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ABSTRACT

Self-supervised learning has attracted a lot of attention recently, which is able to
learn powerful representations without any manual annotations. In order to cope
with a variety of real-world scenarios, it also needs to develop the ability to con-
tinuously learn, i.e. Continual Self-Supervised Learning (CSSL). However, sim-
ple rehearsal or regularization will bring some negative effects while alleviating
catastrophic forgetting in CSSL, e.g. overfitting on the rehearsal samples or hin-
dering from learning fresh knowledge. In order to address catastrophic forgetting
without overfitting on the rehearsal samples, we propose Augmentation Stability
Rehearsal (ASR) in this paper, which selects the most representative and discrimi-
native samples by estimating the augmentation stability for rehearsal. Meanwhile,
we design a matching strategy for ASR to dynamically update the rehearsal buffer.
In addition, we further propose Contrastive Continuity on Augmentation Stability
Rehearsal (C? ASR) based on ASR, which preserves as much information shared
among seen task streams as possible to prevent catastrophic forgetting and dis-
misses the redundant information to free up the ability to learn fresh knowledge.
Our method obtains a great achievement compared with state-of-the-art CSSL
methods on a variety of CSSL benchmarks. The source code will be released
soon.

1 INTRODUCTION

Recently, self-supervised learning, or unsupervised visual representation learning, has received
much attention from the community due to its great potential (Chen et al.|(2020a); He et al.| (2020);
Grill et al.| (2020); [Caron et al.| (2020); [Chen & He| (2021)); Zbontar et al.| (2021). Self-supervised
learning is able to learn representations that are beneficial to a variety of downstream tasks without
any manual annotations. However, data is often presented as streams over time in real-world scenar-
ios. It’s nearly infeasible for self-supervised learning to collect the whole data streams to train the
networks every time, since the ever-increasing data amount makes the notoriously costly training
of self-supervised learning models even more expensive and sometimes the previous data streams
are not able to access at all. Thus, self-supervised learning must develop the ability to continuously
learn to cope with a variety of real-world scenarios, which is also called Continual Self-Supervised
Learning (CSSL) in Fini et al.| (2022)).

Catastrophic forgetting is a notorious problem in continual learning, where many methods Rusu et al.
(2016); Kirkpatrick et al.|(2017); Zenke et al.[(2017);|L1 & Hoiem|(2017);/Ahn et al.|(2019); Buzzega
et al.| (2020) are proposed to alleviate it. CSSL also suffers from catastrophic forgetting, and some
pioneers start to address this problem. Rehearsal-based method LUMP |Madaan et al.[(2022) utilizes
rehearsal samples to augment current task samples by mixup|Zhang et al.|(2018)), and regularization-
based method CaSSLe [Fini et al.|(2022) encourages current model to maintain a consistency with
previous state via a predictive head while training on current task samples. However, LUMP which
is based on random sampling strategy for rehearsal tends to overfit on the rehearsal samples due
to the long training epochs of self-supervised learning, and CaSSLe introduces too much invariance
among task streams, which preserves most information of previous tasks and hinders the model from
learning fresh knowledge.
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In order to address catastrophic forgetting without overfitting on the rehearsal samples, we propose
Augmentation Stability Rehearsal (ASR) in this paper, which selects the most representative and
discriminative samples by estimating the augmentation stability for rehearsal. Specifically, ASR
aims to select the most representative and discriminative samples, i.e. the samples which are located
at the center and the boundary of each category distribution, since they are able to retain the most in-
formation of previous tasks to overcome catastrophic forgetting as well as alleviating the overfitting
effect. However, we are not able to obtain the relative position of the sample in corresponding cat-
egory distribution under unsupervised scenarios, since we cannot access to the class label. Instead,
we find the augmentation stability of the sample is positively correlated with its relative position in
the feature space. Thus, we design a rehearsal selection strategy based on the augmentation stability,
i.e. we sample the samples with especially high score (located at the center of the category distri-
bution) and low score (located at the boundary of the category distribution) from the augmentation
stability distribution to fill the buffer. Meanwhile, since the traditional queue and stack update can-
not meet the requirement that retains the most representative and discriminative samples, we develop
a matching strategy for ASR to dynamically update the rehearsal buffer.

