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Abstract

Automated text classification in medical and
health domains enables the extraction of struc-
tured information from unstructured clinical
text, such as identifying diseases and associated
conditions. However, applying text classifica-
tion models effectively in healthcare requires
a nuanced understanding of specific subtopics
and the trade-offs between model scale and
available data resources. This paper evaluates
the performance of pretrained language mod-
els (PLMs) and large language models (LLMs)
in classifying subtopics within the sleep and
activity domains. Using a dataset of curated
Reddit posts, we examine how classifier per-
formance varies with different training sample
sizes, including low-resource scenarios with
just one to five examples. Our findings high-
light a complex interaction between model ar-
chitecture, data availability, and classification
performance, demonstrating the strengths of
LLMs in zero-shot learning in nuanced subdo-
mains with limited data, while PLMs surpass
LLMs with modest increases in data. This re-
search provides valuable insights into the opti-
mal application of language models for health-
related text classification tasks, especially un-
der varying resource constraints.

1 Introduction

The utilization of large language models (LLMs)
in personal health has garnered significant atten-
tion, particularly due to their potential in gener-
ating personalized health recommendations and
processing health-related data (Huang et al., 2019;
Thirunavukarasu et al., 2023; Singhal et al., 2023;
Yang et al., 2022). Recent research reveals a crit-
ical need for models capable of handling the nu-
anced and context-dependent nature of health in-
formation (Guo et al., 2024; Harris et al., 2024).
Advancements in transformer architectures, partic-
ularly encoder models like BERT (Devlin, 2018)
and decoder models like the Generative Pre-trained

Transformer (GPT) series (Radford, 2018; Radford
et al., 2019; Brown et al., 2020; Achiam et al.,
2023), have fueled progress in this area (Guo et al.,
2024; Harris et al., 2024). However, prior research
involving BERT models and their variants typi-
cally explores thousands of examples per class,
which may require substantial data labeling efforts
to train these models (Guo et al., 2024; Mujtaba
et al., 2019). LLMs, such as GPT series, with their
extensive pre-training, offer a potential solution by
reducing reliance on labeled data. On the other
hand, while LLMs have shown promise in broad
health domain classifications, particularly when
compared to pre-trained learning models (PLMs)
trained on extensive datasets (e.g., >5000 exam-
ples (Guo et al., 2024)), their ability to discern
subtle distinctions within related health subdomain
areas remains less explored. This highlights the
need for models that can accurately identify sub-
domains within specific primary, parent health do-
mains, and an understanding of how model scale
and data resources influence this capability.

To investigate this, we evaluate the performance
of both large language models (LLMs) and state-
of-the-art text classification techniques on a dataset
encompassing sleep and fitness-related text. We
test 4 encoder-based PLMs: BERT-base (Devlin,
2018), DistilBERT (Sanh, 2019), Electra-base, and
Electra-small (“Efficiently Learning an Encoder
that Classifies Token Replacements Accurately”)
(Clark, 2020). We contrast them against 2 Large
Language Models in the Gemini family - Nano and
Pro (Anil et al., 2023). Specifically, this study con-
tributes: (1) a comparative analysis of PLMs and
LLMs on distinct (primary) health domain and re-
spective subdomains classification; and (2) an eval-
uation of model stability using a synthetic dataset.
Furthermore, recognizing the practical constraints
often encountered in real-world healthcare settings,
(3) this work explores performance across a spec-
trum of resource conditions, from extremely lim-



ited training data (1-50 examples per class) to the
larger datasets characteristic of prior work, provid-
ing valuable insights into the optimal deployment
of LLMs and PLMs in diverse healthcare contexts.
This investigation provides valuable insights for
optimizing the deployment of LLMs and PLMs in
diverse healthcare applications and advances our
understanding of how these models can be used
to effectively parse and classify complex health
information.

