,

cost(m)(S, c) ≤
∑
j∈[q]

(|Bj | −mj) · dist(µ(Bj), c) < (1 + ε)cost(m)(P, c).

Moreover, it is easy to prove that the rightmost block Bi′ intersecting with S
(c)
I still satisfies i′ ≤ γ+1.

Thus, similarly to the previous discussion, we have:

cost(m)(P, c) < (1 + ε)cost(m)(S, c).

Thus cost(m)(S, c) ∈ (1± ε)cost(m)(P, c).

Case 2: dist(c, c⋆) ≤ ε
6 · rmax.

Let wl :=
∑

p∈P
(c)
I \P⋆

I

w(p). Consider the points in P
(c)
I \ P ⋆

I , we have:

cost(m)(P, c) > wl(rmax − dist(c, c⋆)) ≥ (1− ε

6
)wlrmax >

5

6
wlrmax. (15)

Thus,
cost(m)(P, c) = cost(P

(c)
I ∩ P ⋆

I , c) + cost(P
(c)
I \ P ⋆

I , c)

≥ cost(P ⋆
I , c)− 2wl · dist(c, c⋆) (Definition of wl)

≥ cost(P ⋆
I , c)−

ε

3
wlrmax

> cost(P ⋆
I , c)−

2ε

5
· cost(m)(P, c) (Inequality (15)).

(16)

By the definition of cost(m)(P, c), we have

cost(m)(P, c) ≤ cost(P ⋆
I , c). (17)

Similarly, we have

cost(S⋆
I , c)−

2ε

5
· cost(m)(S, c) ≤ cost(m)(S, c) < cost(S⋆

I , c). (18)

By Theorem 2.2, AlgorithmA ensures that |cost(SM , c)−cost(PM , c)| < ε
3 ·cost(PM , c). According

to the definition of the block B0, we can obtain that there is no bucket that partially intersects with
P ⋆
I . Thus,

|cost(S⋆
I , c)− cost(P ⋆

I , c)| = |cost(SM , c)− cost(PM , c)|

<
ε

3
· cost(PM , c)

<
ε

3
· cost(P ⋆

I , c).

(19)
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Combining the above equations, we have

cost(m)(S, c) < cost(S⋆
I , c) (Inequality (18))

< (1 +
ε

3
)cost(P ⋆

I , c) (Inequality (19))

< (1 +
ε

3
)(1 +

2ε

5
)cost(m)(P, c) (Inequality (16))

< (1 + ε)cost(m)(P, c).

Similarly we have cost(m)(P, c) < (1+ε)cost(m)(S, c), thus cost(m)(S, c) ∈ (1±ε) ·cost(m)(P, c).

D.4 Proof of Lemma D.2: Number of misaligned outliers

Proof of Lemma D.2. Note that for any center c, P (c)
I is a continuous subset of size n − m. Let

P
(c)
I = {pl, . . . , pl+n−m−1}. Assume pl ∈ BL and pl+n−m−1 ∈ BR. Consider a point pj ∈ PL

that satisfies dist(pj , c) < dist(pj+n−m, c) and dist(µ(B), c) > dist(µ(B′), c), where pj ∈ B and
pj+n−m ∈ B′. Next we show that the total number of points satisfying the above conditions is at
most O(εn), which also provides an upper bound for

∑
i

|mi −m′
i|.

In this case pj ∈ P
(c)
I . By the definition of P (c)

I , we have j ≥ l. If B ̸= BL and B′ ̸= BR, then by
j ≥ l, we have µ(B) > max(BL) and µ(B′) > max(BR). Then we have

dist(pj , c) ≥ dist(max(BL), c) > dist(µ(B), c) > dist(µ(B′), c) > dist(max(BR), c)

≥ dist(pj+n−m, c),

which contradicts the inequality dist(pj , c) < dist(pj+n−m, c). Thus, either B = BL or B′ = BR

holds. This indicates that the total number of points satisfying the above conditions is at most
|BL|+ |BR|. Formally, denote B(i) as the bucket containing pi, we have

I1 =
∑
j∈[m]

∣∣∣I(pj ∈ P
(c)
I ,dist(µ(B(j)), c) > dist(µ(B(j+n−m)), c))

∣∣∣ ≤ |BL|+ |BR|. (20)

Symmetrically, consider the points in PR, we have∑
j∈[n−m+1,n]

∣∣∣I(pj ∈ P
(c)
I ,dist(µ(B(j−n+m)), c) < dist(µ(B(j)), c))

∣∣∣ ≤ |BL|+ |BR|. (21)

Since |P (c)
I | = n−m, for any i ∈ [1,m], exactly one point in {pi, pi+n−m} is in P

(c)
I . This means

that pi ∈ P
(c)
I if and only if pi+n−m /∈ P

(c)
I . Thus, Inequality (21) is equivalent to the following

form:

I2 =
∑
j∈[m]

∣∣∣I(pj /∈ P
(c)
I ,dist(µ(B(j)), c) < dist(µ(B(j+n−m)), c))

∣∣∣ ≤ |BL|+ |BR|. (22)

Moreover, we’ll show that I1 and I2 cannot both be greater than 0. Suppose I1 > 0. In this case,
there exists a point pj ∈ PL ∩ P

(c)
I such that dist(µ(B(j)), c) > dist(µ(B(j+n−m)), c). Consider a

point pj′ ∈ PL \ P (c)
I , obviously j′ < j. Then we have

dist(µ(B(j′)), c) ≥ dist(µ(B(j)), c) > dist(µ(B(j+n−m)), c) ≥ dist(µ(B(j′+n−m)), c).

Thus I2 = 0. Conversely, it still holds due to symmetry. Based on the above analysis, we have

I1 + I2 ≤ |BL|+ |BR|. (23)
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By pi ∈ P
(c)
I ⇐⇒ pi+n−m /∈ P

(c)
I , it is easy to prove that

∑
i

|mi −m′
i| in PL and PR are exactly

the same. Then it follows that

∑
i∈[q]

|mi −m′
i| = 2

∑
i∈[q],Bi⊆PL

|mi −m′
i|

= 2
∑

i∈[q],Bi⊆PL

∣∣∣∣∣∣
∑

pj∈Bi

I(pj ∈ P
(c)
I )− I(dist(µ(Bi), c) < dist(µ(B(j+n−m)), c))

∣∣∣∣∣∣
≤ 2

∑
j∈[m]

∣∣∣I(pj ∈ P
(c)
I )− I(dist(µ(B(j)), c) < dist(µ(B(j+n−m)), c))

∣∣∣
≤ 2(I1 + I2)
≤ 2(|BL|+ |BR|) (Inequality (23))

≤ εn

4
. (|B| ≤ εn

16
)

D.5 Proof of Lemma D.3: Error analysis for c /∈ PM

Proof of Lemma D.3. W.L.O.G., we assume that c ≥ pn−m. Recall that P is divided into buckets
B1, . . . , Bq, from left to right. Suppose Bt (t ∈ [q]) contains the center c, i.e., minp∈Bt

p ≤ c ≤
maxp∈Bt

p. We define function fP (c) = cost(m)(P, c) and fS(c) = cost(m)(S, c) for every c ∈ R.

Note that fP (c) = fP (pn−m) +
∫ c

pn−m
f ′
P (x) and fS(c) = fS(pn−m) +

∫ c

pn−m
f ′
S(x) holds for any

c > pn−m. Next, we first show that fP (pn−m) = fS(pn−m) by Line 8 in Algorithm 1. Then we
verify that |f ′

P (c)− f ′
S(c)| is bounded by

∑
i∈[q]

|mi −m′
i|, which suffices to prove the lemma. The

main idea is similar to that of the proof of Theorem 2.1 in [37].

By Line 8 in Algorithm 1, there is no bucket that partially intersect with P
(pn−m)
I . In this case, for each

bucket B ⊂ P
(pn−m)
I , dist(µ(B), c) ≤ max

p∈P
(pn−m)

I

dist(p, c); for each bucket B ̸⊂ P
(pn−m)
I ,

dist(µ(B), c) > max
p∈P

(pn−m)

I

dist(p, c). This indicates that S(pn−m)
I contains µ(B) with weight

|B| for each B ⊂ P
(pn−m)
I , which maintains consistent weights with P

(pn−m)
I . Then by Lemma B.1,

we have fP (pn−m) = fS(pn−m). Note that fp(c) is a linear function of c, and we have

f ′
P (c) = |{p | p ∈ P

(c)
I , p ≤ c}| − |{p | p ∈ P

(c)
I , p > c}|

=
∑
i<t

(|Bi| −mi) + |Bt| ∩ (−∞, c]| − |Bt ∩ (c,∞)| −
∑
i>t

(|Bi| −mi).

Similarly, when µ(Bt) ≤ c, we have f ′
S(c) =

∑
i<t(|Bi| −m′

i) + |Bt| −
∑

i>t(|Bi| −m′
i); when

µ(Bt) > c, we have f ′
S(c) =

∑
i<t(|Bi| −m′

i)− |Bt| −
∑

i>t(|Bi| −m′
i). Thus

|f ′
P (c)− f ′

S(c)| ≤
∑
i∈[q]

|mi −m′
i|+ 2|Bt|

≤ Γ + 2|Bt| (Definition of Γ)

≤ Γ +
εn

8
. (|B| ≤ εn

16
)
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Figure 3: A case for demonstrating the coreset lower bound for robust 1D geometric median. Ti

contains ⌊mq ⌋ points where each point p ∈ Ti satisfies p = miα. T0 contains the remaining points
where each point p ∈ T0 satisfies p = 0.

Then by fP (c) = fP (pn−m)+
∫ c

pn−m
f ′
P (x) dx and fS(c) = fS(pn−m)+

∫ c

pn−m
f ′
S(x) dx, we have

|fP (c)− fS(c)| =

∣∣∣∣∣fP (pn−m) +

∫ c

pn−m

f ′
P (x) dx− fS(pn−m)−

∫ c

pn−m

f ′
S(x) dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ c

pn−m

f ′
P (x)− f ′

S(x) dx

∣∣∣∣∣ (fP (pn−m) = fS(pn−m))

≤
∫ c

pn−m

|f ′
P (x)− f ′

S(x)| dx

≤
∫ c

pn−m

(Γ +
εn

8
) dx

= (c− pn−m)(
εn

8
+ Γ)

= (
εn

8
+ Γ) · dist(c, PM ). (Definition of PM )

Moreover, since |PR| = m, at least n − 2m inliers w.r.t. c are on the left of pn−m. These points
satisfy that dist(p, c) ≥ dist(pn−m, c), which implies that cost(m)(P, c) ≥ (n−2m) ·dist(pn−m, c).
Then we have

|fP (c)− fS(c)| ≤ (c− pn−m)(
εn

8
+ Γ)

≤ (
3εn

8
)(c− pn−m) (Lemma D.2)

< ε(n− 2m)(c− pn−m) (n ≥ 4m)

≤ ε · cost(m)(P, c).