Generally, current network needs to encode the information of previous tasks to alleviate catas-
trophic forgetting, as well as the information of current task to learn fresh knowledge. However,
the whole information of previous states is not only redundant for preserving the memory of pre-
vious tasks [Kang et al.,| (2022), but also hinders the learning on current task. In order to balance
the prevention of catastrophic forgetting and the learning on current task, we further propose Con-
trastive Continuity on Augmentation Stability Rehearsal (C?ASR) based on ASR. Inspired by the
Information Bottleneck (IB) principle Tishby & Zaslavsky| (2015)); Tishby et al.| (2000), C2ASR ex-
pects current model to preserve as much information shared among seen task streams as possible
to prevent catastrophic forgetting, and to dismiss the redundant information to free up the ability
to learn fresh knowledge. In practice, C2ASR encourages current model to be consistent with the
previous states on the rehearsal samples to encode as much information as possible which is shared
among seen task streams, and to be inconsistent with the previous states on current task samples
to dismiss the redundant information. In addition, we incorporate the augmentation invariance and
symmetrization strategy |Grill et al.| (2020); |(Chen & Hef(2021)) into C2ASR to further increase the
diversity and stability of contrastive continuity pairs.

We validate the effectiveness of our method on several popular CSSL benchmarks, e.g. the average
accuracy and average forgetting on Split CIFAR-10, Split CIFAR-100 and Split Tiny-ImageNet and
the average accuracy on out of distribution datasets. Our method achieves the best performance on
most evaluation metrics compared with the state-of-the-art CSSL methods. In general, our contribu-
tions can be summarized as follows:

* We propose Augmentation Stability Rehearsal (ASR), which aims to store the most repre-
sentative and discriminative samples for rehearsal, to address catastrophic forgetting with-
out overfitting on the rehearsal samples. Meanwhile, we design a matching strategy for
ASR to dynamically update the rehearsal buffer.

» We further propose Contrastive Continuity on Augmentation Stability Rehearsal (CZASR)
based on ASR, which aims to preserve the information shared among seen task streams and
dismiss the redundant information, to balance catastrophic forgetting and the learning on
current task. In addition, we incorporate the augmentation invariance and symmetrization
strategy with C2ASR to further increase the diversity and stability of contrastive continuity
pairs.

* The proposed method achieves significant improvements compared with the state-of-the-art
CSSL methods on several popular CSSL benchmarks, showing strong competitiveness.

2 RELATED WORK

2.1 CONTINUAL LEARNING

Continual learning aims to learn from a sequence of task streams without forgetting what has been
learned in previous tasks. Current popular partition manner mainly divides existing continual learn-
ing methods into three categories, i.e. regularization-based, architecture-based and rehearsal-based.
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Regularization-based methods are to regulate the model parameters during training. EWC [Kirk-
patrick et al.[(2017) alleviates catastrophic forgetting by slowing down learning on the weights which
are important to previous tasks during training. SI|Zenke et al.| (2017)) introduces the synapses to
track the parameter value of previous tasks, and fix the important synapses to keep the memories
of the past. LwF [Li & Hoiem| (2017)) utilizes distillation to make the output of current network ap-
proach to that of previous networks. Based on network quantization and pruning, piggyback Mallya
et al| (2018) learns binary masks to selectively mask the weights of the backbone network, and
achieves better performance on new tasks. UCL |Ahn et al.[(2019) designs two regularization terms
to alleviate forgetting by freezing important parameters of previous tasks and support future learning
by controlling the active parameters.

Architecture-based methods are to dynamically add extra network architectures to meet future learn-
ing requirements. PNN |Rusu et al.|(2016) introduces progressive networks to alleviate catastrophic
forgetting and designs lateral connections to use learned knowledge to assist current learning. DEN
Yoon et al.| (2018)) dynamically expands the capacity of the network according to each task, so as to
effectively capture the shared knowledge among tasks and prevent forgetting. Utilizing architecture
search, [Li et al.|(2019) finds the optimal structure for each task to best exploit the parameters shared
among tasks.

Rehearsal-based methods are to replay a fixed number of previous learned samples during training.
RWalk |Chaudhry et al.| (2018) constructs the training set with the current task data and the rehearsal
data, and uses distillation to make the model further strengthen the learned knowledge. |Castro et al.
(2018) stores some representative samples from previous tasks to alleviate intransigence. Based
on the constrained optimization view of continual learning, Aljundi et al.|(2019) store the samples
which best approximate the feasible region defined by the original constraints. DER |Buzzega et al.
(2020) utilizes distillation to match the output logits on the rehearsal data, thus preserving the mem-
ory of previous tasks.