2 Related Work

The field of medical text classification has seen
extensive exploration, leveraging both traditional
machine learning and advanced deep learning tech-
niques (Adeva et al., 2014; Mujtaba et al., 2019;
Qing et al., 2019; Hughes et al., 2017; Lu et al.,
2022). Automated text classification can enable
a deeper understanding and can support medical
experts in processing health text, including disease
status, laboratory results, medication history, side
effects, and treatment outcomes (Harris et al., 2024;
Adeva et al., 2014; Mujtaba et al., 2019). Several
studies have explored the development of domain-
specific models by pre-training or fine-tuning mod-
els on specialized corpora to enhance their efficacy
in specific areas. BERT (Bidirectional Encoder
Representations from Transformers) and its vari-
ants have become state-of-the-art models in medi-
cal NLP (Kim et al., 2023; Khadhraoui et al., 2022;
Wang et al., 2021). For example, Kim et al. (2023)
proposed a model using a domain-specific pre-
trained BERT (KM-BERT) to predict medical spe-
cialties from patient-provided question text, achiev-
ing improved performance compared to other deep
learning NLP models and demonstrating its poten-
tial to benefit hospital patient management, Wang
et al. (2021) proposes a medical triage system us-
ing BERT to classify patient symptom descriptions
into medical specialties, aiming to reduce hospital
triage pressure and achieved relatively high accu-
racy in classifying patient questions, demonstrating
the potential to help patients choose appropriate
consultation rooms and alleviate the triage burden
in hospitals. By training on specialized corpora,
these models can better understand the unique lan-
guage, terminology, and relationships within their
respective domains, however, Mujtaba et al. (2019)
in a review of clinical text classification research
trends highlights that while many machine learning
techniques are effective in medical text classifica-

tion tasks, they require substantial human effort to
create labeled training data often requiring thou-
sands of examples per class. This dependency on
labeled data becomes a significant hurdle, espe-
cially for specialized or emerging domains, and
may result in imbalanced dataset (Prabhakar and
Won, 2021; Lu et al., 2022).

Large language models (LLMs) have emerged as
potential zero-shot classifiers for various tasks, in-
cluding health topic classification, leveraging their
extensive pre-trained knowledge to minimize re-
liance on labeled data (Harris et al., 2024). How-
ever, studies have yielded mixed results regarding
the effectiveness of LLMs in this role compared
to supervised models. For example, Harris et al.
(2024) assessed several LLMs (e.g., GPT-4, Llama-
3-8B) across 17 public health tasks and observed
varied performance: LLMs performed well on sim-
pler tasks like gastrointestinal illness classification,
but struggled with more domain-specific tasks such
as virology or contact type classification. Simi-
larly, Guo et al. (2024) found that supervised PLMs,
such as RoOBERTa, BERTweet, and SocBERT, gen-
erally outperformed LLMs in classifying health
information across six social media-based health
topics. This underscores the value of PLMs when
trained on task-specific data. However, LLMs did
achieve near-human performance in identifying
self-reported depression, suggesting their poten-
tial effectiveness in certain contexts that require
nuanced language or subjective experience under-
standing.

3 Datasets and Models

Below, we detail the dataset creation used in ex-
periments including data gathering, pre-processing,
labeling, as well as model selection processes.

3.1 Gathering Real-World Personal Health
Scenarios

This section details the creation and preparation
of datasets used to evaluate the performance of
various classification models on English health-
related social media text. The data for this study
was sourced from publicly available, archived Red-
dit posts spanning from June 2005 to Decem-
ber 2022, hosted on The Eye, an open library
for the Pushshift Reddit Dataset (Baumgartner
et al., 2020)!. No user IDs and author names
were included in extracted datasets. A total of

"https://the-eye.eu/redarcs/
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Figure 1: UMAP Visualization of BERT Embeddings
for a Sample of Primary Classes (n=500 per class)

12 subreddits related to sleep (1/sleep, r/insomnia,
r/apnea, r/sleepparalysis, r/narcolepsy) and fit-
ness (r/exercise, r/fitness, r/running, r/cycling,
r/swimming, r/hiking, r/weightlifting) were se-
lected. Each post underwent cleaning processes,
including lemmatization, stop word removal, and
URL removal, to ensure data quality.

Posts were initially categorized into "Sleep"
and "Activity" datasets based on their originating
subreddit. To further refine these datasets into
nuanced subdomains, BERTopic (Grootendorst,
2022), a topic modeling technique leveraging
BERT embeddings, was employed. A custom Max-
imal Marginal Relevance representation model,
with a diversity parameter of 0.2, was integrated
within the BERTopic framework. Additional
parameters included calculate_probabilities=False,
verbose=True, n_gram_range=(1, 2), and
min_topic_size=50 to generate diverse and
meaningful topics with a minimum size threshold.

