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Abstract

Automated text classification in medical and001
health domains enables the extraction of struc-002
tured information from unstructured clinical003
text, such as identifying diseases and associated004
conditions. However, applying text classifica-005
tion models effectively in healthcare requires006
a nuanced understanding of specific subtopics007
and the trade-offs between model scale and008
available data resources. This paper evaluates009
the performance of pretrained language mod-010
els (PLMs) and large language models (LLMs)011
in classifying subtopics within the sleep and012
activity domains. Using a dataset of curated013
Reddit posts, we examine how classifier per-014
formance varies with different training sample015
sizes, including low-resource scenarios with016
just one to five examples. Our findings high-017
light a complex interaction between model ar-018
chitecture, data availability, and classification019
performance, demonstrating the strengths of020
LLMs in zero-shot learning in nuanced subdo-021
mains with limited data, while PLMs surpass022
LLMs with modest increases in data. This re-023
search provides valuable insights into the opti-024
mal application of language models for health-025
related text classification tasks, especially un-026
der varying resource constraints.027

1 Introduction028

The utilization of large language models (LLMs)029

in personal health has garnered significant atten-030

tion, particularly due to their potential in gener-031

ating personalized health recommendations and032

processing health-related data (Huang et al., 2019;033

Thirunavukarasu et al., 2023; Singhal et al., 2023;034

Yang et al., 2022). Recent research reveals a crit-035

ical need for models capable of handling the nu-036

anced and context-dependent nature of health in-037

formation (Guo et al., 2024; Harris et al., 2024).038

Advancements in transformer architectures, partic-039

ularly encoder models like BERT (Devlin, 2018)040

and decoder models like the Generative Pre-trained041

Transformer (GPT) series (Radford, 2018; Radford 042

et al., 2019; Brown et al., 2020; Achiam et al., 043

2023), have fueled progress in this area (Guo et al., 044

2024; Harris et al., 2024). However, prior research 045

involving BERT models and their variants typi- 046

cally explores thousands of examples per class, 047

which may require substantial data labeling efforts 048

to train these models (Guo et al., 2024; Mujtaba 049

et al., 2019). LLMs, such as GPT series, with their 050

extensive pre-training, offer a potential solution by 051

reducing reliance on labeled data. On the other 052

hand, while LLMs have shown promise in broad 053

health domain classifications, particularly when 054

compared to pre-trained learning models (PLMs) 055

trained on extensive datasets (e.g., >5000 exam- 056

ples (Guo et al., 2024)), their ability to discern 057

subtle distinctions within related health subdomain 058

areas remains less explored. This highlights the 059

need for models that can accurately identify sub- 060

domains within specific primary, parent health do- 061

mains, and an understanding of how model scale 062

and data resources influence this capability. 063

To investigate this, we evaluate the performance 064

of both large language models (LLMs) and state- 065

of-the-art text classification techniques on a dataset 066

encompassing sleep and fitness-related text. We 067

test 4 encoder-based PLMs: BERT-base (Devlin, 068

2018), DistilBERT (Sanh, 2019), Electra-base, and 069

Electra-small (“Efficiently Learning an Encoder 070

that Classifies Token Replacements Accurately”) 071

(Clark, 2020). We contrast them against 2 Large 072

Language Models in the Gemini family - Nano and 073

Pro (Anil et al., 2023). Specifically, this study con- 074

tributes: (1) a comparative analysis of PLMs and 075

LLMs on distinct (primary) health domain and re- 076

spective subdomains classification; and (2) an eval- 077

uation of model stability using a synthetic dataset. 078

Furthermore, recognizing the practical constraints 079

often encountered in real-world healthcare settings, 080

(3) this work explores performance across a spec- 081

trum of resource conditions, from extremely lim- 082
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ited training data (1-50 examples per class) to the083

