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ABSTRACT

Large-scale Mixed-Integer Programming (MIP) problems have been efficiently
addressed using Machine Learning (ML)-based frameworks to obtain high-quality
solutions. When addressing real-world MIP problems, ML-based frameworks of-
ten face challenges in acquiring sufficient isomorphic instances for practical train-
ing. This underscores the need for generators that can autonomously produce iso-
morphic MIP problems from existing instances. This paper introduces MIPGen,
a novel generative framework for autonomous MIP instance generation. Our key
contribution lies in the three-stage problem generation in MIPGen: 1) Instances
Classification, which learns and clusters the embeddings of a bipartite graph repre-
sentation of the problem; 2) Node Splitting and Merging, which splits the bipartite
graph and tries to reconstruct it; 3) Scalable Problem Construction, which con-
catenates tree structures to get larger problems. We demonstrate that the instances
generated by MIPGen are highly similar to the original problem instances and can
effectively enhance the solution effect of the ML-based framework. Further ex-
periments show that the scaled-up generated instances still retain the problem’s
structural properties, validating the proposed framework’s effectiveness.

1 INTRODUCTION

Mixed-integer linear programming (MIP) is an extension of linear programming that addresses
problems where at least one variable assumes a discrete integer value instead of a continuous one
(Wolsey, 2007). For large-scale MIP problems, leveraging Machine Learning (ML)-based frame-
works to find high-quality solutions has become increasingly popular due to its capacity to strike a
balance between solution time and solution quality compared with traditional solution methods (Nair
et al., 2020; Ye et al., 2023). These frameworks are usually trained on the same type of problems and
can outperform traditional solvers on these types of problems. A significant challenge faced by these
ML-based frameworks is the heavy reliance on a large number of isomorphic problem instances for
training. Nevertheless, it’s worth noting that numerous datasets (Koch et al., 2011; Gleixner et al.,
2021) suffer from a shortage of such isomorphic instances. This underscores the requirement for a
generator capable of autonomously producing isomorphic MIP instances from existing instances.

Current generators used to generate problem instances from existing instances can be roughly di-
vided into two categories, mathematically constructed and ML-based approaches. Traditional meth-
ods for problem generation typically involve a manual analysis of dataset structures and mathemati-
cal formulations to create new isomorphic instances (Eichfelder et al., 2023). This approach heavily
relies on manual design and often fails to accommodate a diverse range of problems. In contrast,
ML-based approaches, especially graph neural network (GCN)-based methods have gained popu-
larity for generating imitative instances. For instance, G2SAT (You et al., 2019) utilizes GCNs to
generate new isomorphic instances of the Boolean Satisfiability Problem (SAT), marking a signif-
icant advancement in the domain. Nevertheless, these methods are limited to coefficient-free SAT
problems and struggle to generate intricate MIP instances with specific coefficients and constraints.

To address the limitations of current generative methods and autonomously produce high-quality
isomorphic MIP instances, this paper introduces MIPGen (Mixed Integer Programming Instance
Generator), a deep generative framework designed for large-scale MIP instances. Inspired by extant
generation strategies (You et al., 2019; Steever et al., 2022), the key points of MIPGen lies in three
components: Instances Classification, Node Splitting and Merging, and Scalable Problem Con-
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struction. When classifying instances, MIPGen first adopts a bipartite graph representation (BGR)
combined with a random-feat strategy (Chen et al., 2022) to achieve an efficient and lossless feature
embedding. Then, based on the BGR, MIPGen integrates a clustering approach to distinguish be-
tween different types of problems so that models can be trained separately for each type of problem.
Subsequently, utilizing the isomorphic dataset obtained from instance classification, MIPGen inte-
grates a discriminator model with GCN and MLP to split and merge nodes. In particular, it initially
decomposes the original bipartite graph into tree-like structures, simultaneously collecting training
data throughout the process. Subsequently, MIPGen utilizes the discriminator model to predict the
graph structure of MIP instances. Furthermore, MIPGen scales problems by concatenating various
tree structures of the same category to construct scalable problems.

Experimental results on three standard MIP demonstrate that MIPGen can proficiently generate
MIP problems that resemble input training problems. By producing high-fidelity data imitations,
it addresses the challenge of ML-based frameworks (Ye et al., 2023) depending on a multitude of
isomorphic problem instances. This paper’s contributions can be summarized as follows:

1. To the best of our knowledge, this is the first paper to propose a deep generative model
designed to generate isomorphic MIP instances, laying the foundation for introducing large
model pre-training to combinatorial optimization problems.

2. We introduce a method based on VGAE and EM algorithm for precise and efficient instance
classification using a bipartite graph representation.

3. We automate node splitting operations to attain a simplified tree-based representation of
the original problem. Moreover, we leverage a merging decision-maker grounded in GCN
with half-convolutions to create isomorphic scalable MIP problems.

4. We show that the instances generated by MIPGen are highly similar to the original problem
instances and can enhance the solution effect of the ML-based framework. The scaled-up
generated instances still retain the problem’s structural properties with improved solving
difficulty.