In addition, some works focus on representation continual learning, which aims to prevent forgetting
the learned representation and utilizes it for future learning. iCaRL [Rebuffi et al. (2017) utilizes
distillation to learn an anti-forgetting representation. Meta-learning-based approaches OML [Javed
& White|(2019) and La-MAML Gupta et al.| (2020) learn representations by designing special meta-
objectives that prevent catastrophic forgetting and promote future learning. Inspired by contrastive
learning, Co2L|Cha et al.|(2021) designs a supervised contrastive loss to learn a representation which
is of nature resistance to catastrophic forgetting. LUMP|Madaan et al.|(2022) and CaSSLe Fini et al.
(2022) aim to learn continual unsupervised representations, where LUMP uses mixup [Zhang et al.
(2018) to merge the samples in previous tasks with the samples in current task and CaSSLe utilizes
distillation mechanisms to associate the current state of the representation with its previous state to
alleviate catastrophic forgetting.

2.2 UNSUPERVISED REPRESENTATION LEARNING

Unsupervised representation learning, or self-supervised learning, aims to learn a representation
which is beneficial to various downstream tasks without any manual annotations. Some early works
are devoted to designing special pretext tasks, e.g. Colorization |Larsson et al.| (2016), Inpainting
Pathak et al.| (2016)), Jigsaw |[Noroozi & Favaro| (2016), Rotate prediction |Gidaris et al.| (2018]), etc.
Contrastive learning based on instance discrimination Wu et al.|(2018)) has become the mainstream
in the community in recent years, whose core idea is to constrain input image to be as close as
possible to its augmented view and far away from other images in the feature space. SimCLR [Chen
et al.| (2020a) and MoCo He et al.|(2020) are the most classical contrastive learning methods, where
SimCLR uses a large batchsize to increase the number of negative samples and MoCo introduces
a queue to store a large number of negative samples and applies the momentum update strategy to
ensure the consistency of negative samples. BYOL |Grill et al.| (2020) argues that comparing with
the negative samples is not indispensable in contrastive learning, and learns a brilliant representation
by only encouraging augmentation invariance of input image. SimSiam |Chen & He| (2021) studies
the non-negative-samples framework in detail and finds that siamese networks play an important
role in the framework, where stop-gradient operation is the key to preventing collapsing. SwAV
Caron et al.| (2020) incorporates clustering into contrastive learning, which obtains pseudo label
assignments via online clustering and constrains different augmented views of the same image to
share the same assignment. NNCLR Dwibedi et al.| (2021) finds some nearest neighbors in the
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feature space to serve as complementary positive samples, providing more semantic variations for
standard data augmentations. DINO |Caron et al|(2021)) deploys self-supervised learning to ViT
Dosovitskiy et al.| (2021) and gets better results. Instead of applying stop-gradient operation to
avoid collapsed solutions, Barlow Twins Zbontar et al.|(2021)) constrains the cross-correlation matrix
between the features of two augmented views to be the identity matrix, achieving the same results.

3 METHOD

3.1 AUGMENTATION STABILITY REHEARSAL (ASR)

Generally, we should choose the most representative and discriminative samples for rehearsal, i.e.
the samples which are located at the center and the boundary of each category distribution. These
samples are able to retain the most information of previous tasks, which can largely overcome catas-
trophic forgetting as well as effectively alleviating the overfitting effect.

In practice, a naive way to select the target samples is to determine their relative positions in corre-
sponding category distribution by calculating the pairwise similarity. However, we are not able to
access to the categories of the samples in unsupervised scenarios. Meanwhile, it would take a huge
computational cost to compute the similarity between the pairwise samples (with a computational
complexity O(N?)), which makes the algorithm infeasible to perform on a large scale data. For-
tunately, we find the augmentation stability of each sample is positively correlated with its relative
position in corresponding category distribution. Thus, we estimate the relative position distribution
by utilizing the augmentation stability, and sample corresponding exemplars from the distribution to
fill the rehearsal buffer.

Specifically, we design a discriminator to estimate the augmentation stability, which is essentially a
binary classifier. The discriminator takes the pairwise features outputted by self-supervised model
as input, and outputs the prediction probability of whether the input pairwise features is from the
same image. During training, we construct the loss of the discriminator £p using the classical idea
of contrastive learning, i.e.

Lp = CE (D(Concat(Z',2?%)),“0") + CE (D(Concat(Z", Z?)) , “0”) (1)

where Z! and Z? are the pairwise augmentation features encoded by self-supervised model f(-), i.e.
Z' = f(T*(z)) and Z% = f(T?(x)), T(-) is the standard augmentation strategy in self-supervised
learning where the augmentation pairs are distinguished by different right superscripts; Z? is the
augmentation feature from another image; C'oncat(-) denotes the cascade operation; D(-) denotes
the discriminator; C'E(-) denotes the cross entropy loss. The combined augmentation feature from
one image Concat(Z*', Z?) is classified as class 0, while the combined augmentation feature from
different images Concat(Z', Z?) is classified as class 1. In summary, the discriminator aims to
discriminate whether the input pairwise features are from the same image, so as to learn the ability
to capture the augmentation stability.

