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ABSTRACT

Inversion-based watermarking is a promising approach to authenticate diffusion-
generated images, yet practical use is bottlenecked by inversion that is both slow
and error-prone. While the primary challenge in the watermarking setting is ro-
bustness against external distortions, existing approaches over-optimize internal
truncation error, and because that error scales with the sampler step size, they are
inherently confined to high-NFE (number of function evaluations) regimes that
cannot meet the dual demands of speed and robustness. In this work, we have two
key observations: (i) the inversion trajectory has markedly lower curvature than
the forward generation path does, making it highly compressible and amenable
to low-NFE approximation; and (ii) in inversion for watermark verification, the
trade-off between speed and truncation error is less critical, since external distor-
tions dominate the error. A faster inverter provides a dual benefit: it is not only
more efficient, but it also enables end-to-end adversarial training to directly target
robustness, a task that is computationally prohibitive for the original, lengthy in-
version trajectories. Building on this, we propose FARI (Fast Asymmetric Robust
Inversion), a one-step inversion framework paired with lightweight adversarial
LoRA fine-tuning of the denoiser for watermark extraction. While consolidation
slightly increases internal error, FARI delivers large gains in both speed and ro-
bustness: with 20 minutes of fine-tuning on a single NVIDIA RTX A6000 GPU,
it surpasses 50-step DDIM inversion on watermark-verification robustness while
dramatically reducing inference time.

1 INTRODUCTION

The rapid proliferation of diffusion models (Ho et al., 2020;|Song et al.,|202 1)) has led to an explosion
of Al-generated content, simplifying creative production but also fueling the spread of synthetic
misinformation and raising concerns about intellectual property protection for model providers. In
response, inversion-based watermarking (Yang et al., 2024; Wen et al., [2023}; [Huang et al., [2024;
Gunn et al., 2024)) has shown remarkable promise for authenticating and tracing diffusion-generated
images. By embedding a watermark in the initial noise, the mark becomes deeply integrated with
the image’s semantics during the iterative generation process, ensuring minimal visual impact. To
extract the watermark, the image typically needs to be reconstructed back to noise via inversion
techniques (Song et al., [2021} [Hong et al., [2024). This inversion step, however, is the method’s
critical bottleneck. It is computationally expensive, time-consuming, and introduces substantial
errors, all of which hinder the practical, large-scale deployment of inversion-based watermarks. This
bottleneck motivates the development of a fast and accurate inversion method tailored for watermark
extraction.

Although many inversion techniques (Mokady et al.l 2023]; [Hong et al., [2024; Wallace et al., [2023)
exist, most primarily aim to reduce internal inversion error (caused by discretization truncation
and Classifier-Free Guidance) via iteration (Pan et al., 2023} |Garibi et al.| [2024; Samuel et al.,
2023)), optimization (Hong et al.| [2024; L1 et al., 2024 Mokady et al.l|2023), or analytical control of
truncation-error bounds (Wallace et al., 2023} [Zhang et al., 2024a; Wang et al., [2024). While effec-
tive for diffusion-based image editing (Hertz et al.,[2022), this strategy is ill-suited for watermarking.
Prior to extraction, images may be subjected to diverse distortions (e.g., JPEG compression, blur)
that induce substantial initial-condition shifts; given the denoiser’s sensitivity, these perturbations
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compound rapidly along the inversion trajectory and become the dominant bottleneck to extraction
accuracy.

This shift in the error bottleneck for watermark extraction leads us to question the necessity of
traditional high-NFE inversion. In prior methods, which primarily address clean-image scenarios,
performance is limited by the discretization truncation error of the ODE sampler, which is directly
related to the step size. Consequently, a high NFE is required to maintain precision. In the wa-
termarking context, however, this internal error is dwarfed by the accumulated error from external
distortions, a factor that is not explicitly mitigated by a larger number of steps. Furthermore, the
natural solution to instill this robustness, adversarial training, is blocked by the high NFE of these
traditional inverters. A powerful end-to-end training regime is rendered computationally infeasible
by the prohibitive memory costs of backpropagating through a long iterative process. Meanwhile,
the more computationally feasible, factorized objective, similar to that used in diffusion pretraining
(Ho et al., |2020), proves insufficient for learning the global robustness required to counter complex
distortions (see Appendix [E.3). These facts indicate that first finding a low-NFE solution is not only
beneficial for speed, but also enables a breakthrough in enhancing robustness.

Motivated by this, we propose FARI: Fast Asymmetric Robust Inversion, a framework that achieves
fast and robust inversion tailor-made for watermarking at a minimal fine-tuning cost. FARI is based
on a key insight into the geometric asymmetry between generation and inversion trajectories: while
the estimation error in inversion makes the reconstructed noise inaccurate, it also indirectly en-
dows the inversion path with a significantly lower curvature than its generation counterpart. A
lower-curvature trajectory is inherently easier to approximate with fewer steps. This enables a step-
distillation approach that collapses multi-step inversion into a single efficient step. This reduction
in NFE unlocks efficient end-to-end adversarial training. While this distillation-based estimation
slightly sacrifices precision on clean, distortion-free inversion, the direct speed-up and the indirect
enhancement in robustness are substantial, and we find that the downside of this trade-off has a
negligible effect on the performance of the downstream watermarking task (Yang et al.,|2024; Wen
et al., 2023). Furthermore, our use of LoRA (Hu et al., 2022)) for fine-tuning elegantly avoids the
degradation of image quality. By storing the learned robustness knowledge externally in the LoORA
parameters, we can simply deactivate the LoRA branch during generation, ensuring that the orig-
inal model’s generation quality remains unchanged. Our experiments demonstrate that with just
20 minutes of fine-tuning on a single NVIDIA RTX A6000 GPU, the one-step FARI surpasses the
robustness of the 50-step DDIM baseline in watermark verification tasks.

