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Abstract
In collaborative tasks, autonomous agents fall short
of humans in their capability to quickly adapt to
new and unfamiliar teammates. We posit that a lim-
iting factor for zero-shot coordination is the lack
of shared task abstractions, a mechanism humans
rely on to implicitly align with teammates. To ad-
dress this gap, we introduce HA2: Hierarchical Ad
Hoc Agents, a framework leveraging hierarchical
reinforcement learning to mimic the structured ap-
proach humans use in collaboration. We evaluate
HA2 in the Overcooked environment, demonstrating
statistically significant improvement over baselines
when paired with both unseen agents and humans,
providing better resilience to environmental shifts,
and outperforming state-of-the-art methods.

1 Introduction
Successful collaboration requires individuals to efficiently
adapt to new teammates. This capability, often referred to as
ad hoc teaming [Barrett et al., 2016] or zero-shot coordina-
tion [Hu et al., 2020], is an area where humans consistently
outperform state-of-the-art autonomous agents. We argue that
this disparity arises because humans have access to shared
task abstractions [Stanton, 2006], which provide a common
foundation that facilitates seamless, implicit coordination. In
this paper, we argue that maximizing an agent’s ability to col-
laborate with humans requires providing them with shared task
structures and demonstrate the effectiveness of this approach
through a large-scale human study.

To elucidate the intricacies and challenges of zero-shot coor-
dination between humans and agents, let’s analyze a scenario
in the collaborative game “Overcooked”, in which players
serve as many soups as possible within a time limit. In Fig. 1,
the ad hoc agent is playing with an unfamiliar teammate and
must decide how to act next. One option, which we define as
the ‘individual ’ strategy, involves obtaining an onion and plac-
ing it directly into the pot. This behavior is conservative but
suboptimal: it can achieve a moderate score with any player,
but will never achieve a top score. Conversely, the agent could
opt for a ‘coordinated ’ strategy, where the blue agent passes
onions on the middle counter, hoping their teammate moves
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Figure 1: Depicted is a scenario in the Overcooked game where an
agent is working with a new teammate. The agent could choose to
play a coordinated strategy that is more efficient than an alternative
individual strategy, but runs the risk of failure if cooperation is not
achieved. Successful ad hoc teaming requires not only being able to
perform multiple strategies, but also know when to apply the different
strategies. Current SotA approaches subsume these decisions into a
single black-box; in contrast, we propose that a structured approach
to these decisions provides significant benefits.

them from the counter to a pot. This strategy is more efficient
since it eliminates the long walk around the kitchen, but it
carries risk as success hinges on both agents adhering to the
strategy. This example illustrates a key challenge in zero-shot
teaming: an agent must not only acquire multiple distinct
behaviors, it also needs to be able to quickly identify which
behavior is most suitable for its teammate’s skill level.

Recent works have tried to overcome the challenges of
rapidly adapting to new teammates by leveraging teammates of
diverse capabilities. Agents have been trained with teammates
that emulate human behavior [Carroll et al., 2019] or with
a population of teammates that varying levels of proficiency
[Strouse et al., 2021; Lucas and Allen, 2022; Lou et al., 2023;
Liang et al., 2024]. However, these approaches sidestep a
key factor for achieving genuinely collaborative interaction;
as depicted in Fig. 1, current state-of-the-art systems consol-
idate high-level strategy decisions and low-level movement
decision into one black box model. In contrast, humans are
known to leverage hierarchical frameworks for cognitive pro-
cessing [Williams, 2022], task management [Annett, 2003;



Zhou, 2013], and human-human coordination [Stanton, 2006],
and human-robot collaboration [Roncone et al., 2017; Mangin
et al., 2022]. Further, it has been proposed that structured
hierarchies are a core component of the human ability for fast
generalization [Tenenbaum et al., 2011]. In this paper, we de-
sign autonomous agents equipped with hierarchical structures
that provide shared task abstractions that enable more efficient
alignment with humans. These structures enable agents to fo-
cus on the most relevant information for the respective level of
abstraction, prevent agents from overfitting to specific training
patterns, and create task-oriented agents who may be more
understandable to humans. While the benefits of shared task
hierarchies are well-established in certain research domains
[Ichter et al., 2022; Wang et al., 2024; Annett, 2003], state-of-
the-art methods in human-agent interaction [Lou et al., 2023;
Liang et al., 2024] have yet to capitalize on this critical con-
cept. This paper addresses this significant gap and advocates
that shared task hierarchies should play a central role in human-
agent interaction. Our findings show that leveraging shared
task hierarchies can provide greater improvements compared
to increasing diversity of training agents (cf. Section 5.3).