2 PRELIMINARIES

Bipartite Graph Representation. As a lossless representation for MIP instances (Gasse et al.,
2019), Bipartite Graph Representation (BGR) seamlessly transforms MIP instances into bipar-
tite graphs suitable for GCN inputs as illustrated in Figure 1. The bipartite structure consists
of n decision variable nodes on the left and m linear constraint nodes on the right. An edge
(i, j) with weight aij denotes the participation of the i-th decision variable in the j-th constraint.
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Figure 1: A bipartite graph of a MIP.

Traditional feature selection in such representa-
tions only relies on types and coefficients, such
as variable type and its coefficient in the objec-
tive function, and constraint types. However,
some studies identify this may lead to a sig-
nificant decline in the embedding ability with
this approach, especially for “foldable” MIP in-
stances (Chen et al., 2022). To improve this, the
random feat strategy is incorporated into fea-
ture selection (Chen et al., 2022).

Graph Convolutional Network. Graph Convolutional Networks (GCNs) (Zhou et al., 2020) are
frequently employed in BGR (Li et al., 2021; Cao et al., 2021). A typical GCN is defined as Equation
1, where H(l) is the node feature matrix at layer l; A and D are the adjacency matrix and the degree
matrix of the graph respectively; W (l) is the weight matrix for layer l; and σ is an activation function.

H(l+1) = σ
(
D− 1

2AD− 1
2H(l)W (l)

)
. (1)

When processing data between two distinct entities, bipartite-based GCNs efficiently encode re-
lationships which minimizes redundancy. By focusing on one half of the bipartite graph, half-
convolution GCNs optimize computational efficiency, ensuring separate node set features are dis-
tinctively processed (Gasse et al., 2019; Yoon, 2022).
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Variational Graph Auto-Encoder. Variational Graph Auto-Encoder (VGAE) addresses graph-
structured data (Kipf & Welling, 2016), which is widely used in various graph analysis tasks such as
node clustering (Mrabah et al.), community detection (Salha-Galvan et al., 2022), and link prediction
(Bose et al., 2019). Formally, the loss calculation process of VGAE is defined as Equation 2, where
L is the overall loss function to be minimized, combining the reconstruction loss and the Kullback-
Leibler (KL) divergence between the approximate posterior and the prior.

L = −
∑
i,j

(
Aij log(Âij) + (1−Aij) log(1− Âij)

)
+DKL (qϕ(Z|X)∥p(Z)) . (2)

VGAE employs a GCN-based encoder to project the graph into a latent space, followed by a decoder
that reconstructs the graph from this compressed representation. The variational aspect ensures that
the model learns a probabilistic mapping, capturing uncertainties and providing a regularized latent
space representation.

Specific Graph Structure Generation. The task of generating specific graph structures has grown
in prominence with the rising significance of graph-based learning and applications. Some represen-
tative work includes Recurrent Neural Network (RNN) based framework (You et al., 2018), Genera-
tive Adversarial Network (GAN) based generation model (Wang et al., 2018) and transformer-based
approach (Yun et al., 2019). As the deep generative framework to generate SAT formulas, G2SAT
(You et al., 2019) utilizes Latent Convolutional Graphs to represent these SAT formulas and reframe
SAT formula creation as a bipartite graph generation issue. The pivotal breakthrough of G2SAT
is the identification of a process for generating any bipartite graph by starting with a set of trees
and then applying sequential node merging operations on nodes from one of the two partitions. As
nodes are merged, the initial trees combine, resulting in increasingly complex bipartite structures.
The researchers also introduce the concept of node splitting as the inverse of node merging.

3 METHODOLOGY

This section introduces the proposed MIPGen (Mixed Integer Programming Instance Generator).
Our generator consists of three key stages: instance classification (Sec. 3.1), Node Splitting and
Merging (Sec. 3.2), and Scalable Problem Construction (Sec. 3.3). The whole framework of MIP-
Gen is comprehensively illustrated in Figure 2, where the MIPGen pipelines are separated into train-
ing steps and testing steps. Training steps are active only during classifying the input MIP problem
dataset and training the discriminator model to reconstruct the graph structure. Testing steps are
active during scaling and generating MIP instances, incorporating the evaluation of generated in-
stances.

3.1 INSTANCES CLASSIFICATION

To initiate the process with a set of MIP instances, the primary objective of MIPGen is to classify
and group these instances into distinct categories. Such categorization is crucial as it forms the
basis for the subsequent learning and generation phases, each tailored to a specific problem type.
To achieve this, MIPGen represents problems as bipartite graphs, as described in Figure 2. Sub-
sequently, it employs a Variational Graph Auto-Encoder (VGAE) to extract embeddings of both
decision variables and constraints. This process yields node embeddings for each bipartite graph.
Finally, MIPGen leverages the Expectation-Maximization (EM) algorithm, working in tandem with
a Gaussian Mixture Model to segregate the various MIP instances into distinct clusters.