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models (Ho et al., |2020; |Song et al., [2021) are a class of generative models that operate
by iteratively transforming a pure Gaussian noise vector zp ~ N(0, 1) into a real data sample
zo ~ q(z) through T denoising steps. The process is defined by two Markov chains. The forward
process gradually diffuses a data sample z, by adding Gaussian noise over 7' timesteps according
to a fixed variance schedule {3, }7_;:

q(zt|zt-1) = N(z45 /1 = Brzi—1, Be]), (1)
A key property of this process is that we can sample z; at any arbitrary timestep ¢ directly from zg:
zt = Vagzo + V1 — que, (2)

where oy = 1 — B, ay = szl a;, and € ~ N (0, I). The reverse process learns to denoise these
corrupted samples to recover the original data. This is achieved by training a neural network €y to
predict the added noise € from the noisy input z;. The objective function is typically a simplified
version of the evidence lower bound:

£(9) = IEzo,thniform(1,T),ew./\/(0,I) [HG - €.9(Zt, t)”%] 5 (3)
2.2 DDIM SAMPLING AND INVERSION

The denoising diffusion implicit model (Song et al., 2021)) (DDIM) provides a deterministic sam-
pling process by defining a non-Markovian forward process that leads to the same marginal distri-
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butions. Given a noisy latent z;, DDIM computes the subsequent latent z;_; by first predicting an
estimate of the clean image, 2y, and then stepping towards it:

.z — V1 —aveg(z,)
ZO - = 9 (4)
Vi
Zi—1 =120 + /1 — a_1€9(24,t). @)
The deterministic nature of DDIM is crucial as it allows for an invertible generation process, which
iteratively computes z; from z;_; by reversing the sampling steps. This unique invertible charac-

teristic allows us to recover the initial noise representation zr from any generated image z,, which
serves as a powerful tool for inversion-based watermarking.

2.3 INVERSION-BASED WATERMARKING FOR DIFFUSION MODELS

We categorize these methods into three classes. The first class, epitomized by Tree-Ring (Wen et al.,
2023)), embeds a robust pattern into the Fourier domain of the initial noise to enable detection. Sub-
sequent works have focused on enhancing its practical applications or extending its capabilities. For
instance, RingID (Ci et al., [2024) extends it to a multi-bit watermark, ROBIN (Huang et al., [2024)
improves its imperceptibility, and ZoDiac (Zhang et al., 2024b) generalizes it as a post-processing
watermark, all without altering the core embedding and extraction logic. The second class, rep-
resented by Gaussian Shading (Yang et al., 2024), embeds a multi-bit watermark into the spatial
domain of the noise through distribution-preserving sampling. Follow-up research has concentrated
on improving its key reuse problem, as seen in PRC-Watermark (Gunn et al. [2024) and Gaussian
Shading++ (Yang et al., 2025), and on functional extensions; for example, TAG-WM (Chen et al.,
2025)) and VideoShield (Hu et al.,[2025) provide functionality for detecting tampered regions. The
third class, such as GaussMarker (Li et al., 2025)), combines the first two approaches to compensate
for their weakness against geometric distortions.

2.4 INVERSION METHODS

There is a substantial body of work on diffusion model inversion. Methods such as BELM (Wang
et al.| 2024), BDIA (Zhang et al., [2024a), and EDICT (Wallace et al.| [2023) directly modify the
sampling process to make it invertible. Others, including AIDI (Pan et al.| [2023)), ExactDPM (Hong
et al., [2024])), and ReNoise (Garibi et al., 2024), employ iteration or gradient descent to obtain better
intermediate values for trajectory alignment. A third category, which includes NTI (Mokady et al.,
2023) and NPI (Miyake et al., 2025)), focuses on optimizing a better null-text embedding to guide
the regeneration process. As we have previously mentioned, these methods are primarily designed
for training-free image editing. Consequently, they may fail in adversarial watermark extraction
scenarios, a point we will demonstrate in our experiments section.

2.5 DIFFUSION MODEL ACCELERATION

The acceleration of diffusion models can be broadly categorized into two paths. The first path in-
volves using solvers with lower truncation error (Lu et al., 2022azb; Zhang & Chen, [2022). While
these methods can reduce the number of inference steps to between 20 and 30, the quality of image
generation in extreme few-step scenarios (e.g., < 10) remains unsatisfactory. A noteworthy method
in this category is the AMED-Solver (Zhou et al.| |2024a), which is based on the mean value theo-
rem. It uses a small model to predict the timestep where the mean value occurs, thereby estimating
the average velocity and enabling generation in as few as two steps. The second path is distilla-
tion, where a student model is trained to replicate the output of multiple teacher steps in a single
step. Techniques such as progressive distillation (Salimans & Hol 2022)), consistency distillation
(Song et al.,2023)), and distribution matching distillation (Yin et al., 2024bjal) follow this paradigm.
However, these methods typically demand a substantial amount of pre-generated training data, GPU
memory, and time.

3 OUR PROPOSED METHOD

In this section, we propose FARI, a robust one-step inversion method designed for watermark ex-
traction. It is based on our key finding that the inversion trajectory exhibits a significantly lower
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curvature than the generation path does, enabling efficient one-step distillation, which in turn makes
the adversarial fine-tuning computationally feasible.

3.1 THE INVERSION TRAJECTORY EXHIBITS LOWER CURVATURE

We begin with the inherent systematic error in DDIM inversion (Song et al.|[2021). For deterministic
DDIM sampling, the denoising process, which computes z;_; from z;, can be written in a single
recurrence relation(the conditioning terms are omitted for simplicity):

— 1 a
zZi_1 = ai Lo+ V31—adg_1 — M €(zt,1). 6)

Qi Qg

The inversion step, which solves for z; based on z;_1, is derived as:

all=al)) g, )
1

zi1+ [ V1I—a—

However, since our goal is to solve for z;, the term €y (2, t) on the right-hand side of Eq. mcannot be
explicitly calculated. Generally, this is addressed by making a piecewise linear assumption, approx-
imating €g(z;,t) =~ €g(2z:i—1,t). The validity of this assumption, however, requires a sufficiently
small step size, a condition that practical settings often fail to meet. This becomes a significant
source of inversion error, even for clean images. While many works (Lin et al, 2024} Wang et al.,
2024 |Staniszewski et al., 2024) have recognized that changes in the trajectory direction €g(-) cause
an offset of the reconstructed noise 27 and have attempted to mitigate this asymmetry, we further
point out that under the combined effect of directional and positional offsets, curvature—a higher-
order property of the trajectory—also exhibits a profound asymmetry. Specifically, the curvature of
the inversion trajectory is substantially lower than that of the denoising trajectory.
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Figure 1: Left: Visualization of the inversion error, where latent vectors are projected down to 3
channels via PCA for display. Middle: Curvature of generation and inversion trajectories across
diffusion timesteps. Discrete curvature estimated using 100 unconditionally generated images from
Stable Diffusion v2.1. Right: The resulting error for generation and inversion when reducing the
NFE, compared with a 50-step NFE baseline.

