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ABSTRACT

Despite their impressive performance on computer vision benchmarks, Deep Neural
Networks (DNNs) still fall short of adequately modeling human visual behavior,
as measured by error consistency and shape bias. Recent work hypothesized that
behavioral alignment can be drastically improved through generative—rather than
discriminative—classifiers, with far-reaching implications for models of human
vision.

Here, we instead show that the increased alignment of generative models can
be largely explained by a seemingly innocuous resizing operation in the gener-
ative model which effectively acts as a low-pass filter. In a series of controlled
experiments, we show that removing high-frequency spatial information from
discriminative models like CLIP drastically increases their behavioral alignment.
Simply blurring images at test-time—rather than training on blurred images—
achieves a new state-of-the-art score on the model-vs-human benchmark, halving
the current alignment gap between DNNs and human observers. Furthermore, low-
pass filters are likely optimal, which we demonstrate by directly optimizing filters
for alignment. To contextualize the performance of optimal filters, we compute
the frontier of all possible pareto-optimal solutions to the benchmark, which was
formerly unknown.

We explain our findings by observing that the frequency spectrum of optimal
Gaussian filters roughly matches the spectrum of band-pass filters implemented by
the human visual system. We show that the contrast sensitivity function, describing
the inverse of the contrast threshold required for humans to detect a sinusoidal
grating as a function of spatiotemporal frequency, is approximated well by Gaussian
filters of the specific width that also maximizes error consistency.

1 INTRODUCTION

While Deep Neural Networks (DNNs) are widely considered the best models of the human visual
system (Kriegeskortel 2015} |Kietzmann et al.| 2017} |Cichy & Kaiser;, 2019; |Doerig et al., [2023),
there is a large body of research exposing the many ways in which DNNs exhibit non-human-like
behavior—see (Wichmann & Geirhos, |[2023)) for an overview.

One behavioral dimension on which DNNs differ from humans is their lack of shape bias: |Geirhos
et al.| (2019); Baker et al.|(2018)) show that when presented with stimuli characterized by conflicting
shape- and texture cues, humans will classify images according to the shape cue, while DNNs
will classify according to the texture cue. Furthermore, DNNs systematically disagree with human
observers about which images they find difficult, as |Geirhos et al.| (2021) show using the error
consistency metric (Geirhos et al.| [2020; [Klein et al., [2025). Both of these findings indicate that
humans and DNNss likely implement different strategies for solving the task of core object recognition
(DiCarlo et al., [2012)), raising concerns about their suitability as computational models of the human
visual system. Progress towards behavioral alignment of DNNs as measured by shape bias, error
consistency and out-of-distribution (OOD) robustness is monitored by the model-vs—human
(MvH) benchmark (Geirhos et al., [2021).

Previous state-of-the-art results had been achieved by very large models trained on gigantic, diverse
datasets (CLIP (Radford et al.}[2021) and ViT-22B (Dehghani et al., 2023))). However, |Jaini et al.
(2023) have recently shown that generative models such as Imagen (Saharia et al.,|2022)) achieve



Under review as a conference paper at ICLR 2026

the most human-like behavior to date, with an error consistency of 0.31 and a shape bias of 0.99.
Interestingly, Imagen also exhibits a bias towards low-frequency features compared to other DNNs.
Jaini et al.[(2023) speculate that this tendency could be caused by the diffusion noise encountered
during training, or the generative objective itself.

The hypothesis that the generative objective is the driver of improved shape bias and error consistency
ties into a much larger debate about the necessity of generative models for robust vision: It is an open
question whether the human visual system operates in a discriminative, bottom-up fashion (vision
as inverse inference, (Von Helmholtz, |[1867)), or whether it is a model-based system with top-down
priors, e.g. for predictive coding (Yuille & Kerstenl 2006). If Imagen were so human-like because of
its generative objective, it could be a hint that the human visual cortex also relies on such principles.

However, a thus far neglected processing step in Imagen is its downscaling of inputs to a resolution
of 64 x 64 pixels, rather than processing the full 224 x 224 pixel resolution. This downscaling
operation is effectively a low-pass filter. We thus consider a different hypothesis, derived from our
knowledge of the human visual system: Imagen’s low-pass filtering might be the true reason for its
increased human-like behavior, as the optics of the human eye act as a low-pass filter, as does the
neural transfer function for the short presentation times used in the MvH benchmark. To this end,
we test how low-pass filtering of input images at test time affects behavioral alignment, which is in
contrast with earlier work that investigated the effects of training on low-pass filtered images.

We find that low-pass filtering images at test time can drastically improve the behavioral alignment
between almost all models and human observers, as demonstrated in[Figure 1] A ViT-H-14 OpenCLIP
model tested on blurred images (o = 2.5 px) achieves an error consistency of 0.37, substantially
surpassing that of Imagen (0.31) (Jaini et al.,2023), halving the remaining gap between human-DNN

and human-human alignment (see [Table ).
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Figure 1: Low-pass filtering images increases human-machine Error Consistency. For the
majority of investigated models, we find that low-pass filtering images prior to model evaluation can
substantially increase their error consistency with human observers.

Prepending vision models with low-pass filters has a clear physiological motivation: Like any optical
system, the human eye acts as a low-pass filter for the light hitting the retina (Campbell & Green,
1965} [Williams et al.,[1994), and the processing by the visual cortex acts as an additional filter over
spatial frequencies |(Campbell & Robson! (1968); [Kelly| (1979). This filter is described by the contrast
sensitivity function (CSF). The tuning curve of the CSF depends on the temporal frequency of the
signal, with higher temporal frequencies (i.e. shorter presentation times) moving the peak of the
spectrum towards lower spatial frequencies (Kelly,|1979), turning the band-pass filter into a low-pass
filter at very high temporal frequencies. We show that at the fairly short presentation times employed
by MvH (200 ms), the CSF is approximated relatively well by low-pass filters, and the Gaussian that
produces the highest error consistency to humans is close to the optimum approximation.
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Furthermore, we observe that there is an inherent trade-off between accuracy and error consistency
in MvH: To achieve maximal error consistency with human observers, a classifier has to roughly
match human accuracy on the benchmark (see Klein et al.|(2025)). This means that while the three
metrics that make up model-vs-human—error consistency, shape bias and OOD-accuracy—have
clear ceilings individually, the mathematical relationship between the metrics renders the overall
ceiling score obtuse: It is not obvious what the best possible score on the benchmark is. We solve
this problem by computing the frontier of all pareto-optimal solutions to the benchmark, thereby
establishing the benchmark ceiling and revealing that MvH is not yet saturated, and much more
progress can theoretically be made on achieving behavioral alignment between humans and machines.