When storing current data stream, we first utilize the discriminator to infer its augmentation stability
score, i.e.:

p(y =« |.’17) — E(Zl,Z2) [pD (y = «” |(Z17 ZQ))} (2)
However, E(z1 z2) is almost infeasible to be calculated in practice. We approximate it by randomly
sampling the augmentation distribution:

ply = “07|z) = / / Py = “0° (21, 2%))d g1 d e
zZ1 JZ2
m m o 3)
~ 3N ooy = 0°|(7), 72)

i=1 j=1

where Z} and Z7 is the sampling from corresponding augmentation distribution, i.e. Z} ~ Z!
and Z7 ~ Z%; m is the sampling number which is set to 20 in practice; pp(y = “0”|(Z}, Z3))

is the prediction probability that the discriminator classifies Concat(Z}, Z 72) as class 0. Then, we
use the augmentation stability score to rank current data stream, and select the appropriate samples
according to the sorted list for rehearsal buffer.
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ASR update strategy. In addition, we develop a matching update strategy for ASR to dynamically
update the rehearsal buffer. Specifically, we recalculate the same amount of memory slots for all
seen tasks when storing current data stream. Then, we discard the excess samples which are located
in the middle of the augmentation stability sort for previous tasks (i.e. the least representative or
discriminative ones) and load the selected samples of current data stream. It is worth noting that
we select samples uniformly in the sorted list when storing current data stream, which ensures to
contain the representative and discriminative samples as well as increasing the overall diversity. We
give the specific update process in Algorithm

Algorithm 1 ASR Update Algorithm
Input: Buffer size: K, data stream of task ¢: D;, existing data in the buffer:

By,
1: Bt = { }
2: k= | K/t]
3:fori=1tot—1do
4: Bl ={(z,task_id)|task_id =1, (z,task_id) € By_1}
50 Bi+=Bj [0+ [ke/2]] + Bi_y[|Bi_y| = (ke — [kt /2]) | Bi 4]
6: end for
7: Sort D, by the augmentation stability computed by (3)
8: for j=1to K —k;x(t—1)do
9:  Bi+=Dy[j* ||De| /(K — ke # (t —1))]]
10: end for

Output: Updated buffer B; after task ¢

3.2 CONTRASTIVE CONTINUITY ON AUGMENTATION STABILITY REHEARSAL (C?ASR)

In practice, continual self-supervised model requires to encode the information of previous tasks to
prevent catastrophic forgetting, as well as encoding the information of current task to be of the ability
to continuously learn. One of the simplest ways to alleviate catastrophic forgetting is to encode the
whole information of previous tasks by maintaining a consistency with previous learned models via
knowledge distillation Hinton et al.|(2015). However, the whole information of previous tasks is not
only redundant for preventing catastrophic forgetting |Kang et al.|(2022), but also hinders the model
from learning on current task. In order to dismiss the redundant information of previous tasks to
balance the prevention of catastrophic forgetting and the learning on current task, we further propose
Contrastive Continuity on Augmentation Stability Rehearsal inspired by the Information Bottleneck
(IB) principle Tishby & Zaslavsky| (2015)); [Tishby et al.| (2000) in this subsection, which aims to
preserve as much information shared among seen task streams as possible to prevent catastrophic
forgetting and dismiss the redundant information to free up the ability to learn fresh knowledge.

The IB principle argues that a desirable representation Z should provide as much important infor-
mation related to Y as possible while compressing the original information from X by dismissing
the redundant part:

IB =1(Z;X) = BI(Z;Y) )
where I (;) denotes mutual information and  is a hyper-parameter to trade off the amount of
preserved important information and the compactness of the representation.

Inspired by IB principle, C?ASR expects current model to encode as much information shared
among seen task streams as possible to prevent catastrophic forgetting, and to dismiss the redun-
dant information to free up the ability to continuously learn. Specifically, given current date stream
D; and corresponding buffer B;_; where we denote the data of task 7(7 = 1, ..., ¢ — 1) in the buffer
by Bj_,, C*2ASR encourages current model f;(-) to be consistent with previous states f(-) on cor-
responding rehearsal samples B;_; to capture the shared information among seen task streams, and
to be inconsistent with previous states f,(-) on current task samples D; to dismiss the redundant
information:

1 t—1

Lc2asr = =1 Z (sim(h(f:(Dy)), f~(Dy)) — B (sim(h(f:(B{_1)), f+(B{_1)))) ()
T=1
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where sim ( , ) denotes the similarity measurement between two features (we apply the normalized
cosine similarity in practice, i.e. sim(a,b) = a-b/(||a]| - ||b]))), h(-) is a projector which projects
the representations of current model to previous feature space |Fini et al.[(2022), and £ is a hyper-
parameter to trade off the amount of the preserved information shared among seen task streams and
the eliminated information in previous states, where we set a cosine warmup mechanism for ( since
the proportion of the encoded shared information is increasing during training.