While BERTopic dynamically generated topics,
20 subdomains were manually curated for the Sleep
dataset and 21 for the Activity dataset. Each sub-
domain contained a minimum of 100 posts, with
an additional "miscellaneous" category encompass-
ing posts not fitting the curated subdomains. This
manual curation ensured balanced representation
and manageable label sets for analysis. The deci-
sion to limit the number of categories was driven
by a desire to create a manageable and meaning-
ful set of labels. A larger number of categories
would have likely resulted in overlapping topics
and decreased clarity in analysis. Posts with multi-
ple topics were split, and to visualize differences
between the BERT sentence embeddings, we em-

ployed UMAP (Uniform Manifold Approximation
and Projection), a dimensionality reduction tech-
nique for visualization (MclInnes et al., 2018), on
a random sample of 500 posts per primary class
(Figure 1) and 50 posts per subdomain (Figures 5
and 6 in the Appendix). This visualization, along
with semantic similarity search using a cosine sim-
ilarity threshold of 0.8, helped identify and resolve
posts with overlapping subdomains via manual rela-
belling or removal, further refining the datasets and
ensuring distinct category separation. This resulted
in the creation of the following new datasets:

Sleep Dataset. The resulting Sleep dataset con-
tains 2484 posts with subdomains such as alarm,
bed comfort, beverage effects, and sleep movement
(c.f. Appendix 1 for a full list and descriptions).

Activity Dataset. The Activity dataset consists
of 2159 posts with subdomains like heart health,
lower body exercise, abdominal exercise, and upper
body exercise (c.f. Appendix 2).

Out-of-distribution Dataset. = An out-of-
distribution dataset was also created, comprising
2348 unique posts randomly sampled from 10 non-
sleep and non-activity related subreddits (e.g., clas-
sical music, education, pets, relationships).

Synthetic Dataset To create realistic online dis-
cussion posts for subdomain classification within
the Sleep and Activity categories, we used Gemini-
pro. For each subdomain, Gemini-pro generated
20 posts per class based on prompts related to
that specific topic (e.g., "Generate an online post
about alarms, alarm clocks, or waking up with
alarms."). Our primary domain classification task
used 180 posts: 60 each related to activity, sleep,
and a set of 60 out-of-distribution posts. The
out-of-distribution set was created by generating
posts from prompts that excluded any subdomain-
specific keywords or concepts.

Models We evaluated several models, includ-
ing BERT-base (Devlin, 2018), DistilBERT (Sanh,
2019), ELECTRA-base and small (Clark, 2020),
against the Gemini family of models (Pro and
Nano) (Anil et al., 2023) for each classification
task (cf. Appendix A.1 for more model details and
A.2 for computation cost details).

3.2 Analysis

To assess model performance across diverse train-
ing data sizes, we conducted experiments on two
classification tasks: a primary task (sleep, activity,
out-of-distribution) and a subdomain task (specific
topics within sleep and activity). BERT and ELEC-



TRA models were fine-tuned on varying training
set sizes, ranging from a small number of examples
per class (1, 2, 5, 10, 50, 100, 150, 1000, and the
full real-world testing dataset) using the Hugging
Face Transformers library (Wolf, 2019). Gemini
models, in contrast, were evaluated in a few-shot
learning setting, utilizing zero-shot prompting with
an option to provide up to 10 examples (due to
context window length limitations) per class dur-
ing inference. Because model performance can be
influenced by the input prompt (Liu and Shi, 2024),
we used a consistent template across all classifi-
cation tasks, with only keywords and descriptions
modified to reflect the specific task. This prompt
template was iteratively refined until stable perfor-
mance was observed across multiple runs. Models
were instructed to return a single class label. In-
puts without a recognized label were initially des-
ignated as "Unknown," though this category was
not observed in practice during experimentation.
Performance was measured using accuracy as the
manually curated dataset had minimal class im-
balance. The same procedures were done on the
synthetic dataset. Given the potential variability in
performance across runs for LLMs like the GPT
series (Harris et al., 2024), each task was repeated
three times for the Gemini models, with the average
performance reported. The variance across runs for
both real-world and synthetic dataset was minimal
(0.0-0.1), indicating relatively stable performance
(cf. Appendix 3 and 4 for more details).

4 Findings

4.1 Model Performance and Data Volume For
the Primary Domain Classification Task

Accuracy
o
o

—— BERT-base
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Figure 2: Model Performance on Primary Domain Clas-
sification at Different k Values.

In the three-class classification task (sleep, activ-
ity, out-of-distribution) as shown in Figure 2, more

training examples generally translated to higher
accuracy for most models. However, the rate of
improvement and the performance ceiling varied
significantly. The BERT models achieved high
accuracy ( 90%) with as few as 50 examples, in-
dicating their aptitude for learning generalizable
patterns from limited data. ELECTRA-base, com-
pared to ELECTRA-small, exhibited faster learn-
ing and a higher performance ceiling, likely due to
its increased capacity. However, both ELECTRA
variants ultimately achieved comparable accuracy
to the other BERT models, albeit with slower learn-
ing curves, generally requiring more examples to
reach peak performance. Gemini-nano, constrained
by its smaller context window and limited capacity
for processing large examples per class, also im-
proved with additional data, eventually exceeding
or matching the ELECTRA models’ performance
on smaller datasets (k=10). However, it lagged con-
siderably behind BERT models with larger datasets,
highlighting the limitations of its smaller scale.