In Figure [[(middle), we illustrate the curvature differences between the 1000-step denoising (gener-
ation) and inversion trajectories. We observe that trajectories exhibit greater curvature near the noise
end of the process (as t — T). This is because the denoising network is trained on the forward diffu-
sion process, where different images can diffuse to the same noise point, causing trajectory crossing
(Lee et all 2023). Consequently, in the early stages of denoising, the model must constantly correct
its direction, leading to high curvature 2023). This effect is particularly pronounced at the
very beginning when the latent variable is nearly pure noise. Once the fundamental semantics of the
image have formed, the direction of progress becomes relatively fixed, and the trajectory’s curvature
decreases significantly. However, this high-curvature phenomenon is substantially less pronounced
during the inversion process.
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Figure 2: The framework of FARI. FARI simultaneously performs one-step distillation and adver-
sarial training through a unified, end-to-end, LoRA-based fine-tuning process, enhancing both the
efficiency and robustness of the inversion. The LoRA adapters are injected into the denoiser net-
work and are deactivated during generation but activated for inversion. This strategy prevents any
degradation of the original model’s generation quality and eliminates the need to deploy a second,
complete denoiser, making it highly memory-efficient.

We attribute this partly to the fact that the accumulated error during inversion retains low-frequency
information from the source image. As shown in Figure[I|left), partial outlines of the image remain
visible in the noise reconstruction error, an observation consistent with prior work (Lin et al., 2024;
Staniszewski et al.| |2024; Nguyen et al., [2025). This residual semantic information helps to more
accurately determine the correct direction of progress as the inversion approaches the noise end.

In general, a trajectory with lower curvature can be more accurately approximated with fewer linear
steps (i.e., a lower NFE), as curvature is strongly correlated with the truncation error of the numerical
solver. In the simple case where the curvature is zero, a single sampling step is sufficient. This key
finding motivates us to explore the change in precision as the NFE is reduced for both generation
and inversion. We decreased the NFE from 15 to 3, observing the deviation from the results of a
standard 50-step NFE. The results in Figure[I[right) confirm that the inversion trajectory can indeed
tolerate a much lower NFE, which provides the foundational premise for our proposed method by
offering a significant increase in processing speed and, crucially, by enabling efficient adversarial
training.

3.2 FARI

Guided by the geometric intuition that the inversion tra-

jectory is highly compressible, our method is simple and MSE over Timesteps
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minimal effort. Although this initial estimate has some Figure 3: Inversion trajectory error of
error (see Figure3)), we find this trade-off is acceptable in FARI and DDIM on clean and JPEG-
exchange for the immense gains in robustness and speed, compressed images.

and it has a negligible effect on the performance of the

downstream watermarking tasks.
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For simplicity and efficiency, we do not explicitly separate the distillation and adversarial fine-tuning
into two distinct stages, as they share a consistent optimization objective and converge rapidly. It
is crucial to note our departure from common distillation practices for the generation process. We
do not start with a real image and train our one-step model to mimic the output of a 50-step DDIM
inversion. Instead, we sample a ground-truth Gaussian noise vector, perform the full generation
process to obtain an image, and then learn a direct one-step mapping from this generated image
back to the ground-truth initial noise. This approach avoids the performance ceiling imposed by the
inherent inaccuracies of the 50-step DDIM inversion itself and is better aligned with the generative
nature of the watermarking scenario.

Specifically, we fine-tune the denoising network of the diffusion model using Low-Rank Adaptation
(LoRA) (Hu et al., [2022)), a parameter-efficient fine-tuning technique that updates pretrained weight
matrices through low-rank decomposition. Given a weight matrix W, € R?**, the update is repre-
sented as Wy + AW = W, + BA, where B € RY*", A € R"**, and the rank » < min(d, k).
During training, W) is frozen, and gradient updates are applied only to A and B. The modified
forward pass for an input z becomes:

h=Wyz+ AWz =Wyz + BAz. ®)

By decomposing the full-rank matrix into the product of two low-rank matrices, LoORA significantly
reduces the number of trainable parameters, thereby lowering memory usage.

As illustrated in Figure [2] each training loop proceeds as follows. We randomly sample an initial
noise vector zr ~ N(0, I) and a condition ¢ from a dataset C to generate an image X. During
this generation phase, the LoRA branch is deactivated. The resulting image is then subjected to a
distortion D(-) randomly selected from a predefined set 7, yielding a distorted image X, which is
then encoded by the VAE encoder into a latent representation z2’. Subsequently, the LoRA branch
is activated to perform a one-step inversion, which reconstructs the noise according to the following
formula:

=\ 2o+ | Vimar - T ) ez 0.0:0) ©)

(&%)

Since &y = 1, this formula can also be equivalently written in the form of Eq[2}

R = Varzd + VI —ares(2{.0,0;4), (10)
where 1) represents the LoORA parameters. For the inversion process, we use an unconditional setting
(guidance scale = 1.0 and a null prompt). Prior works (Mokady et al., 2023 |Wallace et al., 2023)
have demonstrated that for standard DDIM inversion, an unconditional setting is often more precise
because of the lack of invertibility in Classifier-Free Guidance (Ho & Salimans} [2022)) (CFG). It is
also important to note that we set the timestep ¢ = 0 in the formula, rather than ¢ = T" as expected
from Eq. This is because in a single-step scenario, the piecewise linear assumption is clearly
violated. Empirically, we find that any other small timestep value (¢ = 0) can achieve performance
comparable to ¢ = 0, providing a much better match for the latent 2, reducing the initial error and
improving convergence. Finally, our training objective is defined as:

HgnEzT,cec,DeT [llzr — 27 113] (1D

Similarly, after training is complete, we deactivate the LoRA branch during denoising inference to
preserve the original generation quality and enable it only for watermark extraction. This strategy
is memory-efficient, eliminating the need to deploy two separate, largely identical denoisers. It is
worth noting that the LoORA component can be regarded as a plug-and-play enhancement module.
Even when it is removed, DDIM in principle allows inversion with arbitrary step counts, but the
error may be very large. Further discussions, including details on the fine-tuned modules, training
strategies, and hyperparameter selection, are provided in the ablation studies (Sectiorn4.4) and the

Appendix [E3]
4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Diffusion Models. We selected Stable Diffusion v1.5 and v2.1 (Rombach et al., 2022) to cover the
requirements of both the inversion baselines and the downstream watermarking task. For genera-
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tion, we use a guidance scale of 7.5 and a number of function evaluations (NFE) of 50, employing
the DDIM scheduler for all generations, except for those inversion methods that rely on their own
specific sampling procedures.

