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Abstract

We present, AdaFNIO - Adaptive Fourier Neural Interpolation Operator, a neural
operator-based architecture to perform synthetic frame generation. Current deep learning-
based methods rely on local convolutions for feature learning and suffer from not being
scale-invariant, thus requiring training data to be augmented through random flipping and
re-scaling. On the other hand, AdaFNIO leverages the principles of physics to learn the
features in the frames, independent of input resolution, through token mixing and global
convolution in the Fourier spectral domain by using Fast Fourier Transform (FFT). We show
that AdaFNIO can produce visually smooth and accurate results. To evaluate the visual
quality of our interpolated frames, we calculate the structural similarity index (SSIM) and
Peak Signal to Noise Ratio (PSNR) between the generated frame and the ground truth
frame. We provide the quantitative performance of our model on Vimeo-90K dataset,
DAVIS, UCF101 and DISFA+ dataset. Lastly, we apply the model to in-the-wild videos
such as photosynthesis, brain MRI recordings and red blood cell animations

1 Introduction

Video frame interpolation is an intricate process that generates multiple intermediate frames from a given
set of available frames. This problem presents significant challenges due to the necessity of comprehending
the geometric structures of images, predicting the positions of numerous objects within the images, and
accounting for the complex velocities of these objects and the time steps between frames. In the context
of biology and physics, this process can be compared to understanding the dynamic motion of biological
systems, such as cellular structures or the interactions of particles in a fluid medium.

From the perspective of scientific computing, addressing the challenge of video frame interpolation requires
the development of advanced algorithms and architectures that can efficiently handle the complex and
dynamic nature of the problem. By incorporating insights from physics, it is possible to create more accurate
and robust solutions for video frame interpolation that account for the intricacies of diverse systems and
processes.

Moreover, an efficient video interpolation system must be compatible with commonly used devices, operate
on edge hardware, and accommodate videos of any arbitrary resolution. Utilizing neural networks as a
solution to interpolation offers a low-cost alternative, as devices only need to store the weights, which are
typically a few hundred megabytes in size. Nevertheless, neural networks relying solely on convolutional
filters face limitations in generalizing well to scaling. This is due to the fixed size of the filters, which can
only recognize patterns that conform to their dimensions.

The challenges associated with video capture in various applications, such as wildlife monitoring Swann et al.
(2011), remote sensing Campbell & Wynne (2011), microscopy Pawley (2006), underwater research Kocak
et al. (2008), and space exploration Squyres et al. (2004), often necessitate the use of low frame rate or
low-resolution videos. For instance, trail cameras placed in natural habitats are designed to conserve battery
life and storage space, leading to lower frame rates and resolutions Swann et al. (2011). Similarly, remote
sensing platforms, such as satellites or aerial vehicles, face data transmission limitations that can result in
reduced video quality Campbell & Wynne (2011). In the field of microscopy, imaging hardware constraints

1



Under review as submission to TMLR

Figure 1: The figure highlights the qualitative difference in the frames generated through the simple blending
of adjacent frames versus synthetically generating them through the AdaFNIO model. It can be observed that
the frame on the left is quite blurry, while the one on the right is clear and sharp

and the need to minimize data generation during extended observation periods can lead to lower frame rates
and resolutions Pawley (2006). Underwater research and exploration also demand video capture devices
that can operate efficiently under challenging environmental conditions, such as low light levels or limited
visibility, which may require lower frame rates and resolutions Kocak et al. (2008). Finally, space exploration
probes and rovers often employ cameras that prioritize conserving power and storage resources, as well as
accommodating limited bandwidth for data transmission back to Earth, resulting in lower frame rates and
resolutions Squyres et al. (2004). A robust physics-based frame interpolation method that is also scale-
invariant can greatly benefit these applications by enabling the accurate generation of intermediate frames,
irrespective of the input video resolution. This would allow for more precise motion analysis, improved data
visualization, and enhanced temporal resolution in low frame-rate or low-resolution videos. Additionally, such
an interpolation technique would eliminate the need for extensive data preprocessing or resolution-specific
model training, making it a versatile solution across different fields and video capture devices.

Many other applications make use of video frame interpolation, such as apps that generate movies and
panoramic views from visually similar frames and applications that run on the network edge that may need
to recover lost frames due to network issues, restore broken videos Cheng et al. (2021); Liang et al. (2022);
Kim et al. (2018). Recent works focus on increasing the video frame rate to improve gaming and real-time
video streaming experience. The other applications include medical imaging Ali et al. (2021); Karargyris &
Bourbakis (2010), restoring compressed videos He et al. (2020) and generating virtual frames in 3D spaces
Smolic et al. (2008); Wang et al. (2010). Most of these applications, especially video streaming applications
and gaming environments, need the interpolation algorithm running on the network edge while also handling
very high-resolution videos. Several cutting-edge models have been developed, and they produce interpolated
frames that, on average, have a structural similarity of 98% with the expected output but are trained on small
patches of input. While it is very expensive computationally to train neural networks on high-resolution
inputs, it is possible to design architectures that can be trained on low-resolution inputs but generalize
well to high-resolution ones. In this paper, we present a powerful neural operator-based architecture for
interpolating video frames through token mixing that has a quasi-linear complexity and is independent of
input resolution Guibas et al. (2021).