larger datasets characteristic of prior work, provid-084

ing valuable insights into the optimal deployment085

of LLMs and PLMs in diverse healthcare contexts.086

This investigation provides valuable insights for087

optimizing the deployment of LLMs and PLMs in088

diverse healthcare applications and advances our089

understanding of how these models can be used090

to effectively parse and classify complex health091

information.092

2 Related Work093

The field of medical text classification has seen094

extensive exploration, leveraging both traditional095

machine learning and advanced deep learning tech-096

niques (Adeva et al., 2014; Mujtaba et al., 2019;097

Qing et al., 2019; Hughes et al., 2017; Lu et al.,098

2022). Automated text classification can enable099

a deeper understanding and can support medical100

experts in processing health text, including disease101

status, laboratory results, medication history, side102

effects, and treatment outcomes (Harris et al., 2024;103

Adeva et al., 2014; Mujtaba et al., 2019). Several104

studies have explored the development of domain-105

specific models by pre-training or fine-tuning mod-106

els on specialized corpora to enhance their efficacy107

in specific areas. BERT (Bidirectional Encoder108

Representations from Transformers) and its vari-109

ants have become state-of-the-art models in medi-110

cal NLP (Kim et al., 2023; Khadhraoui et al., 2022;111

Wang et al., 2021). For example, Kim et al. (2023)112

proposed a model using a domain-specific pre-113

trained BERT (KM-BERT) to predict medical spe-114

cialties from patient-provided question text, achiev-115

ing improved performance compared to other deep116

learning NLP models and demonstrating its poten-117

tial to benefit hospital patient management, Wang118

et al. (2021) proposes a medical triage system us-119

ing BERT to classify patient symptom descriptions120

into medical specialties, aiming to reduce hospital121

triage pressure and achieved relatively high accu-122

racy in classifying patient questions, demonstrating123

the potential to help patients choose appropriate124

consultation rooms and alleviate the triage burden125

in hospitals. By training on specialized corpora,126

these models can better understand the unique lan-127

guage, terminology, and relationships within their128

respective domains, however, Mujtaba et al. (2019)129

in a review of clinical text classification research130

trends highlights that while many machine learning131

techniques are effective in medical text classifica-132

tion tasks, they require substantial human effort to 133

create labeled training data often requiring thou- 134

sands of examples per class. This dependency on 135

labeled data becomes a significant hurdle, espe- 136

cially for specialized or emerging domains, and 137

may result in imbalanced dataset (Prabhakar and 138

Won, 2021; Lu et al., 2022). 139

Large language models (LLMs) have emerged as 140

potential zero-shot classifiers for various tasks, in- 141

cluding health topic classification, leveraging their 142

extensive pre-trained knowledge to minimize re- 143

liance on labeled data (Harris et al., 2024). How- 144

ever, studies have yielded mixed results regarding 145

the effectiveness of LLMs in this role compared 146

to supervised models. For example, Harris et al. 147

(2024) assessed several LLMs (e.g., GPT-4, Llama- 148

3-8B) across 17 public health tasks and observed 149

varied performance: LLMs performed well on sim- 150

pler tasks like gastrointestinal illness classification, 151

but struggled with more domain-specific tasks such 152

as virology or contact type classification. Simi- 153

larly, Guo et al. (2024) found that supervised PLMs, 154

such as RoBERTa, BERTweet, and SocBERT, gen- 155

erally outperformed LLMs in classifying health 156

information across six social media-based health 157

topics. This underscores the value of PLMs when 158

trained on task-specific data. However, LLMs did 159

achieve near-human performance in identifying 160

self-reported depression, suggesting their poten- 161

tial effectiveness in certain contexts that require 162

nuanced language or subjective experience under- 163

standing. 164

3 Datasets and Models 165

Below, we detail the dataset creation used in ex- 166

periments including data gathering, pre-processing, 167

labeling, as well as model selection processes. 168

3.1 Gathering Real-World Personal Health 169

Scenarios 170

This section details the creation and preparation 171

of datasets used to evaluate the performance of 172

various classification models on English health- 173

related social media text. The data for this study 174

was sourced from publicly available, archived Red- 175

dit posts spanning from June 2005 to Decem- 176

ber 2022, hosted on The Eye, an open library 177

for the Pushshift Reddit Dataset (Baumgartner 178

et al., 2020)1. No user IDs and author names 179

were included in extracted datasets. A total of 180

1https://the-eye.eu/redarcs/
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Figure 1: UMAP Visualization of BERT Embeddings
for a Sample of Primary Classes (n=500 per class)