Watermarking Methods. We conduct experiments with Tree-Ring (Wen et al., |2023) (TR) and
Gaussian Shading (Yang et al., [2024) (GS), which embed watermarks in the frequency and spatial
domains of the initial noise, respectively.

Comparison Methods. We evaluate our method against several categories of baselines for a com-
prehensive comparison. First, we establish standard benchmarks using 50-step DDIM inversion
and one-step DDIM inversion. Next, we compare against methods specifically designed for high-
fidelity inversion, including EDICT (Wallace et al., 2023) and BELM (Wang et al., [2024)). We also
consider ExactDPM (Hong et al.| 2024), but owing to its extremely slow inference speed, we limit
this comparison to the SD v2.1 model. Finally, given the scarcity of dedicated few-step inversion
techniques, we adapt state-of-the-art acceleration methods originally designed for generation. For
fast numerical solvers, we select AMED-Solver (Zhou et al., [2024a). Among the distillation-based
methods, we include LCM-LoRA (Luo et al., 2023)) and DMD2 (Yin et al., 2024a). Since the pub-
licly available weights for these methods are limited to SD v1.5, these comparisons are performed
only on that version. A detailed justification for our choice of baselines and a discussion of other
related works are provided in the Appendix[A]

Training. We train our model for 1,000 steps on 1,000 prompts from the MS-COCO-2017 dataset
(Lin et al.,|2014). The training is configured with a batch size of 4 and a learning rate of le-4. For
LoRA, we use a rank of 8 and inject the adapters only into the attention-related modules. During
the training loop, images are generated using an accelerated 20-step DDIM process to improve
efficiency. Our adversarial distortion set includes 9 different augmentation types.

Evaluation. We evaluate all methods on a test set of 1,000 prompts from the Stable-Diffusion-
Prompts (SDP) datasetﬂ under a range of common distortions. To accurately assess practical per-
formance, we bypass general image-level metrics and instead adopt the specific evaluation metrics
defined by the downstream watermarking methods themselves. Specifically, for Gaussian Shading,
we measure the bit-wise accuracy of the extracted message; for Tree-Ring, we measure the TPR at
a stringent fixed FPR of 10~3, obtained by fitting the ROC curve on 1,000 positive and negative
examples each and extrapolating.

All experiments are implemented in PyTorch 2.4.1 and run on a single NVIDIA RTX A6000 GPU.
More details can be found in Appendix [B]

4.2 MAIN RESULTS

The main results are presented in Table [Il Across both diffusion models and both downstream
watermarking tasks, our FARI method achieves the most robust performance with the lowest NFE.

As anticipated, the performance of EDICT (Wallace et al., [2023) and BELM (Wang et al., 2024) on
noise reconstruction is not as strong as their reported performance on image reconstruction. Their
results are often inferior even to the standard DDIM baseline. This is particularly true for BELM;
as a multi-step method, its errors appear to accumulate more rapidly, and it exhibits a significant
sensitivity to mismatched guidance scales between the generation and inversion phases.

ExactDPM (Hong et al., 2024), which uses gradient descent to optimize the inversion trajectory,
is extremely time-consuming but does show effectiveness against certain distortions like Gaussian
noise. However, its objective is often misaligned with our task. For distortions involving missing
content, such as random cropping or dropping, the method’s attempts to inpaint the image can cause
the trajectory to deviate in the wrong direction, harming noise reconstruction.

The acceleration methods also show limitations. The AMED-Solver’ (Zhou et al [2024a), which
we fine-tuned adversarially in a similar manner to FARI, performs competitively. However, because
its mechanism is limited to predicting a single median timestep, its solution space is too constrained
to handle complex, real-world distortions, leaving a gap to the optimal performance. The distillation
methods, LCM-LoRA (Luo et al.l 2023) and DMD2 (Yin et al., 2024a), while highly effective for
accelerating generation, do not transfer their success to the distinct task of one-step inversion. We

'https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts
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Table 1: Comparison of inversion methods on downstream watermarking methods under various
image distortions.

DM | Methods NFE | Clean Adv. | Jpeg R.Crop R.Drop Resize G.Blur M.Blur G.Noise S&P Bright
Bit Accuracy of Gaussian Shading Watermark

DDIM 50 0.9999 0.9777 | 0.9889 0.9781 0.9736 0.9975 0.9873 0.9983 0.9609 0.9354 0.9567

1 0.9999 0.9376 | 0.9703 0.8859 0.8808 0.9906 0.9585 0.9934 0.9398 0.9105 0.9085

v, | EDICT 50 1.0000 0.9637 | 0.9786 0.9656 0.9568 0.9969 0.9807 0.9985 0.9390 0.9124 0.9450

= | BELM 50 0.9991 0.9465 | 0.9847 0.8960 0.8958 0.9939 0.9617 0.9956  0.9355 0.9275 0.9278

A | AMEDf 2 1.0000 0.9656 | 0.9807 0.9528 0.9462 0.9970 0.9808 0.9989  0.9587 0.9346 0.9410

“ | LCM-LoRA 2 0.9999 0.9541 | 0.9819 0.9352 0.9308 0.9924 0.9668 0.9955 0.9311 0.9030 0.9504

DMD2 1 0.9988 0.9287 | 0.9760 0.8446  0.8241 0.9792 0.9209 0.9836  0.9252 0.9007 0.9336

FARI(Ours) 1 1.0000 0.9834 | 0.9935 09777 0.9761 0.9990 0.9957 0.9992 0.9836 0.9649 0.9612