In all, we present Hierarchical Ad Hoc Agents (HA2), a
method that leverages hierarchical reinforcement learning
(HRL) to equip an agent with both low-level, efficient maneu-
vering behaviors and high-level, team-oriented strategies for
effective synchronization with human teammates (cf. Fig. 2).
Importantly, HA2 is agnostic to the underlying training algo-
rithms, and serves as an augmentative layer that complements
state-of-the-art methods (SotA, e.g., [Strouse et al., 2021;
Carroll et al., 2019; Lou et al., 2023; Liang et al., 2024]),
leading to statistically significant improvements. Further, this
is a deeply generalizable method, as humans have demon-
strated the ability to create tasks hierarchies across a broad
range of human-human collaborative tasks [Stanton, 2006].
Through extensive evaluations, we find that HA2offers statisti-
cally significant advantages with highlighted by the following
contributions: 1) HA2 outperforms all baselines by over 18.0%
when paired with a set of unseen agents, and 2) by over 18.3%
when paired with humans. Moreover, 3) HA2 is significantly
preferred by humans, and found to be more fluent, trusted, and
cooperative than baselines. To further test the generalizability
provided by hierarchical structures, we test the agents zero-
shot on modified versions of the game layouts and show that
4) HA2 is more robust environmental changes, outperform-
ing baselines by more than 10.5x on these layouts. Code is
available at https://github.com/HIRO-group/HA2.

2 Related Works
Zero-Shot Coordination The fast-evolving landscape of deep
RL agents that interact in the real world has prompted in-
creased investigation into how they can and should interact
with humans [Dafoe et al., 2020; Mirsky et al., 2022]. A criti-
cal challenge is the development of agents capable of zero-shot
coordination with human partners [Stone et al., 2010].

Training partners Prior research identified the limitations
of agents trained via self-play—most notably, their behavioral
rigidity. To address this, work has enhanced self-play through
robust strategy discovery [Hu et al., 2020; Cui et al., 2021;

Sarkar et al., 2023], off-belief learning [Hu et al., 2021], or
training with a population of pretrained agents [McKee et al.,
2022]. Notable advances were made with the use of teammates
trained via imitation learning [Carroll et al., 2019], that vary
in ability [Strouse et al., 2021], or are specifically trained to
be diverse [Lucas and Allen, 2022; Zhao et al., 2023; Lupu
et al., 2021]. More recent work has investigated ensembling
training partners to create a richer diversity without additional
computational costs [Lou et al., 2023]. Our work is directly
compatible with this body of work by augmenting the agents
with human-aligned structures.

Intention Prediction and Planners A different line of re-
search has focused on modeling the teammate’s intention
prediction for collaborative tasks [Melo and Sardinha, 2015;
Nguyen et al., 2011]. This work often leverages online plan-
ners, which have nice properties for ad hoc agents within cer-
tain restrictions [Wu et al., 2011]. Although [Wu et al., 2021;
Pöppel et al., 2022] employ hierarchical structures in their
planners, they lack real-world applicability due to compu-
tational constraints for complex environments and have not
been tested with real human game-play. [Carroll et al., 2019]
compared their models to planning-based methods, but were
only able to use planners in two of their fivelayouts. When
playing any agent for which they did not have an accurate
model of (e.g., a human), performance dropped dramatically.
Though out-of-scope here, we believe that modeling would
compliment our proposed method.

Type-based Agents Ad hoc teaming has also been investigated
by using type-based agents that rely on a pre-generated popula-
tion of diverse teammates. The PLASTIC framework [Barrett
et al., 2016] offers two strategies: PLASTIC-Model, which
employs the most human-like teammate for action planning,
and PLASTIC-Policy, which first learns then selects the most
appropriate complementary policy for each teammate. This
latter approach is paralleled in [Li et al., 2021], albeit with a
distinct similarity metric. Finally, [Chen et al., 2020] takes
this further by subsuming teammates into world models, and
using them to learn respective policies.