12 subreddits related to sleep (r/sleep, r/insomnia,181

r/apnea, r/sleepparalysis, r/narcolepsy) and fit-182

ness (r/exercise, r/fitness, r/running, r/cycling,183

r/swimming, r/hiking, r/weightlifting) were se-184

lected. Each post underwent cleaning processes,185

including lemmatization, stop word removal, and186

URL removal, to ensure data quality.187

Posts were initially categorized into "Sleep"188

and "Activity" datasets based on their originating189

subreddit. To further refine these datasets into190

nuanced subdomains, BERTopic (Grootendorst,191

2022), a topic modeling technique leveraging192

BERT embeddings, was employed. A custom Max-193

imal Marginal Relevance representation model,194

with a diversity parameter of 0.2, was integrated195

within the BERTopic framework. Additional196

parameters included calculate_probabilities=False,197

verbose=True, n_gram_range=(1, 2), and198

min_topic_size=50 to generate diverse and199

meaningful topics with a minimum size threshold.200

While BERTopic dynamically generated topics,201

20 subdomains were manually curated for the Sleep202

dataset and 21 for the Activity dataset. Each sub-203

domain contained a minimum of 100 posts, with204

an additional "miscellaneous" category encompass-205

ing posts not fitting the curated subdomains. This206

manual curation ensured balanced representation207

and manageable label sets for analysis. The deci-208

sion to limit the number of categories was driven209

by a desire to create a manageable and meaning-210

ful set of labels. A larger number of categories211

would have likely resulted in overlapping topics212

and decreased clarity in analysis. Posts with multi-213

ple topics were split, and to visualize differences214

between the BERT sentence embeddings, we em-215

ployed UMAP (Uniform Manifold Approximation 216

and Projection), a dimensionality reduction tech- 217

nique for visualization (McInnes et al., 2018), on 218

a random sample of 500 posts per primary class 219

(Figure 1) and 50 posts per subdomain (Figures 5 220

and 6 in the Appendix). This visualization, along 221

with semantic similarity search using a cosine sim- 222

ilarity threshold of 0.8, helped identify and resolve 223

posts with overlapping subdomains via manual rela- 224

belling or removal, further refining the datasets and 225

ensuring distinct category separation. This resulted 226

in the creation of the following new datasets: 227

Sleep Dataset. The resulting Sleep dataset con- 228

tains 2484 posts with subdomains such as alarm, 229

bed comfort, beverage effects, and sleep movement 230

(c.f. Appendix 1 for a full list and descriptions). 231

Activity Dataset. The Activity dataset consists 232

of 2159 posts with subdomains like heart health, 233

lower body exercise, abdominal exercise, and upper 234

body exercise (c.f. Appendix 2). 235

Out-of-distribution Dataset. An out-of- 236

distribution dataset was also created, comprising 237

2348 unique posts randomly sampled from 10 non- 238

sleep and non-activity related subreddits (e.g., clas- 239

sical music, education, pets, relationships). 240

Synthetic Dataset To create realistic online dis- 241

cussion posts for subdomain classification within 242

the Sleep and Activity categories, we used Gemini- 243

pro. For each subdomain, Gemini-pro generated 244

20 posts per class based on prompts related to 245

that specific topic (e.g., "Generate an online post 246

about alarms, alarm clocks, or waking up with 247

alarms."). Our primary domain classification task 248

used 180 posts: 60 each related to activity, sleep, 249

and a set of 60 out-of-distribution posts. The 250

out-of-distribution set was created by generating 251

posts from prompts that excluded any subdomain- 252

specific keywords or concepts. 253

Models We evaluated several models, includ- 254

ing BERT-base (Devlin, 2018), DistilBERT (Sanh, 255

2019), ELECTRA-base and small (Clark, 2020), 256

against the Gemini family of models (Pro and 257

Nano) (Anil et al., 2023) for each classification 258

task (cf. Appendix A.1 for more model details and 259

A.2 for computation cost details). 260

3.2 Analysis 261

To assess model performance across diverse train- 262

ing data sizes, we conducted experiments on two 263

classification tasks: a primary task (sleep, activity, 264

out-of-distribution) and a subdomain task (specific 265

topics within sleep and activity). BERT and ELEC- 266
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TRA models were fine-tuned on varying training267

set sizes, ranging from a small number of examples268

per class (1, 2, 5, 10, 50, 100, 150, 1000, and the269

full real-world testing dataset) using the Hugging270

Face Transformers library (Wolf, 2019). Gemini271

models, in contrast, were evaluated in a few-shot272

learning setting, utilizing zero-shot prompting with273

an option to provide up to 10 examples (due to274

context window length limitations) per class dur-275

ing inference. Because model performance can be276

influenced by the input prompt (Liu and Shi, 2024),277

we used a consistent template across all classifi-278

cation tasks, with only keywords and descriptions279

modified to reflect the specific task. This prompt280

template was iteratively refined until stable perfor-281

mance was observed across multiple runs. Models282

were instructed to return a single class label. In-283

puts without a recognized label were initially des-284

ignated as "Unknown," though this category was285

not observed in practice during experimentation.286

Performance was measured using accuracy as the287

manually curated dataset had minimal class im-288

balance. The same procedures were done on the289

synthetic dataset. Given the potential variability in290

performance across runs for LLMs like the GPT291

series (Harris et al., 2024), each task was repeated292

three times for the Gemini models, with the average293

performance reported. The variance across runs for294

both real-world and synthetic dataset was minimal295

(0.0-0.1), indicating relatively stable performance296

(cf. Appendix 3 and 4 for more details).297

4 Findings298

4.1 Model Performance and Data Volume For299

the Primary Domain Classification Task300

Figure 2: Model Performance on Primary Domain Clas-
sification at Different k Values.