DDIM 50 1.0000 0.9755 | 0.9892 0.9752  0.9669 0.9980 0.9860 0.9991  0.9590 0.9373 0.9447

1 0.9987 0.9359 | 0.9755 0.8841 0.8637 0.9748 0.9173 0.9819  0.9280 0.9069 0.9284

< | EDICT 50 1.0000 0.9585 | 0.9773 0.9639  0.9558 0.9963 0.9805 0.9983 0.9396 0.9104 0.9395

5 BELM 50 0.9990 0.9411 | 0.9847 0.8923 0.8938 0.9933 0.9602 0.9952  0.9333 0.9269 0.9334

» | AMED' 2 1.0000 0.9662 | 0.9813 0.9559 0.9495 0.9970 0.9805 0.9989 0.9585 0.9357 0.9384

ExactDPM > 150 | 1.0000 0.9670 | 0.9831 0.9675 0.9599 0.9974 0.9815 0.9987 0.9653 0.9241 0.9354

FARI(Ours) 1 1.0000 0.9824 | 0.9941 09771 0.9700 0.9992 0.9956 0.9994 09815 0.9659 0.9588

TPR@1e-3 of Tree-Ring Watermark

DDIM 50 1.000  0.949 | 0.989  1.000 1.000  0.999  0.996 1.000 0.636 0946 0972

1 1.000 0.863 | 0.905  0.602 0.649  1.000 0994  1.000 0.891 0.990 0.737

v, | EDICT 50 1.000 0.942 | 0975  0.998 1.000 0999 0.992  0.997 0.605 0.954  0.962

= | BELM 50 0933  0.592 | 0.768  0.032 0.054 0.889 0.873  0.865 0384  0.852  0.608

o | AMEDf 2 1.000  0.909 | 0.939  0.947 0936 0999 0995  0.999 0.618 0912 0.835

“ | LCM-LoRA 2 1.000 0.875 | 0914  0.996 0.991 0.999 0987  0.999 0.331 0.812  0.850

DMD2 1 1.000 0.760 | 0.709  0.116 0.473 0996 0971 0.995 0913 0985 0.678

FARI(Ours) 1 1.000 0.997 | 1.000 1.000 1.000  1.000  1.000  1.000 0.980  1.000 0.992

DDIM 50 1.000  0.962 | 0.993  1.000 1.000  1.000  0.997 1.000 0.726 0982  0.960

1 1.000 0.896 | 0.896  0.709 0.845 1.000 0993  0.999 0903 0991 0.729

< | EDICT 50 1.000 0.946 | 0.980  0.984 0985 0997 0990  0.998 0.681 0.969  0.933

> | BELM 50 0.882 0.543 | 0.721  0.001 0.000 0.803 0.787  0.801 0.417 0812 0.541

9: AMED' 2 1.000 0.926 | 0.966  0.957 0.983  1.000  0.998 1.000 0.656 0983  0.795

ExactbDPM > 150 | 1.000  0.906 | 0.991  0.571 0.847  1.000  0.999 1.000 0.835 0992 0915

FARI(Ours) 1 1.000  0.997 | 0.999  1.000 1.000  1.000  0.999  1.000 0979 0999 0.993

posit that this is because predicting the reverse ODE direction from a highly structured image is a
fundamentally different challenge than predicting it from pure noise.

4.3 GENERALIZATION

In this section, we explore FARI’s generalization ability to different generation conditions. By
default, we use the SD v2.1 model (Rombach et al., [2022)) for these experiments and employ the
standard 50-step DDIM inversion (Song et al., [2021) as the baseline. Experiments with different
samplers and NFE in generation process can be found in Appendix [E]
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Figure 4: The results of experiments on various guidance scales and noise intensities.

Guidance Scales. Given diverse user preferences for prompt adherence, higher guidance scales
enforce the original prompt more strictly, while lower scales allow greater creative freedom. Our
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experiments span a wide range of 2.5 to 12.5. As shown in Figure[d]j), FART’s performance degrades
only marginally under these settings.

Noise Intensities. To further test the robustness, we conduct experiments using different intensities
of distortions. The results are shown in Figure f[a-i). FARI consistently outperforms the stan-
dard DDIM baseline, and its advantage becomes even more pronounced as the distortion intensity
increases.

Noise types. Although our model is trained with a rich set of augmentations, real-world distortions
may include types unseen during training. To evaluate FARI’s generalization ability against such
unseen distortions, we compare the mean squared error (MSE) of the reconstructed noise under three
distinct conditions: 1) No Noise, where the model is trained without any adversarial augmentations,
serving as a baseline; 2) Blind to Noise, where FARI is trained on all distortions except for the one
being tested; and 3) All Noise, our standard training procedure. The results, presented in Figure
(left), show that FARI achieves a notable improvement in robustness even against distortions it has
never encountered during training.

o>
3
=3
3

EEE No Noise
BN Blind to Noise
All Noise

e
o
S
e
o
S

S
%
S

TPR@]1e-6/Bit Accuracy
s
TPR@1e-6/Bit Accuracy
o o
% S

—e— GS Bit Acc. —eo— GS Bit Acc.
TR TPR TR TPR

S
%
S
o
&

T 2 4 8§ 16 32 o4 R 2 3 4 5
" % R S @ © o 5 )
Rl R R oS L G g LoRA Rank NFE of Inversion

Figure 5: Left: Performance of FARI when trained under different noise settings, measured in mean
squared error (MSE), where lower values are better. Middle: The effect of different LORA ranks on
FARI’s performance. Right: The impact of using a higher NFE for end-to-end training on FARI’s
final performance.

4.4 ABLATION STUDY

In this section, we present ablation studies of FARI’s training settings.

LoRA Ranks. We experimented with different LoORA ranks. Fi gure@(middle) shows that even with
arank of 1, the performance is considerable. Increasing the rank yields only marginal performance
gains, confirming that a low rank is sufficient for our method.