This completes the proof.

D.6 Proof of the lower bound in Theorem 1.2

Next we show that for n ≥ 4m, the size lower bound of ε-coreset for robust 1D geometric median
is Ω(ε−

1
2 + m

n ε−1). This lower bound matches the upper bound in the above discussion, which
completes the proof of Theorem 1.2. In the following discussion, we assume that the size of dataset
P is sufficiently large such that εn > 1, which holds in nearly all practical scenarios.

Proof of Theorem 1.2 (lower bound). For vanilla 1D geometric median, [26] shows that the size
lower bound of ε-coreset is Ω(ε−

1
2 ), which is obviously also the coreset size lower bound for

robust 1D geometric median. Thus, it remains to show the coreset size is Ω(mn ε−1) when m
n > ε

1
2 .

We first construct the dataset P of size n. Let q = ⌊ m
2nε⌋. The dataset P is a union of 1+q disjoint sets

{T0, T1, . . . , Tq}. For each i ∈ {1, . . . , q}, Ti contains ⌊mq ⌋ points, and every point p ∈ Ti satisfies
p = miα, where α = 2+ logm(ε−2). T0 contains n− q⌊mq ⌋ points where each point p ∈ T0 satisfies
p = 0. Correspondingly, define q disjoint intervals {I1, . . . , Iq}, where Ii =

[
m(i−1)α+1,miα+1

]
.
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Suppose S is a ε-coreset of P with size |S| < q. Then by the pigeonhole principle, there exists an
interval Ij (j ∈ [1, q]) such that S does not include any points located in Ij . This implies that for any
point p ∈ S, we have p ≤ m(j−1)α+1 or p ≥ mjα+1. Fix the center c = mjα, then we have

cost(m)(S, c) ≥ (n−m) ·min
p∈S

dist(p, c)

≥ (n−m) · (mjα −m(j−1)α+1) (S ∩ Ij = ∅)
> [(1−m1−α)n−m]mjα

> [(1− ε2)n−m]mjα (α = 2 + logm(ε−2))

> [(1− ε− 2ε2)n+ εn−m]mjα

> (1 + ε)[(1− 2ε)n− (m− 1)]mjα. (ε >
1

n
)

Since n ≥ 4m, we have |T0| = n− q · ⌊mq ⌋ ≥ n−m. Consider the points in T0 and Tj as inliers,
we have

cost(m)(P, c) ≤ cost(Tj , c) + (n−m− |Tj |)mjα

= (n−m− ⌊m
q
⌋)mjα (Definition of Tj)

≤ (n−m− m

q
+ 1)mjα

≤ [(1− 2ε)n− (m− 1)]mjα. (Definition of q)

It follows that cost(m)(S, c) > (1 + ε)cost(m)(P, c), thus S is not a ε-coreset of P , which leads
to a contradiction. This implies that any ε-coreset of P contains Ω(mn ε−1) points when m

n > ε
1
2 .

Considering the discussion above, the lower bound of the coreset size is Ω(ε−
1
2 + m

n ε−1).

Note that the dataset P we construct is a multiset, which is slightly different from the definition.
However, this does not affect the proof, because we can move each point by a sufficiently small and
distinct distance, making the cost value almost unchanged.

When εn < 1, we can show that the coreset size is Ω(ε−
1
2 +m) by the above discussion. Moreover,

consider a trivial method that applies algorithm A on PM and keeps all points not in PM . It’s easy to
prove that this method constructs an ε-coreset of the original dataset under the assumption. In this
case, the coreset size is Õ(ε−

1
2 +m), which matches the above lower bound.

E Proofs of Theorem 1.3 (d ≥ 1) and extension to metric spaces

In this section, we list out the missing proof in Section 3 and show how to extend Theorem 1.3 to
various metric spaces.

E.1 Proof of Lemma 3.2: induced error of SO

Below we briefly introduce the proof idea. We first observe that the induced error of SO is primarily
caused by points that act as inliers in P but outliers in S, or vice versa, as shown in Lemmas E.3
and E.4. The error from a single point is bounded by O( cost

(m)(P,c)
m ) (see Lemma E.5). The next

task is ensuring that there are O(εm) such points in SO, which is guaranteed when SO provides an
ε-approximation for the ball range space on L⋆ (Lemma E.6). To achieve this, we sample Õ(d/ε2)
points for SO (Lemma E.2).

Fix a center c ∈ Rd. Let L(c) := argminL⊆P :|L|=m cost(P − L, c) be the set of outliers of P w.r.t.
c and mP := |L⋆ ∩ L(c)| represent the number of these outliers contained in L⋆. For SO ∪ P ⋆

I ,
we first define a family of weight functionsW := {wS : SO ∪ P ⋆

I → R+ | wS(p) ≤ w(p),∀p ∈
SO; wS(p) ≤ 1,∀p ∈ P ⋆

I ; ∥wS∥1 = n−m}. Intuitively,W represents the collection of all possible
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weight functions for n−m inliers of the weighted dataset SO ∪ P ⋆
I . Define a weight function w′ as

follows:
w′ := arg min

wS∈W

∑
p∈SO∪P⋆

I

wS(p) · dist(p, c),

i.e., (SO ∪ P ⋆
I , w

′) represents the n −m inliers of SO ∪ P ⋆
I with respect to center c. Let mS :=∑

p∈SO
(w(p)− w′(p)) denote the number of outliers of SO ∪ P ⋆

I w.r.t. c that are contained in SO.

For preparation, we introduce the concept of ball range space, which facilitates a precise analysis of
point distributions in P and S.

Definition E.1 (Approximation of ball range space, Definition F.2 in [39]). For a given dataset
P ⊂ Rd, the ball range space on P is (P ,P) where P := {P ∩ Ball(c, u) | c ∈ Rd, u > 0} and
Ball(c, u) := {p ∈ Rd | dist(p, c) ≤ u}. A subset Y ⊂ P is called an ε-approximation of the ball
range space (P ,P) if for every c, u ∈ Rd,

| |P ∩ Ball(c, u)|
|P |

− |Y ∩ Ball(c, u)|
|Y |

| ≤ ε.

Based on this definition, we have the following preparation lemma that measures the performance of
SO; which is refined from [39].

Lemma E.2 (Refined from Lemma F.3 of [39]). Given dataset PO ⊂ Rd. Let SO be a uniform
sampling of size Õ( d

ε2 ) from PO, then with probability at least 1− 1
poly(1/ε) , SO is an ε-approximation

of the ball range space on PO. Define a weight function w: w(p) = |PO|
|SO| , for any p ∈ SO. Then for

any c ∈ Rd, u ∈ R+,

||PO ∩ Ball(c, u)| − w(SO ∩ Ball(c, u))| ≤ ε|PO|.

By the iterative method introduced by [48], the factor O(d) of coreset size can be replaced by Õ(ε−2).
Therefore, SO is an ε-approximation of the ball range space on L⋆.

Then we are ready to prove Lemma 3.2. We first analyze where the induced error comes from.

Recall that we fix a center c in this section. Let TO := minp∈L⋆ dist(p, c) denote the minimum
distance from points in L⋆ to c. Let TI := maxp∈P⋆

I
dist(p, c) denote the maximum distance from

points in P ⋆
I to c. We have the following Lemma.

Lemma E.3 (Comparing TO and TI ). When mP = m, |cost(m)(P, c)− cost(m)(SO ∪ P ⋆
I , c)| = 0

holds. When mP < m, TO ≤ TI holds.

Proof. If mP = m, for any point p ∈ L⋆, we have dist(p, c) ≥ maxp∈P⋆
I
dist(p, c). Since SO is

sampled from L⋆, we know that for any point p ∈ SO, dist(p, c) ≥ maxp∈P⋆
I
dist(p, c). Therefore,

we have mP = mS = m and then cost(m)(P, c) = cost(P ⋆
I , c) = cost(m)(SO ∪ P ⋆

I , c).

If mP < m, then there exists a point p̂ ∈ P ⋆
I such that dist(p̂, c) ≥ TO. By definition, we also know

that dist(p̂, c) ≤ TI . Therefore, combining these two conditions, we have TO ≤ TI .

It remains to analyze the case that mP < m. In this setting, we present the following lemma, which
provides an upper bound on the estimation error |cost(m)(P, c)−cost(m)(SO∪P ⋆

I , c)|. Before stating
the lemma, we introduce a notation that will also be used in subsequent lemmas. We sort all distances
dist(p, c) for each point p ∈ P ⋆

I in descending order, w.l.o.g. say dist(p1, c) > . . . > dist(p|P⋆
I |, c).

Here, we can safely assume all distances dist(p, c) are distinct, given that adding small values to the
distances has only a subtle impact on the cost. Let di := dist(pi, c) for i ∈ [m]. Then d1, . . . , dm
represent the distances from the m furthest points in P ⋆

I to the center c. Now, we are ready to provide
the following lemmas.