Formal Representation of Existing Instances. In addition to leveraging traditional bipartite graph
representations, our MIPGen framework incorporates a novel random feat-based method to enhance
its expressive power (Chen et al., 2022). Formally, let’s define hi

x, hj
y , and hi,j as the VGAE model’s

input feature vectors for the i-th constraint node, j-th variable node, and edge (i, j), respectively.
Similarly, gix, gjy and gi,j serve as the feature representations for these nodes and edges in the context
of the discriminator model. They are formally defined as follows:

hi
x = (Ai, ξ), h

i
x = (Bj , ξ), g

i
x = (Ai, d, ui, ξ), g

j
y = (Bj , d, vj , ξ),

hi,j = gi,j = (aij),
(3)

where Ai and Bj are one-hot vectors of length 3, which indicate the type of the constraint (≤,=,≥)
and the type of the variable (integer, continuous, binary), respectively. ui and vj denote the right-
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Figure 2: An overview of MIPGen. 1) The orange line signifies components that are active only
during training. The process begins with obtaining the dataset that needs to be classified. MIPGen
converts MIP problems into bipartite graph representations, utilizing the Gaussian Mixture Model
for clustering. For problems of the same type, MIPGen employs the node splitting method to trans-
form them into tree structures. This step also includes collecting training data for the discriminator
model. In the final step, MIPGen trains the discriminator model and saves the tree structures to a
template set for future use. 2) The blue line represents components that are active only during test-
ing. Initially, MIPGen concatenates different tree structures to build a more comprehensive problem
template. It then uses the discriminator model iteratively to merge nodes, leading to a complex bi-
partite graph structure. In the concluding phase, MIPGen reverts the bipartite graphs back to MIP
problems and evaluates them.

hand side (RHS) of the i-th constraint and the coefficient of the j-th decision variable in the objective
function, respectively. d captures the node degree within the bipartite graph. Lastly, ξ ∼ U(0, 1)
represents a random number following a uniform distribution between 0 and 1.

Train VGAE to Learn Feature Representation. With the BGR of MIP instances, VGAE is em-
ployed to generate a vector representation for each node within the bipartite graph, which captures
essential structural and attribute-based information, facilitating the identification and categorization
of MIP instances. To obtain a holistic feature representation for the entire graph, the individual
node vectors are averaged to transform the intricate, discrete structure of a bipartite graph into a
continuous, differentiable form suitable for machine learning models.

To be more specific, the encoder of VGAE in MIPGen comprises a three-layer GCN, tasked with
mapping each node to a latent space. The decoder uses the inner product of the node vectors in this
latent space to reconstruct the graph. Formally, the VGAE model is defined as follows.

Encoder: z = fθ(x,A) = GCN3-layer(x,A), (4)

Decoder: Â = σ(zzT ), (5)

where z is the latent vector representation for each node, x denotes the input feature vectors (as
described in the previous section), and A is the adjacency matrix of the bipartite graph. fθ repre-
sents the parameterized function of the encoder with parameters θ, and σ is the sigmoid activation
function. The objective function for training the VGAE combines the reconstruction loss and the
KL-divergence, facilitating both accurate graph reconstruction and efficient latent space mapping.

Expectation–Maximization Algorithm with Gaussian Mixture Model. Given the graph feature
vectors from the VGAE encoder, MIPGen uses the Expectation–Maximization (EM) Algorithm
combined with a Gaussian Mixture Model (GMM) to distinguish various MIP problem types. The
input consists of the feature vectors corresponding to each bipartite graph, which encapsulates the
unique characteristics of the corresponding MIP instances. By clustering these feature vectors using
the EM algorithm with a GMM, MIPGen effectively groups similar MIP problems together, thereby
achieving a categorization of the entire dataset of MIP problem instances.

The EM algorithm iteratively optimizes the parameters of the Gaussian mixture distributions to
maximize the likelihood of the observed feature vectors. Specifically, it consists of an Expectation
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Figure 3: The Node Splitting and Node Merging process. Node Splitting converts a bipartite graph
to tree structures and Node Merging converts tree structures to the bipartite graph.

(E) step and a Maximization (M) step, formalized as follows.

E-step: Q(θ, θ(t)) =

N∑
i=1

K∑
k=1

wik log
πkN (xi|µk,Σk)

wik

M-step: θ(t+1) = argmax
θ

Q(θ, θ(t))

(6)

Here, θ = {πk, µk,Σk}Kk=1 are the parameters to be estimated, wik is the posterior probability that
observation xi belongs to cluster k, πk is the mixing coefficient, µk is the mean, and Σk is the
covariance matrix for the k-th Gaussian component. N is the number of feature vectors, and K is
the number of clusters. Through iterative refinement, the algorithm converges to a local maximum
of the likelihood function, providing a robust clustering solution.

3.2 NODE SPLITTING AND MERGING

In this stage, MIPGen focuses on learning the distribution over the BGR of MIP problems. Given the
complex structure of bipartite graphs of MIPs, generating the entire graph in one step is unfeasible.
Inspired by G2SAT (You et al., 2019), we adopt a step-by-step learning and generation approach.
Specifically, we split the original bipartite graph into tree structures and employ the discriminator
model to predict which pair of nodes should be merged to reconstruct the graph structure. Let n
be the number of nodes in the bipartite graph, and m the number of edges. If MIPGen performs x
node splitting and merging operations to generate a new problem, the reconstruction percentage is
defined as x

m−n .