More NFE for Training. We also attempted end-to-end training on a multi-step (NFE > 1) in-
version. As shown in Figure [3] (right), using more steps not only sacrifices speed but also fails to
improve performance, instead causing a slight degradation. We posit two reasons for this: first, a
single step may already be sufficient to accurately approximate the low-curvature inversion trajec-
tory; second, the non-trivial accumulation of errors during multiple forward passes may harm the
final reconstruction. This confirms that our choice of a one-step inversion is optimal.

5 DISCUSSION

Extended Application and Future Work. We also briefly investigated FARI’s performance on im-
age reconstruction, given its nature as an inversion method. The specific results are available in the
Appendix [D| Furthermore, the reduction in NFE opens up another possibility. The adversarial re-
moval of inversion-based watermarks has traditionally been difficult or extremely resource-intensive
due to the need for gradient propagation through the entire multi-step inversion process (Miiller et al.,
2024). Our one-step method may alleviate this, as it dramatically shrinks the computational graph.
This will be a direction for our future work.

Limitations. Despite its strong performance in speed and robustness, FARI has two main limita-
tions. First, its sacrificed precision on clean image inversions makes it unsuitable for direct appli-
cation in image editing (Hertz et al., |2022). Second, like all inversion-based watermarks, FARI is
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dependent on ODE-based sampling (Song et al. 2021} [Lu et al) 2022a)) and will fail if an SDE
sampler (Ho et al., 2020; Song et al., [2020) is employed.

6 CONCLUSION

Starting from the demands of watermark extraction, this paper identifies the critical bottleneck as
the cumulative error arising from external distortions in the transmission channel. This leads us to
question the necessity of traditional high-NFE inversion methods; they are not only slow and inef-
fective at mitigating these external errors but also computationally prohibit end-to-end adversarial
training. Subsequently, we propose FARI, a framework built upon our key discovery of a geomet-
ric asymmetry: the inversion trajectory possesses a significantly lower curvature than its generation
counterpart. This inherent compressibility allows us to efficiently distill the entire multi-step pro-
cess into a single step. By doing so, FARI unlocks a robust adversarial training regime, creating
an inverter that achieves state-of-the-art robustness and speed for practical, large-scale watermark
verification.

REPRODUCIBILITY STATEMENT

The resources required to reproduce the experiments of this paper are provided in the supplementary
materials. This includes the complete source code for our proposed method, FARI, along with de-
tailed instructions for setting up the environment and running the training and evaluation scripts. The
implementation details for all baseline methods and experimental settings are described in Section

[.T)and Appendix[B]
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A DISCUSSION ABOUT RELATED WORKS

The body of work related to our method is extensive, primarily encompassing inversion techniques
and diffusion model acceleration. We discuss these in separate categories below.

A.1 INVERSION TECHNIQUES

A significant portion of inversion research focuses on improving the quality of image editing by
enforcing trajectory symmetry. NTI (Mokady et al.| [2023) first performs a standard DDIM inver-
sion and then optimizes a null-text embedding for each step. This embedding sequence is then used
during regeneration to ensure the new path closely follows the reverse of the inversion trajectory,
achieving high-fidelity reconstruction. PTI (Dong et al., |2023) extends this by linking the embed-
ding to the target prompt to enhance editing quality. Furthermore, NPI (Miyake et al., 2025) replaces
the optimized null-text sequence with the prompt embedding itself, eliminating the need for opti-
mization and greatly improving efficiency. Direct Inversion (Ju et al., [2023) also follows this path
by decoupling the source and target diffusion branches. Notably, these methods do not actually
change the result of the initial inversion; their focus is on the reconstruction phase. Therefore, their
performance in a watermarking scenario is nearly identical to that of standard DDIM inversion, and
we do not include them in our quantitative comparisons.

Another representative class of inversion methods, including AIDI (Pan et al., [2023), SPDInv (Li
et al., 2024), ReNoise (Garibi et al.| 2024), GNRI (Samuel et al., 2023), and ExactDPM (Hong
et al., [2024), directly optimizes the inversion trajectory using fixed-point iteration or gradient de-
scent. While these can indeed reduce the inversion error, they are often unstable. This instability is
exacerbated by the initial value offset common in watermarking, which can cause the optimization
to proceed in an incorrect direction or fail entirely. We found that while ExactDPM is the slowest, it
is the most stable among them and also targets watermarking as a downstream task. Consequently,
we select it as a representative of this category for comparison.

A third class of methods addresses the inherent lack of invertibility in the sampling process itself.
Techniques like EDICT (Wallace et al.| 2023, BDIA (Zhang et al) [2024a), and BELM (Wang
et al.,[2024) modify the sampler to achieve a smaller theoretical error bound. However, their design
carries an implicit assumption that the entire process is free from external error. This holds true
for reconstruction but is clearly violated in watermarking, where the image is subject to various
distortions after generation that can push it out of the method’s convergence domain. Furthermore,
these methods can be more sensitive when handling images generated with a high guidance scale.

Recently, an interesting work in this area is SwiftEdit (Nguyen et al., 2025)), which also achieves
one-step inversion via model fine-tuning. However, it still considers the problem from an editing
perspective, focusing on adapting to real images and enabling subsequent edits. While it achieves
fast, high-quality results on editing tasks, it relies on base models that are already one-step genera-
tors (e.g., SwiftBrush v2 (Dao et al.| [2024)) and has not demonstrated generalization to multi-step
generators. This implies the trajectory it learns to fit is already a straight line, which is a simpler
task. Additionally, its code and weights are not publicly available, precluding a direct comparison.

A.2 DIFFUSION MODEL ACCELERATION

Given the lack of fast and stable inversion methods, we also include several diffusion model acceler-
ation techniques in our baseline comparison. For the task of acceleration, we focus on methods that
retain capabilities similar to the original model, rather than fully retraining a new one for faster gen-
eration. These methods can be divided into two categories. The first is based on higher-order solvers
with lower truncation error, such as DPMSolver (Lu et al.|[2022a)). However, their performance ceil-
ing is limited in extreme few-step scenarios. A noteworthy exception is the AMED-Solver (Zhou
et al., [2024a), which is based on the mean value theorem for vector fields. It trains an additional
small model to predict the median point of the trajectory, whose velocity can be used as the average
velocity for the entire path, enabling sampling in as few as two steps.