Lemma E.4 (An upper bound of the induced error of SO). When mP < m, suppose ||PO ∩
Ball(c, u)| − w(SO ∩ Ball(c, u))| ≤ ∆ for any u > 0, the following holds: |cost(m)(P, c) −
cost(m)(SO ∪ P ⋆

I , c)| ≤ 2 · (∆ + |mP −mS |) · (TI − TO).
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Proof. By Fact F.1 in [39], we have

cost(mP )(L⋆, c) =

∫ ∞

0

(m−mP − |L⋆ ∩ Ball(c, u)|)+du (24)

and

cost(mS)(SO, c) =

∫ ∞

0

(m−mS − w(SO ∩ Ball(c, u)))+du (25)

where (a)+ = max {a, 0}.
Let T := maxp∈L⋆−L(c) dist(p, c) and TS := maxp∈SO:w′(p)>0 dist(p, c). Then we know that
TO ≤ T , TS ≤ TI . By definition, for any distance u > T , we have |L⋆ ∩ Ball(c, u)| ≥ m −mP .
Then we can transform the Inequality (24) to

cost(mP )(L⋆, c) =

∫ T

0

(m−mP − |L⋆ ∩ Ball(c, u)|)du. (26)

Similarly, for any distance u > TS , we have w(SO ∩ Ball(c, u)) ≥ m−mS . We can transform the
Inequality (25) to

cost(mS)(SO, c) =

∫ TS

0

(m−mS − w(SO ∩ Ball(c, u)))du. (27)

Based on the notation of d1, ..., dm, we know that each point p ∈ P ⋆
I satisfying dist(p, c) ≤

dm−mP+1 is an inlier of P ⋆
I ∪ L⋆, and each point q ∈ P ⋆

I with weight w′(q) > 0 satisfying
dist(q, c) ≤ dm−⌊mS⌋ is an inlier of SO ∪ P ⋆

I . Let m′
S := ⌊mS⌋. Let l := |mP −mS | denote the

difference in the number of outliers. If mP > mS , we have
l · dm−m′

S
≤ cost(m−mP )(P ⋆

I , c)− cost(m−mS)(P ⋆
I , c) (28)

and

cost(m−mP )(P ⋆
I , c)− cost(m−mS)(P ⋆

I , c) ≤ l · dm−mP+1. (29)
If mP < mS , we have

l · dm−mP
≤ cost(m−mS)(P ⋆

I , c)− cost(m−mP )(P ⋆
I , c) (30)

and
cost(m−mS)(P ⋆

I , c)− cost(m−mP )(P ⋆
I , c) ≤ l · dm−m′

S
. (31)

If mP = mS , we have
cost(m−mS)(P ⋆

I , c)− cost(m−mP )(P ⋆
I , c) = 0. (32)

By definition, we know that
dm ≤ dm−1 ≤ . . . ≤ d1 ≤ TI . (33)

When mS ̸= m, we know the point p ∈ P ⋆
I that has distance dist(p, c) = dm−m′

S
is an outlier on

P ⋆
I ∪ SO. Then there exists a point q ∈ SO such that dist(q, c) ≤ dist(p, c). Then we have

dm−m′
S
≥ TO. (34)

Similarly, the point p ∈ P ⋆
I with distance dist(p, c) = dm−mP

is an outlier on P , thus there exists a
point q ∈ L⋆ such that dist(q, c) ≤ dist(p, c). Then we have

dm−mP
≥ TO. (35)

By Lemma E.3, it suffices to discuss the following three cases based on the values of mP and mS .

Case 1: mS = m

Recall that l = mS −mP , we have

cost(mP )(L⋆, c) =

∫ T

0

(m−mP − |L⋆ ∩ Ball(c, u)|)du (Inequality (26))

=

∫ T

0

(l − |L⋆ ∩ Ball(c, u)|)du (l = mS −mP )

= l · T −
∫ T

TO

|L⋆ ∩ Ball(c, u)|du (∀p ∈ L⋆, dist(p, c) ≥ TO).
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Since mS = m and mP < mS , each point p ∈ L⋆ − L(c) satisfies dist(p, c) < minq∈SO
dist(q, c).

For each TO ≤ u ≤ T , we have w(SO ∩ Ball(c, u)) = 0. Since |L⋆ ∩ Ball(c, u)| − w(SO ∩
Ball(c, u)) ≤ ∆, we know |L⋆ ∩ Ball(c, u)| ≤ ∆ for TO ≤ u ≤ T and

l · T − (T − TO) ·∆ ≤ cost(mP )(L⋆, c) ≤ l · T.

Since cost(mS)(SO, c) = 0, we have

cost(mP )(L⋆, c)− cost(mS)(SO, c) ≤ l · T (36)

and
cost(mS)(SO, c)− cost(mP )(L⋆, c) ≤ (T − TO) ·∆− l · T. (37)

Adding Inequality (30) and Inequality (36), we have

cost(m)(P, c)− cost(m)(SO ∪ P ⋆
I , c) ≤ l · TI − l · TO (T ≤ TI and Inequality (35))

≤ |mP −mS | · (TI − TO) (Lemma E.6).

Adding Inequality (31) into Inequality (37), we have

cost(m)(SO ∪ P ⋆
I , c)− cost(m)(P, c) ≤ (T − TO) ·∆+ l · (d1 − T )

≤ (TI − TO) ·∆+ l · (TI − TO)

(TO ≤ T ≤ TI and Inequality (33))
≤ (|mP −mS |+∆) · (TI − TO).

Then we complete the proof of Case 2.

Case 2: mS ̸= mP < m

Without loss of generality, we assume that mP > mS and T ≥ TS .

Firstly, we prove that cost(mP )(P, c)− cost(mS)(SO ∪ P ⋆
I , c) ≤ 2(∆ + |mP −mS |) · (TI − TO).

We have

cost(mP )(L⋆, c)− cost(mS)(SO, c)

=

∫ T

0

(m−mP − |L⋆ ∩ Ball(c, u)|)du

−
∫ TS

0

(m−mS − w(SO ∩ Ball(c, u)))du (Inequalities (26) and (27))

=

∫ TS

0

(mS −mP + w(SO ∩ Ball(c, u))− |L⋆ ∩ Ball(c, u)|)du

+

∫ T

TS

(m−mP − |L⋆ ∩ Ball(c, u)|)du (T ≥ TS)

=

∫ TS

TO

(w(SO ∩ Ball(c, u))− |L⋆ ∩ Ball(c, u)|)du− l · TS

+

∫ T

TS

(m−mP − |L⋆ ∩ Ball(c, u)|)du

≤ ∆ · (TS − TO)− l · TS +

∫ T

TS

(m−mP − |L⋆ ∩ Ball(c, u)|)du.

For TS < u < T , we have |L⋆ ∩ Ball(c, u)| ≥ m−∆, thus

cost(mP )(L⋆, c)−cost(mS)(SO, c)

≤ ∆ · (TS − TO) +

∫ T

TS

(∆−mP )du− l · TS

≤ ∆ · (TS − TO) + ∆ · (T − TS)− l · TS

≤ 2 ·∆ · (TI − TO)− l · TS (TO ≤ TS ≤ TI and T ≤ TI).
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Adding Inequality (29) and the above inequality, we obtain

cost(m)(P, c)−cost(m)(SO ∪ P ⋆
I , c)

≤ 2 ·∆ · (TI − TO) + l · (dm−mP+1 − TS)

≤ 2 ·∆ · (TI − TO) + l · (TI − TO) (Inequality (33))
≤ (2 ·∆+ |mP −mS |) · (TI − TO).

Secondly, we prove that cost(mS)(SO ∪ P ⋆
I , c)− cost(mP )(P, c) ≤ (∆ + |mP −mS |) · (TI − TO).

By Inequality (26) and Inequality (27), we have

cost(mS)(SO, c)− cost(mP )(L⋆, c)

=

∫ TS

0

(m−mS − w(SO ∩ Ball(c, u)))du

−
∫ T

0

(m−mP − |L⋆ ∩ Ball(c, u)|)du

=

∫ TS

0

(mP −mS + |L⋆ ∩ Ball(c, u)| − w(SO ∩ Ball(c, u)))du

−
∫ T

TS

(m−mP − |L⋆ ∩ Ball(c, u)|)du (TS ≤ T )

≤
∫ TS

0

(mP −mS + |L⋆ ∩ Ball(c, u)| − w(SO ∩ Ball(c, u)))du

≤
∫ TS

TO

(|L⋆ ∩ Ball(c, u)| − w(SO ∩ Ball(c, u)))du+ l · TS

≤ ∆ · (TS − TO) + l · TS .

Adding Inequality (28) and the above inequality, we have

cost(m)(SO ∪ P ⋆
I , c)− cost(m)(P, c)

≤ ∆ · (TS − TO) + l · (TS − dm′
S
)

≤ ∆ · (TI − TO) + l · (TI − TO) (Inequality (34) and TS ≤ TI)

≤ (∆ + |mP −mS |) · (TI − TO).

In summary, we have

|cost(m)(P, c)− cost(m)(SO ∪ P ⋆
I , c)| ≤ 2 · (∆ + |mP −mS |) · (TI − TO).

Similarly, we can get the same conclusion when T < TS . Moreover, for the case that mP < mS ,
with the help of Inequalities (30)(31)(33)(35), the conclusion still holds.

Case 3: mP = mS ̸= m

By Inequality (32), we have

|cost(m)(SO ∪ P ⋆
I , c)− cost(m)(P, c)| = |cost(mS)(SO, c)− cost(mP )(L⋆, c)|.

By a similar argument as in Case 2, we have

|cost(mS)(SO ∪ P ⋆
I , c)− cost(mP )(P, c)| ≤ 2 · (∆ + |mP −mS |) · (TI − TO).

Overall, we complete the proof of Lemma E.4.

The Lemma E.4 tells us that at most 2(∆ + |mP −mS |) points contribute to the error, with each
point inducing at most TI − TO error. We now analyze the magnitude of TI − TO.

Lemma E.5 (Bounding induced error of each point). TI − TO ≤ O(cost(m)(P, c)/m)
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Proof. Let rmax := maxp∈P⋆
I
dist(p, c⋆) denote the maximum distance from P ⋆

I to c⋆. Let dmax :=
dist(c, c⋆) denote the distance between the approximate center c⋆ and the center c. Let r̄ :=
cost(P⋆

I ,c⋆)
n−m denote the average distance from P ⋆

I to c⋆.

Utilizing the triangle inequality, for any point p ∈ L⋆, we can assert that dist(p, c) ≥ dist(p, c⋆)−
dist(c, c⋆) ≥ rmax − dmax, thus TO ≥ rmax − dmax. Similarly, for any point p ∈ P ⋆

I , we have
dist(p, c) ≤ dist(p, c⋆) + dist(c, c⋆) = rmax + dmax, thus TI ≤ rmax + dmax. Consequently,
depending on whether rmax is greater than or less than dmax, we derive different expressions for
TI − TO: If rmax ≥ dmax, then TI − TO ≤ 2 · dmax; if rmax < dmax, given that TO ≥ 0, it follows
that TI−TO ≤ rmax+dmax < 2 ·dmax. Therefore, we turn to prove 2 ·m ·dmax ≤ O(cost(m)(P, c)).
We discuss the relationship between dmax and r̄ in two cases.