Node Splitting. As shown in Algorithm 1, MIPGen first transforms the original bipartite graph into
a tree-like structure, and then identifies a node x in graph G with the highest degree and splits it
into two new nodes, p and q. In particular, if node x has a degree d in G, the new node p will
inherit d− 1 edges from x (selected randomly) and node q will inherit a single edge from x, which
generates a new graph G′. For each graph Gi, let xi be the node to be split, Node Splitting generates
a new graph Gi−1 and two new nodes pi and qi.Then another node ri is selected from the same
partition of G where pi and qi belong to but is distinct from both. This process generates training
data in the form of positive examples (Gi−1, pi, qi) and negative examples (Gi−1, pi, ri). The tuples
(Gi−1, pi, qi, ri) are stored in a training dataset D for subsequent usage.

MIPGen needs to maintain the node feature information mentioned in Section 3.1, gix =
(Ai, d, ui, ξ) and gjy = (Bj , d, vj , ξ). To achieve this goal, the one-hot vectors Ai, Bj and the coef-
ficients ui, vj , which represent the variables in the optimization objectives and constraint right-hand
sides (RHS), remain the same as before splitting. In addition, the random feature ξ is regenerated,
and the degree d is updated as dpi

= dxi
− 1 and dqi = 1 since pi inherits dxi

− 1 edges from the
split node xi, and qi only gets one newly created edge.

Discriminator Model Design. The discriminator employs a half-convolution GCN optimized for
bipartite graphs, augmented with a Multilayer Perceptron (MLP). This model begins with a three-
layer semi-convolutional GCN that operates with identical parameters across layers. This GCN
architecture is responsible for obtaining the node embeddings for each node in the bipartite graph.
Then the model assesses the pair of nodes under consideration for merging. The embeddings of
these two nodes are concatenated and fed into an MLP, which then outputs a value between 0 and
1—indicative of the confidence level for merging the nodes. For the training data mentioned earlier,
the confidence score for positive examples should ideally be predicted as 1, whereas for the negative
examples, it should be 0. The loss function used in the model is Binary Cross-Entropy Loss.
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Algorithm 1 Node Splitting Process

Input: Bipartite Graph G, Graph
Template Set T
Output: Graph Template Set T

1: n← |EG| − |VG|, Gn ← G
2: varcnt← 0, concnt← 0
3: for i = n, n− 1, . . . , 1 do
4: u← max{degreex|x ∈ VGi

}
5: if u is variable node then
6: varcnt← varcnt + 1
7: else
8: concnt← concnt + 1
9: end if

10: (u+, v+, Gi−1)← Split(u,Gi)
11: Maintain vector of u+ and v+

12: v− ∼ VGi−1
− {u+, v+}

13: Train with (u+, v+, v−, Gi−1).
14: end for
15: T ← T ∪ {G0, n, varcnt, concnt}

Algorithm 2 Node Merging Process

Input: Graph Template Set T , hyperparameter K,
discriminator D
Output: Generated Bipartite Graph G

1: {G0, n, varcnt, concnt} ∼ T
2: for i = 0, 1, . . . , n− 1 do
3: p ∼ U(0, 1),S ← ∅
4: if p < varcnt

varcnt+concnt then
5: for j = 0, 1, . . . ,K − 1 do
6: (u, v) ∼ {(x, y)|x ∈ VGvar

i
, y ∈ VGvar

i
\x}

7: S ← S ∪ (u, v)
8: end for
9: else

10: for j = 0, 1, . . . ,K − 1 do
11: (u, v) ∼ {(x, y)|x ∈ VGcon

i
, y ∈ VGcon

i
\x}

12: S ← S ∪ (u, v)
13: end for
14: end if
15: (u, v)← max{D(Gi, x, y)|(x, y) ∈ S}
16: Gi+1 ← NodeMerge(Gi, u, v)
17: end for

Node Merging. Node Merging in MIPGen transforms tree structures back into complex bipartite
graphs, as shown in Algorithm 2. Specifically, consider an input graph H0, through n iterations of
node merging operations, the algorithm yields Hn. For each graph Hi, MIPGen randomly samples
K pairs of nodes {(uk, vk)}Kk=1 and employs the above discriminator model to parallelly compute
the likelihood of merging each pair in the context of Hi. Then, it selects the node pair (uo, vo) with
the highest merging probability to form the subsequent graph Hi+1.

To maintain the bipartite nature of the resulting graph, it is essential that the nodes in each potential
pair belong to the same half of the original bipartite graph. The selection probability for merging
nodes from either the variable or constraint partition is determined based on their respective splitting
frequencies x and y during the Node Splitting phase. Specifically, the probability of merging a
decision-variable node is x

x+y , and that for a constraint-equation node is y
x+y .

Converse to the Node Splitting stage, for constraint nodes gix = (Ai, d, ui, ξ) and decision-variable
nodes gjy = (Bj , d, vj , ξ), the feature set Ai or Bj of the new merged node is randomly selected
from one of the two nodes being merged. The degree of the new node is the sum of the degrees
of the two original nodes. The coefficients ui and vj relating to optimization targets and constraint
Right-Hand Sides (RHS) are averaged, and a new random feature ξ is generated.