Hierarchical Reinforcement Learning As breaking down
complex tasks into sub-tasks is used in many facets of life,
HRL is a well-studied area [Sutton et al., 1999; Dietterich,
2000; Dayan and Hinton, 1992; Vezhnevets et al., 2017]. HRL
has also been extended to multi-agent cooperation, either
by deploying a central manager to oversee multiple agents
[Ahilan and Dayan, 2019], or by imbuing each agent with
its own hierarchical architecture [Ghavamzadeh et al., 2006;
Makar et al., 2001]. Other work has ventured into learning
the sub-tasks [Yang et al., 2023; Wang et al., 2021]. Most
similar to our work is HiPT [Loo et al., 2023]. However, the
work differs in several critical ways: 1) Our motivation stems
from aligning structures between humans and agents; thus, our
abstracted layer between Worker and Manager is fully human
interpretable. 2) Our method consistently outperform HiPT
across all layouts. See Section 5.3 for comparative results. 3)
We show that our architecture enables greater generalizeability
to shifts in the game layouts, a feature not shown in HiPT. 4)
We show that HA2 provides significant benefits regardless of
which training teammates are used.

https://github.com/HIRO-group/HA2


3 Method
3.1 Environment
Following prior work in zero-shot human-AI teaming [Carroll
et al., 2019; Strouse et al., 2021; Aroca-Ouellette et al., 2023],
we study the use of hierarchical structures using all five layouts
in the Overcooked environment developed by [Carroll et al.,
2019]. The goal of this collaborative game is to serve as many
soups as possible in the time limit. To accomplish this, players
must perform a sequence of task from retrieving onions and
placing them in a pot to serving completed soups. Upon
service, the team is rewarded with 20 points.

At each timestep, each player can choose to move {up,
down, left, right}, interact with an object (for picking
up/placing/serving objects), or stay still. To effectively play
Overcooked, agents must both coordinate on high-level sub-
tasks and low-level movement patterns. At the sub-task level,
players should avoid redundant and inefficient sub-tasks such
as each retrieving a dish if only one soup is cooking. At a low-
level, players must be cautious to avoid collisions. This layered
complexity makes Overcooked a particularly apt testbed for
human-agent collaboration.

3.2 Sub-tasks
In human-human game-play, synchronization typically occurs
at this sub-task level. In the Overcooked environment, sub-
task identification is facilitated by the interact action, which
serves as a delineating event. Utilizing it, we enumerate all
possible outcomes resulting from the ’interact’ action to define
our set of sub-tasks: (1) Pick up onion from onion dispenser
(2) Pick up onion from counter (3) Pick up dish from dish
dispenser (4) Pick up dish from counter (5) Place onion in pot
(6) Place onion on counter (7) Get soup from pot (8) Place dish
on counter (9) Get soup from pot (10) Place soup on counter
(11) Serve soup (12) Unknown

3.3 HA2: Hierarchical Ad Hoc Agent
Inspired by the notion that cognitive and behavioral alignment
between humans and agents enhances human-AI Teaming, we
adapt FuN [Vezhnevets et al., 2017] to introduce HA2: Hierar-
chical Ad Hoc Agents. HA2 aims to approach human-agent
teaming as one would approach human-human teaming: by
developing a shared and mutually understandable task hier-
archy. HA2 (cf. Fig. 2) consists of two tiers of models: a
Worker, that focuses on the efficient execution of sub-tasks
while avoiding collisions; and a Manager that focuses on high-
level-task synchronization with its teammate. This decoupled
architecture not only facilitates collaboration by allowing the
models to focus on the information at their level of abstraction,
but it additionally streamlines both their learning processes.