In contrast, Gemini-pro exhibited a relatively flat
learning curve, achieving 80% accuracy irrespec-
tive of data volume. Gemini-pro, the largest model
tested, achieved the highest accuracy with mini-
mal examples. However, its performance plateaued
with increasing data. This suggests a strong re-
liance on pre-existing knowledge, requiring mini-
mal task-specific tuning, yet struggling to capture
finer nuances that benefited smaller BERT models
as datasets grew. Notably, with sufficient training
data (k> 50), the BERT and ELECTRA models
surpassed Gemini-pro’s performance obtained with
the smaller datasets.

4.2 Model Performance and Data Volume For
the Subdomain Classification Task
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Figure 3: Model Performance on Sleep Subdomain Clas-
sification at Different k Values

A similar pattern emerged for the more granular
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Figure 4: Model Performance on Activity Subdomain
Classification at Different k Values

21-subdomain classifications (for both sleep and
activity) as seen in Figures 3 and 4. The BERT and
ELECTRA models again benefited from increased
data, with performance steadily improving as the
number of examples grew. Interestingly, these mod-
els achieved high accuracy levels (>80% for sleep
and >90% for activity) with roughly the same or
less number of examples (> 50) as in the three-
class task. This might suggest that, for these mod-
els, the increased complexity of the 21-subdomain
task was offset by the richer information content
inherent in the more specific labels. These mod-
els also required slightly more examples for sleep
sub-classification than activity sub-classification
likely due to classes being more heterogenous for
activity and primary datasets. Likely due to the
increased data requirements for nuanced classifica-
tion and its limited context window, Gemini-nano
did not exhibit clear performance gains with ad-
ditional data in this setting; even fewer examples
could fit within its context window when numerous
subdomains were present, hindering its ability to
learn effectively.

On the other hand, Gemini-pro once again
displayed remarkable generalization capabilities,
achieving high accuracy (>77% for sleep, >82%
for activity) with minimal data (as few as 2 exam-
ples). This reinforces the trade off between strength
in leveraging pre-existing knowledge for special-
ized classification within the health domain, even
when confronted with limited task-specific exam-
ples, and limited abilities to capture the subtleties
of nuances of data not reflected in the training set.
Interestingly, for smaller training datasets (zero
to few examples), both Gemini models, including
Gemini-nano, outperformed the BERT and ELEC-
TRA models. This suggests that the inherent knowl-
edge encoded in the Gemini-pro models, even the

smaller Gemini-nano, provided an initial advan-
tage when task-specific data was scarce. However,
this advantage diminished quickly as the BERT
and ELECTRA models rapidly improved with the
addition of just a few more examples per class.

4.3 Model Performance on the Synthetic
Dataset

We replicated our analysis on a synthetic dataset
to validate our findings and assess potential overfit-
ting to the Reddit data. The overall trends remained
consistent, confirming the robustness of our obser-
vations. BERT models efficiently achieved high
accuracy on all classification tasks with a mod-
est number of examples, with ELECTRA mod-
els required more data. While Gemini-nano was
initially competitive, its performance fell behind
BERT models and ELECTRA-base as training data
increased. Gemini-pro, once again exhibiting a
flat learning curve, consistently outperformed all
other models, likely due to its inherent advantage
in recognizing patterns within the synthetic data it
generated. Nevertheless, with sufficient training,
BERT models reached comparable performance
levels. This consistency across datasets indicates
that the observed patterns are not solely artifacts of
the original Reddit dataset.

5 Discussion and Conclusion

5.1 Implications for Health Tasks

Our findings reveal a nuanced interplay between
model architecture, data volume, and performance
in health-related text classification, with important
implications for practical applications. Consis-
tent with the observations of Guo et al. (2024) in
broader health domains, we identify a trade-off be-
tween leveraging pre-existing knowledge (LLMs)
and data-driven learning (PLMs). This trade-off is
evident not only across different health domains but
also within more specialized subdomains. Specif-
ically, in scenarios where data is limited and the
classification task involves multiple nuanced sub-
domains—such as those encountered in subjective
health experiences like sleep and activity—larger
LLMs, like Gemini-pro, tend to perform better.
These models, with their extensive pre-training,
possess a wealth of knowledge that allows them
to generalize effectively from relatively few task-
specific examples, thus outperforming PLM mod-
els in data-constrained situations. This observa-
tion aligns with Guo et al. (2024)’s findings, which