Moreover, an efficient video interpolation system must be compatible with commonly used devices, operate
on edge hardware, and accommodate videos of any arbitrary resolution. Utilizing neural networks as a
solution to interpolation offers a low-cost alternative, as devices only need to store the weights, which are
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typically a few hundred megabytes in size. Nevertheless, neural networks relying solely on convolutional
filters face limitations in generalizing well to scaling. This is due to the fixed size of the filters, which can
only recognize patterns that conform to their dimensions. Current deep learning-based interpolation models
are generally composed of Convolutional layers Niklaus et al. (2017); Niklaus & Liu (2018); Cheng & Chen
(2020). These models construct the missing frames by extracting the structural information present in the
input images using the appropriate filters or kernels. Convolutional layers exhibit shift invariance as they
capture objects present in different regions of the image. However, they are not invariant to scale or rotation.
To overcome this issue, images are randomly flipped and rotated to capture different orientations of the same
object. Moreover, Convolution neural network-based models rely on local convolution for feature learning
and require large amounts of training data and take a long time to converge. There have been attempts to
solve this issue, for example, video interpolation using cyclic frame generation technique Liu et al. (2019),
but it is not very accurate.

Optical flow-based techniques Krishnamurthy et al. (1999), which capture the motion of objects, have also
been applied for frame interpolation. In this technique, the apparent motion of the pixels is captured and
labeled as a flow vector. Using the estimated values of these flow vectors for each pixel, a missing frame
can be generated. Flow-based techniques resolve the limitations imposed by inadequate kernel sizes in
CNN-based methods and the frames can also be generated at a higher frequency per second, resulting in a
smoother video. Optical flow-based methods fail while dealing with noisy frames due to the lack of necessary
pixel information. It has also been observed that a combination of both kernel-based and optical flow-based
methods Choi et al. (2020) with Deep learning techniques like transformers Shi et al. (2022) and GANs have
low frame interpolation errors and also provide a great frame rate for a smooth video. However, GAN-based
architectures suffer from modal collapse and thus cannot be generalized in an arbitrary fashion. They rely
heavily on the distribution of input and would require re-training for a new distribution if the input space is
changed. Transformer-based architectures have been shown to be very efficient Shi et al. (2022). However,
due to their massively complex architecture, they require a lot of computing power and powerful GPUs to
train. Long training times are an additional downside.

In this paper, we define the problem of video interpolation from a physics perspective. The problem can be
defined as predicting the trajectories of objects, each moving with a different velocity in continuous space,
similar to optical flow, but we present a way to capture the flow information efficiently using kernels. This
problem is similar to predicting the trajectory of wind currents or ocean currents, for which neural operators
Kovachki et al. (2021); Guibas et al. (2021); Rahman et al. (2022) have been shown to be exceptionally
efficient, beating state-of-the-art weather prediction models Pathak et al. (2022). We present a powerful
Fourier Neural Operator-based architecture - AdaFNIO - Adaptive Fourier Neural Interpolation Operator
and show empirically that the model achieves state-of-the-art results. We quantify the quality of the results
using the Peak Signal to Noise Ratio (PSNR) and the Structural Similarity Index and show that the SSIM
of the generated frames is structurally similar to the ground truth.

The approach AdaFNIO network captures complex motions and overcomes degrees of freedom limitations
imposed by typical convolutional neural networks and imposes resolution invariance to the AdaCoF network
through spectral convolution layers. The network has a sequence of spectral convolution layers, which
perform convolution upon translating the input to the Fourier space or spectral domain. The low-frequency
regions are retained and the high-frequency ones are discarded because high-frequency points are specific
to the particular input and may lead to overfitting, as shown in Li et al. (2020). The spectral convolution
architecture of the AdaFNIO network is similar to an autoencoder network where the encoder layers contract
the input space to capture the key information about the distribution of the input. The decoder expands it
back to its original input space.

In this work, we have three main contributions:

• We present a powerful, efficient neural operator-based architecture to perform video frame interpo-
lation whose performance is comparable to state-of-the-art interpolation models. To the best of our
knowledge, AdaFNIO is the first to propose a resolution invariant architecture to solve this problem.
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• We leverage the fact that learning in the Fourier domain allows for resolution-independent learning
and allows for generalization to high-resolution images to capture finer details in high-resolution
images that are harder to capture.

• We show that AdaFNIO can generalize well on the unseen data by testing it on DAVIS-90 Caelles
et al. (2019), UCS101 Liu et al. (2017) and DISFA+ datasets. Mavadati et al. (2016).

• We also apply this model to various observations, animations, and simulations and show how our
approach can provide a way to overcome hardware and resource limitations in recording scientific
observations. Figure 1 provides an example of how the model can be used for medical imaging
videos.

2 Background and Related Work

Existing video interpolation methods focus on creating techniques that can accurately capture an object’s
motion while accounting for occlusions and blurry frames. To deal with blurry frames, the pyramid module
proposed in Shen et al. (2020) successfully restores the inputs and synthesizes the interpolated frame. Many
other methods focus on estimating the bidirectional optical flow in the input frames Liu et al. (2020a);
Niklaus & Liu (2020) and these methods are usually trained using deep learning models like neural networks
Huang et al. (2022), generative adversarial networks Tran & Yang (2022), long short term memory (LSTM)
Hu et al. (2021) and autoencoders Chen et al. (2017); ?. However, these methods fail to generate smooth
interpolation of the frames when dealing with large motions and occlusion in the input frames.

Bao et al. Bao et al. (2019) introduced depth aware flow projection layer that uses depth maps in combination
with the optical flow to suppress the effect of occluded objects. In addition to bidirectional optical flow
estimation, Niklaus & Liu (2018) uses pixel-wise contextual information to generate high-quality intermediate
frames and also effectively handles occlusion. To capture non-linear motion among frames, a bidirectional
pseudo-three-dimensional warping layer is used in Luo et al. (2022) that uses motion estimation and depth-
related occlusion estimation to learn the interpolation. ST-MFNet Danier et al. (2022) uses 3D CNNs, and
spatio-temporal GANs to estimate intermediate flows to capture large and complex motions.