The Worker is tasked with learning how to complete sub-
tasks. With reference to Section 3.2, this consists of moving
to a certain location with a specific orientation and interacting
with the environment. With this in mind, we add a layer to
the lossless observation developed by [Carroll et al., 2019]
that indicates the end locations of the current sub-task. For
example, for the sub-task ‘put onion in pot’, each non-full pot
would be marked in this layer of the observation. We then
create a modified versions of the original environment. In this

Figure 2: An overview of the HA2 architecture. Similar to human
behavior, an observation is initially processed by the Manager to
decide on the next high-level sub-task. Subsequently, the Worker
executes the necessary low-level actions to complete the sub-task.

environment, each episode is associated with a sub-task and
runs until the agent performs the interact action or times out. If
the agent completes the correct sub-task, they receive a reward
of +1, otherwise they receive a reward of -1. Certain sub-tasks
offer additional small rewards for more optimal completion
methods. For tasks involving placing objects on or picking
up object from counters, an additional reward is added for
the numbers of steps that can be saved by using that counter
compared to moving from the agent’s current location. For
placing onions in pots there is an additional reward for placing
onions in the pot that has more onions. When an episode
ends, a new sub-task is sampled from the list of possible
sub-tasks given the current state. The sub-tasks are sampled
inversely proportionally to how often that sub-task has been
used previously in training to get a more even coverage of
sub-tasks during training. Once the horizon of the original
environment is reached, the environment resets the state to the
standard start state and a new sub-task is sampled. Due to its
undefined nature, we omit the unknown sub-task at this stage.

The Manager is responsible for deciding which sub-task
should be completed next. Specifically, it is trained to output
a distribution over sub-tasks. To train the Manager, we again
create a modified version of the original environment. In
this environment, the action space is one of the 12 possible
sub-tasks. If the manager selects the undefined sub-task, the
additional observation layer passed to the worker is empty.
Unlike the base environment, not all actions are possible for
each state: for example, the agent cannot put an onion in the
pot if they are not carrying an onion. To address this, we
mask out all sub-tasks which are not possible at the current
time-step. Once the sub-task has been chosen, the associated
observation is passed to the Worker, who selects the low-level
action for that timestep. We found that having the Manager
select sub-tasks at each time-step improved sample efficiency
and overall performance given the computational budget. The
reward structure is the same as the base environment with a
reward of 20 for each soup served.



4 Experimental Design
4.1 Baselines and HA2 models
We implement two baselines representative of the existing
approaches in the field: Behavioral Cloning Play (BCP), [Car-
roll et al., 2019] and Fictitious Co-Play (FCP) [Strouse et al.,
2021]. BCP1 was designed to have an RL agent learn how
to play with the movement patterns of a human. To do this,
a behavioral cloning (BC) model is first trained from human
data, and then a RL agent is trained with the BC model as
its teammate. FCP is designed to have agents learn to play
with a wide range of teammates. It first learns a population
of self-play agents who vary in architecture and seed. It then
augments the population by using three versions of each agent:
its random initialization, roughly midway through training,
and after completing training. It then trains the FCP agent to
play with the whole population of agents.

We note that HA2 serves as an architectural enhancement
within the agent, and that the agent can be trained using any
type of teammate. To demonstrate the applicability of HA2

to existing methods, we train two versions of HA2. HA2
BCP

is trained using a BC teammate and is directly comparable
to BCP. HA2

FCP is trained using a FCP population and is
directly comparable to FCP. We train five iterations of each
of the four agents using different random seeds and report the
mean and standard error across seeds.

To train the BC models, we closely follow the implemen-
tation in [Carroll et al., 2019], using their feature encoding
as observation as well as their provided data. We make two
small changes which we found improves performance. First,
we remove all time-steps where both agents perform the stay
action. Second, in the loss, we weigh each action inversely
proportional to their frequency in the dataset. Following [Car-
roll et al., 2019], We divide the data in half, and train two
models. The better model is used as the human proxy, and the
worse model as the BC model. We note that these two agents
are the only agents where we train one model per layout.

The RL agents train one model for all layouts and use the
7x7 egocentric view developed by [Strouse et al., 2021]. How-
ever, instead of the convolutional neural network (CNN) used
in [Strouse et al., 2021], we flatten the observation and pass
it through a two-layer multilayer perceptron (MLP) as we
found it outperforms a CNN. We experiment using recurrent
networks, as in [Strouse et al., 2021], but found they also
underperform MLPs. We additionally experiment with frame
stacking, which we found outperforms a Recurrent PPO, but
underperforms the standard PPO approach.

The training population for the FCP agent and HA2
FCP

consists of eight self-play agents that vary in seed, hidden
dimension (64 and 256), and whether or not they use frame
stacking. When training the population, we found that agents
learned on the different layouts at different rates. To maintain
a good balance of skill levels for each layout, we use different
middle checkpoints for each population agent for each layout,
with the checkpoints corresponding to points closest to where
the agent reaches half the highest score for that layout.