Our contributions are thus the following:

1. We show that low-pass filtering images at test time (equivalent to blurring or resizing images)
drastically increases a models’ behavioral alignment as measured by error consistency and
shape-bias, more so than training on low-pass filtered images.

2. We thus provide an alternative explanation for the increased behavioral alignment of Imagen,
which was previously attributed to its generative objective.

3. We explain these findings by showing that the best low-pass filters approximate the CSF at
short presentation times reasonably well, suggesting that low-pass filtering works because it
matches the filtering implemented by the human visual system.

4. We analyze the model-vs-human benchmark, revealing an inherent trade-off between the
two objectives of OOD-robustness and error consistency. We quantify this relationship by
computing the frontier of all pareto-optimal solutions to the benchmark.

2 RELATED WORK

DNNs as models of the human visual system. The question of whether DNNs are suitable models
of the human visual system has taken center stage of vision science research (Wichmann & Geirhos|
2023; Doerig et al., 2023; Bowers et al., [2022; |Cichy & Kaiser, 2019; Schrimpf et al.,|2018)). Since
a core property of any good model is its ability to reproduce the behavior of the target system,
methods for measuring (and potentially improving) the behavioral alignment to humans are needed
(Sucholutsky et al., [2023). Different approaches to this problem have been explored, e.g.,|Linsley et al.
(2018); [Muttenthaler et al.|(2023), but at the center of our work is the model-vs-human benchmark by
Geirhos et al.|(2021). While various attempts have been made to increase shape bias (Geirhos et al.|
2019; [Li et al., [2020; Nuriel et al., [202 1} Brochu, [2019)), direct optimization towards increased error
consistency is underexplored.

Frequency tuning in the visual system. The seminal work by/Campbell & Robson|(1968)) first gave
rise to the idea that the early visual cortex is composed of channels sensitive to specific bandwidths,
by noting that human contrast sensitivity is a function of spatial frequency, rather than global contrast
alone. There is ample physiological evidence supporting this theory, e.g. [De Valois et al.| (1982)).
Schyns & Oliva) (1994)) showed that these channels do not operate at the same timescale: Humans
process the low spatial frequencies first, before the higher ones. Interestingly, this ordering (low to
high) is also the order in which DNNs learn to make use of frequencies as features (Rahaman et al.,
2019) (with more robust models relying on lower frequencies more (Li et al., 2023} Yin et al.;[2019)),
and there seem to be benefits of a visual diet that gradually introduces higher spatial frequencies
(Vogelsang et al.| [2018};2024). Consequently, various attempts have been made to systematically train
DNNs on low-pass filtered images to reduce their reliance on high frequencies (Jinsi et al.l 2023} Jang
& Tong, |2024), with one such training approach even achieving competitive shape bias results on
MvH |Lu et al.|(2025)). In general, how DNNss utilize spatial frequencies is an active area of research:
Subramanian et al.|(2023) found that the bandwidth of frequencies to which DNNSs are sensitive is
much wider than that of humans, which is a potential source of behavioral differences between the
two kinds of systems. They propose that narrowing the critical band of networks should make them
more robust—in line with our finding that band-pass filtering to a “human-matched” frequency range
increases alignment to humans.
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3 METHODS

3.1 ALIGNMENT METRICS

To measure a model’s behavioral consistency with humans, we use the model-vs —humanﬂpackage
(Geirhos et al., [2021). This benchmark consists of images from the training set of ImageNet-1k
(Russakovsky et al.,[2015) grouped into 16 coarse “super-classes” (airplane, bear, bicycle, bird, boat,
bottle, car, cat, char, clock, dog, keyboard, knife, oven, truck) which subsume multiple of the more
fine-grained ImageNet-1k classes at the basic level of classification |[Rosch et al.|(1976). The images
are corrupted by 12 different parametric image distortions, such as additive noise or color inversion.
In addition, the benchmark contains stylized, edge-filtered, silhouette, cue-conflict (see Shape Bias
below) images and sketches. All of these images were shown to multiple human subjects, who had
to solve a speeded classification task: Images were shown for 200ms, followed by a pink-noise
backward mask, and humans had to classify them into one of the 16 super-classes. This was done
to suppress recurrent processing in the visual cortex as much as possible. To evaluate a new model
on the benchmark, the model first has to classify all images, so that three metrics measuring the
similarity of the model to human judgments can be computed, which we explain next.

Shape Bias. The shape bias metric is computed on the cue-conflict images. These images were
generated using neural style transfer (Gatys et al., [2015)) by combining the content (shape) of one
image with the texture (style) of another. The dataset consists of 1200 images, sampled evenly from
the 16 classes. To calculate shape bias, the model is first evaluated on all cue-conflict images. Then,
all trials are discarded on which neither the class implied by the shape cue, nor the class implied by
the texture cue was predicted. Shape bias is then defined as the proportion of the remaining trials for
which the model decides according to the shape cue. Notably, the metric does not take a model’s
overall accuracy into account, meaning that one can achieve high shape bias by classifying a few
images into the class implied by the shape cue and predicting nonsense on other images (Doshi
et al.}2024). Shape bias takes on values between 0 and 1, with higher shape bias indicating higher
behavioral alignment, because humans exhibit almost perfect shape bias (0.96).

Error Consistency. This metric indicates the extent to which two decision makers (in this case,
a model and a human observer) make errors on the same images (Geirhos et al., 2020; 2021)). It
is measured on all 17 experiments from the model-vs-human package, excluding a handful
of conditions on which humans performed below a threshold. Error consistency is computed by
calculating Cohen’s  (Cohen, [1960) on two binary sequences indicating whether each classifier gave
a correct response on a trial, see |Geirhos et al.| (2020); Klein et al.| (2025) for details. « takes on
values between -1 and 1, with 1 indicating maximum agreement, 0 meaning that they agree not more
than expected by chance, and -1 indicating maximum disagreement. Within the model-vs-human
benchmark, EC values are averaged in a hierarchical fashion, by first averaging across humans within
each corruption strength, then across corruption strengths, and finally across corruptions. While a
higher EC to humans is always indicative of more behavioral alignment, it is not necessarily possible
for EC to take on all values in [—1, 1], since £q, depends on the accuracy mismatch between the
classifiers (see |Klein et al.|(2025)) for an in-depth explanation).