The optical flow estimating models are accurate, but their calculations are expensive, and their designs are
complicated. An alternate technique was kernel-based, Shi et al. (2021); Liu et al. (2019), which uses filters
to learn features from the input frames in order to synthesize an intermediate frame. These models are
end-to-end trainable but fail to capture motion and pixel information beyond the kernel size. To overcome
these limitations and also to handle other major issues like occlusion Choi et al. Choi et al. (2020) proposed
an architecture that uses a layer called PixelShuffle. The PixelShuffle layer in Choi et al. (2020) downsizes
the input frames to capture relevant feature information and upscales the feature maps in later stages to
generate the missing frame and is a replacement for flow-estimation networks. A similar model that uses
transformers has been proposed in Kim et al. (2022), which uses a visual transformer module that analyzes
input frame features to refine the interpolated prediction and also introduces an image attention module to
deal with occlusion. To avoid the additional computation overheads of having an image attention module,
Shi et al. (2022) uses transformers along with local attention, which is extended to a spatial-temporal domain
to compute the interpolation.

To overcome the issue of restricted kernel size in kernel-based methods, Niklaus et al. (2017) introduces
adaptive separable convolution that uses deep convolutional neural networks and runs pairs of 1D kernels
on the input frames to capture large motions. In addition to kernel-based methods, there are phase-based
methods like Meyer et al. (2015) that use per-pixel phase modification to compute a smooth interpolated
frame without having to perform any flow estimation.

The above-discussed methods show exceptional results on well-known datasets like Vimeo-90K, but a major
drawback is that these models take too long to converge. For example, DAIN Bao et al. (2019) takes 5+
days to converge on an NVIDIA Titan X (Pascal) GPU for around 40 epochs and a batch size of 2; CAIN
Choi et al. (2020) is trained for 200 epochs with a batch size of 32 and takes around 4 days to converge on
a single Titan Xp GPU.
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Figure 2: Abstract view of the ADAFNIO Architecture: Our architecture combines the AdaCoF network with
neural operator layers. Initially, the two frames are fed to the encoder (Downsample) network, which applies
successive 2D Convolution to the frames to generate a latent representation. The Upsample block consists of
a sequence of upsample and convolution layers to reconstruct the frame from the latent representation. This
reconstructed matrix is fed to two sets of 3 subnetworks - 2 Offset networks and 1 Weight network. These
sub-networks extract the features for the AdaCof layer, which processes these features with the input frames.
The final output is fed to the neural operator layers to extract finer information not captured by AdaCoF.
The SpectralConv layers perform pixel-wise multiplication in the Fourier domain by first performing FFT on
the frames. This process is analogous to token mixing. The final output is a weighted sum of the AdaCoF
output and the Neural Operator output

Figure 3: The figure shows the constituent layers of each block in the AdaCoF sub-network

3 AdaFNIO Architecture

AdaFNIO aims to overcome one of the common limitations exhibited by models that use convolutional
layers - a variance to scale and makes the model resolution independent. Adaptive collaboration of flows, or
AdaCoF, is a state-of-the-art architecture that improves the degrees of freedom of complex motions in the
frames. The AdaCoF architecture offers a very generalized solution to determining the flows, irrespective
of the number of pixels and their location in the frame Lee et al. (2020). To generalize AdaCoF to any
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Figure 4: The figure shows the constituent operations performed in each of the blocks of the Neural Operator
sub-network

arbitrary resolution, we propose connecting neural operator layers to the model to capture finer information
that is otherwise hard to generalize at higher resolutions. The final output is a weighted sum of the features
learned by the neural operator and the flows learned by the base AdaCoF model.

The proposed model AdaFNIO takes as input a couplet of frames and generates the intermediate frame.
As shown in equation 1, I0 and I1 are the input frames and I0.5 is the interpolated frame. w1 and w2 are
weights chosen for the features generated by the two models, which are tuned during training. If I ′

0.5 is the
ground truth and N is the neural operator network, then the resulting frame generation process is described
as follows

I0.5 = w1N (I0, I1) + w2AdaCoF (I0, I1) (1)

The interpolated frame quality is measured as PSNR( I ′
0.5, I0.5 ) and SSIM( I ′

0.5, I0.5 ).

Figure 5: This figure is a visual comparison of results generated by AdaFNIO against various video recordings
and simulated videos. The leftmost column is a real-time recording of photosynthesis. The middle frame is
an animation of plant cells, while the rightmost one is a simulation of red blood cells within the body
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3.1 Frames as a continuous set of tokens

The input to the model is a set of frames, which are images. Neural operators have been traditionally applied
to solve partial differential equations or PDEs where the input is the discretization of a continuous vector
field. Images, on the other hand, have distinct objects, sharp edges, and discontinuities. Recently, neural
operators have shown promise in vision problems Guibas et al. (2021). In the case of frame interpolation, the
frames can be broken down into a set of tokens, where each token is a patch within the frame. The model
performs global convolution as a token mixing operation in the Fourier space. The tokens are extracted
in the initial convolution layers with shared weights. The kernel size and the stride length determine the
dimensions of the tokens. To account for non-periodicity in images, a local convolution layer is added after
each global convolution.

3.2 Resolution Invariance and Quasi-linear Complexity

The token features are learned in the Fourier space, which is invariant to the resolution of the input image.
This was shown in Guibas et al. (2021). This allows the model to exhibit the property of zero-shot super-
resolution; that is, the model can be trained on one resolution and tested on any arbitrary resolution.

The multiplication is done on the lower (kx, ky) Fourier modes, which is restricted to be at most (n/2, m/2),
where (n, m) is the resolution of the image. If the weight matrix has a dimension of (p, p), then the time
complexity of global convolution is O(Nlog(N)p2), where N is the length of the token sequence, as shown in
Guibas et al. (2021).