The second category is distillation, where a student model learns to replicate the output of multiple
teacher steps in a single step. This, however, often requires substantial training resources and time,
which we argue is excessive if used solely for inversion. We select two representative baselines from
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this rich field. LCM-LoRA (Luo et al.l 2023) is similar to our method in that it stores the distilled
parameters in a LoRA (Hu et al., 2022) module. However, its purpose is different: it is designed
to adapt to various user-personalized models, enabling accelerated sampling without requiring a
separate distillation for each fine-tuned model. DMD2 (Yin et al., [2024a), on the other hand, uses
distribution matching distillation. It does not directly learn the teacher’s output but rather its target
distribution, allowing the student’s performance to surpass the ceiling of the original teacher model.
Another relevant work is SFD (Zhou et al.| [2024b)), which observes the smooth modification of the
gradient field and, inspired by this, focuses training resources on essential timesteps. While known
for its fast training speed for a distillation method, it is still slower to train than FARI and its one-step
performance is inferior to our chosen baseline, DMD2. Our results show that distillation methods
do not perform exceptionally well on the inversion task. As we posited, while the prediction target
is similar, the input is fundamentally different: predicting a direction from a highly structured image
is a distinct challenge compared with predicting it from pure noise.

B DETAILED EXPERIMENTS SETTINGS
In this section, we provide the specific details of our experimental setup.

Models and Generation. We conduct experiments on Stable Diffusion (SD)

vl.5 and v2.1 (Rombach et al, [2022). The generation process utilizes the
diffusers library in Python, with pretrained weights sourced from the Hug-
ging Face Hub repositories runwayml/stable-diffusion-vl-5 and

stabilityai/stable-diffusion-2-1-base, respectively. All images are gener-
ated at a resolution of 512 x 512 pixels. For testing, we use 50-step DDIM sampling with a fixed
guidance scale of 7.5, which are common settings for the downstream watermarking tasks.

Watermarking Methods. For both the Tree-Ring (Wen et al.,[2023) and Gaussian Shading (Yang
et al., [2024) watermarks, we use the official open-source code provided by the authors on GitHub.
We use Tree-Ring in its rand mode, with the watermark embedded in the fourth channel of the
latent space. For Gaussian Shading, we adopt the default settings (f.;, = 4, fr = 8, fiw = 8, fora
256-bit capacity) and use a stream cipher to encrypt the watermark message.

Baselines. For DDIM (Song et al. 2021), we use our own implementation, which is equiv-
alent to using the DDIMInverseScheduler from diffusers. It is critical to note that
the timestep_spacing must be set to "trailing" instead of the default "leading".
The "leading" setting introduces a significant error at low NFEs because it sets the first
prev_timestep to 0. Since the scheduler calculates the current t imestep by subtracting a
step size from prev_t imestep, this can result in a negative timestep, which is then clipped to 0.
This effectively makes the first step a non-operation (from ¢ = 0 to ¢ = 0). The "trailing"
setting avoids this error. While both settings yield similar results at high NFEs, the difference is
substantial at very few steps, especially when NFE=1. Furthermore, our one-step DDIM inversion
baseline, similar to FARI, uses ¢ = 0 when predicting epsilon, as using ¢ = 7" introduces a large
error.

For EDICT (Wallace et al.,|2023) and BELM (Wang et al., 2024)), we use the implementation pro-
vided by BELM. The NFE is set to 50 steps, and EDICT’s hyperparameter p is set to 0.93 as recom-
mended in the original paper. For ExactDPM (Hong et al.,2024), we use the official implementation
with the Backward Euler method for inversion. To ensure a fair and efficient comparison, we disable
the additional decoder inversion. We set its inversion step count to 10, but note that it requires an
iterative optimization process that often takes over 150 iterations, depending on the distortion type
and intensity.

As the official weights for AMED-Solver (Zhou et al.l [2024a) were not provided for our target
models, we retrained it ourselves. Crucially, we performed an end-to-end adversarial training for
the inversion task, similar to our FARI training, and aligned its parameter count with FARI. Since
it requires a minimum of two steps for sampling, we set its NFE to 2. For LCM-LoRA (Luo et al.,
2023)) and DMD2 (Yin et al., 2024a)), we use the officially provided weights. We set LCM-LoRA
to use two steps (within its allowed 2-8 range) and use a single step for DMD2, which has one-step
sampling capabilities.
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Training and Evaluation. For FARI’s training, we use a batch size of 4 with the Adam opti-
mizer and a learning rate of 1e-4. When retraining the AMED-Solver from scratch, we adjusted the
learning rate to le-3. For our training dataset, we use prompts associated with the MS-COCO-2017
dataset (Lin et al.,[2014); while the original dataset lacks prompts, we utilize the captions provided
in the official Tree-Ring repository. For testing, we use the test split of the Stable-Diffusion-Prompts
(SDP) dataset.

Distortions. The types of distortions used in our training and testing are illustrated in Figure [6]
Geometric distortions, such as rotation and scaling, were excluded, as we consider their handling
to be more related to the intrinsic robustness mechanism of the watermark itself rather than the
inversion process.

(®

Figure 6: Visualization of the distortion set used in our experiments. (a) Clean image or identity
transformation. (b) JPEG, QF =25. (c) 60% area Random Crop (R.Crop). (d) 80% area Random
Drop (R.Drop). (e) 25% Resize and restore (Resize). (f) Gaussian Blur, » = 4 (G.Blur). (g) Median
Blur, k£ =7 (M.Blur). (h) Gaussian Noise, u =0, o = 0.05 (G.Noise). (i) Salt and Pepper Noise, p =
0.05 (S&P). (j) Brightness, factor = 6 (Bright).

C DETAILS ABOUT THE CURVATURE EVALUATION.

In Section [3.1} we measure the curvature of the generation and inversion trajectories as a function
of the timestep. The experiment is conducted on the Stable Diffusion v2.1 model (Rombach et al.,
2022)), generating 100 images. Both the generation and inversion processes are set to be uncondi-
tional to eliminate interference from other factors. The curvature is approximated using a formal
definition of discrete curvature.