OOD Accuracy. This metric measures the aggregate accuracy of a classifier on all 17 datasets.
Higher OOD-accuracy is considered better, because humans typically demonstrate higher OOD-
accuracy on the model-vs-human corruptions. (Note that recently progress in model robustness has
increased to the point of a paradigm shift, where models now outperform humans on some corruptions
(Li et al.| [2025)).)

3.2 MODELS AND TRANSFORMATIONS

We evaluate models trained on LAION-2B available through the open-source OpenCLIP package
(Schuhmann et al., 2022; [Radford et al., 2021} |Cherti et al.l 2023} [Ilharco et al.| [2021)). In our
experiments, we evaluate CLIP in the zero-shot setting using the 16 model-vs—human classes and
the standard 80 prompt averaging scheme.

'"https://github.com/bethgelab/model-vs—human
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For blur and resize transformations, we use torchvision (Marcel & Rodriguez, 2010; Paszke
et al., 2017) implementations of GaussianBlur and Resize with bi-cubic interpolation. We
resize the image from its original size of Ry X Ry to the target resolution R; x R1, and back up
to Ry X Rp. This emulates the resizing that Imagen conducts. A higher “resize strength” means
resizing to a lower resolution, i.e. a larger ratio Ry/R;. We visualize the strengths of blur and resize
transformations that we use in

3.3 LEARNING A FOURIER FILTER TO MAXIMIZE ERROR CONSISTENCY

We also experiment with learning a Fourier filter that maximizes error consistency with humans. To
do so, we use the mode1-vs—human images and corresponding human predictions, and the frozen
OpenCLIP ViT-H-14 model. We first compute an optimal binary vector of human responses, as
outlined in Our loss then induces the model to give classification responses leading
to the same correctness values, by essentially optimizing the cross-entropy between the optimal
correctness values and the model correctness values.

If the ideal response is the correct label, we induce the model to predict the correct label as well.
Otherwise, we instead induce the model to predict the incorrect class which currently seems most
likely to the model, because this particular wrong response (out of the 15 possible wrong responses)
should be easiest to learn.

Since our filter Gy needs to respect Hermitian symmetry and we only want to modulate frequencies
without conducting phase shifts, we parameterize the 224 x 224 DFT-matrix of the filter as a real
112 x 112 matrix. (Note that most of the MvH images are in grayscale; we otherwise apply the filter
to each color channel independently.) These parameters form the top left quadrant of the filter, and
we obtain the remaining quadrants by computing the complex conjugates, which of course still all
have an imaginary component of zero. Since we are limited to the < 12,000 images in MvH to learn
112 x 112 = 12, 544 parameters, optimizing this filter directly would cause overfitting and lead to a
noisy “adversarial” pattern. To prevent overfitting, we regularize the filter to enforce sparsity and
smoothness, and use all available images for training, without a train-test split. Sparsity is enforced
via an L' regularization over filter parameters, while smoothness is achieved by blurring the filter
itself. Let F be the Fourier transform, f; be the image encoder, and f7 the text encoder of the CLIP
model. Let = be an image, and G the filter to be learned. Let b, be a Gaussian blur function. Then,
each element s, of the vector s of cosine similarities between the image x and all “labels” y; is given
by

5 = sim <f1 (F~\(F(x) » by (Hy)). fT<yi>>. )

Let y denote the one-hot encoded ground-truth label of z, H the cross-entropy, and o the softmax
function. Then the loss for a single image is given by

L) = H(o(2). ) + 6] @

Since CLIP similarities are too close in magnitude to provide enough signal to the cross-entropy loss
(after Softmax), we introduce a learned temperature parameter 7, similar to|Radford et al.|(2021).
Using a grid search, we found that an L' weight of 5 x 10~° and a blurring strength of ¢ = 6.0
yielded the best error consistencies with humans. We use the Adam optimizer, and initialize the filter
from ones with a small amount of Gaussian noise (¢2 = 10~°) added.

Once we have obtained the final filter, we apply it to the model-vs—human images, classify them
using the frozen model, and evaluate the error consistency with humans (who were exposed to clean
images).

3.4 EVALUATING GOODNESS OF FIT TO THE CSF

The contrast sensitivity function (CSF) characterizes the contrast sensitivity of human observers
as a function of spatial and temporal frequency (Kelly, [1979). We use the empirical estimates of
the CSF obtained by [Kelly| (1979), which we describe in more detail in To quantify
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the goodness of fit between the human CSF (normalized to the range [0, 1]) and a Gaussian of a
specific o, we compute Ly gy s between the normalized CSF and the Gaussian, for the relevant
frequency range. This range is limited by the display apparatus in model-vs-human, where images
were presented at 3° of visual angle, so finin = % cycles per degree, and the Nyquist frequency of
the monitor, which was f,,.. = 42.58 cpd. To take into account that the spectrum of natural images
is roughly f~! and that the power of the spectrum is therefore P(f) = f~%, with 3 ~ 2, we weight
the errors accordingly:

[ f=8(CSF(f) - G())?
.f7YLu.(L' f7/6
f'm'in

df. 3)

LwrMSE =

The 1D spectrum depicted in[Figure 4] can be thought of as the cross-section of a radially symmetric
filter, thus giving rise to a 2D spectrum that can be scaled appropriately and applied to images as a
filter.

4 RESULTS

4.1 LOW-PASS FILTERING EXPLAINS IMAGEN’S ALIGNMENT.

We hypothesize that Imagen outperforms our reference model on EC and SB simply because of its
lower input resolution of 64 x 64 pixels, which amounts to low-pass filtering of the input. To test
this hypothesis, we prepend the reference model with a low-pass filter, which we implement once as
a resizing operation analogous to Imagen, and once as a Gaussian blur, which should have a very
similar effect. We vary the blurring strength and observe the resulting changes in performance on
the three alignment metrics. As a reference model, we choose OpenCLIP ViT-H-14, because it is
the most well-aligned model we have access to, with a baseline EC of 0.28, an SB of 0.60 and an
OOD-accuracy of 0.78.