highlight GPT-4’s strong performance on the com-
plex task of depression detection. This suggests
that LL.Ms, including the Gemini family explored
in our study, may be particularly well-suited for
classifying subjective experiences in health con-
texts. The superior performance of larger LLMs
emphasizes the importance of model size, partic-
ularly when utilizing pre-existing knowledge to
overcome limited task-specific data. In contrast,
smaller models like Gemini-nano, which are de-
signed for on-device use, struggle to generalize
effectively in zero-shot settings due to their lim-
ited pre-trained knowledge and parameter capacity.
While the compact design of Gemini-nano makes
it ideal for mobile health applications, where de-
vice constraints demand smaller models, its per-
formance in data-scarce environments highlights
the challenges of deploying such models for com-
plex health tasks. This trade-off between size and
capability is critical when considering the practical-
ity of mobile health applications, where on-device
processing often takes precedence.

However, the strong zero-shot performance
of larger LLMs comes with a significant com-
putational cost. For example, Gemini-pro re-
quired a substantial number of GPU hours—132
hours—compared to PLMs like BERT and ELEC-
TRA, which only required 6-8 hours (see Ap-
pendix A.2). This disparity becomes even more
noticeable when considering smaller LLMs, such
as Gemini-nano, which, despite not consistently
demonstrating strong performance in zero-shot set-
tings, still required more training time (approxi-
mately 11 hours) than PLMs. Additionally, PLMs
like BERT and ELECTRA not only trained faster
but also showed considerable improvement with
even minimal additional data, performing well on
both primary classification tasks and more complex
subdomain tasks. In some cases, they eventually
surpassed LLMs with limited examples. This sup-
ports the findings of Guo et al. (2024), who showed
that supervised PLMs outperform zero-shot LLMs
in health classification tasks when sufficient data is
available. In contrast to the thousands of examples
per class typically explored in prior research, our
study extends these findings by showing that this
effect holds true even with as few as 50 examples
per class, even as tasks include subjective experi-
ences, become more complex, and the number of
classes increases. The consistent performance pat-
terns observed across both the real-world Reddit
dataset and a synthetic dataset further validate these

results, indicating that these trends reflect broader
patterns in model behavior based on size. Thus, the
choice between LLMs and PLMs becomes a crit-
ical consideration, requiring a careful balance be-
tween performance goals, available computational
resources, and data volume.

5.2 Limitations and Future Work

While this study provides valuable insights, it ac-
knowledges the rapid pace of development in large
language models (LLMs). The evaluation was con-
ducted using specific model architectures and fo-
cused on the sleep and fitness domains, which may
limit the generalizability of findings to other health
areas and more recent models (Warner et al., 2024).
Notably, advancements like the Gemini family of
models have emerged since the study’s inception,
potentially offering improved performance or ef-
ficiency. Future research should explore the gen-
eralizability of these results across diverse health
domains and updated model architectures. This
includes exploring innovative training approaches
that leverage task-specific data and examining hy-
brid architectures that combine the strengths of
LLMs and encoder-based PLMs like BERT. For
instance, ensembling methods, such as those em-
ployed by Zhou et al. (2023) for clinical note clas-
sification, could leverage the complementary ca-
pabilities of different model types. This could be
particularly relevant for resource-constrained en-
vironments like mobile devices, where a locally-
run PLM and small LLM combination could offer
comparable performance to a large LLM while en-
hancing privacy by eliminating the need for remote
server processing and data transmission.

Additionally, while the synthetic dataset was in-
tended to investigate models overfitting to the Red-
dit data, it may not fully capture the nuances and
complexities of real-world health information. Fu-
ture studies should incorporate a wider variety of
datasets and evaluation metrics to develop a more
comprehensive understanding of the strengths and
weaknesses of various language models for health-
related text classification.

5.3 Risks

This research focuses on exploring and evaluating
the capabilities of various language models for spe-
cific tasks within the sleep and activity domains.
Although this study does not involve deployment or
direct application in a clinical setting, the findings
contribute to the growing body of knowledge re-



garding the use of language models in health. The
primary risks in our work are related to internal
model and training set biases, which may reflect
historical inequities in healthcare. These biases
could inadvertently influence model predictions,
potentially leading to unfair or discriminatory out-
comes if applied in real-world setting, highlighting
the need for careful data curation before actual de-
ployment.
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A Appendix
A.1 Detailed Model Descriptions

We evaluated several models for each classification
task. These include:

* BERT-base: This model has 12 layers, 110M
parameters, and a hidden dimension size of
768 (Devlin, 2018).