In the three-class classification task (sleep, activ-301

ity, out-of-distribution) as shown in Figure 2, more302

training examples generally translated to higher 303

accuracy for most models. However, the rate of 304

improvement and the performance ceiling varied 305

significantly. The BERT models achieved high 306

accuracy ( 90%) with as few as 50 examples, in- 307

dicating their aptitude for learning generalizable 308

patterns from limited data. ELECTRA-base, com- 309

pared to ELECTRA-small, exhibited faster learn- 310

ing and a higher performance ceiling, likely due to 311

its increased capacity. However, both ELECTRA 312

variants ultimately achieved comparable accuracy 313

to the other BERT models, albeit with slower learn- 314

ing curves, generally requiring more examples to 315

reach peak performance. Gemini-nano, constrained 316

by its smaller context window and limited capacity 317

for processing large examples per class, also im- 318

proved with additional data, eventually exceeding 319

or matching the ELECTRA models’ performance 320

on smaller datasets (k=10). However, it lagged con- 321

siderably behind BERT models with larger datasets, 322

highlighting the limitations of its smaller scale. 323

In contrast, Gemini-pro exhibited a relatively flat 324

learning curve, achieving 80% accuracy irrespec- 325

tive of data volume. Gemini-pro, the largest model 326

tested, achieved the highest accuracy with mini- 327

mal examples. However, its performance plateaued 328

with increasing data. This suggests a strong re- 329

liance on pre-existing knowledge, requiring mini- 330

mal task-specific tuning, yet struggling to capture 331

finer nuances that benefited smaller BERT models 332

as datasets grew. Notably, with sufficient training 333

data (k≥ 50), the BERT and ELECTRA models 334

surpassed Gemini-pro’s performance obtained with 335

the smaller datasets. 336

4.2 Model Performance and Data Volume For 337

the Subdomain Classification Task 338

Figure 3: Model Performance on Sleep Subdomain Clas-
sification at Different k Values

A similar pattern emerged for the more granular 339
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Figure 4: Model Performance on Activity Subdomain
Classification at Different k Values

21-subdomain classifications (for both sleep and340

activity) as seen in Figures 3 and 4. The BERT and341

ELECTRA models again benefited from increased342

data, with performance steadily improving as the343

number of examples grew. Interestingly, these mod-344

els achieved high accuracy levels (>80% for sleep345

and >90% for activity) with roughly the same or346

less number of examples (≥ 50) as in the three-347

class task. This might suggest that, for these mod-348

els, the increased complexity of the 21-subdomain349

task was offset by the richer information content350

inherent in the more specific labels. These mod-351

els also required slightly more examples for sleep352

sub-classification than activity sub-classification353

likely due to classes being more heterogenous for354

activity and primary datasets. Likely due to the355

increased data requirements for nuanced classifica-356

tion and its limited context window, Gemini-nano357

did not exhibit clear performance gains with ad-358

ditional data in this setting; even fewer examples359

could fit within its context window when numerous360

subdomains were present, hindering its ability to361

learn effectively.362

On the other hand, Gemini-pro once again363

displayed remarkable generalization capabilities,364

achieving high accuracy (>77% for sleep, >82%365

for activity) with minimal data (as few as 2 exam-366

ples). This reinforces the trade off between strength367

in leveraging pre-existing knowledge for special-368

ized classification within the health domain, even369

when confronted with limited task-specific exam-370

ples, and limited abilities to capture the subtleties371

of nuances of data not reflected in the training set.372

Interestingly, for smaller training datasets (zero373

to few examples), both Gemini models, including374

Gemini-nano, outperformed the BERT and ELEC-375

TRA models. This suggests that the inherent knowl-376

edge encoded in the Gemini-pro models, even the377

smaller Gemini-nano, provided an initial advan- 378

tage when task-specific data was scarce. However, 379

this advantage diminished quickly as the BERT 380

and ELECTRA models rapidly improved with the 381

addition of just a few more examples per class. 382

4.3 Model Performance on the Synthetic 383

Dataset 384

We replicated our analysis on a synthetic dataset 385

to validate our findings and assess potential overfit- 386

ting to the Reddit data. The overall trends remained 387

consistent, confirming the robustness of our obser- 388

vations. BERT models efficiently achieved high 389

accuracy on all classification tasks with a mod- 390

est number of examples, with ELECTRA mod- 391

els required more data. While Gemini-nano was 392

initially competitive, its performance fell behind 393

BERT models and ELECTRA-base as training data 394

increased. Gemini-pro, once again exhibiting a 395

flat learning curve, consistently outperformed all 396

other models, likely due to its inherent advantage 397

in recognizing patterns within the synthetic data it 398

generated. Nevertheless, with sufficient training, 399

BERT models reached comparable performance 400

levels. This consistency across datasets indicates 401

that the observed patterns are not solely artifacts of 402

the original Reddit dataset. 403

5 Discussion and Conclusion 404

5.1 Implications for Health Tasks 405

Our findings reveal a nuanced interplay between 406

model architecture, data volume, and performance 407

in health-related text classification, with important 408

implications for practical applications. Consis- 409

tent with the observations of Guo et al. (2024) in 410

broader health domains, we identify a trade-off be- 411

tween leveraging pre-existing knowledge (LLMs) 412

and data-driven learning (PLMs). This trade-off is 413

evident not only across different health domains but 414

also within more specialized subdomains. Specif- 415

ically, in scenarios where data is limited and the 416

classification task involves multiple nuanced sub- 417

domains—such as those encountered in subjective 418

health experiences like sleep and activity—larger 419

LLMs, like Gemini-pro, tend to perform better. 420

These models, with their extensive pre-training, 421

possess a wealth of knowledge that allows them 422

to generalize effectively from relatively few task- 423

specific examples, thus outperforming PLM mod- 424

els in data-constrained situations. This observa- 425

tion aligns with Guo et al. (2024)’s findings, which 426
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highlight GPT-4’s strong performance on the com-427