The model contains two components - The interpolation layer, which performs a linear operation on the two
frames and couples them together with a common weight matrix. The second component is a version of
the UNO network, similar to what was proposed in Rahman et al. Rahman et al. (2022), which is a neural
operator network. It performs convolution operations in the Fourier Space. The UNO part of the model,
termed NIO, initially contracts the input space to extract the key features of the image, which is equivalent
to performing a dimensionality reduction. The encoder is followed by the decoder layers, which expand space
back to its original size. The input takes two channels, with each channel corresponding to an input frame,
while the output has a single channel corresponding to the output frame.

3.3 AdaFNIO Architecture

The AdaFNIO model comprises of two sub-networks as shown in figure 2. The AdaCoF network comprises
of a U-Net implemented with convolutional layers and 6 networks that calculate 2 pairs of weight and offset
vectors for the two frames. The individual blocks used in these networks are shown in figure 3.

The neural operator network initially extracts the tokens through a sequence of convolution layers with
shared weights. This means that the two frames are fed to the convolution layers recursively. This forms
the input to the spectral convolution layers that perform global convolution in Fourier space. The pointwise
operation layers perform local convolution and resize the frames to the required dimensions. The output
features of each layer are a weighted sum of these two outputs. Through a sequence of spectral convolution
and pointwise operator layers, the input tensor is downsampled and the latent embedding is generated.
This embedding is used to generate the output frame through another sequence of spectral convolution and
pointwise operator layers that upsample the input tensor successively. The constituent components of the
spectral convolution block and pointwise operator block are shown in figure 4.

The spectral convolution layer only preserves the low-frequency Fourier models and ignores the high-
frequency modes, which are too specific to the particular input and if these modes are learned, they overfit
to the input as shown in Li et al.Li et al. (2020). After applying the weights, the tensors are projected back
into the spatial domain and non-linear activation is applied to recover the high-frequency points.
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Figure 6: This figure is a visual comparison of results generated by AdaFNIO against high-resolution (1080p)
stock footage of the Japanese landscape. While the visual differences are hard to discern, the AdaFNIO has a
slightly better quantitative performance against AdaCoF. The top row is the output generated by AdaFNIO
and the bottom row is the ground truth.

3.3.1 Loss Functions

The model uses two loss functions. The L1 loss function is used to initially train the model. This loss is
given by equation 2

L1 = ||IAdaF NIO − IGT ||1 (2)
The other loss function that is used is perceptual loss, which is used for fine-tuning the model. The loss is
generated by the feature extractor of the pre-trained VGG22 neural network. This loss is given by equation
3

Lvgg = ||F (IAdaF NIO) − F (IGT )|| (3)
The overall loss function used during fine-tuning is a combination of L1 and VGG loss functions, with higher
weights given to the L1 loss function. This is denoted by equation 4

L = L1 + 0.01 ∗ Lvgg (4)

Figure 7: The above figure highlights the resolution invariance property exhibited by the architecture. The
models were trained on 256x256 patches of the Vimeo90K dataset but tested against high-resolution stock
footage of the Japanese landscape. In this figure, the top row is the generated output and the bottom row is
the ground truth. The left row is of 480p resolution, the center one 720p and the right one 1080p
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Table 1: The table showing the quantitative performance on Vimeo90K, DAVIS, UCF101 and DISFA+
dataset. The AdaFNIO model is compared against the quantitative performance of other models, as presented
in Kong et al. Kong et al. (2022) and Shi et al. Shi et al. (2022)

Model Parameters (M) Epochs Vimeo90K DAVIS UCF101 DISFA+
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ToFlow Xue et al. (2019) 1.4 - 33.73 0.968 - - 34.58 0.966 - -
IFRNET-S Kong et al. (2022) 2.8 300 35.59 0.978 - - 35.28 0.969 38.85 0.961
VFIT-S Shi et al. (2022) 7.5 100 36.48 0.976 27.92 0.885 33.36 0.971 39.25 0.964
SoftSplat Niklaus & Liu (2020) 7.7 - 35.76 0.972 27.42 0.878 35.39 0.952 38.33 0.954
RIFE Huang et al. (2020) 9.8 25 35.62 0.978 - - 35.28 0.969 38.84 0.961
BMBC Park et al. (2020) 11.0 - 34.76 0.965 26.42 0.868 35.15 0.968 - -
ABME Park et al. (2021) 18.1 - 36.18 0.980 - - 35.38 0.969 - -
SepConv Zhang et al. (2018) 21.6 - 33.60 0.944 26.21 0.857 34.78 0.966 38.70 0.959
AdaCof Lee et al. (2020) 21.8 50 34.47 0.973 26.49 0.866 34.90 0.968 38.98 0.961
DAIN Bao et al. (2019) 24.0 40 33.35 0.945 26.12 0.870 34.99 0.968 35.00 0.956
QVI Liu et al. (2020b) 29.2 200 35.15 0.971 27.17 0.874 32.89 0.970 - -
SuperSloMo Jiang et al. (2018) 39.6 500 32.90 0.957 25.65 0.857 32.33 0.960 - -
FLAVR Kalluri et al. (2020) 42.4 200 36.30 0.975 27.44 0.874 33.33 0.971 - -
CAIN Choi et al. (2020) 42.8 200 34.76 0.970 27.21 0.873 34.91 0.969 - -
AdaFNIO 88.9 100 36.50 0.976 27.90 0.888 34.88 0.970 39.30 0.965

3.4 Frame Generation

The intermediate frame is generated after applying a sequence of spectral convolution layers that perform
global convolution in Fourier space. Let the input frames be represented as Ii and Ij and the initial weight
matrix be represented as Vf . Let the initial convolution layers be represented with Ct. Let the downsampler
layer be represented as E and the upsampler layer be represented as D. Let the weights be represented as
W and bias be represented with B and AdaCoF network be represented by Ada. The pipeline is as follows