Obviously, L2 g starts working when ¢ > 1 and there is an imbalance between current task sam-
ples D; and rehearsal samples B]_;, i.e. |D¢| > |B7_;|. Thus, we sample a subset D] from D,
(|DT| = |Bf_4]) to address the imbalance problem, as well as reducing the computatlonal complex-

ity.

ﬁczm——z (D7, D}) = BU(B]_y, B]_,)) , T(x,y) = sim(h(fi(x)), f+(y)) ()
1

Meanwhile, we combine C2ASR with augmentation invariance to increase the diversity of con-
trastive continuity pairs:

t—1
1 T T T T
Lonasr = 7= > (DT D)), TAD)) = BU(THBL). THBL)) ()
T=1
In addition, the symmetrization strategy |Grill et al.| (2020); |(Chen & He| (2021) is applied to further
increase the diversity, as well as reinforcing the stability:

t—1
Lc2asr = Z D(THDY), T*(DD)) + T(T*(D7), TH(DY))) — ®)
T=1

B(T(THB_1), T2(B{_1)) + T(T*(B]_1), T"(B{_1))))
4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We deploy our experiments on Split CIFAR-10|Krizhevsky et al.|(2009) (a 10-class dataset
with 32x32 images), Split CIFAR-100 [Krizhevsky et al.| (2009) (a 100-class dataset with 32x32
images) and Split Tiny-ImageNet Deng et al.|(2009) (a 100-class dataset with 64 x64 images). We
follow the division in [Madaan et al.| (2022) for the datasets, i.e. two random classes per task for
CIFAR-10, five random classes per task for CIFAR-100 and Tiny-ImageNet.

Implementation details. We use ResNet-18 He et al.[(2016) as the backbone and SimSiam |Chen
& He|(2021) as the base self-supervised learning algorithm to make a fair comparison with existing
methods. We train our method with SGD optimizer for 200 epoches, whose batchsize is 128, learn-
ing rate is 0.015, weight decay is Se-4, and momentum is 0.9. The buffer size in our method is set
to 200 for CIFAR-10 and CIFAR-100, 256 for Tiny-ImageNet.

Evaluation metrics. We follow LUMP Madaan et al.|(2022) to utilize the KNN classifier Wu et al.
(2018)) to verify the quality of the learned representation, where ”Average Accuracy” and ”Average
Forgetting” are served as the two key indicators.

4.2 MAIN RESULTS

In this subsection, we report the main results (Average Accuracy and Average Forgetting) of our
method C2ASR on Split CIFAR-10, Split CIFAR-100 and Split Tiny-ImageNet, as shown in Table
[1] In the long sequence datasets, e.g. Split CIFAR-100 and Split Tiny-ImageNet, we incorporates the
mixup technique in LUMP into C>ASR to further combat catastrophic forgetting. Compared with
the existing continual self-supervised learning methods, our C?ASR achieves the best performance
on most evaluation metrics. The performance gains are mainly reflected in two aspects. On the
one hand, C2ASR has a better resistance to forgetting. For example, C2ASR obtains 0.33%, 2.49%,
0.46% and 0.15%, 0.85%, 0.19% average forgetting drops on Split CIFAR-10, Split CIFAR-100 and
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Table 1: The main results (Average Accuracy and Average Forgetting) on Split CIFAR-10, Split
CIFAR-100 and Split Tiny-ImageNet. All methods are pre-trained with Resnet-18 as backbone
for 200 epoches and evaluated with KNN classifier[Wu et al| (2018). CaSSLe* is our reproduced
version in this experimental settings according to original paper. All the performances are measured
by calculating the mean and standard deviation across three trials. The Top-2 results are highlighted
in bold and underlined respectively.