plex task of depression detection. This suggests428

that LLMs, including the Gemini family explored429

in our study, may be particularly well-suited for430

classifying subjective experiences in health con-431

texts. The superior performance of larger LLMs432

emphasizes the importance of model size, partic-433

ularly when utilizing pre-existing knowledge to434

overcome limited task-specific data. In contrast,435

smaller models like Gemini-nano, which are de-436

signed for on-device use, struggle to generalize437

effectively in zero-shot settings due to their lim-438

ited pre-trained knowledge and parameter capacity.439

While the compact design of Gemini-nano makes440

it ideal for mobile health applications, where de-441

vice constraints demand smaller models, its per-442

formance in data-scarce environments highlights443

the challenges of deploying such models for com-444

plex health tasks. This trade-off between size and445

capability is critical when considering the practical-446

ity of mobile health applications, where on-device447

processing often takes precedence.448

However, the strong zero-shot performance449

of larger LLMs comes with a significant com-450

putational cost. For example, Gemini-pro re-451

quired a substantial number of GPU hours—132452

hours—compared to PLMs like BERT and ELEC-453

TRA, which only required 6-8 hours (see Ap-454

pendix A.2). This disparity becomes even more455

noticeable when considering smaller LLMs, such456

as Gemini-nano, which, despite not consistently457

demonstrating strong performance in zero-shot set-458

tings, still required more training time (approxi-459

mately 11 hours) than PLMs. Additionally, PLMs460

like BERT and ELECTRA not only trained faster461

but also showed considerable improvement with462

even minimal additional data, performing well on463

both primary classification tasks and more complex464

subdomain tasks. In some cases, they eventually465

surpassed LLMs with limited examples. This sup-466

ports the findings of Guo et al. (2024), who showed467

that supervised PLMs outperform zero-shot LLMs468

in health classification tasks when sufficient data is469

available. In contrast to the thousands of examples470

per class typically explored in prior research, our471

study extends these findings by showing that this472

effect holds true even with as few as 50 examples473

per class, even as tasks include subjective experi-474

ences, become more complex, and the number of475

classes increases. The consistent performance pat-476

terns observed across both the real-world Reddit477

dataset and a synthetic dataset further validate these478

results, indicating that these trends reflect broader 479

patterns in model behavior based on size. Thus, the 480

choice between LLMs and PLMs becomes a crit- 481

ical consideration, requiring a careful balance be- 482

tween performance goals, available computational 483

resources, and data volume. 484

5.2 Limitations and Future Work 485

While this study provides valuable insights, it ac- 486

knowledges the rapid pace of development in large 487

language models (LLMs). The evaluation was con- 488

ducted using specific model architectures and fo- 489

cused on the sleep and fitness domains, which may 490

limit the generalizability of findings to other health 491

areas and more recent models (Warner et al., 2024). 492

Notably, advancements like the Gemini family of 493

models have emerged since the study’s inception, 494

potentially offering improved performance or ef- 495

ficiency. Future research should explore the gen- 496

eralizability of these results across diverse health 497

domains and updated model architectures. This 498

includes exploring innovative training approaches 499

that leverage task-specific data and examining hy- 500

brid architectures that combine the strengths of 501

LLMs and encoder-based PLMs like BERT. For 502

instance, ensembling methods, such as those em- 503

ployed by Zhou et al. (2023) for clinical note clas- 504

sification, could leverage the complementary ca- 505

pabilities of different model types. This could be 506

particularly relevant for resource-constrained en- 507

vironments like mobile devices, where a locally- 508

run PLM and small LLM combination could offer 509

comparable performance to a large LLM while en- 510

hancing privacy by eliminating the need for remote 511

server processing and data transmission. 512

Additionally, while the synthetic dataset was in- 513

tended to investigate models overfitting to the Red- 514

dit data, it may not fully capture the nuances and 515

complexities of real-world health information. Fu- 516

ture studies should incorporate a wider variety of 517

datasets and evaluation metrics to develop a more 518

comprehensive understanding of the strengths and 519

weaknesses of various language models for health- 520

related text classification. 521

5.3 Risks 522

This research focuses on exploring and evaluating 523

the capabilities of various language models for spe- 524

cific tasks within the sleep and activity domains. 525

Although this study does not involve deployment or 526

direct application in a clinical setting, the findings 527

contribute to the growing body of knowledge re- 528
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garding the use of language models in health. The529