Ct(Ii, Ij) = Vf ∗ Ii + Vf ∗ Ij + B (5)

I0.5 = WNIO ∗ D(E(Ct(Ii, Ij))) + Ada(Ii, Ij) (6)

3.5 Training

For the training process, Vimeo90K triplet dataset was used. The dataset has 73,171 3-frame sequences, of
which 58,536 frames were used for training and the remaining 14635 were used for validation. The L1 loss
was used for the first 80 epochs. For the finetuning process, 11,000 random frames were used to tune the
model for another 20 epochs with perceptual loss. The model was tested against 1080p stock footage of a
Japanese landscape taken from YouTube channel 8K World. This video was chosen because the footage was
shot in very high resolution. The model was trained for 100 epochs on Nvidia A100 GPU. The frames were
randomly cropped to 256x256 patches. However, the frames were not randomly flipped, scaled, or rotated
in order to test the invariance properties of the architecture.

3.5.1 Dataset

The AdaFNIO model was validated on these three frequently used benchmark datasets (Vimeo90K, DAVIS,
UCF101) as well as one specialty dataset (DISFA+), which focuses on videos with human faces.

• Vimeo90K Dataset Xue et al. (2019) The Vimeo90K dataset is built from 89,800 clips taken from
the video streaming site Vimeo. It contains a large variety of scenes. For this project, the triplet
dataset was used. The dataset contains 73,171 3-frame sequences, all of which have a resolution of
448x256.

• Davis-90 The modified Densely Annotated Video Segmentation dataset contains frames from var-
ious scenes. These frames are partitioned into triplet sets and used for testing the performance of
the model.
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• UCF101 Dataset The preprocessed UCF101 dataset is a collection of scenes that have been par-
titioned into triplets. This dataset is also used for testing the models.

• DISFA+ Dataset The DISFA+ or the Denver Intensity of Spontaneous Facial Action Database
consists of a large set of facial expression sequences, both posed and non-posed. The dataset has
multiple subjects of different ethnicities exhibiting various facial expressions and is a comprehensive
dataset to study micro facial expressions. This dataset was chosen due to the increase in the
prevalence of video meetings and social media videos, many of which predominantly features human
faces.

The DISFA+ dataset was processed into triplets and the model was trained to predict the second frame from
the first and third frames. The Vimeo90K dataset was used to provide a comparison benchmark against
other deep learning-based interpolation approaches, while the DISFA+ dataset was used to predict facial
expressions from up close. This served as a test to determine the ability of neural operator-based models to
interpolate minute facial muscle movements. The frames were resized to 256x256 due to memory and GPU
constraints.

3.6 Hyperparameters

The models were built using Pytorch and trained on Nvidia A100 GPUs. The Fourier modes used for the
layers are 5, 10, 21 and 42. The batch size was set to 32 and the learning rate was set to 0.0001. The weight
for the NIO base model was set to 0.01. The training was done using Cuda 11.0. Adam optimizer was used
with a weight decay of 0.0001, β1 of 0.9 and β2 of 0.999. The loss function used for training was a mean
squared error (MSE) or L2 Loss.

4 Experiments and Evaluation

4.0.1 Quantitative performance

In this section, we provide a comparison benchmark against the other state-of-the-art models with SSIM and
PSNR as the evaluation metrics. Table 1 shows the quantitative performance against other state-of-the-art
models. AdaFNIO has the best PSNR (36.50) on the Vimeo90K dataset, and the best SSIM (0.888) on
the DAVIS dataset and outperforms every other model against DISFA+ dataset. The reason for better
performance against the DISFA+ dataset is that neural operator-based models perform well on periodic
images with smooth edges. Talking head videos have the fewest number of objects and fewer edges within
the frames and thus, neural operators outperform in that situation. This phenomenon was first identified by
Guibas et al. (2021) and empirically verified by us.

Figure 7 shows the outputs generated by the model at three different resolutions 480p, 720p and 1080p,
respectively, and there is no performance degradation as the resolution increases. Figure 9 highlights the
performance of AdaFNIO against other state-of-the-art models.

4.1 Resolution Invariance and Scale Invariance

To showcase AdaFNIO’s resolution and scale invariance, we perform inference on un-seen videos of previously
unseen resolutions. In Table 3, we highlight the model’s performance at higher resolution samples of the same
dataset (YouTube footage video captured at 60FPS, 720p, 1080p, 2160p, and 4320p) to evaluate resolution
invariance. We also show more comparative results in Table 2 and Figure 8. The kernel sizes used in
convolution models are fixed (3x3, 5x5, etc.) This allows for learning features within the kernel effectively.
If the object’s size changes (i.e., higher resolution), the network will not learn. However, the Fourier domain
focuses on frequency changes within the image and learns these parameters; therefore, using Fourier Neural
Operators on tokenized images is more effective.
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Table 2: Comparisons of interpolation models at different resolutions, showing scale-invariance property of
AdaFNIO

Model 720p 1080p 2160p 4320p
AdaFNIO 0.9879 0.9920 0.9742 0.9393
AdaCof 0.9879 0.9919 0.9591 0.9113
VFIT-S 0.9764 0.9770 0.9116 0.8839
FLAVR 0.9653 0.9840 0.9210 0.8552
CAIN 0.9834 0.9582 0.9123 0.8721

Figure 8: Trends in performance at different resolutions
4.2 Comparisons against baseline AdaCoF model

In this section, we show quantitative differences between the frames generated by the AdaCoF model and
the AdaFNIO model in two settings - varying resolutions and varying frame rates. The models were tested
against the Japanese stock footage video at 30fps, with 9,894 frames.
Varying resolutions At lower resolution, we observed that AdaFNIO and AdaCoF had similar performance,
but as the resolution increased, AdaFNIO performed slightly better than the AdaCoF model. These SSIM
values at different resolutions are shown in table 3