1BCP was originally named PPOBC in [Carroll et al., 2019] and
renamed by [Strouse et al., 2021] to BCP. We use BCP in this paper
for succinctness.

Each population agent was trained for 10 million in-game
steps and the BC agents were trained for 300 epochs. HA2

and the baselines train at different rates with HA2 taking the
longest to train since it requires two predictions — one from
the manager, the other from the worker — at each timestep.
To keep a fair comparison, we train each agent for 48 hours
using the same V100 GPU. For HA2, we use 24 hours for the
Worker and 24 hours for the Manager. The 48 hours equate
to ∼119 million timesteps for BCP, ∼119 million timesteps
for FCP, and ∼66 million timesteps for HA2 (31 million for
the Worker and 35 million for the Manager). We note that all
agents reached over 98% of their top performance within the
first half of this training.

4.2 Research Questions and Experiments
RQ1: Does HA2 improve performance with unseen agents?
We hypothesize that the addition of a hierarchical structure
will help the agent’s models focus more closely to the salient
information at their respective level of abstraction. Further,
we hypothesize that it learn more general game concepts by
preventing it from over-fitting to any specific training patterns.
Since the reward is fully shared and because the agent can
impact its training teammate’s actions by influencing the obser-
vations, it follows that the agent will also maximize its actions
to promote its teammates’ high-scoring behaviors. When using
low-level actions, this can quickly lead to weird specificities
that generalize poorly—e.g. waiting to put the onion in the pot
until the teammate is in a specific spot and facing a specific
way. Enforcing a hierarchical structure should mitigates this
effect since the Worker is not rewarded by teammate behav-
iors and the Manager has no control over the movement of the
Worker.

To test this initial hypothesis, we compare the performance
of HA2

BCP and HA2
FCP to their respective baselines when

paired with three agents of varying capability: a self-play
model (fully distinct from any in the FCP population), the hu-
man proxy model, and an agent that performs random actions.
See Section 5.1 for the results of this experiment.

RQ2: Does HA2 create higher performing and more flu-
ent human-agent teams? The primary motivation for this
work is to develop agents that are effective at collaborating
with humans. Human teammates present unique challenges
to autonomous agents—prime among them the fact that hu-
mans have a significantly higher ability to adapt. In turn, this
requires agents paired with humans to not only being able to
adapt themselves, but also to make it easy for a teammate to
adapt to them. Beyond the improved generalizability we test
for, we hypothesize that HA2’s structure will make them more
task-focused and in turn more understandable to humans.

To this end, we conduct an IRB-approved online user study.
We use a within-subjects design for the study where each par-
ticipant plays with two agents on each layout. To test our
above hypothesis, we evaluate both objective performance
and subjective preferences between pairs of agents. Each par-
ticipant was first provided with an instruction page, before
completing a short tutorial that required them to complete all
the steps to serve a soup to move on. Each participant then
played an 80 second round (400 steps at 5FPS) with each agent
on one of the layouts. Between each round, the participants
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Figure 3: Average score of HA2s and the BCP and FCP baselines when paired with humans on each of the layouts. Each round was 80 seconds
long at 5 FPS (T=400 steps). Significance markers: *=p< 0.05, **=p< 0.005, ***=p< 0.0005. The red line indicates the max human-human
score achieved on that layout from [Carroll et al., 2019] normalized to 400 steps.

had to answer eight questions adapted from [Hoffman, 2019]
asking them how much they agreed or disagreed with state-
ment on a 7-point likert scale. After each pair, they were asked
to rank which of the two agents they preferred. They then
repeated this process for the other four layouts. The order of
the layouts and agent they played with first within each layout
was randomized. The chef that the agent and human con-
trolled were consistent between the two comparative agents,
but randomized between layouts and participants.

For this research question, we run two pairwise compar-
isons: HA2

BCP vs. BCP and HA2
FCP vs. FCP. We recruit

50 participants for the BCP comparison and 25 participants
for FCP comparison. We filter out any participant that did
not complete the full trial. We additionally filter out any pair
of rounds (i.e., comparing two agents on one layout) where
the human performed fewer than five subtasks in either round.
This leaves us with 47 and 24 participants respectively. We
recruit all participants from prolific.com. Participants were
compensated using a base rate of $3.00 plus a bonus incen-
tive of $0.04 for each dish served. The average participant
compensation for these two studies was $15.79/hour. This
human survey was approved an Institutional Review Board,
indicating that it presented minimal risk to participants. All
participants provided informed consent for the study. Results
for these human studies are in Section 5.2.