Shape Bias. Increasing either blur- or resize-strength monotonically increases shape bias (see
[Figure 2). Since blurring removes high-frequency texture information, the model is forced to rely on
low-frequency shape cues. Independent of the method of implementation, low-pass filtering of input
images alone can account for Imagen’s increased shape bias, even in models without the generative
component that was formerly hypothesized to explain Imagen’s human-level shape bias.

Error Consistency. As we increase the blurring strength, the model’s EC rises from « = 0.28
to k = 0.37 (after blurring with 0 = 2.5) or k = 0.35 (after resizing to 64 x 64), respectively
(see[Figure 2)). For reference, the previous highest error consistency had been reported for Imagen
(Saharia et al.}[2022) at k = 0.31. After a certain “critical point,” however, error consistency begins
to decrease for higher blurring/resizing strengths. We break down the error consistency gains into the

different MvH conditions in but observe gains across conditions.

OOD Accuracy. Notably, these transformations do have a significant effect on the model’s OOD
accuracy: OOD accuracy dips by 6 percentage points after blurring at ¢ = 2.5 and by 3 percentage
points when resizing the image to 64 x 64 (see[Table I). This is to be expected, since we are effectively
removing features that the model can use. As we argue in [Section 4.5] this drop in accuracy may
actually be necessary to improve behavioral alignment. However, the drop in accuracy is by no means
catastrophic. This is important, because shape bias does not account for accuracy (Doshi et al.l [2024)
and can be trivially increased by misclassifying specific images.

Together, these findings offer an alternative explanation for the increased behavioral alignment of
Imagen: Its lower input resolution alone suffices to explain its alignment. [Jaini et al.| (2023) go as far
as re-training a ResNet-50 on ImageNet-1k with diffusion noise as an augmentation to obtain a shape
bias of 0.78, but a standard ResNet-101 with a prepended low-pass filter (o = 3.0) achieves a shape
bias of 0.8 without any extra training.
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Figure 2: Low-pass filtering test stimuli improves behavioral alignment. Gaussian blurring [A+C]
and resizing [B+D] both lead to higher shape bias (A+B) and error consistency (C+D). While the
shape bias strictly increases under either transformation, the error consistency reaches a maximum
“critical point” and declines afterwards.

4.2 LEARNING AN OPTIMAL FILTER INDEED YIELDS A LOW-PASS FILTER.

Given that low-pass filtering yielded considerable improvements,
we next wonder what the optimal filter would look like. To address
this question, we learn a filter in Fourier space for maximum er-
ror consistency using gradient descent (see [Section 3.3|for details).
The resulting filter is depicted in where we plot the log-
transformed, center-shifted amplitudes of the optimal Fourier filter.
Since we deliberately parameterized the filter in a way that allows
for rotational asymmetries (i.e. different directions being affected
differently) to find an upper bound on the best possible filter, we
observe some artifacts that could be a consequence of potential over-
fitting as speculated in[Section 3.3} However, the filter’s spectrum Figure 3: The optimal filter
is clearly concentrated in the low frequencies. is a low-pass filter.
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4.3 LOW-PASS FILTERING WORKS BECAUSE IT APPROXIMATES THE CSF.

The human visual system differs from DNNs in that images are not directly available to neurons at
full spatial resolution and bit-depth. Instead, the visual input is first impoverished by the imperfect
optics of the eye, and later by the limited photoreceptor density on the retina and other neural factors.
The degree of the reduction in perceived contrast depends on the spatial frequency of the input
Campbell & Robson! (1968)), as well as the temporal frequency of its presentation |[Kelly| (1979). The
final reduction in perceived contrast is described by the contrast sensitivity function (CSF). In figure
we show that the spectrum of our best-performing low-pass filters approximates the CSF
quite well. We interpret our results to mean that by prepending models with low-pass filters, we
effectively match their input to the input available to the visual cortex of human subjects.
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Figure 4: Low-pass filters approximate the CSF well. Left: Contrast sensitivity at a presentation
time of 200ms as a function of spatial frequency (red curve) is approximated well by the best
Gaussian filter (blue curve). Right: The best-fitting Gaussian has a ¢ of about 3px, according to a
weighted RMSE. Evidently, this finding is robust to the exact choice of 3.

Having established that Gaussian filters approximate the CSF well, we next test the effect of using
the CSF as a filter directly. Indeed, this yields an error consistency of 0.365, which beats Imagen and
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is statistically indistinguishable from the ideal Gaussian. We thus conclude that the improved error
consistency between humans and DNNss is caused by providing DNNs with images whose spectra are
filtered in a way that approximates how the human visual cortex receives its input: Diffracted by the
optics of the eye and processed by the first few neural transformations, presumably in the retina and

the lateral geniculate nucleus (LGN).

model error consist. T shape bias T OOD acc. T
Humans (avg) 0.43 0.96 0.72
ViT-22B-384 0.26 0.87 0.80
OpenCLIP ViT-H-14 0.28 0.60 0.78
Imagen 0.31 0.99 0.71
OpenCLIP ViT-H-14 Resized (64x64) [ours] 0.35 091 0.75
OpenCLIP ViT-H-14 CSF [ours] 0.37 0.96 0.70
OpenCLIP ViT-H-14 Blurred (o = 2.5) [ours] 0.37 0.96 0.72
OpenCLIP ViT-H-14 Fourier-filtered [ours] 0.38 0.95 0.73

Table 1: Low-pass filtering improves error consistency and shape bias.

4.4 LOW-PASS FILTERING WORKS ACROSS MODELS.

A natural next question is whether the blur and resize transformations only increase human-model
error consistency for the OpenCLIP ViT-H-14 model, or whether this is a more general phenomenon
which applies to other models as well. To answer this question, we test several models included
in the model-vs—human package, as well as other OpenCLIP models, with prepended low-pass
filters. We find that our approach generalizes almost perfectly: Shape bias and error consistency
increase with low-pass filtering for almost all tested models. The effect is particularly strong for the
OpenCLIP models, especially those with smaller patch sizes of 14 instead of 32 pixels (see [Figure 3).
The reason might be that a smaller patch-size biases a model towards high-frequency texture features,
which are strongly affected by these transformations.
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Figure 5: Removing high-frequency information from test stimuli improves behavioral align-
ment for a wide range of models. We measure shape bias and error consistency for ; SWSL,

, ViT, Noisy Student, and a variety of OpenCLIP models. We find that in general, shape bias
[A+B] increases with blur and resize strength, while error consistency [C+D] usually increases at
first before dropping off again.