Table 3: The SSIM values against Japanese stock footage video captured at different resolutions
Model 480p 720p 1080p

AdaFNIO 98.276 98.792 99.207
AdaCoF 98.276 98.790 99.199

Varying frame rates and missing frames To test the performance of the model with missing frames,
the model was evaluated in three settings against 480p resolution frames - when every alternate frame was
dropped, when 2 consecutive frames were dropped and when 4 consecutive frames were dropped. AdaFNIO
slightly outperformed AdaCoF in all three settings and the SSIM values are shown in table 4

4.3 Ablation Study

As part of the ablation study, we tested different neural operator models against variants of Vimeo90K dataset
in different settings. We refer to pure neural operator models, that is, models that were not combined with
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Table 4: The SSIM values against Japanese stock footage video captured at a fixed resolution of 480p but
with varying frame rates

Model drop 1 drop 2 drop 4
AdaFNIO 98.257 94.909 89.988
AdaCoF 98.256 94.899 89.969

Figure 9: This figure provides a visual comparison of results across various models. NIO achieves visually
comparable results with other models

AdaCoF, as NIO. These models are highly sensitive to sharp edges and generally perform well on low-
resolution frames due to them having relatively smooth boundaries and fewer sharp objects. To remedy this
issue, the neural operator was combined with AdaCoF in the final version of AdaFNIO. We shall discuss our
findings on pure neural operator models in the following subsections.

We built two models - a basic single-channel NIO-base model with a single neural operator block with 3.42
million parameters and a lighter model - NIO-Small (NIO-S), with 1.18 million parameters and trained the
model on the grayscale Vimeo-90K dataset. The reason for choosing a single-channel neural network was
to reduce the distraction created by RGB channels while learning to interpolate. The model was trained to
recognize the trajectories of the objects within the frame as the initial step of learning. The NIO-S model
was not as accurate as the NIO-base model, but it was faster and took half as much time per epoch. On
the A30 GPU, the NIO-base model took 5 and a half minutes per epoch, while the NIO-S model took 3
minutes and 39 seconds per epoch on average. This model only had three spectral convolution layers. The
two models approached an SSIM of 0.90 within the first epoch. Table 5 highlights the differences between
a single NIO block but with a different number of spectral layers when tested against the low resolution
(50x50) DISFA+ dataset.

Neural Operators and low-resolution RGB images Three models were tested against a low-resolution
RGB version of Vimeo90K dataset at 2 different resolutions of 100x100 and 85x85. These models were
all trained for 50 epochs at a batch size of 32. The first model was the NIO fine model with 8 neural
operator blocks connected to form a residual network, the second was an NIO base model with 4 neural
operator blocks, and lastly, the AFNO Net with channel attention, tested against two patch sizes of 1x1 and
2x2. The models were tested against both normalized and non-normalized datasets. The SSIM values after
convergence are shown in table 6.

It can be observed from table 6 that the AFNO network, which uses channel attention, performed poorly in
every setting. NIO-based models that used downsamplers and upsamplers were quick to converge, as seen
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Table 5: The table showing the differences between NIO-S and NIO models
Model Spectral Time/Epoch DISFA+

Layers fixed batch PSNR SSIM
NIO-S 4 00:03:39 39.25 0.987
NIO 8 00:05:43 38.84 0.954

Table 6: The SSIM values low-resolution RGB Vimeo90K dataset for pure neural operator models. The N
refers to the normalized dataset

Model 100x100 100x100 N 85x85 85x85 N
NIO base 84.526 86.438 90.235 91.876
NIO fine 88.781 89.623 92.693 93.451

AFNO 1x1 74.376 74.298 76.851 76.394
AFNO 2x2 77.368 77.925 79.422 79.631

in table 5, and performed better than AFNOs. Therefore, the NIO-based models were used as the neural
operator component in the final AdaFNIO model.

4.3.1 Normalization

Min-Max normalization was applied to the dataset as a preprocessing step, reducing the range of values
that a pixel can take. The models performed slightly worse on the Vimeo90K dataset when the input
was normalized. However, these models performed better on the other datasets after being trained on the
normalized grayscale 100x100 Vimeo90K dataset, thus showing that normalization as a preprocessing step
helps the models generalize better on data they have not seen before.

Table 7: The table showing the differences between Normalizing the input and not normalizing the input
Model UCF101

PSNR SSIM
NIO 36.54 0.970
NIO + Norm 36.84 0.954

5 Discussions and Future Use

Apart from the video datasets such as DISFA+, Vimeo90K and Davis, AdaFNIO was specifically tested
on in-the-wild videos from various domains. These videos were a mixture of microscopic recordings, MRI
recordings, scientific animations and simulations. Figure 5 depicts a visual comparison of outputs generated
by the AdaFNIO model against a simple mean of the adjacent frames. It is clearly apparent that the model
estimates the trajectories and places the objects in the right points within the frames, while a simple mean
of the frames leads to a messy overlap of the objects. The figure depicts the synthetic frames generated from
the following three videos -

• Microscopic footage of oxygen bubbles generated during photosynthesis of the aquatic plant anacharis
(Egeria densa) and a Marimo ball (Aegagropila linnaei), uploaded by Sci-Inspi.

• An animation of Redwood leaf, highlighting stoma, palisade cells, golgi apparatus, endoplasmic
reticulum, and ribosomes, uploaded by California Academy of Sciences.

• Blood component animation video highlighting red blood cells, white blood cells, plasma, and
platelets, uploaded by American Society of Hematology.

13
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Furthermore, the model was also used to interpolate MRI brain scans, uploaded by the University of Alabama,
Birmingham.