primary risks in our work are related to internal530

model and training set biases, which may reflect531

historical inequities in healthcare. These biases532

could inadvertently influence model predictions,533

potentially leading to unfair or discriminatory out-534

comes if applied in real-world setting, highlighting535

the need for careful data curation before actual de-536

ployment.537
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A Appendix688

A.1 Detailed Model Descriptions689

We evaluated several models for each classification690

task. These include:691

• BERT-base: This model has 12 layers, 110M 692

parameters, and a hidden dimension size of 693

768 (Devlin, 2018). 694

• DistilBERT: This model is a distilled version 695

of BERT, and has 66 million parameters (Sanh, 696

2019). 697

• ELECTRA-Base: This model has 12 layers, 698

110M parameters, and a hidden dimension 699

size of 768 (Clark, 2020). 700

• ELECTRA-Small: This model has 12 layers, 701

14M parameters, and a hidden dimension size 702

of 256. (Clark, 2020). 703

• Gemini Pro: This is a performance-optimized 704

model in terms of both cost and latency (Anil 705

et al., 2023). 706

• Gemini Nano: This model is distilled from 707

larger Gemini models, and has 1.8B parame- 708

ters (Anil et al., 2023). 709

A.2 Model and Experimental Setup Details 710

Using a V100 GPU, the DistilBERT and 711

ELECTRA-small models required around 6 hours 712

of GPU time each, Bert-base and ELECTRA-base 713

required around 8 hours, Gemini-nano required 714

around 11 hours, and Gemini-pro required around 715

132 hours, utilizing a total of approximately 171 716

GPU hours across different models. 717

Optimal hyperparameters, including learning 718

rate and batch size, were determined using a vali- 719

dation set. The best performing BERT-base models 720

were trained with a learning rate of 3e-5 and a batch 721

size of 16. DistilBERT, ELECTRA-Base, and 722

ELECTRA-Small achieved optimal performance 723

with a batch size of 16 and learning rates of 2e-5, 724

3e-5, and 5e-6, respectively. All models utilized 725

a maximum sequence length of 512. Early stop- 726

ping was implemented based on validation accu- 727

racy. Sampling ensured representation of all unique 728

labels in each training subset. For the Gemini mod- 729

els, we employed their default configurations and 730

set the sampling temperature to 0.0 to encourage 731

reproducibility. 732

A.3 Analysis Details 733

Datasets for both classification tasks were prepared 734

from a combination of real-world and synthetic 735

sources. The "out-of-distribution" domain was ex- 736

clusively used in primary classification. For BERT 737

and ELECTRA, training data sizes ranged from 1 738
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to 1000 examples per class (and the full dataset),739

while for Gemini, sizes ranged from zero-shot to740

10 examples per class. For a more granular micro741

analysis, we used training sizes from zero-shot to742

50 examples per class for BERT and ELECTRA743

and zero-shot to 2 examples per class for Gemini.744

Data was stratified into training, validation, and test745

sets. Textual labels were encoded numerically, and746

an "unknown" category was included for unseen747

labels (though unused in practice for Gemini).748

A.4 Subdomain Details and Descriptions749

Table 1 and 2 detail the subdomains for sleep and750

activity datasets, along with descriptions for each751

subdomain.752

A.5 UMAP Visualizations of Activity and753

Sleep Subdomains754

Figures 6 and 5 present UMAP visualizations of755

BERT embeddings for samples from the sleep and756

activity subdomains, respectively. These visual-757

izations reveal both the proximity between subdo-758

mains and their distinct separations.759

A.6 Complete Results760

Tables 3 and 4 present the classification accuracy761

for each model across various support examples762

provided during training or few-shot learning. The763

Gemini models’ performance includes standard de-764

viation from 3 runs.765

A.7 Prompts766

Table 5 presents the prompt templates used for dif-767

ferent text classification tasks leveraging a Large768

Language Model (LLM). The table is organized769

by task, with each row corresponding to a specific770

classification objective: primary topic classification771

(into ’sleep’, ’activity’, and ’out-of-distribution’)772

and sub-classification within the ’activity’ and773

’sleep’ categories. For the primary classification774

task, both zero-shot (no examples provided) and775

few-shot (examples provided) prompt variations776

are detailed. The prompts for sub-classification777

tasks encompass both zero-shot and few-shot sce-778

narios, where the model is given detailed descrip-779

tions of each subcategory. All prompts instruct780

the LLM to act as a topic classifier and to return781

a single label corresponding to the most appropri-782

ate category for the input post. The placehold-783

ers {post}, {examples[i]} and {labels[i]} indicate784

where the input post, example posts, and corre-785

sponding labels are dynamically inserted into the786

prompt, respectively. Placeholder {Description for 787

each activity/sleep category} indicates where de- 788

tailed descriptions of each subcategory are inserted. 789
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Table 1: Sleep Dataset Subdomains and Descriptions