4.5 THE ACCURACY-CONSISTENCY-TRADEOFF

Because OOD accuracy and error consistency are at odds, the ceiling performance on model-vs-
human is not a single point, but a curve of pareto-optimal solutions, which we call the pareto-frontier.
The maximum possible error consistency to human observers is 0.674, necessitating an OOD accuracy
of 0.67. As the OOD accuracy approaches 100%, error consistency approaches 0. Between these two
extremes, there is a smooth curve of pareto-optimal solutions, which we plot in[Figure 6| We relegate
detailed explanations of how we arrived at these values to where we also explain the
counter-intuitive finding that the maximum EC extends beyond the average inter-human EC. We also
find hints of this curve empirically in the models we investigate, see (right).

While our filtered models achieve performance values closest to the noise ceiling of inter-human error
consistency, there is still plenty of room for improvement, especially in terms of improving OOD
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accuracy without sacrificing alignment to humans. The MvH benchmark is clearly not saturated, but
we note that it suffers from some idiosyncrasies—for example, there are trivial ways of achieving
high shape bias (Doshi et al., [2024]), and error consistency is known to be noisy (Klein et al., 2025).

However, we still believe the trade-off between behavioral alignment and accuracy to be more
fundamental: A machine that reaches super-human accuracy is bound to use features that humans do
not use, which should generally result in a misalignment of their behavior. By carefully imposing
limitations on the model (in our case, limiting the frequency content of its input via low-pass filtering),
more human-like features may be extracted, albeit at the cost of accuracy.
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Figure 6: Pareto Frontier of MvH solutions. Left: We plot error consistency against OOD-accuracy,
and delineate the region of optimal achievable benchmark performance. We plot the performance
of various standard models as reference points, as well as Imagen (blue point) and average human
performance (green x). Our CLIP ViT-H-14 with prepended low-pass filter achieves performance
closest to humans and improves over Imagen on both axes. Right: Empirical confirmation of this
result. Models from OpenCLIP tend to achieve the highest error consistency when their OOD
accuracy coincides with that of humans (dashed red line).

5 CONCLUSION

In this work, we explained the high error consistency observed for the Imagen-model by its resizing
operation rather than its generative objective. This resizing amounts to low-pass filtering of input
images. We showed that by simply prepending discriminative classifiers with an appropriate low-pass
filter, we can achieve even higher behavioral alignment, an effect which generalizes to the majority of
tested models. We then demonstrated that a low-pass filter is indeed optimal by actively optimizing a
filter for error consistency in Fourier space, resulting in a low-pass filter.

We offer a potential explanation for this effect: By approximating the human contrast sensitivity
function (CSF) at short presentation times, an ideal low-pass filter approximates how the human
visual cortex receives its input. Incoming light is diffracted by the optics of the eye and subjected
to initial neural transformations, presumably in the retina and the lateral geniculate nucleus (LGN).
Various attempts have been made to frain DNNs on a diet of (initially) blurred images (Vogelsang
et al., [2018; |Lu et al.| [2025)), but our results suggest that if one matches a blurring filter to the human
visual system, re-training of models might not be necessary to achieve improved behavioral alignment
to humans.

Using the contrast sensitivity function as a filter establishes a new state-of-the art error consistency on
the model-vs-human benchmark. To contextualize this result and answer the question of how much
room for improvement is left, we compute the frontier of pareto-optimal solutions to the benchmark,
which was formerly unknown. The frontier reveals that further performance gains are possible, even
though they would have to exceed the noise ceiling of the benchmark.

Together, these results imply that generative objectives may in fact not be necessary to achieve higher
alignment to human observers, with implications about the role of generative, “top-down” structures
in the human visual system.
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6 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. All code required to reproduce the
experiments is provided in the supplementary material. Detailed proofs of all theoretical results are
included in the appendix. Experimental settings and hyperparameters are described in the main paper
and supplementary sections.

REFERENCES

Nicholas Baker, Hongjing Lu, Gennady Erlikhman, and Philip J Kellman. Deep convolutional
networks do not classify based on global object shape. PLoS computational biology, 14(12):
e1006613, 2018.

Jeffrey S Bowers, Gaurav Malhotra, Marin Dujmovié, Milton Llera Montero, Christian Tsvetkov,
Valerio Biscione, Guillermo Puebla, Federico Adolfi, John E Hummel, Rachel F Heaton, et al.
Deep problems with neural network models of human vision. Behavioral and Brain Sciences, pp.
1-74, 2022.

Francis Brochu. Increasing shape bias in imagenet-trained networks using transfer learning and
domain-adversarial methods. arXiv preprint arXiv:1907.12892, 2019.

Fergus W Campbell and John G Robson. Application of fourier analysis to the visibility of gratings.
The Journal of physiology, 197(3):551, 1968.

FW Campbell and DG Green. Optical and retinal factors affecting visual resolution. The Journal of
physiology, 181(3):576, 1965.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2818-2829, 2023.

Radoslaw M Cichy and Daniel Kaiser. Deep neural networks as scientific models. Trends in cognitive
sciences, 23(4):305-317, 2019.

Jacob Cohen. A coefficient of agreement for nominal scales. Educational and psychological
measurement, 20(1):37-46, 1960.

Russell L De Valois, Duane G Albrecht, and Lisa G Thorell. Spatial frequency selectivity of cells in
macaque visual cortex. Vision research, 22(5):545-559, 1982.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp- 7480-7512. PMLR, 2023.

James J DiCarlo, Davide Zoccolan, and Nicole C Rust. How does the brain solve visual object
recognition? Neuron, 73(3):415-434, 2012.

Adrien Doerig, Rowan P Sommers, Katja Seeliger, Blake Richards, Jenann Ismael, Grace W Lindsay,
Konrad P Kording, Talia Konkle, Marcel AJ Van Gerven, Nikolaus Kriegeskorte, et al. The
neuroconnectionist research programme. Nature Reviews Neuroscience, 24(7):431-450, 2023.

Fenil R Doshi, Talia Konkle, and George A Alvarez. Quantifying the quality of shape and texture
representations in deep neural network models. Journal of Vision, 24(10):1263-1263, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic style. arXiv
preprint arXiv:1508.06576, 2015.