¢ DistilBERT: This model is a distilled version
of BERT, and has 66 million parameters (Sanh,
2019).

* ELECTRA-Base: This model has 12 layers,
110M parameters, and a hidden dimension
size of 768 (Clark, 2020).

* ELECTRA-Small: This model has 12 layers,
14M parameters, and a hidden dimension size
of 256. (Clark, 2020).

* Gemini Pro: This is a performance-optimized
model in terms of both cost and latency (Anil
et al., 2023).

* Gemini Nano: This model is distilled from
larger Gemini models, and has 1.8B parame-
ters (Anil et al., 2023).

A.2 Model and Experimental Setup Details

Using a V100 GPU, the DistilBERT and
ELECTRA-small models required around 6 hours
of GPU time each, Bert-base and ELECTRA-base
required around 8 hours, Gemini-nano required
around 11 hours, and Gemini-pro required around
132 hours, utilizing a total of approximately 171
GPU hours across different models.

Optimal hyperparameters, including learning
rate and batch size, were determined using a vali-
dation set. The best performing BERT-base models
were trained with a learning rate of 3e-5 and a batch
size of 16. DistilBERT, ELECTRA-Base, and
ELECTRA-Small achieved optimal performance
with a batch size of 16 and learning rates of 2e-5,
3e-5, and Se-6, respectively. All models utilized
a maximum sequence length of 512. Early stop-
ping was implemented based on validation accu-
racy. Sampling ensured representation of all unique
labels in each training subset. For the Gemini mod-
els, we employed their default configurations and
set the sampling temperature to 0.0 to encourage
reproducibility.

A.3 Analysis Details

Datasets for both classification tasks were prepared
from a combination of real-world and synthetic
sources. The "out-of-distribution" domain was ex-
clusively used in primary classification. For BERT
and ELECTRA, training data sizes ranged from 1
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to 1000 examples per class (and the full dataset),
while for Gemini, sizes ranged from zero-shot to
10 examples per class. For a more granular micro
analysis, we used training sizes from zero-shot to
50 examples per class for BERT and ELECTRA
and zero-shot to 2 examples per class for Gemini.
Data was stratified into training, validation, and test
sets. Textual labels were encoded numerically, and
an "unknown" category was included for unseen
labels (though unused in practice for Gemini).

A.4 Subdomain Details and Descriptions

Table 1 and 2 detail the subdomains for sleep and
activity datasets, along with descriptions for each
subdomain.

A.5 UMAP Visualizations of Activity and
Sleep Subdomains

Figures 6 and 5 present UMAP visualizations of
BERT embeddings for samples from the sleep and
activity subdomains, respectively. These visual-
izations reveal both the proximity between subdo-
mains and their distinct separations.

A.6 Complete Results

Tables 3 and 4 present the classification accuracy
for each model across various support examples
provided during training or few-shot learning. The
Gemini models’ performance includes standard de-
viation from 3 runs.

A.7 Prompts

Table 5 presents the prompt templates used for dif-
ferent text classification tasks leveraging a Large
Language Model (LLM). The table is organized
by task, with each row corresponding to a specific
classification objective: primary topic classification
(into ’sleep’, ’activity’, and ’out-of-distribution”)
and sub-classification within the ’activity’ and
’sleep’ categories. For the primary classification
task, both zero-shot (no examples provided) and
few-shot (examples provided) prompt variations
are detailed. The prompts for sub-classification
tasks encompass both zero-shot and few-shot sce-
narios, where the model is given detailed descrip-
tions of each subcategory. All prompts instruct
the LLM to act as a topic classifier and to return
a single label corresponding to the most appropri-
ate category for the input post. The placehold-
ers {post}, {examples[i]} and {labels[i]} indicate
where the input post, example posts, and corre-
sponding labels are dynamically inserted into the

prompt, respectively. Placeholder {Description for
each activity/sleep category} indicates where de-
tailed descriptions of each subcategory are inserted.