3.3 SCALABLE PROBLEM CONSTRUCTION

By utilizing Node Splitting and Merging, it becomes feasible to control the size of the MIP problem
since the number of iteration rounds in the Node Merging process serves as a hyperparameter. How-
ever, the number of edges is limited, making it challenging to generate more complicated MIP prob-
lems. To overcome this limitation, MIPGen exploits the characteristics of trees to create larger-scale
problems of the same category. In particular, we initially collect tree structures acquired through
node splitting across multiple analogous problems. Then, the GCN component in the discriminator
previously trained is employed to calculate node embeddings for each node. When combining two
trees, nodes with the highest similarity are merged as a pair. This process is iterated, along with the
node merging, to generate larger-scale problems of the same category.

Node Embeddings Computation. During the problem scaling phase, MIPGen initially utilizes the
GCN component of the discriminator model for inference. This enables the computation of node
embeddings for each node in the two trees marked for merging. However, due to computational
constraints, it’s impractical to compare the node embeddings of every node between the two trees.
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To address this, a hyperparameter E is introduced to select E nodes from each tree for comparison.
Importantly, the selected nodes must belong to the same side of the bipartite graph to ensure com-
patibility for merging. In addition, the classical cosine similarity metric is employed to compare the
embeddings. With the computational complexity being O(E2), this algorithm conducts pairwise
comparisons among the embeddings of all selected nodes. Subsequently, it identifies the pair with
the highest similarity score as the optimal candidates for merging.

Tree Merging. The key idea of tree merging is to amalgamate multiple trees into a single and larger
tree, each derived from the same type of MIP problem instances and subjected to node-splitting
processes. This consolidated tree is then subjected to node merging to generate a more complex
problem instance than those used during training. Given a set of trees denoted as T , the process
begins by randomly sampling a base tree T0 from T . Subsequent operations involve iteratively
merging Ti−1 with a randomly selected tree t from T , resulting in a new tree Ti. Finally, Tm

becomes the enlarged tree after several iterations.

Merging two trees involves calculating node embeddings to identify the pair of nodes with the high-
est similarity for merging, similar to the node merging process. However, in addition to maintaining
the node feature information of the newly merged nodes, similar to node merging, the process also
keeps track of the number of node-splitting occurrences associated with the constraint equation
nodes and decision variable nodes within the tree. The node-splitting metadata for each node in
the newly formed tree is computed by summing the corresponding metadata from the original trees
being merged. This ensures that the aggregated tree retains critical information from its constituent
trees, facilitating more accurate and scalable problem-solving.

4 EXPERIMENTS

We evaluate the performance of MIPGen on three combinatorial optimization benchmark problems,
including Maximum Independent Set (MIS) (Tarjan & Trojanowski, 1977), Combinatorial Auction
(CA) (De Vries & Vohra, 2003), and Minimum Vertex Cover (MVC) (Dinur & Safra, 2005). To
comprehensively validate the effectiveness of our proposed framework, we conduct the following
two aspects of experiments. First, we study the performance of the generation of MIPGen with the
same scale problem generation, assessing its ability to preserve MIP properties, its role as a data
augmentation tool, and its impact on the optimization process (Sec. 4.1). Furthermore, we study the
scalability of MIPGen to evaluate its remarkable imitation and generation capabilities (Sec. 4.2).

In the following experiments, we compare the generation results of MIPGen with two baselines. The
first baseline, referred to as ‘Bowly’(Bowly et al., 2020), is a heuristic MIP instance generator. It
can generate feasible bounded MIP problems after specifying certain statistical feature distributions.
In our experiments, we set its all controllable parameter to match the corresponding features of the
MIP instances in our training dataset. The second baseline, named ‘Random’, is derived by random-
izing the output of the discriminator in the Node Merging step of MIPGen, and the reconstruction
percentage is set to 100%.

4.1 OVERALL PERFORMANCE OF GENERATION

To study the MIPGen performance of generation, we initially examine whether the generated MIP
instances preserve the properties of the input training MIP instances through an analysis of solver
performance (Sec. 4.1.1) and graph statistics (Sec. 4.1.2). Subsequently, we integrate MIPGen
into the ML-based solver framework (Ye et al., 2023) to study its potential as a data augmentation
technique (Section 4.1.3). This evaluation examines the quality of the generated MIP instances in
predicting feasible solutions and their capacity to improve optimization results.

4.1.1 MIP SOLVER PERFORMANCE

To confirm that MIPGen can produce MIP instances that closely resemble the input MIP instances,
we employ SCIP (Bestuzheva et al., 2021), a state-of-the-art MIP solver, to solve and compare the
newly generated MIP problems with those from the training dataset. Solver performance results
are presented in Table 1. The results highlight a high degree of similarity between the input MIP
problems and the generated MIP problems. Our experimental findings indicate that the problems
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Table 1: Comparison of the optimality gap obtained within a fixed wall time of 1200s between
the generated MIP instances and the input training instance. The percentage represents how much
of the graph structure is reconstructed using MIPGen, and the interval represents the result of 20
generated instances by specifying different random seeds. The percentage after MIPGen denoted
reconstruction percentage.