Case 1: dmax ≤ 4r̄ By definition of r̄, we have

4 · cost(m)(P, c⋆) = 4 · (n−m)r̄

≥ (n−m)dmax

≥ 2 ·m · dmax (n ≥ 4m).

since c⋆ is an O(1)-approximate solution for robust geometric median, we have

O(cost(m)(P, c)) ≥ 2 ·m · dmax

.

Case 2: dmax > 4r̄ Let P̂ := {p ∈ P ⋆
I |dist(p, c⋆) ≤ 2r̄}. By definition, we have |P̂ | ≥ 1

2 |P
⋆
I | =

n−m
2 . Since dmax > 4r̄, we obtain

8 · cost(m)(P, c) ≥ 8 · ((n−m)/2−m)min
p∈P̂

dist(p, c)

≥ 4 ·m ·min
p∈P̂

dist(p, c) (n ≥ 4m)

≥ 4 ·m ·min
p∈P̂

(dmax − dist(p, c⋆)) (Triangle Inequality)

≥ 4 ·m · (dmax − 2r̄)

> 2 ·m · dmax.

Overall, we have TI − TO ≤ O(cost(m)(P, c)/m), which completes the proof.

Combining Lemmas E.4 and E.5, we obtain the bound: |cost(m)(P, c) − cost(m)(SO ∪ P ⋆
I , c)| ≤

O(1) · (∆ + |mP −mS |) · cost
(m)(P,c)
m . To prove |cost(m)(P, c)− cost(m)(SO ∪ P ⋆

I , c)| ≤ O(ε) ·
cost(m)(P, c), it remains to ensure that ∆ = O(εm) and |mP −mS | = O(εm). We show that both
conditions hold when SO is an ε-approximation for the ball range space on L⋆.

Lemma E.6 (Bounding misaligned outlier count). Suppose SO is an ε-approximation for the ball
range space on L⋆, we have |mP −mS | ≤ 2 · ε ·m.

Before proving this lemma, we first analyze the properties of w′. Given a point p ∈ SO ∪ P ⋆
I , we say

p is of partial weight w.r.t. c if 0 < w′(p) < w(p) when p ∈ SO and 0 < w′(p) < 1 when p ∈ P ⋆
I .

Intuitively, such a point is partially an inlier and partially an outlier of SO ∪ P ⋆
I to c. The following

claim indicates that the number of partial-weight points is at most one for any c.
Claim 1 (Properties of partial-weight points). For every center c ⊂ Rd, there exists at most one
point v ∈ SO ∪ P ⋆

I of partial weight w.r.t. c. Moreover, for any other point p ∈ SO ∪ P ⋆
I with

w′(p) = w(p), we have dist(p, c) ≤ dist(v, c).

Proof. By contradiction, we assume that there exist two points v, v′ ∈ SO ∪ P ⋆
I of partial weight

w.r.t. c. W.l.o.g., suppose dist(v, c) ≤ dist(v′, c). We note that transferring weight from v to
v′ increases w′(v) by any constant δ > 0 and decreases w′(v′) by δ does not increase the term
cost(m)(SO ∪ P ⋆

I , c). Then by selecting a suitable δ, we can make either v or v′ no longer of partial
weight. Hence, there exists at most one point v ∈ SO ∪ P ⋆

I of partial weight w.r.t. c.
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For any other point p ∈ SO ∪ P ⋆
I with w′(p) = w(p), suppose dist(v, c) < dist(p, c). In this case,

increasing w′(v) by a small amount δ > 0 and decreasing w′(p) by δ decreases cost(m)(SO ∪P ⋆
I , c).

This contradicts the definition of w′, which completes the proof.

Recall that d1, . . . , dm represent the distances from the m furthest points in P ⋆
I to the center c. Now

we are ready to prove Lemma E.6.

Proof of Lemma E.6. We only need to consider the case of mP > mS and mP < mS . Without
loss of generality, we assume that mP > mS . Let l1 := m −mP + 1. Based on the definition of
d1, ..., dm, each inlier point p satisfies dist(p, c) ≤ dl1−1. There are m−mP inlier points in L⋆, so
we have:

|L⋆ ∩ Ball(c, dl1)| ≤ m−mP . (38)
Let l2 := m− ⌊mS⌋+ 1. Since mP > mS , we have mP ≥ ⌊mS⌋+ 1, then we get the inequality

l2 − 1 ≥ l1. (39)
Moreover, we claim that

m− w(SO ∩ Ball(c, dl2−1)) ≤ ⌊mS⌋+ 1. (40)
By Claim 1, at most one point v ∈ SO ∪ P ⋆

I of partial weight w.r.t. c exists. If v ∈ P ⋆
I , we have

dist(v, c) = dl2 . Any point v′ ∈ P ⋆
I with dist(v′, c) ≥ dl2−1 is an outlier of SO ∪ P ⋆

I . Then there
are m− ⌊mS⌋ − 1 points in P ⋆

I that have distance to C at least dl2−1. By contradiction, we assume
that m−w(SO ∩Balls(c, dl2−1)) > ⌊mS⌋+ 1. Then there are no less than m points in P that have
a distance to c greater than dl2−1, which contradicts the fact that v′ is an outlier of SO ∪ P ⋆

I . Hence,
Inequality (40) holds. For the case that v ∈ SO or there is no point of partial weight w.r.t. c, the
argument is similar.

Since mP > mS , we have w(SO ∩ Ball(c, dl1)) > m−mP . Combining with Inequality (38), we
conclude that

|L⋆ ∩ Ball(c, dl1)| ≤ m−mP

< w(SO ∩ Ball(c, dl1)).
(41)

Moreover,
w(SO ∩ Ball(c, dl1)) ≥ w(SO ∩ Ball(c, dl2−1))

> m− ⌊mS⌋ − 1.
(42)

Then, we have
||L⋆ ∩ Ball(c, dl1)| − w(SO ∩ Ball(c, dl1))|

= w(SO ∩ Ball(c, dl1))− |L⋆ ∩ Ball(c, dl1)| (Inequality (41))
≥ mP − ⌊mS⌋ − 1 (Inequality (38) and (42))
≥ mP −mS − 1.

Since SO is an ε-approximation for the ball range space on L⋆, by Lemma E.2, we have
||L⋆ ∩ Ball(c, dl1)| − w(SO ∩ Ball(c, dl1))| ≤ ε ·m.

Combining the above two inequalities, we have
|mP −mS | ≤ ε ·m+ 1 ≤ 2 · ε ·m.

Similarly, we can get the same conclusion when mP < mS , which completes the proof of Lemma
E.6.

Now we are ready to prove Lemma 3.2.

Proof of Lemma 3.2. Based on Lemmas E.3 and E.4, we have

|cost(m)(P, c)−cost(m)(P ⋆
I ∪ SO, c)|

≤ 2 · (∆ + |mP −mS |) · (TI − TO)

≤ O(1) · (∆ + |mP −mS |) · cost(m)(P, c)/m (Lemma E.5)

≤ O(1) · (εm+ |mP −mS |) · cost(m)(P, c)/m (Lemma E.8)

≤ O(ε) · cost(m)(P, c), (Lemma E.2)
which completes the proof.
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E.2 Extension to other metric spaces

In this section, we explore the extension of Algorithm 2, designed for the robust geometric median
in Euclidean space, to the metric spaces by leveraging the notions of VC dimension and doubling
dimension since the VC dimension is known for various metric spaces [8, 9, 18, 40].

Let (X ,dist) denote the metric space, where X is the set under consideration, and dist : X × X →
R≥0 is a function that measures the distance between points in X , satisfying the triangle inequality.
Specifically, in the Euclidean metric, X represents Euclidean space Rd and dist is the Euclidean
distance.

Similar to the analysis for robust geometric median on Euclidean space, we discuss the induced
error of SI and SO separately. We first introduce how to bound the error induced by SO. Since the
dist function satisfies the triangle inequality, our Lemmas E.3-E.4 hold, ensuring that each point
in SO induces at most O(cost(m)(P, c)/m) error. To ensure the number of points in SO inducing
error is O(εm), it suffices for SO to be an ε-approximation for the ball range space on L⋆ (as shown
in Lemma E.6). Next, we illustrate how this condition can be satisfied using the notions: 1) VC
dimension; 2) doubling dimension.

VC dimension. We begin by introducing the concept of the VC dimension of the ball range space,
which serves as a measure of the complexity of this ball range space.
Definition E.7 (VC dimension of ball range space). Let M = (X ,dist) be the metric space and
define Balls(X ) := {Ball(c, u) | c ∈ X , u > 0} as the collection of balls in the space. The VC
dimension of the ball range space (X ,Balls(X )), denoted by dV C(X ), is the maximum |P |, P ⊆ X
such that |P ∩Balls(X )| = 2|P |, where P ∩Balls(X ) := {P ∩Ball(c, u) | Ball(c, u) ∈ Balls(X )}.

The VC dimension of (X ,Balls(X )) aligns to the pseudo-dimension of (X ,Balls(X )) used by [45].
Based on this observation, we give out a refined lemma from [45].
Lemma E.8 (Refined from [45]). Let M = (X ,dist) be the metric space with VC dimension
dV C(X ). Given dataset PO ⊆ X , assume SO is a uniform sample of size Õ(dV C(X )

ε2 ) from PO, then
with probability 1− 1/poly(1/ε), SO is an ε-approximation of the ball range space on PO.

The Lemma E.2, used earlier for the Euclidean space case, is a direct corollary, since in Euclidean
space Rd, we have dV C(X ) = O(d). This lemma illustrates the number of samples required from
L⋆.

Doubling dimension. Another notion to measure the complexity of the ball range space is the
doubling dimension.
Definition E.9 (Doubling dimension [31, 3]). The doubling dimension ddim(X ) of a metric space
(X ,dist) is the least integer t such that for any Ball(c, u) with c ∈ X , u > 0, it can be covered by 2t

balls of radius u/2.

We denote the metric space with bounded doubling dimension as doubling metric. Based on [38], it
is known that the VC dimension of a doubling metric (X ,dist) may not be bounded. Therefore, the
previous Lemma E.8 does not apply for an effective bound. We want to directly relate the ball range
space bound to the doubling dimension. This goal can be achieved by the following refined lemma.
Lemma E.10 (Ball range space approximation in doubling metrics [38]). Let M = (X ,dist) be the
metric space with doubling dimension ddim(X ). Given PO ⊆ X , assume SO is a uniform sample of
size Õ(ddim(X )ε−2) from PO, then with probability 1− 1/poly(1/ε), SO is an ε-approximation of
the ball range space on PO.