Method CIFAR-10 CIFAR-100 Tiny-ImageNet

Accuracy Forgetting Accuracy Forgetting Accuracy Forgetting

Supervised Continual Learning

FINETUNE 82.87(x0.47)  14.26(x0.52)  61.08(x0.04)  31.23(20.41)  53.10+1.37)  33.15(x1.22)
PNN 1(2016) 82.74(x2.12) - 66.05(+0.86) - 64.38(0.92) -
SI (W' 85.18(x0.65)  11.39(x0.77)  63.58(x0.37)  27.98(x0.34)  44.96(+2.41)  26.29(1.40)
A-GEM[Chaudhry et al]2019) ~ 82.41(x1.24)  13.82(x1.27)  59.81(x1.07)  30.08(0.91)  60.45(x0.24)  24.94(x1.24)

89.49(£1.75)  7.50(x1.52)  70.78(£1.67)  21.28(x1.52)  70.96(0.72)  14.76(x1.22)
91.35(x0.46)  5.65(x0.35)  79.52(+1.88)  12.80(x1.47)  68.03(£0.85)  17.74(0.65)

MULTITASK 97.77(0.15) - 93.89(+0.78) - 91.79(0.46) -

Continual Self-Supervised Learning

FINETUNE 90.11(20.12)  5.42(x0.08)  7542(x0.78)  10.19(20.37)  71.07(x0.20)  9.48(0.56)
90.93(+0.22) - 66.58(1.00) - 62.15(x1.35) -

92.75(x0.06)  1.81(x0.21)  80.08(x1.30)  5.54(x1.30)  72.34(x042)  8.26(+0.64)
91.22(20.30)  4.63(0.26)  77.27(x0.30)  9.31(x0.09)  71.90(x1.44)  8.36(x2.06)
91.00(20.40)  2.92(x0.53)  82.30(x1.35)  4.71(x1.52)  76.66(x2.39)  3.54(x1.04)
9123(2034)  274(2039)  82.04@1.17)  3.07(x1.54)  77.01(22.11)  3.27(x0.62)

C2ASR(Ours) 92.47(20.41)  2.59(x0.58)  83.12(x0.92)  2.22(x148)  77.85(x1.87)  3.08(x0.79)
MULTITASK 95.76(0.08) - 86.31(+0.38) - 82.89(:0.49) -

Split Tiny-ImageNet compared with LUMP and CaSSLe respectively. On the other hand, C2ASR
frees up the ability to continuously learn on new tasks, e.g. it obtains 1.47%, 0.82%, 1.19% and
1.24%, 1.08%, 0.84% average accuracy improvements on Split CIFAR-10, Split CIFAR-100 and
Split Tiny-ImageNet compared with LUMP and CaSSLe respectively.

Table 2: The average accuracy on out of distribution datasets. All methods are pre-trained with
Resnet-18 as backbone for 200 epoches on Split CIFAR-10 or Split CIFAR-100 and evaluated
with KNN classifier on out of distribution datasets i.e. MNIST (1998),
Fashion-MNIST (FMNIST) (2017), SVHN |Netzer et al.| (2011), CIFAR-100 or CIFAR-
10. CaSSLe* is our reproduced version in this experimental settings according to original paper. All
the performances are measured by calculating the mean and standard deviation across three trials.
The Top-2 results are highlighted in bold and underlined respectively.

In-class CIFAR-10 CIFAR-100

Out of class MNIST FMNIST SVHN CI]F(/;)R_ MNIST FMNIST SVHN CIFAR-10

Supervised Continual Learning

FINETUNE 86.42(x1.11) 7447(x0.84) 41.00(x0.85) 17.42(£0.96) 75.02(x3.97) 62.37(£320) 38.05(x0.73) 39.18(+0.83)
87.08(x0.79) 7641(x0.81) 42.62(x1.31) 19.14(+0.91) 79.96(x2.63) 63.71(£136) 40.92(x1.64) 40.41(x1.71)
86.07(£1.94) 7474(x321) 37.77(23.49) 16.11(20.38) 77.56(3.21) 64.16(x229) 37.48(x1.73) 37.91(x1.33)
7036(+3.54)  69.20(22.51) 33.11(22.26) 18.21(20.39) 76.54(x0.46) 65.31(21.72) 35.72(x2.37) 49.41(x1.81)
80.32(£1.91)  70.49(x1.54) 41.48(x2.76) 17.72(20.25) 87.71(¥2.23) 75.97(x1.29) 50.26(x0.95) 59.07(+1.06)

MULTITASK 88.79(x1.13)  79.50(x0.52) 41.26(£1.95) 27.68(x0.66) 92.29(+3.37) 86.12(£1.87) 54.94(x1.77) 54.04(x3.68)

Continual Self-Supervised Learning

F[NETUNE 89.23(£0.99) 80.05(x0.34) 49.66(x0.81) 34.52(0.12) 85.99(x0.86) 76.90(x0.11) 50.09(x1.41) 57.15(+0.96)
93.72(+0.58) 82.50(x0.51) 57.88(x0.16) 36.21(x0.69) 91.50(x1.26) 80.57(x0.93) 54.07(x2.73) 60.55(x2.54)