Optimality Gap MIS CA MVC
Training Problem 9.64% 9.52% 10.04%

MIPGen-25% 7.06% ∼ 9.93% 9.30% ∼ 13.12% 7.06% ∼ 9.56%
MIPGen-50% 7.78% ∼ 11.31% 9.76% ∼ 12.69% 5.26% ∼ 7.81%
MIPGen-100% 4.64% ∼ 7.33% 6.82% ∼ 9.53% solved in 258.78s ∼ 0.49%

Random solved in 1.29 ∼ 150.05s solved in 3.38 ∼ 126.51s solved in 1.31 ∼ 35.42s
Bowly solved in 0.14 ∼ 0.41s solved in 0.09 ∼ 10.49s solved in 0.13 ∼ 2.44s

Table 2: Comparison of the similarity metric between the generated MIP instances and the input
training instance. Higher is better.

MIS CA MVC
MIPGen 0.820 0.830 0.824
Random 0.578 0.559 0.572
Bowly 0.631 0.632 0.644

generated by MIPGen exhibit a level of solving complexity similar to that of the original problems,
contrasting with the relatively trivial problems generated by the Random and Bowly methods. It
is interesting to observe that as the reconstruction percentage increases, the solving difficulty of
generated problems has a downward trend. For more experimental details, we refer to Appendix C.

4.1.2 GRAPH STATISTICS

To compare the similarity between the original Mixed Integer Programming (MIP) problems and the
newly generated MIP problems, we designed a comprehensive evaluation metric for assessment. We
compared the results generated by MIPGen with those produced by two baseline methods: Random
and Bowly. The experimental results indicate that MIPGen can generate MIP problems highly
similar to the original ones. For a detailed explanation of the evaluation metrics, please refer to
the Appendix D.

4.1.3 DATA AUGMENTATION FOR ML-BASED FRAMEWORK

To validate MIPGen’s efficiency in addressing the challenge of ML-based frameworks that rely on a
substantial number of instances of isomorphic problems for training data, we make comparisons be-
tween only using the training dataset and using both the training dataset and the 20 newly generated
MIP problems (use model trained by the input dataset) as training data for the ML-based frame-
work. The evaluation focuses on the framework’s solving performance for MIP problems and is
shown in Table 3. The results indicate that the MIP problems newly generated by MIPGen enhance
the predictive ability and solution effectiveness of the ML-based framework.

4.2 SCALABILITY OF MIPGEN

To further study MIPGen’s capability to generate scalable MIP instances, we evaluate the large-
scale problems derived through extrapolation from the small-scale training dataset. All the results
are shown in Table 4. We can see that the solving performance, measured by SCIP, suggests that the
generated scaling instances closely match those of the large-scale training dataset. This confirms the
remarkable imitation and generation capabilities of MIPGen.

We also study the performance of MIPGen for data augmentation for generated scaled-up problems
(MVC). The baseline method uses a directly constructed single problem as the training data of the
ML-based framework. As a comparison, a single generated 8-fold enlarged problem is used as
the training data. All the results are shown in Table 7. The results verify that generated scalable
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Table 3: Comparison of the final optimized solution within a fixed time trained by generated MIP
instances and the training dataset. MIPGen-25% means using MIPGen to reconstruct the 25% graph
structure of the input problem. The scale-limited versions of SCIP which limit the variable propor-
tion α is set to 30%, the time limit of the solver framework is 50s.

MIS CA MVC
Original Augmented Original Augmented Original Augmented

MIPGen-25%

2092.99

2122.68 ↑
1452.95

1460.78 ↑
2918.80

2870.89 ↑
MIPGen-50% 2141.37 ↑ 1503.47 ↑ 2837.94 ↑

MIPGen-100% 2080.6 1444.40 2911.74 ↑
Bowly 1797.2 1069.7 3008.7

Table 4: Comparison of the optimality gap obtained within a fixed time between the scalable gener-
ated MIP problems and the training dataset.

Variable Num Constraint Num Edge Num Gap
MIS-input 2500 7500 15000 8.09%

MIS-1x 2500 7500 15000 3.30%
MIS-2x 5000 15000 29992 4.41%
MIS-4x 9997 30000 59999 24.86%
MIS-8x 19994 60000 120000 25.89%

CA-input 2500 5000 15000 9.81%
CA-1x 2500 50000 14999 6.25%
CA-2x 4999 10000 29996 8.70%
CA-4x 9997 20000 59993 31.83%
CA-8x 19993 40000 119993 233.59%

MVC-input 2500 7500 15000 5.58%
MVC-1x 2500 7500 14997 3.20%
MVC-2x 4999 15000 29998 5.68%
MVC-4x 9998 30000 59998 22.48%
MVC-8x 19993 60000 119999 22.54%

instances also greatly imitate input training instances. Also, the generated instances used for data
augmentation confirm that MIPGen helps with the data shortage of ML-based solving frameworks.