10



Under review as a conference paper at ICLR 2026

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
Wieland Brendel. ImageNet-trained CNNs are biased towards texture; increasing shape bias

improves accuracy and robustness. International Conference on Learning Representations (ICLR),
2019.

Robert Geirhos, Kristof Meding, and Felix A Wichmann. Beyond accuracy: quantifying trial-by-trial
behaviour of cnns and humans by measuring error consistency. Advances in Neural Information
Processing Systems, 33:13890-13902, 2020.

Robert Geirhos, Kantharaju Narayanappa, Benjamin Mitzkus, Tizian Thieringer, Matthias Bethge,
Felix A Wichmann, and Wieland Brendel. Partial success in closing the gap between human and
machine vision. In Advances in Neural Information Processing Systems 34, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/
zenodo.5143773.

Priyank Jaini, Kevin Clark, and Robert Geirhos. Intriguing properties of generative classifiers. arXiv
preprint arXiv:2309.16779, 2023.

Hojin Jang and Frank Tong. Improved modeling of human vision by incorporating robustness to blur
in convolutional neural networks. Nature Communications, 15(1):1989, 2024.

Omisa Jinsi, Margaret M Henderson, and Michael J Tarr. Early experience with low-pass filtered
images facilitates visual category learning in a neural network model. Plos one, 18(1):¢0280145,
2023.

Donald H Kelly. Motion and vision. ii. stabilized spatio-temporal threshold surface. Journal of the
optical society of America, 69(10):1340-1349, 1979.

Tim C Kietzmann, Patrick McClure, and Nikolaus Kriegeskorte. Deep neural networks in computa-
tional neuroscience. BioRxiv, pp. 133504, 2017.

Thomas Klein, Sascha Meyen, Wieland Brendel, Felix A Wichmann, and Kristof Meding. Quantifying
uncertainty in error consistency: Towards reliable behavioral comparison of classifiers. arXiv
preprint arXiv:2507.06645, 2025.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, and
Neil Houlsby. Big transfer (bit): General visual representation learning. In Computer Vision-ECCV
2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part V 16, pp.
491-507. Springer, 2020.

Nikolaus Kriegeskorte. Deep neural networks: a new framework for modeling biological vision and
brain information processing. Annual review of vision science, 1(1):417-446, 2015.

Fanfei Li, Thomas Klein, Wieland Brendel, Robert Geirhos, and Roland Zimmermann. Laion-c: An
out-of-distribution benchmark for web-scale vision models. In ICLR 2025 Workshop on Spurious
Correlation and Shortcut Learning: Foundations and Solutions, 2025.

Yingwei Li, Qihang Yu, Mingxing Tan, Jieru Mei, Peng Tang, Wei Shen, Alan Yuille, and Cihang
Xie. Shape-texture debiased neural network training. arXiv preprint arXiv:2010.05981, 2020.

Zhe Li, Josue Ortega Caro, Evgenia Rusak, Wieland Brendel, Matthias Bethge, Fabio Anselmi,
Ankit B. Patel, Andreas S. Tolias, and Xaq Pitkow. Robust deep learning object recognition models
rely on low frequency information in natural images. PLOS Computational Biology, 19(3):1-15, 03
2023. doi: 10.1371/journal.pcbi.1010932. URL https://doi.org/10.1371/journal,
pcbi1.1010932]

11


https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.1371/journal.pcbi.1010932
https://doi.org/10.1371/journal.pcbi.1010932

Under review as a conference paper at ICLR 2026

Drew Linsley, Dan Shiebler, Sven Eberhardt, and Thomas Serre. Learning what and where to attend.
arXiv preprint arXiv:1805.08819, 2018.

Zejin Lu, Sushrut Thorat, Radoslaw M Cichy, and Tim C Kietzmann. Adopting a human devel-
opmental visual diet yields robust, shape-based ai vision. arXiv preprint arXiv:2507.03168,
2025.

Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. In
Proceedings of the 18th ACM international conference on Multimedia, pp. 1485-1488, 2010.

Lukas Muttenthaler, Lorenz Linhardt, Jonas Dippel, Robert A Vandermeulen, Katherine Hermann,
Andrew Lampinen, and Simon Kornblith. Improving neural network representations using human
similarity judgments. Advances in Neural Information Processing Systems, 36:50978-51007,
2023.

Oren Nuriel, Sagie Benaim, and Lior Wolf. Permuted adain: Reducing the bias towards global
statistics in image classification. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 9482-9491, 2021.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Alec Radford, Jong Wook Kim, Chris Hallacy, A. Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In /ICML, 2021.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International conference
on machine learning, pp. 5301-5310. PMLR, 2019.

Eleanor Rosch, Carolyn B Mervis, Wayne D Gray, David M Johnson, and Penny Boyes-Braem. Basic
objects in natural categories. Cognitive Psychology, 8(3):382—439, 1976.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211-252, 2015. doi: 10.1007/s11263-015-0816-y.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in Neural Information
Processing Systems, 35:36479-36494, 2022.

Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J Majaj, Rishi Rajalingham, Elias B Issa, Kohitij
Kar, Pouya Bashivan, Jonathan Prescott-Roy, Franziska Geiger, et al. Brain-score: Which artificial
neural network for object recognition is most brain-like? BioRxiv, pp. 407007, 2018.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski,
Srivatsa R Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia
Jitsev. LAION-5b: An open large-scale dataset for training next generation image-text models.
In Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2022. URL https://openreview.net/forum?id=M3Y74vmsMcY.

Philippe G. Schyns and Aude Oliva. From blobs to boundary edges: Evidence for time- and
spatial-scale-dependent scene recognition. Psychological Science, 5(4):195-200, 1994. doi:
10.1111/1.1467-9280.1994.tb00500.x.

Ajay Subramanian, Elena Sizikova, Najib Majaj, and Denis Pelli. Spatial-frequency channels,
shape bias, and adversarial robustness. Advances in neural information processing systems, 36:
4137-4149, 2023.

12


https://openreview.net/forum?id=M3Y74vmsMcY

Under review as a conference paper at ICLR 2026

Ilia Sucholutsky, Lukas Muttenthaler, Adrian Weller, Andi Peng, Andreea Bobu, Been Kim, Bradley C
Love, Erin Grant, Iris Groen, Jascha Achterberg, et al. Getting aligned on representational
alignment. arXiv preprint arXiv:2310.13018, 2023.