Proof. Suppose the distorted distance function dist′ : X × X → R≥0 satisfies: for any x, y ∈ X ,
we have (1− ε)dist(x, y) ≤ dist′(x, y) ≤ (1 + ε)dist(x, y). By Lemma 3.1 of [38], we know that
with probability 1− poly(1/ε), SO is an ε-ball range space approximation of PO w.r.t. dist′, when
SO = Õ(ddim(X )ε−2). By setting of dist′, we know SO is an O(ε)-ball range space approximation
of PO w.r.t. dist, which completes the proof.

This lemma illustrates the number of points needed to be sampled in order to bound the induced error
of SO when the metric space is a doubling metric.
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The remaining problem is to bound the induced error of SI . We give out a generalized version of
Theorem 3.1 as below.

Theorem E.11 (Refined from Corollary 5.4 in [40]). Let M = (X ,dist) be the metric space. There
exists a randomized algorithm that in O(n) time constructs a weighted subset SI ⊆ P ⋆

I of size:

• Õ(dV C(X ) · ε−4), w.r.t. the VC dimension dV C(X ),

• Õ(ddim(X ) · ε−2), w.r.t. the doubling dimension ddim(X ),

such that for every dataset PO of size m, every integer 0 ≤ t ≤ m and every center c ∈ Rd,
|cost(t)(PO ∪ P ⋆

I , c)− cost(t)(PO ∪ SI , c)| ≤ ε · cost(t)(PO ∪ P ⋆
I , c) + 2ε · cost(P ⋆

I , c
⋆).

By combining the discussions of the errors induced by SO and SI , we present the main theorem
for constructing a coreset for the robust geometric median across various metric spaces. We study
the shortest-path metric (X ,dist), where X is the vertex set of a graph G = (V,E), and dist(·, ·)
measures the shortest distance between two points in the graph. The treewidth of a graph measures
how “tree-like” the graph is; see Definition 2.1 of [4] for formal definition. A graph excluding a fixed
minor is one that does not contain a particular substructure, known as the minor.

Theorem E.12 (Coreset size for robust geometric median in various metric spaces). Let ε ∈ (0, 1).
For a metric space M = (X ,dist) and a dataset X ⊂ X of size n ≥ 4m, let S = SO ∪ SI be a
sampled set of size

• Õ(log(|X |) · ε−4) if M is general metric space.

• Õ(ddim(X ) · ε−2) if M is a doubling metric with doubling dimension ddim(X ).

• Õ(t · ε−4) if M is a shortest-path metric of a graph with bounded treewidth t.

• Õ(|H| · ε−4) if M is a shortest-path metric of a graph that excludes a fixed minor H .

Then S is an ε-coreset for robust geometric median on X .

This theorem illustrates the coreset size with respect to different metric spaces, improving upon
previous results for robust coresets by eliminating the O(m) dependency.

Proof of Theorem E.12. If M = (X ,dist) is a general metric space, then dV C(X ) = O(log |X |).
Thus, we have |SO| = Õ(log(|X |) · ε−2) by Lemma E.8 and |SI | = Õ(log(|X |) · ε−4) by Theorem
E.11, leading to a coreset of size Õ(log(|X |) · ε−4).

If M = (X ,dist) is a doubling metric space, then by definition, ddim(X ) is bounded. Thus we
have |SO| = Õ(ddim(X ) · ε−2) by Lemma E.10 and |SI | = Õ(ddim(X ) · ε−2) by Theorem E.11,
leading to a coreset of size Õ(ddim(X ) · ε−2).

If M = (X ,dist) is a shortest-path metric of a graph with bounded treewidth t, we have dV C(X ) =
O(t) by [8]. Thus, we have |SO| = Õ(t · ε−2) by Lemma E.8 and |SI | = Õ(t · ε−4) by Theorem
E.11, leading to a coreset of size Õ(t · ε−4).

If M = (X ,dist) is a shortest-path metric of a graph that excludes a fixed minor H , we have
dV C(X ) = O(|H|) by [8]. Thus, we have |SO| = Õ(|H| · ε−2) by Lemma E.8 and |SI | =
Õ(|H| · ε−4) by Theorem E.11, leading to a coreset of size Õ(|H| · ε−4).

F Proof of Theorem 1.5: robust (k, z)-clustering

In this section, we provide a coreset construction for robust (k, z)-clustering when d ≥ 1. We first
extend the definition of the robust geometric median and its coreset to the robust (k, z)-clustering
and its corresponding coreset.
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Definition F.1 (Robust (k, z)-clustering). Given a dataset P ⊂ Rd of size n ≥ 1 and an integer
m ≥ 0, the robust (k, z)-clustering problem is to find a center set C ⊂ Rd, |C| = k that minimizes
the objective function below:

cost(m)
z (P,C) := min

L⊂P :|L|=m

∑
p∈P\L

(dist(p, C))z,

where L represents the set of m outliers w.r.t. C and dist(p, C) = minc∈C dist(p, c) denotes the
Euclidean distance from p to the closest center among C.

Before we define the coreset for robust (k, z)-clustering, we introduce the generalized cost function
in the context of the robust (k, z)-clustering.
Definition F.2 (Generalized cost function for robust (k, z)-clustering). Let m be an integer. Let
S ⊆ Rd be a weighted dataset with weights w(p) for each point p ∈ S. Let w(S) :=

∑
p∈S w(p).

Define a collection of weight functionsW := {w′ : S → R+ |
∑

p∈S w′(p) = w(S)−m ∧ ∀p ∈
S,w′(p) ≤ w(p)}. Moreover, we define the following cost function on S:

∀C ⊂ Rd, |C| = k cost(m)
z (S,C) := min

w′∈W

∑
p∈S

w′(p) · (dist(p, C))z.

With this definition of the generalized cost function, we now define the notion of a coreset for robust
(k, z)-clustering.
Definition F.3 (Coreset for robust (k, z)-clustering). Given a point set P ⊂ Rd of size n ≥ 1, integer
m ≥ 1 and ε ∈ (0, 1), we say a weighted subset S ⊆ P together with a weight function w : S → R+

is an ε-coreset of P for robust (k, z)-clustering if w(S) = n and for any center set C ⊂ Rd, |C| = k,
cost

(m)
z (S,C) ∈ (1± ε) · cost(m)

z (P,C).

Finally, we extend the concepts of inliers, outliers, and the ball range space.

Inliers and outliers. Throughout this section, we denote the approximate center set for robust (k, z)-
clustering by C⋆ = {c⋆1, . . . , c⋆k} ⊂ Rd, which is an O(1)-approximation of the optimal solution. We
then define the inliers and outliers with respect to this approximation center set.

Let L⋆ := argminL⊂P,|L|=m costz(P − L,C⋆) denote the set of m outliers with respect to C⋆,
and define P ⋆

I := P \ L⋆ as the corresponding inlier set. The inlier set P ⋆
I is naturally partitioned

by C⋆ into k clusters {P ⋆
1 , . . . , P

⋆
k }, where each cluster P ⋆

i contains the points in P ⋆
I closest to its

corresponding center c⋆i . Additionally, define rmax := maxp∈P⋆
I
dist(p, C⋆) which represents the

maximum distance from the points in P ⋆
I to this center set C⋆. Let r̄ := z

√
costz(P⋆

I ,C⋆)

n−m denote the
average distance from P ⋆

I to C⋆. Under these notations, the second condition of Assumption 1.4 can
be rewritten as (rmax)

z ≤ 4k (r̄)z.

Ball range space. We introduce the concept of the k-balls range space, which is a direct extension of
the ball range space defined in Definition E.1.
Definition F.4 (Approximation of k-balls range space, Definition F.2 in [39]). Let Balls(C, u) :=
∪c∈CBall(c, u). For a given dataset P ⊂ Rd, the k-balls range space on P is (P,P) where
P := {P ∩Balls(C, u) | C ⊂ Rd, |C| = k, u ∈ R+}. A subset Y ⊂ P is called an ε-approximation
of the k-balls range space (P,P) if for every C ⊂ Rd, |C| = k, u ∈ R+,

| |P ∩ Balls(C, u)|
|P |

− |Y ∩ Balls(C, u)|
|Y |

| ≤ ε.

Based on this definition, we have the following lemma that measures the performance of SO for
robust (k, z)-clustering.
Lemma F.5 (Refined from Lemma F.3 of [39]). Given dataset PO ⊂ Rd. Let SO be a uniform
sampling of size Õ(kdε2 ) from PO, then with probability at least 1− 1

poly(k/ε) , SO is an ε-approximation

of the k-balls range space on PO. Define a weight function w: w(p) = |PO|
|SO| , for any p ∈ SO. Then

for any C ⊂ Rd, |C| = k, u ∈ R+,
||PO ∩ Balls(C, u)| − w(SO ∩ Balls(C, u))| ≤ ε|PO|.

Then we are ready to give out our main result.
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F.1 Result for robust (k, z)-clustering

We first recall the following theorem.

Theorem F.6 (Restatement of Corollary 5.4 in [40]). There exists a randomized algorithm Akd that
in O(nkd) time constructs a weighted subset SI ⊆ P ⋆

I of size Õ(k2ε−2z min
{
ε−2, d

}
)), such that

for every dataset PO of size m, every integer 0 ≤ t ≤ m and every center set C ⊂ Rd, |C| = k,
|cost(t)z (PO ∪ P ⋆

I , C)− cost
(t)
z (PO ∪ SI , C)| ≤ ε · cost(t)z (PO ∪ P ⋆

I , C) + 2ε · costz(P ⋆
I , C

⋆).

This theorem is a generalization of Theorem 3.1, describing the number of points that need to be
sampled from P ⋆

I for robust (k, z)-clustering.

To adapt Algorithm 2 for Theorem 1.5, we only need to adjust the size of SO to
Õ(kε−2z min

{
ε−2, d

}
) in Line 2 and modify the algorithm Ad to Akd in Line 3 (see Algorithm 3).

Consequently, the runtime remains dominated by Line 1 and Line 3, resulting in an overall complexity
of O(ndk) according to Theorem F.6.