Table 5: Comparison of the final optimized solution within a fixed time trained by generated MIP
instances and the training dataset. S − 30% means the scale-limited versions of SCIP which limit
the variable proportion α is set to 30%, the time limit of the solver framework is 50s.

S-20% S-30% S-50%
Baseline Augmented Baseline Augmented Baseline Augmented

MVC 2943.38 2886.42 ↑ 2990.55 2854.87 ↑ 2885.08 2767.58 ↑

5 CONCLUSION

This study presents MIPGen, a pioneering deep generative model tailored for MIP problems. Lever-
aging advanced techniques like a random-feat policy for bipartite graph representation, an EM clus-
tering algorithm with VGAE, and node operations in an expanded feature space, MIPGen effectively
addresses the shortcomings of prior models, such as limited representation in large-scale MIP prob-
lem generation, inefficient instance classification, and oversimplified problem structures. Empirical
results on standard MIP instances confirm MIPGen’s ability to learn problem features and create
high-quality isomorphic instances, marking a significant advancement in machine learning-based
frameworks for MIP problems. Currently focused on single-objective, linear, and static problems,
future work will extend to more complex scenarios including multi-objective, nonlinear, and dy-
namic problems.
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A EXPERIMENTAL DETAILS

A.1 EXPERIMENTAL SETTINGS

For MIP problem generation, we conduct experiments on a system equipped with two AMD EPYC
7742 CPUs clocked at 1.50GHz and six NVIDIA TESLA A800 GPUs. The details on decision
variables and constraint scales for three NP-hard benchmark MIP instances can be found in Table 6.
PySCIPOpt 4.3.0 (Maher et al., 2016) was employed as the interface to invoke SCIP.

Experiments related to data augmentation were executed on a system with two Intel Xeon Platinum
8375C CPUs operating at 2.90GHz and four NVIDIA TESLA V100(32G) GPUs. We utilized a
GBDT with parameters set to contain 30 decision trees, and each was limited to a maximum depth
of 5.

Table 6: The size of three MIP benchmark problem. MIS stands for Maximum Independent Set
problem, CA stands for Conbinatorial Auction problem, and MVC stands for Minimum Vertex
Cover problem.

Variable Number Constraint Number NNZ number
MIS 10000 30000 60000
CA 10000 20000 60000

MVC 10000 30000 60000

A.2 DATASETS

We employed data generators to produce training and test datasets for three popular benchmark MIP
problems:

• Maximum Independent Set (MIS) / Minimum Vertex Covering (MVC): For problems with
n decision variables and m constraints, a random graph with n nodes and m edges was
generated. This translates to an MIP problem fitting the specified scale criteria.

• Combinatorial Auction (CA): For problems with n decision variables and m constraints, a
random problem was generated comprising n items and m bids. Notably, each bid encom-
passes three items.

To generate the training solution dataset required by the solver framework (Ye et al., 2023) for
data augmentation assessment, we utilized PySCIPOpt 4.3.0, allowing it to run for 2400s to get an
approximate optimal solution.

B INSTANCES CLASSIFICATION EXPERIMENTS

We designed two experiments to validate the effectiveness of our classification method. These ex-
periments were conducted on problems from the MIS, CA, and MVC problem mentioned in the
paper, as well as on MIP problems from the MIPLib benchmark (Gleixner et al., 2021).

For the MIS, CA, and MVC problems, we selected 20 directly constructed problems for each type.
Furthermore, using MIPGen, we generated additional problems by restructuring at 25

In the MIPLib classification experiment, we trained the VGAE on 240 problems from the MIPLib
Benchmark, setting the clustering count to 100. MIPLib problems often have detailed descriptions
and contributor information on their web pages, shedding light on the real-world context and ori-
gins of each problem. We focused on problems where the descriptions and contributors matched,
to assess if they were clustered into the same category. Such problems, sharing descriptions and
contributors, can be regarded as belonging to the same type. Within a ML-based framework, these
can serve as training data for specific problem types. A portion of the successfully clustered prob-
lems are listed in Table 7. Additionally, Figure 4 depicts the clustering intermediate results of these
240 problems. The VGAE’s encoder outputs a 16-dimensional vector for each MIP problem, which
serves as the basis for clustering. After reducing the dimensionality to 3 using the PCA method, we
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plotted a point cloud diagram of the MIP problem representations. In this visualization, we excluded
11 outliers from the total of 240 points.

This experiment showcases the capability of our method in effectively classifying problems. It
confirms that, given a complex dataset comprising various types of MIP instances, the MIPGen
framework can categorize them into distinct groups, learn the corresponding model, and generate
new instances for each problem category.
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Figure 4: 3D PCA of MIPLIB Benchmark Instances (Outliers Removed)

C DETAILED MIP SOLVER PERFORMANCE

we present the solving difficulty information for the MIP problems generated by various methods.
Specifically, we provide the solving difficulty for five instances each generated by MIPGen-25%,
MIPGen-50%, MIPGen-100%, Random, and Bowly methods. Additionally, we include a distribu-
tion graph of the solving difficulty for problems generated by MIPGen at different reconstruction
percentages.
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Figure 5: Distribution of Optimality Gap of Generated Instances
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Table 7: Partial Classification Result of MIPGen

Problems Description Cluster ID
app1-1, app1-2 The archive contains 5 instances coming

from 3 applications.app1 is interesting
because the continuous variables (w) drive

the model.