[ﬂﬂ]\ 88.35(0.82) 79.33(20.62) 48.83(x0.55)) 30.68(20.36) 87.96(x2.04) 76.21(20.63) 47.70(x0.94) 56.26(x0.16)
LUMP 13022 91.03(£0.22) 80.78(x0.88) 45.18(x1.57) 31.17(1.83) 91.76(+1.17) 81.61(x0.45) 50.13(x0.71) 63.00(x0.53)

CaSSLe™ [Fini et al (20 90.88(0.36) 80.85(x0.74) 53.17(x0.96) 37.44(x1.33) 9129(x1.18) 81.32(20.79) 52.08(x1.47) 66.35(x1.32)
C2 ASR(Ours) 92.14(£0.38) 81.48(20.79) 54.51(x0.84) 39.48(x1.12) 93.09(+1.38) 82.04(20.54) 56.31(x1.85) 67.74(x0.97)
MULTITASK 90.69(+0.13)  80.65(20.42) 47.67(x0.45) 39.55(x0.18) 90.35(x0.24) 81.11(21.86) 52.20(x0.61) 70.19(x0.15)
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4.3 EVALUATION ON OOD DATASETS

In this subsection, we report the average accuracy of the proposed C?ASR on out of distribution
datasets, where we recognise MNIST |LeCun|(1998)), Fashion-MNIST (FMNIST) [Xiao et al.[{(2017),
SVHN |Netzer et al.| (2011), CIFAR-100 and MNIST |LeCun| (1998)), Fashion-MNIST (FMNIST)
Xiao et al.| (2017), SVHN [Netzer et al.| (2011)), CIFAR-10 as the out of distribution datasets for
Split CIFAR-10 and Split CIFAR-100 respectively, as shown in Table The proposed C2ASR
obtains significant improvements and achieves the best performance on multiple evaluation metrics
compared with the existing continual self-supervised learning methods, e.g. Split CIFAR-10 —
CIFAR-100 and Split CIFAR-100 — (MNIST, FMNIST, SVHN, CIFAR-10), showing the learned
representation by C2ASR can be easily and effectively applied to unseen data distributions. SI
obtains surprising results on Split CIFAR-10 — (MNIST, FMNIST, SVHN), whose performance
gains largely come from the especially low forgetting on Split CIFAR-10, and C2ASR becomes
second only to SI on these evaluation metrics.

4.4 THE RESULTS OF COLLABORATION WITH EXISTING POPULAR SELF-SUPERVISED
LEARNING METHODS

We give the average accuracy and average forgetting of the proposed C2ASR collaborated with
existing popular self-supervised learning methods on Split CIFAR-10, e.g. MoCo v2 |Chen et al.
(2020b), BYOL |Grill et al.| (2020), BarlowTwins [Zbontar et al.| (2021}, as shown in Table E} Our
C?ASR always achieves better results than existing CSSL methods, which shows C2ASR can be
well integrated with other self-supervised methods.

Table 3: The results (Average Accuracy and Average Forgetting) of collaboration with existing
popular self-supervised learning methods on Split CIFAR-10. All methods are pre-trained with
Resnet-18 as backbone for 200 epoches on Split CIFAR-10 and evaluated with KNN classifier Wu
et al.| (2018). All the performances are measured by calculating the mean and standard deviation
across three trials. The Top-2 results are highlighted in bold and underlined respectively.

MoCo v2|Chen et al.|(2020b) BYOL |Grill et al.{(2020)

Accuracy Forgetting Accuracy Forgetting
FINETUNE 89.27(x0.51) 4.70(x0.81) 88.49(x0.52) 4.93(x0.77)
LUMP Madaan et al.| (2022) 91.56(+0.25) 2.24(%0.29) 91.14(0.48) 2.61(x0.37)
CaSSLe™ |[Fin1 et al.|(2022) 91.31(x0.36) 1.91(x0.42) 91.44(%0.57) 2.57(x0.30)
C2 ASR(Ours) 92.07(0.28) 1.73(£0.34) 91.93(+0.40) 2.25(+0.46)

SimSiam|Chen & He|(2021) BarlowTwins|Zbontar et al.|(2021)
Accuracy Forgetting Accuracy Forgetting
FINETUNE 90.11(x0.12) 5.42(0.08) 87.72(0.32) 4.08(x0.56)
LUMP Madaan et al.|(2022) 91.00(£0.40) 2.92(+0.53) 90.31(%0.30) 1.13(0.18)
CaSSLe™ |[Fini et al.|(2022) 91.23(+0.34) 2.74(+0.39) 90.91(%0.23) 1.35(+0.38)
C2ASR(Ours) 92.47(£0.41) 2.59(+0.58) 91.34(+0.26) 0.94(x0.22)