RQ3: Can HA2 agents generalize better to changes in
the layouts? Since the hierarchical structure we are using is
intrinsic to Overcooked at large, we posit that HA2 should not
only generalize better to different agents, but also generalize
better to shifts in the layouts. For this experiment, we create
a modified version of each layout by swapping two tiles in
each layout. Since we do not have any trained unseen agents
on these layouts, we evaluate the HA2s and their respective
baselines on these modified layouts by teaming each agent
with themselves. Section 5.4 shows results for this experiment.

BCP HA2
BCP FCP HA2

FCP

AA 199.9±8.0 278.3±6.3 210.8±40.0 293.5±7.2

CoR 79.2±4.2 133.3±3.2 138.6±2.5 147.6±0.8

CC 17.1±11.4 91.2±5.0 74.3±19.3 99.9±2.8

CrR 143.1±13.8 177.7±4.1 183.9±4.7 185.5±2.3

FC 73.1±5.6 77.6±3.5 56.7±4.1 58.4±4.8

Avg. 102.5±4.5 151.6±2.4 133.0±8.8 157.0±1.3

∼ AA 23.6±41.5 157.2±40.4 7.6±14.2 208.0±28.1

∼ CoR 11.6±11.4 152.8±7.0 22.8±6.4 143.2±12.6

∼ CC 2.0±2.5 70.0±15.8 9.2±14.5 110.0±35.5

∼ CrR 5.6±2.9 162.4±15.2 0.8±1.6 154.8±36.8

∼ FC 10.4±8.9 17.2±31.5 3.2±3.0 20.8±31.7

∼ Avg. 10.6±9.5 111.9±13.4 8.7±2.4 127.3±7.1

Table 1: Mean±SE score across 5 random training seeds for HA2s
and their respective baselines. The score of each trained agent is the
average across 10 trials of T=400 steps with each teammate. In the
original layouts, the teammates are an unseen self-play agent, the
human proxy, and a random agent. In the modified layouts (denoted
with ∼ ), the teammate is a copy of the acting agent.

4.3 Significance Testing

For each pairwise comparison, we perform t-tests to measure
significance. For the significance of team performance, we
compare the score achieved directly. For the ranking signifi-
cance, we mapped every instance where an agent was preferred
over its counterpart to a score of 1 and every other instance to
a score of 0. We then used these scores to perform the t-tests.
For the Likert questions, we mapped each agreement level to a
score between -3 (strong disagree) and 3 (strong agree), with
the neutral score being 0. We normalize all participants scores
to have a mean of 0 and then use these score for perform the
t-tests.



5 Results
5.1 Zero-shot Coordination with Unseen Agents
We first compare HA2 to the baselines—BCP and FCP—on
their ability to generalize to new unseen agents. The results
in Table 1 clearly demonstrate the improvement provided by
the hierarchical structure, with the HA2s outperforming their
respective baselines on every layout. Using HA2 afforded an
improvement of 47.9% when using BCP, and an improvement
of 18.0% when using FCP. HA2

BCP performs best on forced
coordination, and HA2

FCP performs best on all the other
layouts and overall. We discuss a possible cause of this in
Section 5.4. We additionally note that HA2 is more robust
to the random seed than the baselines, with a lower standard
error on each layout across the 5 random seeds.

5.2 Zero-shot Coordination with Humans
We now present the findings of our human study comparing
HA2 and the baselines. Results in Fig. 3 demonstrate that in
both HA2

BCP and HA2
FCP significantly outperform their

respective counterparts on the overall score achieved, and on
the asymmetric advantages, counter circuit, and forced coor-
dination layouts. We note that the scores of the baselines in
cramped room and coordination ring are closer to the maxi-
mum human-human 2 score achieved (dotted red line), leaving
less room for improvement. As such, we anticipated there
would be a smaller variability on these layouts. Table 2 fur-
ther shows that HA2 was significantly preferred over their
counterparts. In RQ3, we had hypothesized that HA2s would
improve human-agent teaming because they are easier to un-
derstand, and therefore easier to adapt to. Fig. 4 supports this
hypothesis and shows that in both comparisons of HA2 to the
baselines, humans rated the HA2s as significantly more un-
derstandable, intelligent, and cooperative. In the case of FCP
and HA2

FCP , humans also found that HA2 was significantly
more fluent, trusted, and more helpful at helping the humans
adapt to the task. These results strongly support using shared
task hierarchies for human-agent collaboration.