Table 1: Sleep Dataset Subdomains and Descriptions

Label Includes discussion around
Alarm alarms, alarm clocks, or waking up using alarms
Bed Comfort about bed comfort, mattress type, pillows, etc.
Beverage Effects | effects of beverages (e.g., coffee, tea) on sleep
Sleep Movement | sleepwalking, sleep talking, or other movement during sleep
Cannabis use of cannabis and its effects on sleep
Cataplexy sudden loss of muscle control, often associated with narcolepsy
Diet the relationship between diet and sleep
Dream dreams, vivid dreams, or dream interpretation
Exercise the relationship between exercise and sleep
Gendered Health | the relationship between menstruation, pregnancy, or other gendered factors and sleep
Light Source the impact of light sources (e.g., sunlight, artificial light) on sleep
Mental Health the relationship between mental health and sleep
Nap napping, nap schedules, or nap strategies
Nightmare nightmares, their frequency, or coping mechanisms
Sleep Position preferred sleep positions or their impact on sleep quality
Sleep Schedule | sleep schedules, routines, or sleep hygiene
Sound Control using white noise, earplugs, or other methods to control sleep environment sounds
Supplements using supplements (e.g., melatonin, valerian) to improve sleep
Temperature the impact of room temperature on sleep quality
Tracker using sleep trackers or wearable devices to monitor sleep
Miscellaneous any sleep-related topic not covered in other categories
Table 2: Activity Dataset Subdomains and Descriptions
Label Includes Discussion Around
Heart Health heart rate, cardiovascular health, or related exercises

Lower Body Exercise
Abdominal Exercise

exercises targeting the legs, glutes, or lower body
exercises targeting the abdominal muscles (e.g., core work)

Upper Body Exercise | exercises targeting the arms, chest, shoulders, or upper body
Soreness muscle soreness, recovery strategies, or pain management
Breathing breathing techniques, exercises, or respiratory health

Posture posture correction, exercises, or posture-related issues

Stretch stretching routines, types of stretches, or flexibility

Rest rest days, active recovery, or importance of rest

Personal Trainer working with a personal trainer, their advice, or training plans
Weather impact of weather conditions on activity or training

Injury injuries, recovery from injury, or prevention strategies
Swimming swimming routines, swimming techniques, or swimming benefits
Hiking hiking trails, hiking gear, or hiking experiences

Marathon marathon training, marathon preparation, or marathon races
Cycling cycling routines, cycling techniques, or cycling benefits

Combat Sport martial arts, boxing, or other combat sports

Yoga yoga practices, yoga styles, or yoga benefits

Kettlebell kettlebell training, exercises, or kettlebell benefits

Tracker using activity trackers or wearable devices to monitor progress
Miscellaneous any exercise and activity-related topic not covered in other categories
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UMAP Dimension 2

Figure 5: UMAP Visualization of BERT Embeddings for a Sample of Activity Subdomains (n=50 per class)

UMAP Dimension 2

Figure 6: UMAP Visualization of BERT Embeddings for a Sample of Sleep Subdomains (n=50 per class)
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Table 3: Classification Accuracy Across Tasks and Models (with error for Gemini models)

Primary Classification

Model 1 2 5 10 50 100 150 1000 Al
BERT-base 0.43 0.59 0.68 0.81 094 097 096 098 0.99
DistilBERT 0.31 0.51 0.71 0.82 091 095 096 098 0.98
Electra-base 0.37 0.30 0.47 0.55 0.55 0.88 093 098 0.99
Electra-small - 0.32 0.34 0.44 0.43 054 0.64 088 094 0.97
Gemini-nano | 0.33+0.00 0.30+0.12 0.25+£0.02 0.29+£0.07 0.56 £0.02 - - - - -
Gemini-pro 0.87+0.00 0.87+£0.01 0.844+0.02 0.82£0.03 0.84=+0.02 -
Sleep Subdomain Classification

Model 1 2 5 10 25 35 50 All
BERT-base 0.06 0.08 0.30 0.60 079 0.84 0.88 0.87
DistilBERT 0.05 0.14 0.43 0.64 0.82 0.82 0.84 0.84
Electra-base 0.05 0.06 0.05 0.33 076 0.85 0.87 0.89
Electra-small - 0.06 0.05 0.09 0.09 037 0.66 0.75 0.77
Gemini-nano | 0.22+0.01 0.27+0.02 0.24+£0.01 - - - - -
Gemini-pro 0.78£0.00 0.78£0.01 0.77 £0.02 -

Activity Subdomain Classification
Model 1 2 5 10 25 35 50 All
BERT-base 0.09 0.15 0.42 0.80 090 092 094 093
DistilBERT 0.06 0.25 0.51 0.76 090 092 093 093
Electra-base 0.05 0.07 0.17 0.53 0.85 092 092 091
Electra-small - 0.05 0.04 0.05 0.05 049 0.80 0.89 093
Gemini-nano | 0.27+0.00 0.38+0.02 0.40+0.01 - - - - -
Gemini-pro 0.82+£0.00 0.84£0.00 0.85£0.01 -

Table 4: Synthetic Classification Accuracy Across Tasks and Models (with error for Gemini models)