Lukas Vogelsang, Sharon Gilad-Gutnick, Evan Ehrenberg, Albert Yonas, Sidney Diamond, Richard
Held, and Pawan Sinha. Potential downside of high initial visual acuity. Proceedings of the
National Academy of Sciences, 115(44):11333—-11338, 2018.

Lukas Vogelsang, Marin Vogelsang, Gordon Pipa, Sidney Diamond, and Pawan Sinha. Butter-
fly effects in perceptual development: A review of the ‘adaptive initial degradation’hypothesis.
Developmental Review, 71:101117, 2024.

Hermann Von Helmholtz. Handbuch der physiologischen Optik, volume 9. L. Voss, 1867.

Felix A Wichmann and Robert Geirhos. Are deep neural networks adequate behavioral models of
human visual perception? Annual review of vision science, 9(1):501-524, 2023.

David R Williams, David H Brainard, Matthew J McMahon, and Rafael Navarro. Double-pass and
interferometric measures of the optical quality of the eye. Journal of the Optical Society of America
A, 11(12):3123-3135, 1994.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 10687-10698, 2020.

I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and Dhruv Mahajan. Billion-scale semi-
supervised learning for image classification. arXiv preprint arXiv:1905.00546, 2019.

Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. A fourier
perspective on model robustness in computer vision. Advances in Neural Information Processing
Systems, 32, 2019.

Alan Yuille and Daniel Kersten. Vision as bayesian inference: analysis by synthesis? Trends in
cognitive sciences, 10(7):301-308, 2006.

13



Under review as a conference paper at ICLR 2026

A APPENDIX
A.1 ILLUSTRATION OF TRANSFORMATIONS

Clean Blur (0 =0.5) Blur (0=1) Blur (0 =1.5) Blur (o =2) Blur (o= 3)

Blur (c=4)

Orig. Size: 224 Resize: 112 Resize: 96 Resize: 80 Resize: 64 Resize: 48 Resize: 32

Figure 7: Illustration of blurring and resizing filters. Best viewed on screen. Evidently, the effects
of low-pass filtering (implemented as convolution with a Gaussian kernel) and resizing with bi-cubic
interpolation are very similar: Resizing is a form of low-pass filtering.

A.2 MODELS OF HUMAN CONTRAST SENSITIVITY

The influence of the optics of the human eye on the light received at the retina is described by the
modulation transfer function (MTF) (Campbell & Green, [1965}; [Williams et al|,[1994). The MTF
describes how well an optical system such as the eye transfers contrast from the object to the retinal
image at different spatial frequencies, before any neural processing takes place. The losses caused by
low photoreceptor density on the retina and other downstream effects are incorporated in the contrast
sensitivity function (CSF), but not the MTF. We compare the MTF to the Gaussian filter with optimal
error consistency in[Figure 8] While the fit may not seem great at first glance, note that the spectrum
of natural images is typically f~!, so we weight the frequencies by their contribution to overall power
when evaluating goodness of fit.

We use the empirical estimate of the MTF obtained by [Williams et al.| (1994)), who measured the
MTF using interferometry. Their MTF models the eye as a diffraction-limited system, resulting in the
formula

M (s,80) = D(s, so) (w1 + wae™ %) (€))
where s is the spatial frequency and s is a constant depending on pupil size (we assume a 3 mm

pupil size for sy = 87.2 cpd). The parameters w1, wy and a are obtained by fitting this curve to
empirical data. D(s, sq) describes the modulation transfer of such a diffraction-limited system as

2 2
D(s,s0) = — (cos_1 (i) 2 - (i> ) 5)
™ S0 So 50
For the CSF, we use the model by [Kelly| (1979), who model contrast sensitivity as a function of spatial
frequency and retinal velocity (i.e. how fast the image moves across the retina), which is linearly

related to the temporal frequency (and thus inverse of presentation time) of the stimulus: f; = fsv.

—2s

G(s,v) = kvs?emar 6)
where s is again the spatial frequency in cpd, v is the retinal velocity of the stimulus in degrees
per second, while & = 6.1 4 7.3|log(¥)]* and Spaz = ﬁig are scale parameters. We refer the

interested reader to the original papers for details and motivation of these models. (Note that at f = 0
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Figure 8: Low-pass filters approximate the MTF relatively well for low frequencies. Right: The
spectrum of the MTF and our optimal Gaussian filter. Left: The goodness of fit between Gaussian
filters of varying ¢ and the MTF, calculated as a power-weighted RMSE. Both analogous to|Figure 4

the function is undefined; we manually set the DC component of the filter to 1.0 because we are
concerned with contrast sensitivity, while the DC component gives the mean luminance.)

A crucial step for using these formulas to construct the appropriate 2D filters is that the input scales
need to be considered: Both MTF and CSF as formulated above expect frequencies in cycles per
degree, while the DFT in our implementation is defined in terms of cycles per pixel. To take this into
account, we specify a sampling rate of % (because the images were presented at a size of 256 x 256
pixels, covering 3 degrees of the visual field of human observers in MvH) thus matching the inputs

appropriately.

A.3 COMPUTING THE PARETO FRONTIER OF MODEL-VS-HUMAN

For a detailed explanation of error consistency, we refer the interested reader to Klein et al.| (2025)),
but we will summarize the relevant details here. The model-vs-human benchmark consists of 17
corruptions (e.g. inverted colors, eidolon noise, etc) with different 46 different conditions arising due
to varying corruption strengths. Within every condition of model-vs-human, the error consistency is
calculated via Cohen’s x (Cohenl [1960) over binary vectors indicating whether a trial was solved
correctly or not:

K = DPobs — Pexp ] (7)
1- DPexp

Here, p,ps is the observed consistency, i.e. the number of trials on which both observers agreed by
either both responding correctly, or by both responding incorrectly. p.;), is the agreement expected
by chance: Let a; and a5 be the accuracies of the two classifiers, i.e. a model and a human subject.
Then, pegp = a1 - a2+ (1 —aq) - (1 — az) (i.e. pesyp is the agreement expected by chance, assuming
independent binomial observers).