In line with the results with unseen agents, forced coordi-
nation is the one layout where BCP and HA2

BCP outperform
their FCP counter parts. We hypothesize that this is due to
it being the only layout where having an untrained teammate
blocks the agent’s ability to earn a reward. Since a third
of FCP’s training population are untrained agents, FCP and
HA2

FCP effectively lose a third of their training. The results
in the appendix of [Strouse et al., 2021] support this hypoth-
esis showing that forced coordination is least benefitted by
FCP. This can likely be remedied by excluding the untrained
partners in layouts where coordination is required to achieve a
non-zero score.

% Preferred p-value
HA2

BCP over BCP 57.68 0.0070
HA2

FCP over FCP 65.25 0.0000018

Table 2: Human preference between pairs of agents and their respec-
tive significance.

2From [Carroll et al., 2019]’s data normalized to 400 timesteps.
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Figure 4: Subset of results from the eight Likert-scale questions that
participants answer after playing with each agent for the comparison
between HA2 and their baselines. Bars that are more blue indicate
that people agree more strongly with the statement. Conversely, more
red indicates that people disagreed more strongly with the statement.
Significance markers: *=p< 0.05, **=p< 0.005, ***=p< 0.0005.
Legend: SD=Strongly Disagree, D=Disagree, WD=Weakly Disagree,
N=Neutral, WA=Weakly Agree, A=Agree, SA=Strongly Agree.

Interestingly, when analyzing Figs. 3 and 4, we noticed
that even if their overall scores were generally worse, BCP
and HA2

BCP were better perceived on every subjective met-
ric relative to their FCP and HA2

FCP . This does pose the
question of whether utilizing human behavior in training does
provide a more human-like game-play, and in turn a more
fluid experience for humans, which is supported by the results
in [Liang et al., 2024]. We leave a more thorough investiga-
tion of this question, as well as the relationship between team
performance and human perception, to future work.

5.3 Comparison to State-of-the-Art
In Table 3, we compare HA2 to results published in other
peer-reviewed work that uses the same overcooked environ-
ment. As each method employs a range of design decisions,



Training Steps W. Proxy W. Humans
FCP 1.0e9 157 119
MEP 5.5e7* 98 98
TrajeDi 5.5e7* 76 87
PECAN NR 105 134
HiPT 1.0e9 134 131
GAMMA 1.5e8 132 NR
HA2

FCP 6.6e7 157 165

Table 3: Results comparing HA2 to other published results. All
results are taken from the respective works and adjusted to 400
timesteps, except for TrajeDi’s results which are taken from [Zhao
et al., 2023]. NR=not reported. * indicates that separate agents are
trained for each layout and that the cumulative step count across
layouts is presented. FCP [Strouse et al., 2021], MEP [Zhao et al.,
2023], TrajeDi [Lupu et al., 2021], PECAN [Lou et al., 2023], HiPT
[Loo et al., 2023], GAMMA [Liang et al., 2024],

this table should be viewed as a comparison of systems. No-
tably, when paired with a human proxy, HA2 is tied as the
best performing agent, whereas when HA2 is paired with real
humans, HA2 outperforms all other work by more than 23%,
showcasing HA2’s adeptness at human collaboration. This is
further emphasized when comparing to the most similar work
of HiPT. HA2 outperforms HiPT by 17% when paired with
a human proxy, and by 26% when paired with real humans
while using 15.1 times fewer timesteps (1 billion timesteps
for HiPT vs ∼66 million timesteps for HA2). This highlights
HA2’s greatest distinction from HiPT: using human-aligned
structures improves the training efficiency and performance
of autonomous agents that collaborate with humans. Lastly,
we compare HA2 to the most recent SotA method: GAMMA
[Liang et al., 2024]. Even with a simpler training population,
HA2 outperforms GAMMA by 25% with a proxy human. Fur-
ther, when paired with real humans on counter circuit, which
is the only original layout on which they provide results with
real humans, HA2 outperforms the best version of GAMMA
with a score of 110 compared to 91. In all, we show that
shared task structures are a critical component when develop-
ing collaborative agents.