Algorithm 3 Coreset Construction for General d and General k
Input: A dataset P ⊂ Rd, ε ∈ (0, 1) and an O(1)-approximate center set C⋆ ⊂ Rd

Output: An ε-coreset S
1: L⋆ ← argminL⊂P,|L|=m costz(P − L,C⋆), P ⋆

I ← P − L⋆

2: Uniformly sample SO ⊆ L⋆ of size Õ(kε−2z min
{
ε−2, d

}
). Set ∀p ∈ SO, wO(p)← m

|SO| .
3: Construct (SI , wI)← Akd(P

⋆
I ) by Theorem F.6.

4: For any p ∈ SO, define w(p) = wO(p) and for any p ∈ SI , define w(p) = wI(p).
5: Return S ← SO ∪ SI and w;

Similar to the robust geometric median, we present the key lemma used to prove Theorem 1.5 below.

Lemma F.7 (Induced error of SO). For any center set C ⊂ Rd, |C| = k, we have |cost(m)
z (P,C)−

cost
(m)
z (SO ∪ P ⋆

I , C)| ≤ O(ε) · cost(m)
z (P,C).

Theorem 1.5 follows as a corollary of Theorem F.6 and this lemma, with a proof similar to that of
Theorem 1.3.
Remark F.8. The second condition in Assumption 1.4 can be replaced with dist(c∗i , c

∗
j )

z ≥
m·rzmax

min{|P∗
i |,|P∗

j |} for any c∗i , c
∗
j ∈ C∗, i ̸= j. Under this modified assumption, Theorem 1.5 be-

comes a direct generalization of Theorem 1.3, as the second condition vanishes when k = 1. This
modification ensures that clusters are sufficiently well-separated, which explains why our algorithm
performs well on the Bank dataset when k = 3, as this modified assumption is satisfied in this case.

Below we illustrate why this assumption also works. If points in each cluster are mostly assigned to dis-
tinct centers, then cost(m)

z (P,C) ≈ cost
(m)
z (P,C⋆), making the error |cost(m)

z (P,C)−cost(m)
z (P ⋆

I ∪
SO, C)| easy to bound. Alternatively, if two clusters each have at least half of their points assigned to
the same center, then by the modified assumption, cost(m)

z (P,C) > mrzmax, which is large enough
to bound the error induced by SO.

F.2 Proof of Lemma F.7: Induced error of SO

In this section, we fix a center set C ⊂ Rd of size k and define TO := minp∈L⋆(dist(p, C))z ,
TI := maxp∈P⋆

I
(dist(p, C))z . We observe that Lemmas E.3 and E.4 can be directly extended to

robust (k, z)-clustering. Therefore, the induced error of each point is at most TI − TO. Next, we
show that TI − TO ≤ O(cost

(m)
z (P, c)/m), supported by a detailed discussion of the sizes of TI

and TO (see Lemma F.9). The remaining task is to ensure that the number of points that may induce
error is O(εm). The result of Lemma E.6 can be extended to robust (k, z)-clustering when SO is an
ε-approximation of the k-balls range space on L⋆. By Lemma F.5, we sample Õ(kε−2z min{ε−2, d})
points from L⋆ to ensure the approximation.

We then demonstrate how to prove that TI − TO ≤ O(cost
(m)
z (P, c)/m).
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Lemma F.9 (Bounds for TI and TO). When mP < m, we have TI − TO ≤ O(cost
(m)
z (P, c)/m)

Proof. Let dmax := maxc⋆∈C⋆ dist(c⋆, C) denote the maximum distance of points in C⋆ to C. Let
d′max := maxc∈C dist(c, C⋆) denote the maximum distance of points in C to C⋆.

We first claim that TI ≤ (rmax + dmax)
z . Let p̂ be defined as maxp∈P⋆

I
dist(p, C). Denote c⋆p as the

closest approximate center to p̂, where c⋆p := argminc⋆∈C⋆ dist(p̂, c⋆), and cp as the closest center
to c⋆p, where cp := argminc∈C dist(c⋆p, c). This setup allows us to establish an upper bound for TI :

dist(p̂, C) ≤ dist(p̂, cp)

≤ dist(p̂, c⋆p) + dist(c⋆p, cp) (Triangle Inequality)

≤ rmax + dmax,

thus, TI ≤ (rmax + dmax)
z .

Next, we discuss the relationship between C and C⋆ in two cases: 1) rmax ≤ dmax; 2) rmax > dmax.

Case 1: dmax ≥ rmax In this case, we have TI − TO ≤ 2zdzmax since TO ≥ 0. Therefore, it
suffices to prove 2zdzmax ≤ O(cost

(m)
z (P,C)/m). Suppose dist(c⋆i , C) = dmax, let (r̄i)z :=

costz(P
⋆
i , C

⋆)/|P ⋆
i |. Based on the scale of dmax, we discuss in two cases.

Case 1.1: dmax ≤ 8r̄i By definition of r̄i, we have

16z · cost(m)
z (P ⋆

i , C
⋆) = 16z · |P ⋆

i | · (r̄i)z

≥ 2z · |P ⋆
i | · dzmax

≥ 2z ·m · dzmax (Item 1 of Assumption 1.4).

Since C⋆ is an O(1)-approximate solution for robust (k, z)-clustering, we have

2z · (dmax)
z ≤ 16z · cost(m)

z (P,C⋆)/m ≤ O(cost(m)
z (P,C)/m).

Case 1.2: dmax > 8r̄i

Let P̂i := {p ∈ P ⋆
i |dist(p, C⋆) ≤ 4r̄i}. By definition, we have |P̂i| ≥ 3

4 |P
⋆
i |. For any point p ∈ p̂i,

suppose cp := argminc∈C dist(p, c), then we have

dist(p, c) ≥ dist(c⋆i , cp)− dist(p, c⋆i ) (Triangle Inequality)
≥ dist(c⋆i , C)− dist(p, c⋆i )

= dmax − dist(p, c⋆i )

≥ dmax − 4r̄i (Definition of P̂i)

(43)

Since dmax > 8r̄i, we obtain

8z · cost(m)
z (P, c) ≥ 8z · (3

4
|P ⋆

i | −m) min
p∈P̂i

(dist(p, C))z

≥ 8z · (3
4
|P ⋆

i | −m)(dmax − 4r̄i)
z (Inequality (43))

≥ 4z · (3
4
|P ⋆

i | −m)dzmax

≥ 2z ·m · dmax (Item 1 of Assumption 1.4).

Overall, we have TI − TO ≤ O(cost
(m)
z (P,C)/m).

Case 2: dmax < rmax We have TI − TO < 2z · rzmax since TO ≥ 0. By Item 2 of Assumption 1.4,
we have m · rzmax ≤ n · r̄z , thus TI − TO ≤ 2z · cost(m)

z (P,C)/m.

Combine Case 1 and Case 2, we complete the proof.
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F.3 Extension to other metric spaces

In this section, we explore the extension of Algorithm 3 for robust (k, z)-clustering in Euclidean
space, to various other metric spaces.

Similar to the analysis for robust geometric median, we discuss the induced error of SI and SO

separately. For the error induced by SO, Lemma F.9 still holds, so it suffices for SO to be an
ε-approximation of the k-balls range space.

VC dimension We begin by introducing the concept of the VC dimension of the k-balls range
space.
Definition F.10 (VC dimension of k-balls range space). Let (X ,dist) be the metric space and
define Ballsk(X ) := {Balls(C, u) | C ⊂ X , |C| = k, u > 0}. The VC dimension of the k-
balls range space (X ,Ballsk(X )), denoted by dV C(X ), is the maximum |P |, P ⊆ X such that
|P ∩ Ballsk(X )| = 2|P |, where P ∩ Ballsk(X ) := {P ∩ Balls(C, u) | Balls(C, u) ∈ Ballsk(X )}.

The VC dimension of (X ,Ballsk(X )) aligns to the pseudo-dimension of (X ,Ballsk(X )) used by
[45]. Based on this observation, we give out a refined lemma from [45].
Lemma F.11 (Refined from [45]). Let (X ,dist) be the metric space. Given dataset PO ⊆ X , assume
SO is a uniform sample of size Õ(k·dV C(X )

ε2 ) from PO, then with probability 1− 1/poly(k/ε), SO is
a ε-approximation of the k-balls range space on PO.

This lemma illustrates the number of points needed to be sampled from L⋆.

Doubling dimension Similar to the Lemma E.10, we give out the Lemma F.12 that illustrates the
number of points needed to be sampled in order to bound the induced error of SO .
Lemma F.12 (Balls range space approximation for the doubling dimension). Let M = (X ,dist)
be the metric space with doubling dimension ddim(X ). Given PO ⊆ X , assume SO is a uniform
sample of size Õ(ddim(X ) · ε−2z · k) from PO, then with probability 1− 1/poly(k, 1/ε), SO is an
ε-approximation of the k-balls range space on PO.

The remaining problem is to bound the induced error of SI . We give out a generalized version of
Theorem E.11 as below.
Theorem F.13 (Refined from Corollary 5.4 in [40]). Let (X ,dist) be the metric space. There exists
a randomized algorithm that in O(nk) time constructs a weighted subset SI ⊆ P ⋆

I of size:

• Õ(k2 · dV C(X ) · ε−2z−2), w.r.t. VC dimension dV C(X ),

• Õ(k2 · ddim(X ) · ε−2z), w.r.t. doubling dimension ddim(X ),

, such that for every dataset PO of size m, every integer 0 ≤ t ≤ m and every center set C ⊂ Rd,
|C| = k, |cost(t)z (PO∪P ⋆

I , C)−cost(t)z (PO∪SI , C)| ≤ ε·cost(t)z (PO∪P ⋆
I , C)+2ε·costz(P ⋆

I , C
⋆).

By combining the discussions of the errors induced by SO and SI , we present the main theorem for
constructing a coreset for the robust (k, z)-clustering across various metric spaces.
Theorem F.14 (Coreset size for robust (k, z)-clustering in various metric spaces). Let ε ∈ (0, 1).
For a metric space M = (X ,dist) and a dataset X ⊂ X satisfying Assumption 1.4, let S = SO ∪SI

be a sampled set of size

• Õ(k2 · log(|X |) · ε−2z−2) if M is general metric space.

• Õ(k2 · ddim(X ) · ε−2z) if M is a doubling metric with doubling dimension ddim(X ).