Label Includes discussion around

Alarm alarms, alarm clocks, or waking up using alarms
Bed Comfort about bed comfort, mattress type, pillows, etc.
Beverage Effects effects of beverages (e.g., coffee, tea) on sleep
Sleep Movement sleepwalking, sleep talking, or other movement during sleep
Cannabis use of cannabis and its effects on sleep
Cataplexy sudden loss of muscle control, often associated with narcolepsy
Diet the relationship between diet and sleep
Dream dreams, vivid dreams, or dream interpretation
Exercise the relationship between exercise and sleep
Gendered Health the relationship between menstruation, pregnancy, or other gendered factors and sleep
Light Source the impact of light sources (e.g., sunlight, artificial light) on sleep
Mental Health the relationship between mental health and sleep
Nap napping, nap schedules, or nap strategies
Nightmare nightmares, their frequency, or coping mechanisms
Sleep Position preferred sleep positions or their impact on sleep quality
Sleep Schedule sleep schedules, routines, or sleep hygiene
Sound Control using white noise, earplugs, or other methods to control sleep environment sounds
Supplements using supplements (e.g., melatonin, valerian) to improve sleep
Temperature the impact of room temperature on sleep quality
Tracker using sleep trackers or wearable devices to monitor sleep
Miscellaneous any sleep-related topic not covered in other categories

Table 2: Activity Dataset Subdomains and Descriptions

Label Includes Discussion Around

Heart Health heart rate, cardiovascular health, or related exercises
Lower Body Exercise exercises targeting the legs, glutes, or lower body
Abdominal Exercise exercises targeting the abdominal muscles (e.g., core work)
Upper Body Exercise exercises targeting the arms, chest, shoulders, or upper body
Soreness muscle soreness, recovery strategies, or pain management
Breathing breathing techniques, exercises, or respiratory health
Posture posture correction, exercises, or posture-related issues
Stretch stretching routines, types of stretches, or flexibility
Rest rest days, active recovery, or importance of rest
Personal Trainer working with a personal trainer, their advice, or training plans
Weather impact of weather conditions on activity or training
Injury injuries, recovery from injury, or prevention strategies
Swimming swimming routines, swimming techniques, or swimming benefits
Hiking hiking trails, hiking gear, or hiking experiences
Marathon marathon training, marathon preparation, or marathon races
Cycling cycling routines, cycling techniques, or cycling benefits
Combat Sport martial arts, boxing, or other combat sports
Yoga yoga practices, yoga styles, or yoga benefits
Kettlebell kettlebell training, exercises, or kettlebell benefits
Tracker using activity trackers or wearable devices to monitor progress
Miscellaneous any exercise and activity-related topic not covered in other categories
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Figure 5: UMAP Visualization of BERT Embeddings for a Sample of Activity Subdomains (n=50 per class)

Figure 6: UMAP Visualization of BERT Embeddings for a Sample of Sleep Subdomains (n=50 per class)
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Table 3: Classification Accuracy Across Tasks and Models (with error for Gemini models)

Primary Classification
Model 0 1 2 5 10 50 100 150 1000 All

BERT-base - 0.43 0.59 0.68 0.81 0.94 0.97 0.96 0.98 0.99
DistilBERT - 0.31 0.51 0.71 0.82 0.91 0.95 0.96 0.98 0.98
Electra-base - 0.37 0.30 0.47 0.55 0.55 0.88 0.93 0.98 0.99
Electra-small - 0.32 0.34 0.44 0.43 0.54 0.64 0.88 0.94 0.97
Gemini-nano 0.33± 0.00 0.30± 0.12 0.25± 0.02 0.29± 0.07 0.56± 0.02 - - - - -
Gemini-pro 0.87± 0.00 0.87± 0.01 0.84± 0.02 0.82± 0.03 0.84± 0.02 - - - - -

Sleep Subdomain Classification
Model 0 1 2 5 10 25 35 50 All

BERT-base - 0.06 0.08 0.30 0.60 0.79 0.84 0.88 0.87
DistilBERT - 0.05 0.14 0.43 0.64 0.82 0.82 0.84 0.84
Electra-base - 0.05 0.06 0.05 0.33 0.76 0.85 0.87 0.89
Electra-small - 0.06 0.05 0.09 0.09 0.37 0.66 0.75 0.77
Gemini-nano 0.22± 0.01 0.27± 0.02 0.24± 0.01 - - - - - -
Gemini-pro 0.78± 0.00 0.78± 0.01 0.77± 0.02 - - - - - -

Activity Subdomain Classification
Model 0 1 2 5 10 25 35 50 All

BERT-base - 0.09 0.15 0.42 0.80 0.90 0.92 0.94 0.93
DistilBERT - 0.06 0.25 0.51 0.76 0.90 0.92 0.93 0.93
Electra-base - 0.05 0.07 0.17 0.53 0.85 0.92 0.92 0.91
Electra-small - 0.05 0.04 0.05 0.05 0.49 0.80 0.89 0.93
Gemini-nano 0.27± 0.00 0.38± 0.02 0.40± 0.01 - - - - - -
Gemini-pro 0.82± 0.00 0.84± 0.00 0.85± 0.01 - - - - - -