5.4 Generalization to Shifts in Layouts
We report our results on the generalization ability of HA2

and the baselines on the altered layouts. The latter half of
Table 1 shows that BCP and FCP overfit to the specific layouts
and their performance drops dramatically when the layouts
are changed. In contrast, the HA2s are able to maintain a
reasonable performance, and are over 10.5x better on the
modified layouts. Together with the results in Section 5.1,
these results provide strong support for our hypothesis that
the hierarchical structure enables the model to learn more
generalizable concepts about collaboration and game-play.

6 Discussion
6.1 Summary
This paper offers a comprehensive investigation into the ef-
ficacy of leveraging shared task abstractions for enhancing

human-agent collaborative systems. The experiments we con-
ducted demonstrate that our Hierarchical Ad Hoc Agent (HA2)
significantly outpaces existing baselines in both quantitative
and qualitative assessments. In interactions with human par-
ticipants, HA2 created higher performing teams and was per-
ceived by the human as more fluent, more understandable,
more cooperative, and more intelligent. Importantly, HA2 dis-
plays robust generalization capabilities not only across diverse
agent types but also in response to variations in environmental
layouts—outperforming baseline models substantially in these
regards. Finally, we highlight how HA2, even when trained
using simpler training partners, outperforms all existing meth-
ods when paired with real humans. These findings collectively
highlight the utility of human-interpretable hierarchical struc-
tures in designing AI agents that are both resilient to changing
conditions and intuitively collaborative on human terms. We
posit that these advancements form a crucial building block
toward more performant and efficient human-AI teams.

6.2 Limitations
We now discuss the limitations of our proposed method. The
hierarchical structure in HA2 necessitates additional engineer-
ing effort, both in the development of the structure, and the
adjustments to the environment required to train the different
modules. We note that the method in which to break-down
large tasks into sub-tasks to create a hierarchy is not the fo-
cus of this work, and has been extensively explored in many
domains including human factors research [Annett, 2003;
Stanton, 2006], robotics [Ichter et al., 2022], and single-agent
long-horizon tasks [Wang et al., 2024]. Rather, the focus
of this work is demonstrating the importance of shared task
hierarchies in human-agent collaboration.

6.3 Future Work
We envision the following avenues for future work:

First, to incorporate explicit mental models of teammate
sub-tasks into agent planning, similar to [Melo and Sardinha,
2015; Nguyen et al., 2011]. We envision that these mental
models will synergize with the abstracted manager sub-tasks
allowing for more efficient computation of these models, and
in turn providing the manager with an efficient understanding
of human team members’ capabilities and intentions.

Second, we believe HA2 shows promise as a framework
to investigate human-agent communication in collaborative
games; it is much easier to communicate at sub-task-level than
at action-level.

Ethical Statement
We have shown that leveraging hierarchical structures can
yield agents that collaborate more fluently and coherently with
humans, potentially fostering greater trust and operational effi-
ciency in human-AI teams. However, it’s crucial to recognize
that, despite its improved transparency, the HA2 paradigm
is still underpinned by neural networks, which remain inher-
ently opaque. This opacity could induce misplaced trust in
the system’s capabilities or intentions. Additionally, the in-
creased controllability of the agent through sub-task biasing
introduces the potential for misuse, particularly by malicious
actors aiming to compromise human safety.
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Miguel Aroca-Ouellette, Upasana Biswas, Katharina Kann,
and Alessandro Roncone. Hierarchical reinforcement
learning for ad hoc teaming. In Proceedings of the 2023
International Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’23, page 2337–2339, 2023.

[Barrett et al., 2016] Samuel Barrett, Avi Rosenfeld, Sarit
Kraus, and Peter Stone. Making friends on the fly: Cooper-
ating with new teammates. Artificial Intelligence, October
2016.

[Carroll et al., 2019] Micah Carroll, Rohin Shah, Mark K Ho,
Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca Dra-
gan. On the utility of learning about humans for human-ai
coordination. In H. Wallach, H. Larochelle, A. Beygelzimer,
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