• Õ(k2 · t · ε−2z−2) if M is a shortest-path metric of a graph with bounded treewidth t.

• Õ(k2 · |H| · ε−2z−2) if M is a shortest-path metric of a graph that excludes a fixed minor
H .

Then S is an ε-coreset for robust (k, z)-clustering on X .
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Table 4: Datasets used in our experiments. For each dataset, we report its size, dimension (DIM),
number of outliers (m). The number of centers (k) is used in robust (k, z)-clustering. We also provide
the values of mini |P ⋆

i | and (rmax/r̄)
z for robust (k, z)-clustering. Our Assumption 1.4 requires

that mini |P ⋆
i | ≥ 4m and (rmax/r̄)

z ≤ 4k. The value Y (resp. N ) indicates these assumptions are
satisfied or not. Note that the Athlete dataset is sourced from Kaggle, while the other datasets are
from the UCI repository.

DATASET SIZE DIM. m k
mini |P ⋆

i | ( rmax
r̄

)z

z = 1 z = 2 z = 1 z = 2

TWITTER[11] 105 2 2000 5 8968,Y 588,N 3.819,Y 1.083,Y
CENSUS1990 [46] 105 68 2000 5 5927,N 5927,N 1.873,Y 3.252,Y
BANK[47] 41188 10 824 5 1361,N 1361,N 4.674,Y 15.731,Y
ADULT[6] 48842 6 977 5 4508,Y 186,N 5.151,Y 5.834,Y
ATHLETE[36] 10000 4 200 5 1018,Y 1018,Y 2.923,Y 7.062,Y
DIABETES[43] 10000 10 200 5 1415,Y 1459,Y 2.551,Y 2.527,Y

This theorem illustrates the coreset size with respect to different metric spaces for robust (k, z)-
clustering, improving upon previous results by eliminating the O(m) dependency.

Proof of Theorem F.14. If M = (X ,dist) is a general metric space, then dV C(X ) = O(log |X |).
Thus, we have |SO| = Õ(k · log(|X |) · ε−2) by Lemma E.8 and |SI | = Õ(k2 · log(|X |) · ε−4) by
Theorem E.11, leading to a coreset of size Õ(k2 · log(|X |) · ε−4).

If M = (X ,dist) is a doubling metric space, then by definition, ddim(X ) is bounded. Thus we have
|SO| = Õ(k · ddim(X ) · ε−2) by Lemma E.10 and |SI | = Õ(k2 · ddim(X ) · ε−2) by Theorem E.11,
leading to a coreset of size Õ(k2 · ddim(X ) · ε−2).

If M = (X ,dist) is a shortest-path metric of a graph with bounded treewidth t, we have dV C(X ) =
O(t) by [8]. Thus, we have |SO| = Õ(k · t · ε−2) by Lemma E.8 and |SI | = Õ(k2 · t · ε−4) by
Theorem E.11, leading to a coreset of size Õ(k2 · t · ε−4).

If M = (X ,dist) is a shortest-path metric of a graph that excludes a fixed minor H , we have
dV C(X ) = O(|H|) by [8]. Thus, we have |SO| = Õ(k · |H| · ε−2) by Lemma E.8 and |SI | =
Õ(k2 · |H| · ε−4) by Theorem E.11, leading to a coreset of size Õ(k2 · |H| · ε−4).

G Additional empirical results

G.1 Additional empirical results for robust geometric median

We first present Table 4, which lists the parameters of the datasets used in our experiments.

We show the missing result of Section 4 on Bank, Athlete and Diabetes dataset in Figure 4. This
figure demonstrates that our coreset construction algorithm consistently outperforms the baselines.
For instance, on the Diabetes dataset, our method produces a coreset of size 180 with an empirical
error of 0.057, while the best baseline, HLLW25, results in a coreset size of 280 with an empirical
error of 0.065.

Analysis of our algorithm when n < 4m. For robust geometric median, we set m = n/2 in the
six dataset, violating the assumption n ≥ 4m, and report the corresponding size-error tradeoff in
Figure 5. The results show that our method still consistently outperforms the baselines even when
n < 4m. For instance, in Census1990 dataset, our method produces a coreset of size 50200 with an
empirical error of 0.004, while the best baseline produces a coreset of size 51200 with a much larger
empirical error of 0.012.
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(a) Bank (b) Athlete (c) Diabetes

Figure 4: Tradeoff between coreset size |S| and empirical error ε̂(S). The horizontal axis is |S| and
the vertical axis is ε̂(S).

(a) Census1990 (b) Twitter (c) Bank

(d) Adult (e) Athlete (f) Diabetes

Figure 5: Tradoff between coreset size |S| and empirical error ε̂(S) for robust geometric median
when we set m = n/2. In this scenario, the assumption n ≥ 4m is violated.

Analysis under heavy-tailed contamination. For each dataset, we randomly perturb 10% of
the points by adding independent Cauchy(0, 1) 4 noise to every dimension, thereby simulating a
heavy-tailed data environment. As shown in Figure 6, our method consistently outperforms the
baselines on the robust geometric median task, demonstrating that its performance advantage remains
stable even under heavy-tailed contamination. For example, on the perturbed Twitter dataset, our
method achieves a coreset of size 1500 with an empirical error of 0.031, whereas the best baseline,
HLLW25, requires a coreset twice as large (3000) to attain a higher error of 0.032.

G.2 Empirical results for robust 1D geometric median

We implement our 1D coreset construction algorithm and compare its performance to the previous
baselines and our general dimension method. All experiments are conducted on a PC with an Intel
Core i9 CPU and 16GB of memory, and the algorithms are implemented in C++ 11.

Setup. We select the first dimension of the Twitter dataset, the second dimension of the Adult dataset,
and the second dimension of the Bank dataset to create the Twitter1D, Adult1D, and Bank1D
datasets. We choose these dimensions because other dimensions in the four datasets listed in Table 4
contain no more than 130 distinct points, which would result in an overly small coreset. We conduct
experiments on these 1D datasets. To compute an approximate center for each dataset, we use the
k-means++ algorithm.

4The probability density function of Cauchy(0, 1) is f(x) = 1
π(1+x2)

for any x ∈ R.
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(a) Census1990 (b) Twitter (c) Bank

(d) Adult (e) Athlete (f) Diabetes

Figure 6: Tradoff between coreset size |S| and empirical error ε̂(S) for robust geometric median
when we perturb 10% points.

Experiment result. We vary the coreset size from 200 to m+1000, and compute the empirical error
ε̂(S) w.r.t. the coreset size |S|. For each size and each algorithm, we independently run the algorithm
10 times and obtain 10 coresets, compute their empirical errors ε̂(S), and report the average of 10
empirical errors. Figure 7 presents our results. This figure shows that our 1D coreset (denoted by
Our1D) outperforms the previous baselines and our coreset for general dimension. For example,
with the Twitter1D dataset, our 1D method provides a coreset of size 320 with an empirical error
0.013. The best empirical error achieved by our general dimension method for a coreset size 3500 is
much larger, 0.087. Note that the coreset size of Our1D method does not grow uniformly, since the
number of buckets does not increase linearly with ε−1 or ε−1/2.

(a) Twitter1D (b) Adult1D (c) Bank1D

Figure 7: Tradeoff between coreset size |S| and empirical error ε̂(S) in 1D datasets.

G.3 Empirical results for robust k-median

We implement Algorithm 3 for robust k-median and compare its performance to the previous
baselines.

Setup. We do experiments on the six datasets listed in Table 4, and set the number of centers k to
be 5. We use Lloyd version k-means++ to compute an approximate center C⋆.

Coreset size and empirical error tradeoff for robust k-median. We vary the coreset size from
m to 2m, and compute the empirical error ε̂(S) w.r.t. the coreset size |S|. For each size and each
algorithm, we independently run the algorithm 10 times and obtain 10 coresets, compute their
empirical errors ε̂(S), and report the average of 10 empirical errors. Figure 8 presents our results.
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This figure shows that our algorithm (Ours) outperforms the previous baselines. For example, with
the Census1990 dataset, our method provides a coreset of size 2200 with empirical error 0.012. The
best empirical error achieved by baselines for a coreset size 3600 is larger, 0.013.

(a) Census1990 (b) Twitter (c) Bank

(d) Adult (e) Athlete (f) Diabetes

Figure 8: Tradeoff between coreset size |S| and empirical error ε̂(S) for robust k-median on real-
world datasets.

Statistical test. Similar to the robust geometric median, we evaluate the statistical performance
between our method and baselines for robust k-median on all six real-world datasets. The results,
listed in Table 5, further demonstrate that our algorithm consistently outperforms the baselines.

Table 5: Statistical comparison of different coreset construction methods for robust k-median. The
coreset S1 represents our coreset, S2 represents the coreset constructed by the baseline HJLW23,
and S3 the coreset constructed by baseline HLLW25. For each empirical error ratio ε̂(S2)/ε̂(S1)
and ε̂(S3)/ε̂(S1), we report the mean value over 20 runs, with the subscript indicating the standard
deviation.

Coreset Size Census1990 Twitter
ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1) ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1)

2200 3.3740.818 3.8001.262 2.9580.785 3.1491.477
3200 1.8000.659 1.4830.534 1.6540.788 1.5740.710
4200 1.5430.559 1.3160.373 1.4080.439 1.3790.369

Coreset Size Bank Adult
ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1) ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1)

1200 1.6570.415 2.0190.740 2.0980.551 2.1530.772
1700 1.5480.582 1.2570.543 1.4400.619 1.7020.584
2200 1.3930.558 1.4600.737 1.4500.677 1.3730.545

Coreset Size Athlete Diabetes
ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1) ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1)

210 11.4813.633 8.8510.740 12.6883.443 8.0801.652
310 2.1420.525 1.7980.553 1.9020.512 1.4020.395
410 2.1040.570 1.5230.481 1.6910.546 1.2570.470

Speed-up baselines. We compare the coreset of size 2m constructed by the HLLW25 baselines and
coreset of size m conducted by Algorithm 3. We repeat the experiment 10 times and report the aver-
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ages. The result is listed in Table 6. Our algorithm achieves a speed-up over HLLW25—specifically,
a 2× reduction in the running time on the coreset—while maintaining the same level of empirical
error.