A model’s error consistency to humans within a condition is defined as its average (pairwise) error
consistency to each of the human observers. Its overall error consistency is then calculated by
hierarchical averaging: First across the conditions of a corruption, then across corruptions. The
inter-human error consistencies are calculated in the same way, with only a subtle difference: Each
of the n humans is only compared to the remaining n — 1 humans. The green x in is the
(hierarchical) average over these inter-human values. Hence, it is possible to achieve error consistency
to humans exceeding the average inter-human error consistency. For an intuitive example, consider
a human who only gave correct responses and another human who only gave incorrect responses.
By responding correctly to half of all trials, a model would be more consistent to both humans than
they are to each other. As the OOD accuracy of a model approaches 100%, its error consistency to
humans necessarily approaches 0, because the bounds on « get “squished” (compare Figure 2 from
Klein et al.[(2025))).

Our goal is to find the maximum attainable average  to the human observers. Let 7' € {0,1}"*¥
hold the n fixed binary correctness sequences for this condition, with each observer being one row of
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T, and each image a column. Let s € {0, 1} be the response vector that we get to optimize, so that
k becomes maximal. The key insight-|is that x can be expressed as

2(rj — pg;)
ri(s) = ——3 —Pi) ®)
i(9) P+ a5 — 2pg;

where

e p= % >, si is the accuracy of the ideal model
* g = % >, Tij is the accuracy of human j

T = % > . siTj,i is the proportion of positive agreement between them.
We arrive at[Eq. (8)| via the following derivation:

Pobs :P(S:Tj)
=P(s=1,T;,=1)+P(s=0,T; =0)
=7+ P(s = 0,7 = 0)
=rj+1-Pls=1)—P(Tj =1)+ P(s = 1,Tj = 1)
=l-p—qi+r;

Similarly, pe.p = 1 — p — ¢; + 2pg;. By using these expressions in[Eq. (7)} we obtain[Eq. (8)}

Conveniently, for a fixed p = %, the denominator D;(p) = p+ ¢; —2pg; = ¢; + (1 — 2g;)pisa
constant with regard to the individual s;. The numerator of [Eq. (8)|is thus a linear function of s under
the cardinality constraint ) . s; = k. This linear objective has weights w;(p), given by

T g

Jj=1

The optimal binary sequence for a fixed k can therefore be obtained by setting s; = 1 for the top
k items according to w;(p) and s; = 0 for the others. The global optimum can then be obtained
by simply sweeping k from 0 to NV, obtaining the optimum & for each value of k, and selecting the
overall best &.

Since the model-vs-human benchmark consists of multiple such conditions, this procedure needs to
be applied to each condition independently, and results need to be aggregated using the hierarchical
averaging employed by the benchmark: First, one has to average over all conditions within one
experiment, before then averaging over all experiments. This procedure yields the maximum possible
error consistency and the sequence s of ideal responses, from which the accuracy can be obtained by
following the same hierarchical averaging logic. Thus, one has computed the lower right point on the

pareto-frontier in |l 6

The rest of the pareto-frontier can be constructed by iteratively expanding the frontier. Note that for
every condition of the experiment, we have a list of tuples (k;, p;). From this list, we can remove all
dominated elements j, for which there is another element 4 so that (x; < ;) and (p; < p;), because
these clearly cannot be part of a non-dominated solution. Next, we initialize the set of non-dominated
solutions as Sy = {0, 0}. Then, for each condition i:

1. Let O; be the set of non-dominated elements in that condition.

2. Expand S;_; by forming all possible combinations: S; = {(x,p) + (x',p') : (k,p) €
Si—1, (K, p') € Oi}.

3. Prune S; by removing all dominated solutions.

’The following derivation, while carefully verified by the second author, was obtained with heavy LLM

support, as discussed in [Appendix A.6}
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To account for the fact that each condition contributes with a different weight to the overall average
(because the number of conditions C per experiment varies), we first weight each condition’s elements
with the appropriate factor % The worst-case runtime of this algorithm is exponential, but at the
small scale required for model-vs-human, we could calculate the full pareto-frontier on consumer
hardware in less than ten minutes.

A.4 MODEL DETAILS

We present an overview of the models used in this work in[Table 2]

model | architecture
(He et al.,[2016) ResNet101
SWSL (Yalniz et al., [2019) ResNeXt-101
(Kolesnikov et al., [2020) ResNet-101x1
ViT (Dosovitskiy et al.,[2020) ViT-L-16 (IN1K and IN21K)
Noisy Student (Xie et al., [2020) EfficientNet-L2
OpenCLIP (Ilharco et al., 2021) ViT-B-32
ViT-B-16
ViT-L-14
ViT-H-14
ViT-g-14
ViT-G-14
ConvNext-L

Table 2: Architectures and the color coding used for each model type. We adopt these from |Geirhos
et al.[|(2021)).

A.5 DETAILED RESULTS

Here, we provide additional results of our analyses. In|[Figure 9] we show confidence intervals for the
measured error consistency values of CLIP ViT-H-14 prepended with the optimal low-pass filter and
our learned filter, as well as inter-human error consistency. Evidently, we almost close the gap to
human observers.

0.50 -

0.45 A

0.40 I
0.35 1 I I

Error Consistency to Humans

0.30 1
0.25 1
0.20 T T T T
Humans ViT optimized ViT blurred ViT standard
Models

Figure 9: Error Consistency to humans. We plot the error consistency to human observers as
measured by the model-vs-human benchmark for a vanilla OpenCLIP ViT-H-14 as well as the same
model with a prepended low-pass filter (o = 2.5) and a filter learned in Fourier space. Confidence
intervals are obtained via bootstrapping as described in [Klein et al] (2025). See for a
breakdown by corruption.
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Figure 10: Breakdown of EC gains by corruption. We plot the error consistency to human
participants that every model achieves, broken down by corruption. Evidently, the EC gains are
consistently achieved across all corruptions.

A.6 LLM USAGE

The first authors of this submission use IDEs with built-in LLM support, so LLMs have been used
to help with menial coding tasks. Beyond that, the authors have used chat-GPT5-Pro to aid with
verifying code or high-level approaches to problems in ways that we deem uncontroversial, with one
exception: To err on the side of caution, the authors take no credit for [Eq. (8)]and [Eq. (9)] While
we have carefully verified that this solution is indeed correct, chat-GPT5-Pro derived this result
autonomously when prompted to do so with a detailed problem description and definition of error
consistency. The idea of searching for the pareto-frontier in the first place (which we deem the more
important intellectual contribution than the algebraic manipulation) is fully our own. LLM tools have
also been used only very sparingly in writing, not more than one would use a thesaurus or dictionary.
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