Primary Classification

Model 0 1 2 5 10
BERT-base - 0.15 0.47 0.65 0.88 0.96
DistilBERT - 0.20 0.49 0.47 0.85 0.93
Electra-base - 0.45 0.37 0.50 0.58 0.55
Electra-small - 0.48 0.45 0.14 0.35 0.29
Gemini-nano | 0.33 £0.00 0.424+0.03 0.39+0.02 0.40+0.04 0.534+0.13
Gemini-pro 1.00£0.00 0.99+0.01 098+0.01 0.98+0.01 0.974+0.00
Sleep Subdomain Classification

Model 0 1 2 5 10
BERT-base - 0.04 0.05 0.25 0.58 0.86
DistilBERT - 0.02 0.06 0.38 0.60 0.90
Electra-base - 0.02 0.06 0.09 0.30 0.85
Electra-small - 0.05 0.05 0.05 0.10 0.32
Gemini-nano | 0.24 =0.00 0.424+0.03 0.44 +0.03 - -
Gemini-pro 0.98+0.00 0.98=£0.00 0.98=+0.00 - -

Activity Subdomain Classification
Model 0 1 2 5 10
BERT-base - 0.07 0.08 0.18 0.55 0.89
DistilBERT - 0.06 0.04 0.35 0.71 0.84
Electra-base - 0.06 0.08 0.05 0.20 0.82
Electra-small 0.05 0.05 0.05 0.03 0.32

Gemini-nano
Gemini-pro

0.55+0.00 0.67+0.04 0.66=+0.01
0.97+0.00 0.98+0.01 0.98+0.01
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Table 5: Prompt Templates for Text Classification with Gemini. Refer to Table 1 and Table 2 for respective labels
and descriptions.

Task Prompt Template

Primary Classifica-

tion (Zero-shot) You are a topic classifier. Your job is to classify the input post

into one of 3 categories:

- sleep

- activity

- out-of-distribution

You must return only 1 of these 3 possible choices in one word.
If the post is mostly about activity

(e.g., [...list of activity labels...]), return 'activity'.
If the post mostly pertains to sleep topics

(e.g., [...list of sleep labels...]), return 'sleep'.

If the post is mostly about neither, return 'misc'.

Here is my post:

Input: {post}

Output:

Continued on next page
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Table 5 — continued from previous page

Task Prompt Template

Primary Classifica-

tion (Few-shot) You are a topic classifier. Your job is to classify the input post

into one of 3 categories:

- sleep

- activity

- out-of-distribution

You must return only 1 of these 3 possible choices in one word.
If the post is mostly about activity

(e.g., [...list of activity labels...]), return 'activity'.
If the post mostly pertains to sleep topics

(e.g., [...list of sleep labels...]), return 'sleep'.

If the post is mostly about neither, return 'misc’.

Here are some examples:

{'".join([f'Input: {examples[il} Output: {labels[il} '

for i in range(len(examples))1)}

Here is my post:

Input: {post}

Output:

Sleep Sub-
classification

You are a topic classifier. Your job is to classify the input
(Zero/Few-shot)

post into one of the following sleep categories:
", ".join("{label}: {description}” for label, description in
sleep_descriptions])}
You must return only 1 of these possible choices.
{Description for each sleep category}
[Optional: Here are some examples: ...]
Here is my post:
Input: {post}
Output:

Activity Sub-
classification

You are a topic classifier. Your job is to classify the input
(Zero/Few-shot)

post into one of the following activity categories:

", ".join("{label}: {description}” for label, description in
activity_descriptions])}

You must return only 1 of these possible choices.

[Optional: Here are some examples: ...]

Here is my post:

Input: {post}

Output:

14



Table 6: Pseudo-Code and Prompt Templates for Synthetic Dataset Generation Using Gemini Pro.

Task Prompt Template

Sleep Posts

for category, description in sleep_descriptions:
Generate a short online post of someone talking about {category}
as it pertains to sleep. The post should include discussion
around {description}.

Activity Posts
for category, description in activity_descriptions:
Generate a short online post of someone talking about {category}
as it pertains to activity and exercise. The post should include
discussion around {description}.
Miscellaneous
Sleep Posts Generate a short online post of someone talking about sleep.

However, the post should NOT mention or have any content related to
any of these topics:
" ".join(["{1label}" for label in sleep_descriptions)}.

Miscellaneous Ac-

tivity Posts Generate a short online post of someone talking about activity and

exercise. However, the post should NOT mention or have any content
related to any of these topics:
", ".join(["{1label}" for label in activity_descriptions)}.

Out-of-
Distribution
Posts

Generate a short online post of someone talking about anything but
sleep, activity, and exercise topics. There should be no mention
of personal fitness or wellness as it pertains to sleep or activity.
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