4.5 ABLATION STUDY AND VISUALIZATION

The visualization of the augmentation stability: In this part, we give the t-SNE visualization of the
pre-trained representations combined with corresponding augmentation stability on Split CIFAR-10,
as shown in Figure[[] We only show the categories in the first four tasks, i.e. task 1 (Figure[I(a)
[I(D)), task 2 (Figure [I(d)), task 3 (Figure [L(®)) and task 4 (Figure [TI(g)} [L(h)), since the
last task doesn’t need to be replayed. We can see that the samples located in the center of category
distribution often have a large augmentation stability value, while the samples located in the bound-
ary of task distribution are low. This phenomenon is common in all tasks, and becomes the initial
motivation of our ASR. The underlying mechanism is that self-supervised learning can learn seman-
tically informative representations by encouraging augmentation invariance, even without manual
annotations. Thus, this augmentation stability distribution is also encoded into the feature space by
self-supervised models.
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(a) class-1 (c) class-3 (d) class-4

R

(e) class-5 (f) class-6 (g) class-7 (h) class-8

Figure 1: The t-SNE visualization of the pre-trained representations combined with corresponding
augmentation stability on Split CIFAR-10. The color bar on the right corresponds the value of the
augmentation stability.

The accuracy maps across the task streams: In this part, we report the accuracy maps across
the task streams on Split CIFAR-10 in Table [d] Specifically, the accuracy map includes the knn
accuracies on all seen tasks after training each task. To allow for simplification, we denote “the
accuracy by training on task ¢ and testing on task j” by "T'r;Te; (i > j)”, i.e. corresponding to the
row 4 and column j in each accuracy map; “the forgetting on task ¢” by "F};”, i.e. "max T'r;Te; -
TrsTe;”. Compared with FINETUNE, LUMP and Cassle have alleviated catastrophic forgetting.
However, LUMP suffers from the overfitting effect, which reaches 0.84%, 5.32%, 4.79% and 1.91%
on F, Fy, F5 and Fy, while Cassle acquires 1.52%, 4.25%, 2.2% and 2.56% and the proposed
C2ASR acquires 1.61%, 4.25%, 2.45% and 1.99%, showing a better anti-forgetting ability. In terms
of the ability to continuously learn, LUMP drops 3.33%, 1.86%, 2.05% and 0.85% on TryTes,
TrsTes, TryTey and T'rsTe; compared with FINETUNE, and Cassle drops 4.23%, 2.16%, 1.68%
and 0.27%, while the proposed C?ASR drops 1.03%, 0.71%, 1.21% and 0.07%, showing strong
competitiveness.

Table 4: The accuracy maps across the task streams on Split CIFAR-10.
FINETUNE | LUMPMadaan etal{(2022) | CaSSLe* [Fini etal{(2022) | C?ASR(Ours)
1 2 3 4 5|1 2 3 4 5|1 2 3 4 5|1 2 3 4 5
96.97 89.17 89.16 88.84 9332 96.32 95.74 95.95 95.77 95.48| 96.91 95.93 95.68 95.65 95.39] 96.88 95.74 95.68 95.16 95.27

89.94 83.83 82.70 82.45| -  86.61 83.37 82.49 81.29] - 8571 84.42 83.00 81.46] -  88.91 86.33 84.49 84.66
- 94.68 9031 87.57] - - 92.82 90.25 88.03] - - 9352 91.25 9032| - -  93.97 90.61 91.52
- - 97519260 - - - 9546 9355 - - - 95839327 - - - 9630 9431
- - - 9125 - - - - 940 - - - - 998 - - - - 9718

5 CONCLUSION

In this paper, we study how to address catastrophic forgetting in Continual Self-Supervised Learning
(CSSL) without bringing some negative effects, e.g. overfitting on the rehearsal samples or hinder-
ing from learning fresh knowledge. Specifically, we first propose Augmentation Stability Rehearsal
(ASR) store the most representative and discriminative samples for rehearsal, which helps to over-
come the overfitting on the rehearsal samples. Secondly, we further propose Contrastive Continuity
on Augmentation Stability Rehearsal (C2ASR) based on ASR to preserve the information shared
among seen task streams and dismiss the redundant information in previous states, which helps to
free up the ability to continuously learn. We expect the contributions to be helpful for the CSSL
community.
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