Table 4: Synthetic Classification Accuracy Across Tasks and Models (with error for Gemini models)

Primary Classification
Model 0 1 2 5 10 60

BERT-base - 0.15 0.47 0.65 0.88 0.96
DistilBERT - 0.20 0.49 0.47 0.85 0.93
Electra-base - 0.45 0.37 0.50 0.58 0.55
Electra-small - 0.48 0.45 0.14 0.35 0.29
Gemini-nano 0.33± 0.00 0.42± 0.03 0.39± 0.02 0.40± 0.04 0.53± 0.13 -
Gemini-pro 1.00± 0.00 0.99± 0.01 0.98± 0.01 0.98± 0.01 0.97± 0.00 -

Sleep Subdomain Classification
Model 0 1 2 5 10 20

BERT-base - 0.04 0.05 0.25 0.58 0.86
DistilBERT - 0.02 0.06 0.38 0.60 0.90
Electra-base - 0.02 0.06 0.09 0.30 0.85
Electra-small - 0.05 0.05 0.05 0.10 0.32
Gemini-nano 0.24± 0.00 0.42± 0.03 0.44± 0.03 - - -
Gemini-pro 0.98± 0.00 0.98± 0.00 0.98± 0.00 - - -

Activity Subdomain Classification
Model 0 1 2 5 10 20

BERT-base - 0.07 0.08 0.18 0.55 0.89
DistilBERT - 0.06 0.04 0.35 0.71 0.84
Electra-base - 0.06 0.08 0.05 0.20 0.82
Electra-small - 0.05 0.05 0.05 0.03 0.32
Gemini-nano 0.55± 0.00 0.67± 0.04 0.66± 0.01 - - -
Gemini-pro 0.97± 0.00 0.98± 0.01 0.98± 0.01 - - -
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Table 5: Prompt Templates for Text Classification with Gemini. Refer to Table 1 and Table 2 for respective labels
and descriptions.

Task Prompt Template

Primary Classifica-
tion (Zero-shot) You are a topic classifier. Your job is to classify the input post

into one of 3 categories:
- sleep
- activity
- out-of-distribution
You must return only 1 of these 3 possible choices in one word.
If the post is mostly about activity
(e.g., [...list of activity labels...]), return 'activity'.
If the post mostly pertains to sleep topics
(e.g., [...list of sleep labels...]), return 'sleep'.
If the post is mostly about neither, return 'misc'.
Here is my post:
Input: {post}
Output:

Continued on next page
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Table 5 – continued from previous page

Task Prompt Template

Primary Classifica-
tion (Few-shot) You are a topic classifier. Your job is to classify the input post

into one of 3 categories:
- sleep
- activity
- out-of-distribution
You must return only 1 of these 3 possible choices in one word.
If the post is mostly about activity
(e.g., [...list of activity labels...]), return 'activity'.
If the post mostly pertains to sleep topics
(e.g., [...list of sleep labels...]), return 'sleep'.
If the post is mostly about neither, return 'misc'.
Here are some examples:
{''.join([f'Input: {examples[i]} Output: {labels[i]} '
for i in range(len(examples))])}
Here is my post:
Input: {post}
Output:

Sleep Sub-
classification
(Zero/Few-shot)

You are a topic classifier. Your job is to classify the input
post into one of the following sleep categories:
{", ".join("{label}: {description}" for label, description in
sleep_descriptions])}
You must return only 1 of these possible choices.
{Description for each sleep category}
[Optional: Here are some examples: ...]
Here is my post:
Input: {post}
Output:

Activity Sub-
classification
(Zero/Few-shot)

You are a topic classifier. Your job is to classify the input
post into one of the following activity categories:
{", ".join("{label}: {description}" for label, description in
activity_descriptions])}
You must return only 1 of these possible choices.
[Optional: Here are some examples: ...]
Here is my post:
Input: {post}
Output:
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Table 6: Pseudo-Code and Prompt Templates for Synthetic Dataset Generation Using Gemini Pro.

Task Prompt Template

Sleep Posts

for category, description in sleep_descriptions:
Generate a short online post of someone talking about {category}
as it pertains to sleep. The post should include discussion
around {description}.

Activity Posts

for category, description in activity_descriptions:
Generate a short online post of someone talking about {category}
as it pertains to activity and exercise. The post should include
discussion around {description}.

Miscellaneous
Sleep Posts Generate a short online post of someone talking about sleep.

However, the post should NOT mention or have any content related to
any of these topics:
{", ".join(["{label}" for label in sleep_descriptions)}.

Miscellaneous Ac-
tivity Posts Generate a short online post of someone talking about activity and

exercise. However, the post should NOT mention or have any content
related to any of these topics:
{", ".join(["{label}" for label in activity_descriptions)}.

Out-of-
Distribution
Posts

Generate a short online post of someone talking about anything but
sleep, activity, and exercise topics. There should be no mention
of personal fitness or wellness as it pertains to sleep or activity.
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