11

blp-ar98, blp-ic98 Railway line planning instance. 49
bab2, bab6 Vehicle Routing with profits and an

integrated crew scheduling formulated by
two coupled multi-commodity flow

problems.

49

bnatt400, bnatt500 Model to identify a singleton attractor in a
Boolean network, applications in
computational systems biology.

11

chromaticindex1024-7,
chromaticindex512-7

Simple edge-coloring model on chains of
Petersen-like subgraphs, designed to fool

MIP solvers into producing very large
Branch-and-Bound trees.

73

comp07-2idx comp21-2idx Instances comp01-21 of curriculum based
course timetabling from the International

Timetabling Competition 2007.

11

cryptanalysiskb128n5obj16,
cryptanalysiskb128n5obj14

Linearized Constraint Programming
models of the MiniZinc Challenges

2012-2016.

73

csched008, csched007 Cumulative scheduling problem instance 58.
dano3 5, dano3 3 Telecommunications applications. 43

ex10, ex9 Formulations of Boolean SAT instance. 95
leo1, leo2 Instance coming from the CORL test set

with unknown origin
78

proteindesign121hz512p9,
proteindesign122trx11p8

Linearized Constraint Programming
models of the MiniZinc Challenges

2012-2016.

58

radiationm18-12-05,
radiationm40-10-02

Linearized Constraint Programming
models of the MiniZinc Challenges

2012-2016.

75

rmatr100-p10, rmatr200-p5 Instance coming from a formulation of the
p-Median problem using square cost

matrices

73

rocI-4-11, rocII-5-11 Optimal control model in the deterministic
dynamic system given by

bounded-confidence dynamics in a system
of opinions

11

rococoB10-011000,
rococoC10-001000

Model for dimensioning the arc capacities
in a telecommunication network.

90

sp97ar, sp98ar Railway line planning instance. 78
square41, square47 Squaring the square For a given integer n,

determine the minimum number of
squares in a tiling of an n×n square using
only integer-sided squares of smaller size.

51

swath1, swath3 Model arising from the defense industry,
involves planning missions for radar

surveillance.

75
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Table 8: Detailed solving difficulty information.

No. MIS Problem CA Problem MVC Problem
Original Instance - 9.64%@1200s 9.52%@1200s 10.04%@1200s

MIPGen

Instance 1 5.78%@1200s 7.32%@1200s 0.33%@1200s
Instance 2 7.33%@1200s 8.96%@1200s Solved in 674.13s
Instance 3 4.84%@1200s 9.06%@1200s Solved in 658.47s
Instance 4 5.51%@1200s 6.82%@1200s 0.21%@1200s
Instance 5 5.39%@1200s 8.78%@1200s Solved in 258.78s

Random

Instance 1 Solved in 1.29s Solved in 128.67s Solved in 1.38s
Instance 2 Solved in 14.71s Solved in 121.33s Solved in 6.81s
Instance 3 Solved in 1.34s Solved in 64.04s Solved in 1.34s
Instance 4 Solved in 1.69s Solved in 6.59s Solved in 1.79s
Instance 5 Solved in 3.52s Solved in 8.10s Solved in 4.39s

Bowly

Instance 1 Solved in 0.15s Solved in 0.21s Solved in 0.25s
Instance 2 Solved in 0.26s Solved in 0.12s Solved in 0.13s
Instance 3 Solved in 0.19s Solved in 10.49s Solved in 0.27s
Instance 4 Solved in 0.28s Solved in 0.23s Solved in 0.19s
Instance 5 Solved in 0.41s Solved in 0.27s Solved in 0.24s

Table 9: Evaluation metrics used in similarity comparison.

Name Explanation
coef dens Fraction of non-zero entries in coefficient matrix.

cons degree mean Mean degree of constraint vertices.
cons degree std Std of degrees of constraint vertices.
var degree mean Mean degree of variable vertices.
var degree std Std of degrees of variance vertices.

lhs mean Mean of non-zero entries in coefficient matrix.
lhs std Std of non-zero entries in coefficient matrix.

rhs mean Mean of RHS values.
rhs std Std of RHS values.

clustering coef Clustering coefficient of the graph.
modularity Modularity of the graph.

D EXPERIMENTAL SETTINGS FOR SIMILARITY METRIC

Table 9 lists 11 metrics used for assessing features in MIP instances. We conducted a similarity
comparison between problems generated by MIPGen at various reconstruction percentages and two
baselines, Random and Bowly, against MIP problems in the training set. For each individual metric,
we calculated the JS (Jensen-Shannon) divergence between them. Let JSi denotes the JS divergence
for the ith metric. The similarity score for the ith metric is defined as follows:

scorei = (max(JS)− JSi)/(max(JS)−min(JS)) (7)

The overall similarity score is the average of the scores for all metrics:

score =
1

11

11∑
i=1

scorei (8)
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