While AdaFNIO is primarily designed for computer vision, video enhancement, and video processing tasks,
the underlying technology will find applications in other domains, including:

• Scientific simulations: In fields like fluid dynamics or meteorology, adaptive frame interpolation
could help improve the accuracy and efficiency of simulations by filling in gaps between time steps
or refining existing models Janiga & Thévenin (2013); Park & Xu (2013).

• Robotics and control systems: AdaFNIO’s ability to predict intermediate states could be useful
in designing more efficient and smooth control algorithms for robots and other automated systems
Kober et al. (2013).

6 Conclusion

In this paper, we have presented a neural operator-based architecture for performing frame interpolation.
The model is powerful, resolution invariant, and discretization invariant, and achieves state-of-the-art per-
formance on unseen datasets. The model has proven effective in capturing information in tiny regions of
the image (tokens) and generalizing well in larger images. The AdaFNIO model has only been trained on a
triplet dataset with consecutive frames. However, it remains to be seen how well it performs when trained
against larger sequences of frames. Secondly, the resolution invariance is an important property of the neural
operator, and it remains to be seen whether this can be used to improve the resolution of the images.

References
Sharib Ali, Felix Zhou, Adam Bailey, Barbara Braden, James E East, Xin Lu, and Jens Rittscher. A deep

learning framework for quality assessment and restoration in video endoscopy. Medical image analysis, 68:
101900, 2021.

Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. Depth-aware
video frame interpolation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3703–3712, 2019.

Sergi Caelles, Jordi Pont-Tuset, Federico Perazzi, Alberto Montes, Kevis-Kokitsi Maninis, and Luc Van Gool.
The 2019 davis challenge on vos: Unsupervised multi-object segmentation. arXiv:1905.00737, 2019.

James B Campbell and Randolph H Wynne. Introduction to remote sensing. Guilford Press, 2011.

Xiongtao Chen, Wenmin Wang, and Jinzhuo Wang. Long-term video interpolation with bidirectional pre-
dictive network. In 2017 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE,
2017.

Harry Cheng, Yangyang Guo, Jianhua Yin, Haonan Chen, Jiafang Wang, and Liqiang Nie. Audio-driven
talking video frame restoration. IEEE Transactions on Multimedia, 2021.

Xianhang Cheng and Zhenzhong Chen. Video frame interpolation via deformable separable convolution. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 10607–10614, 2020.

Myungsub Choi, Heewon Kim, Bohyung Han, Ning Xu, and Kyoung Mu Lee. Channel attention is all
you need for video frame interpolation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 10663–10671, 2020.

Duolikun Danier, Fan Zhang, and David Bull. St-mfnet: A spatio-temporal multi-flow network for frame
interpolation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3521–3531, 2022.

14



Under review as submission to TMLR

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catanzaro. Adap-
tive fourier neural operators: Efficient token mixers for transformers. arXiv preprint arXiv:2111.13587,
2021.

Gang He, Chang Wu, Lei Li, Jinjia Zhou, Xianglin Wang, Yunfei Zheng, Bing Yu, and Weiying Xie. A video
compression framework using an overfitted restoration neural network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pp. 148–149, 2020.

Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shin’ichi Satoh. Capturing
small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE Transactions
on Circuits and Systems for Video Technology, 2021.

Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and Shuchang Zhou. Rife: Real-time intermediate
flow estimation for video frame interpolation. arXiv preprint arXiv:2011.06294, 2020.

Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and Shuchang Zhou. Real-time intermediate flow
estimation for video frame interpolation. In European Conference on Computer Vision, pp. 624–642.
Springer, 2022.

Gábor Janiga and Dominique Thévenin. Computational fluid dynamics: a practical approach. Numerical
Mathematics and Scientific Computation, 2013.

Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-Miller, and Jan Kautz. Super
slomo: High quality estimation of multiple intermediate frames for video interpolation. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 9000–9008, 2018.

Tarun Kalluri, Deepak Pathak, Manmohan Chandraker, and Du Tran. Flavr: Flow-agnostic video represen-
tations for fast frame interpolation. arXiv preprint arXiv:2012.08512, 2020.

Alexandros Karargyris and Nikolaos Bourbakis. Three-dimensional reconstruction of the digestive wall in
capsule endoscopy videos using elastic video interpolation. IEEE transactions on Medical Imaging, 30(4):
957–971, 2010.

Hannah Halin Kim, Shuzhi Yu, Shuai Yuan, and Carlo Tomasi. Cross-attention transformer for video
interpolation. arXiv preprint arXiv:2207.04132, 2022.

Tae Hyun Kim, Mehdi SM Sajjadi, Michael Hirsch, and Bernhard Scholkopf. Spatio-temporal transformer
network for video restoration. In Proceedings of the European Conference on Computer Vision (ECCV),
pp. 106–122, 2018.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The Interna-
tional Journal of Robotics Research, 32(11):1238–1274, 2013.

Dogan M Kocak, Frank M Caimi, and Fraser R Dalgleish. A focus on recent developments and trends in
underwater imaging. Marine Technology Society Journal, 42(1):52–67, 2008.

Lingtong Kong, Boyuan Jiang, Donghao Luo, Wenqing Chu, Xiaoming Huang, Ying Tai, Chengjie Wang,
and Jie Yang. Ifrnet: Intermediate feature refine network for efficient frame interpolation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1969–1978, 2022.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Neural operator: Learning maps between function spaces. arXiv preprint
arXiv:2108.08481, 2021.

Ravi Krishnamurthy, John W Woods, and Pierre Moulin. Frame interpolation and bidirectional prediction
of video using compactly encoded optical-flow fields and label fields. IEEE transactions on circuits and
systems for video technology, 9(5):713–726, 1999.

15



Under review as submission to TMLR

Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. Adacof:
Adaptive collaboration of flows for video frame interpolation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5316–5325, 2020.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. arXiv
preprint arXiv:2010.08895, 2020.

Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, and Luc
Van Gool. Vrt: A video restoration transformer. arXiv preprint arXiv:2201.12288, 2022.

Xiaozhang Liu, Hui Liu, and Yuxiu Lin. Video frame interpolation via optical flow estimation with image
inpainting. International Journal of Intelligent Systems, 35(12):2087–2102, 2020a.

Yihao Liu, Liangbin Xie, Li Siyao, Wenxiu Sun, Yu Qiao, and Chao Dong. Enhanced quadratic video
interpolation. In European Conference on Computer Vision, pp. 41–56. Springer, 2020b.

Yu-Lun Liu, Yi-Tung Liao, Yen-Yu Lin, and Yung-Yu Chuang. Deep video frame interpolation using cyclic
frame generation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 8794–
8802, 2019.

Ziwei Liu, Raymond A Yeh, Xiaoou Tang, Yiming Liu, and Aseem Agarwala. Video frame synthesis using
deep voxel flow. In Proceedings of the IEEE international conference on computer vision, pp. 4463–4471,
2017.

Yao Luo, Jinshan Pan, and Jinhui Tang. Bi-directional pseudo-three-dimensional network for video frame
interpolation. IEEE Transactions on Image Processing, 2022.

Mohammad Mavadati, Peyten Sanger, and Mohammad H Mahoor. Extended disfa dataset: Investigating
posed and spontaneous facial expressions. In proceedings of the IEEE conference on computer vision and
pattern recognition workshops, pp. 1–8, 2016.

Simone Meyer, Oliver Wang, Henning Zimmer, Max Grosse, and Alexander Sorkine-Hornung. Phase-based
frame interpolation for video. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1410–1418, 2015.

Simon Niklaus and Feng Liu. Context-aware synthesis for video frame interpolation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1701–1710, 2018.

Simon Niklaus and Feng Liu. Softmax splatting for video frame interpolation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5437–5446, 2020.

Simon Niklaus, Long Mai, and Feng Liu. Video frame interpolation via adaptive separable convolution. In
Proceedings of the IEEE International Conference on Computer Vision, pp. 261–270, 2017.

Junheum Park, Keunsoo Ko, Chul Lee, and Chang-Su Kim. Bmbc: Bilateral motion estimation with bilateral
cost volume for video interpolation. In European Conference on Computer Vision, pp. 109–125. Springer,
2020.

Junheum Park, Chul Lee, and Chang-Su Kim. Asymmetric bilateral motion estimation for video frame
interpolation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14539–
14548, 2021.

Seon Ki Park and Liang Xu. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol.
II). Springer, 2013.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay, Morteza
Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Fourcastnet: A
global data-driven high-resolution weather model using adaptive fourier neural operators. arXiv preprint
arXiv:2202.11214, 2022.

16



Under review as submission to TMLR

James B Pawley. Handbook of biological confocal microscopy. Springer Science & Business Media, 2006.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural operators.
arXiv preprint arXiv:2204.11127, 2022.

Wang Shen, Wenbo Bao, Guangtao Zhai, Li Chen, Xiongkuo Min, and Zhiyong Gao. Blurry video frame
interpolation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 5114–5123, 2020.

Zhihao Shi, Xiaohong Liu, Kangdi Shi, Linhui Dai, and Jun Chen. Video frame interpolation via generalized
deformable convolution. IEEE Transactions on Multimedia, 24:426–439, 2021.

Zhihao Shi, Xiangyu Xu, Xiaohong Liu, Jun Chen, and Ming-Hsuan Yang. Video frame interpolation
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 17482–17491, 2022.

Aljoscha Smolic, Karsten Muller, Kristina Dix, Philipp Merkle, Peter Kauff, and Thomas Wiegand. Inter-
mediate view interpolation based on multiview video plus depth for advanced 3d video systems. In 2008
15th IEEE International Conference on Image Processing, pp. 2448–2451. IEEE, 2008.

Steven W Squyres, Raymond E Arvidson, James F Bell, J Brückner, Nathalie A Cabrol, Wendy Calvin,
Michael H Carr, Philip R Christensen, Benton C Clark, Larry Crumpler, et al. The opportunity rover’s
athena science investigation at meridiani planum, mars. Science, 306(5702):1698–1703, 2004.

Donald E Swann, Kae Kawanishi, and Jonathan Palmer. Wildlife cameras: a review of applications and
future directions. Mammal Study, 36(2):71–82, 2011.

Quang Nhat Tran and Shih-Hsuan Yang. Video frame interpolation via down–up scale generative adversarial
networks. Computer Vision and Image Understanding, 220:103434, 2022.

Hung-Ming Wang, Chun-Hao Huang, and Jar-Ferr Yang. Depth maps interpolation from existing pairs of
keyframes and depth maps for 3d video generation. In Proceedings of 2010 IEEE International Symposium
on Circuits and Systems, pp. 3248–3251. IEEE, 2010.

Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. Video enhancement with
task-oriented flow. International Journal of Computer Vision, 127(8):1106–1125, 2019.

Zhifeng Zhang, Li Song, Rang Xie, and Li Chen. Video frame interpolation using recurrent convolutional
layers. In 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM), pp. 1–6. IEEE,
2018.

A Appendix

You may include other additional sections here.

17


	Introduction
	Background and Related Work
	AdaFNIO Architecture
	Frames as a continuous set of tokens
	Resolution Invariance and Quasi-linear Complexity
	AdaFNIO Architecture
	Loss Functions

	Frame Generation
	Training
	Dataset

	Hyperparameters

	Experiments and Evaluation
	Quantitative performance
	Resolution Invariance and Scale Invariance
	Comparisons against baseline AdaCoF model
	Ablation Study
	Normalization


	Discussions and Future Use
	Conclusion
	Appendix