Validity of Assumption 1.4 for robust k-median. We evaluate the validity of Assumption 1.4 for
robust k-median across six datasets. The results in Table 4 show that the assumptions are satisfied by
the Twitter, Adult, Athlete, and Diabetes datasets, while the condition rmax ≤ 4kr̄ holds for all six
datasets. These results demonstrate that our assumptions are practical in real-world scenarios, and
our algorithm performs well even when the assumption mini |P ⋆

i | ≥ 4m is violated. Note that the
condition rmax ≤ 4kr̄ is satisfied by all six real-world datasets, even across different choices of k
and m.

Analysis under heavy-tailed contamination. For each dataset, we randomly perturb 10% of the
points by adding independent Cauchy(0, 1) noise to every dimension, thereby simulating a heavy-
tailed data environment. As shown in Figure 9, our method consistently outperforms the baselines
on the robust k-median task, confirming that its superior performance remains stable even under
heavy-tailed contamination. For example, on the perturbed Bank dataset, our method achieves a
coreset of size 600 with an empirical error of 0.044, whereas the best baseline, HLLW25, requires a
coreset of size 1300 to reach a higher error of 0.046.

(a) Census1990 (b) Twitter (c) Bank

(d) Adult (e) Athlete (f) Diabetes

Figure 9: Tradoff between coreset size |S| and empirical error ε̂(S) for robust k-median when we
perturb 10% points.

G.4 Empirical results for robust k-means

We implement Algorithm 3 for robust k-means and compare its performance to the previous baselines.

Setup. We do experiments on the six datasets listed in Table 4, and set the number of centers k to
be 5. We use k-means++ to compute an approximate center C⋆.

Coreset size and empirical error tradeoff for Robust k-means. We vary the coreset size from
m to 2m, and compute the empirical error ε̂(S) w.r.t. the coreset size |S|. For each size and each
algorithm, we independently run the algorithm 10 times and obtain 10 coresets, compute their
empirical errors ε̂(S), and report the average of 10 empirical errors. Figure 10 presents our results.
This figure shows that our algorithm (Ours) outperforms the previous baselines. For example, with
the Twitter dataset, our method provides a coreset of size 2200 with an empirical error 0.039. The
best empirical error achieved by our general dimension method for a coreset size 4000 is much larger,
0.056.
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Table 6: Comparison of runtime between our Algorithm 3 and baseline HLLW25 for robust k-median.
For each dataset, the coreset size of baseline HLLW25 is 2m and the coreset size of ours is m. We
use Lloyd algorithm given by [7] to compute approximate solutions CP and CS for both the original
dataset P and coreset S, respectively. “COSTP ” denotes cost(m)

1 (P,CP ) on the original dataset P .
“COSTS” denotes cost(m)

1 (P,CS) on the coreset constructed by METHOD. TX is the running time
on the original dataset. TS is the running time on coreset. TC is the construction time of the coreset.

DATASET COSTP METHOD COSTS TX TC TS

CENSUS1990 1.032×106
OURS 1.030×106 312.606 38.862 5.532

HLLW25 1.040×106 38.703 10.815

TWITTER 1.328×106
OURS 1.364×106 96.024 12.220 1.621

HLLW25 1.347×106 12.452 2.995

BANK 3.179×106
OURS 3.194×106 147.324 9.021 1.484

HLLW25 3.207×106 9.210 3.445

ADULT 9.221×108
OURS 9.153×108 144.185 9.324 1.854

HLLW25 9.166×108 9.266 3.517

ATHLETE 7.251×104
OURS 7.503 ×104 41.541 1.825 0.206

HLLW25 7.389 ×104 1.872 0.421

DIABETES 8.571×104
OURS 8.791×104 44.733 1.829 0.226

HLLW25 8.811×104 1.850 0.473

(a) Twitter (b) Adult (c) Bank

(d) Census1990 (e) Athlete (f) Diabetes

Figure 10: Tradeoff between coreset size |S| and empirical error ε̂(S) for robust k-means.

Statistical test. Similar to the previous cases, we evaluate the statistical performance between our
method and baselines for robust k-means on all six real-world datasets. The results, listed in Table 7,
further demonstrate that our algorithm consistently outperforms the baselines.

Speed-up baselines. We compare the coreset of size 2m constructed by the HLLW25 baselines and
coreset of size m conducted by Algorithm 3. We repeat the experiment 10 times and report the aver-
ages. The result is listed in Table 8. Our algorithm achieves a speed-up over HLLW25—specifically,
a 2× reduction in the running time on the coreset—while maintaining the same level of empirical
error.

Validity of Assumption 1.4 for robust k-means. We evaluate the validity of Assumption 1.4 for
robust k-means across six datasets. The results in Table 4 show that our assumptions are satisfied
by datasets Athlete and Diabetes, while the assumption r2max ≤ 4kr̄2 is satisfied by all six datasets.
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Table 7: Statistical comparison of different coreset construction methods for robust geometric median.
The coreset S1 represents our coreset, S2 represents the coreset constructed by the baseline HJLW23,
and S3 the coreset constructed by baseline HLLW25. For each empirical error ratio ε̂(S2)/ε̂(S1)
and ε̂(S3)/ε̂(S1), we report the mean value over 20 runs, with the subscript indicating the standard
deviation.

Coreset Size Census1990 Twitter
ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1) ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1)

2200 3.2532.063 2.6451.458 1.7930.644 1.6670.479
3200 1.2570.842 1.2510.632 1.3430.234 1.2830.197
4200 1.3030.692 1.1680.739 1.2440.152 1.2460.148

Coreset Size Bank Adult
ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1) ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1)

1200 1.6470.972 1.3601.018 1.4670.287 1.0940.542
1700 1.0100.654 1.0280.574 2.1490.884 2.4161.002
2200 1.0100.654 1.0260.674 1.0890.360 1.1720.537

Coreset Size Athlete Diabetes
ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1) ε̂(S2)/ε̂(S1) ε̂(S3)/ε̂(S1)

210 5.1723.634 4.2001.944 5.7003.303 5.8682.952
310 2.4671.564 1.4270.660 1.5670.800 1.3320.653
410 1.6580.881 1.0450.449 1.3601.103 1.2160.943

Table 8: Comparison of runtime between our Algorithm 3 and baseline HLLW25 for robust k-means.
For each dataset, the coreset size of baseline HLLW25 is 2m and the coreset size of ours is m. We
use Lloyd algorithm given by [7] to compute approximate solutions CP and CS for both the original
dataset P and coreset S, respectively. “COSTP ” denotes cost(m)

2 (P,CP ) on the original dataset P .
“COSTS” denotes cost(m)

2 (P,CS) on the coreset constructed by METHOD. TX is the running time
on the original dataset. TS is the running time on coreset. TC is the construction time of the coreset.

DATASET COSTP METHOD COSTS TX TC TS

CENSUS1990 1.172×107
OURS 1.170×107 358.218 35.513 5.770

HLLW25 1.170×107 35.399 11.043

TWITTER 2.657×107
OURS 2.664×107 106.327 14.084 1.806

HLLW25 2.662×107 13.330 3.494

BANK 3.477×108
OURS 3.531×108 133.978 7.478 1.283

HLLW25 3.530×108 7.225 2.725

ADULT 2.575×1013
OURS 2.646×1013 139.16 8.273 1.564

HLLW25 2.652×1013 8.048 3.091

ATHLETE 8.630×105
OURS 9.089×105 44.208 1.890 0.251

HLLW25 9.016×105 1.909 0.466

DIABETES 6.490×105
OURS 6.814×105 39.570 1.622 0.196

HLLW25 6.838×105 1.602 0.413

These results show that our assumptions are practical in real-world datasets, and our algorithm
performs well even when the assumption mini |P ⋆

i | ≥ 4m is violated.

Analysis of our algorithm when Assumption 1.4 violates. We evaluate the applicability of our
algorithm when both assumptions mini |P ⋆

i | ≥ 4m and (rmax/r̄)
2 ≤ 4k are violated. In Bank

dataset, we let k = 3, then we have (rmax/r̄)
2 = 15.001 > 4k and mini |P ⋆

i | = 1432 < 4m,
violating the two assumptions. In Adult dataset, we let k = 8, m = 500, then we have (rmax/r̄)

2 =
36.278 > 4k and mini |P ⋆

i | = 1592 < 4m, violating the two assumptions. We present the size-error
tradeoff for robust k-means on these datasets in Figure 11. Our results show that our method still
outperforms the baselines even when both assumptions are violated.
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(a) Bank (b) Adult

Figure 11: Tradeoff between coreset size |S| and empirical error ε̂(S) for robust k-means. We set
k = 3 in the Bank dataset and set k = 8, m = 500 in the Adult dataset. In these cases, the values
(rmax/r̄)

2 and mini∈[k] |P ⋆
i | violate both of our assumptions. The goal of this figure is to examine

whether our algorithm remains applicable when the assumptions are not satisfied.

Analysis under heavy-tailed contamination. For each dataset, we randomly perturb 10% of the
points by adding independent Cauchy(0, 1) noise to every dimension, thereby simulating a heavy-
tailed data environment. As shown in Figure 12, our method consistently outperforms the baselines
on the robust k-means task. For example, on the perturbed Athlete dataset, our method yields a
coreset of size 110 with an empirical error of 0.181, whereas the best baseline, HLLW25, attains a
higher error of 0.196 even with a larger coreset of size 290.

(a) Census1990 (b) Twitter (c) Bank

(d) Adult (e) Athlete (f) Diabetes

Figure 12: Tradoff between coreset size |S| and empirical error ε̂(S) for robust k-means when we
perturb 10% points.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In Section 1.1, we list the contributions of this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and empirical results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The Theorems 1.3 and 1.5 demonstrate that our coreset size is not tight for
d > 1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: In Section 1.1, we present each theorem’s assumptions and cite their formal
definitions. Sections 2, 3, and F.2 list the lemmas required to prove the theorems.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. empirical result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
empirical results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Algorithms 1, 2, and 3 present the methods used in our experiments. The
corresponding code is provided in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient in-
structions to faithfully reproduce the main empirical results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide our code in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Plea the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all empirical results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We demonstrate the parameters of datasets in Table 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Section 4, we report the empirical error across different coreset sizes for
robust geometric median on each dataset. We list the results of the statistical significance
experiments in Tables 1, 5 and 7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We list out the compute resources in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper mainly propose the theoretical results, which has no societal impact
of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Table 4 lists the sources of our datasets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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