Specifically, for a trajectory of latent variables {x; }Z_,, we consider three consecutive points = 1,
¢, and x;—1. We first define the two corresponding velocity vectors as vy = x;—; — @ and
Vi41 = Ty — Ty+1. We then approximate the arc length s, as:

st = |lverall2 + [[vell2 (12)

The discrete curvature «; at timestep ¢ is then defined as the angle 8; between the velocity vectors,
divided by the arc length s;:

0
K= — (13)
St
where the angle 6, is given by:
0; = arccos (W> (14)
[ve11 2] ve]]2
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We also conducted two additional experiments, with the results shown in the Figure [7] For con-
ditional generation, we use prompts from the Stable-Diffusion-Prompts dataset. All other settings
remain identical to our main experiments. First, we used conditional generation to create an image,
and then compared the curvature of the original generation trajectory against two types of inversion:
one that was conditionally-aligned and one that was unconditional. The results show that the cur-
vature of both inversion trajectories is consistently lower than that of the generation trajectory. It
is important to note, however, that lower curvature does not necessarily equate to higher inversion
accuracy. Second, we measured the curvature of a regeneration trajectory (from the inverted noise).
The results indicate that the regenerated path also has a lower curvature than the initial generation
path. This further validates our conclusion that the residual low-frequency semantic information in
the reconstructed noise partly helps to reduce trajectory curvature.

To strengthen the generalizability of our findings, we conduct additional on the COCO dataset and
using Stable Diffusion v3.5 Medium (SD v3.5M) (Esser et al.| 2024). The results are presented in
the Figure[§]

Curvature over Sampling (SDP dataset) Curvature over Sampling
3.0
—— generation w/ condition 101 — generation
251 inversion w/ condition —— inversion
' —— inversion w/o condition 8 1 —— regeneration

o 2.0 o
E R
©15 ]
5 5
O O 4

1.0

05 21

0.0 ] ] | ‘ ‘ 01, ‘ ‘ ‘ ‘ ‘

0 200 400 600 800 1000 0 200 400 600 800 1000
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Figure 7: Left: The curvature of the conditional generation, unconditional inversion, and conditional
inversion trajectories over the diffusion timesteps. Right: The curvature of the generation, inversion,
and regeneration trajectories over the diffusion timesteps.

Curvature over Sampling (COCO dataset) Curvature over Sampling (SD v3.5 M)
3.01 —— generation w/ condition —— generation
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0 2.0 @ 0.15
2 2
=1 5 0.10
o} O
1.0
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0.5
0.01 ‘ ] ] ‘ ‘ ‘ 0.001 ‘ ] ‘ ‘ ‘ ‘
0 200 400 600 800 1000 0 200 400 600 800 1000
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Figure 8: Left: The curvature of the the conditional generation, unconditional inversion, and condi-
tional inversion trajectories over the diffusion timesteps, measured using SD v2.1 on the COCO
dataset . Right: The curvature of the generation and inversion trajectories over the diffusion
timesteps, measured using SD v3.5M.

D EXTENDED APPLICATION ON IMAGE RECONSTRUCTION AND EDITING

Although FARI is specifically designed for watermark extraction, its remarkable speed prompted us
to investigate its potential for image reconstruction and editing. We therefore conducted an exper-
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iment comparing the peak signal-to-noise ratio (PSNR) of images reconstructed by FARI against
those reconstructed by DDIM (Song et al., [2021), EDICT (Wallace et al.| |2023), BELM (Wang
et al.| [2024)), and ExactDPM (Hong et al., 2024). The results are presented in Table @ While dis-
abling adversarial training (FARI“!™) boosts FARI’s precision on clean inversions, a gap remains
when compared to leading editing-oriented methods. Regarding image editing, many techniques
require attention map or feature sharing during the intermediate steps of the inversion and regen-
eration process to ensure high consistency. As our one-step method lacks these intermediate steps
for intervention, it is not directly compatible with mainstream plug-and-play diffusion-based editing
frameworks (Hertz et al.}|2022)). We hope our work can serve as inspiration for subsequent research
in this area.

Table 2: The performance of inversion methods on image reconstruction.
DDIM EDICT BELM ExactDPM FARI FARI“™"
PSNR 1733 2526  24.04 20.02 10.61 14.60

E MORE EXPERIMENTAL RESULTS

E.1 DISCUSSION ABOUT TRAINING TIME AND INFERENCE TIME

Training Time Figure [J] illustrates the training dynamics of FARI, showing the exponentially
weighted moving average (EWMA) of the loss curve alongside the performance on the Gaussian
Shading (Yang et al., 2024) and Tree-Ring (Wen et al., [2023) watermark tasks. The entire training
process, including the online construction of data pairs, takes approximately 70 minutes on a single
NVIDIA RTX A6000 GPU. Notably, FARI surpasses the performance of the 50-step DDIM baseline
on both watermarking tasks around the 300th training step (approximately 20 minutes), highlighting
the efficiency of our method.
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Figure 9: The loss tendency and tested performance on downstream watermarking tasks over the
training step.

Inference Time The use of a LoRA (Hu et al., 2022) modules affects the denoiser’s inference
efficiency, with the average time per function evaluation on an NVIDIA RTX A6000 GPU increasing
from 0.0247 s to 0.0358 s. While this introduces latency, the total time remains less than that of a
two-step inversion. To eliminate this overhead during inference, a practical solution is to merge
the LoRA weights by W/ = W, + AW = W, + BA. This can be achieved by creating an
extra fused copy of the LoRA-injected module, allowing the system to switch between the original
module for image generation and the fine-tuned, robust module for one-step watermark inversion.
Alternatively, for systems with sufficient VRAM, a simpler but more memory-intensive approach is
to load an entirely separate model with the weights pre-merged.
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E.2 MORE RESULTS ABOUT GENERALIZATION

Samplers. Users may employ samplers different from the one used during training. To test
FART’s generalization to this possibility, we conducted sampling using a variety of common ODE
solvers (Song et al., 2021;|Zhao et al.,2023; |Liu et al.} 2022; [Zhang & Chenl|[2022;|Lu et al., [2022a)).
The results, shown in Table 3] indicate that FARI outperforms the DDIM inversion baseline across
all tested samplers.

Table 3: Generalization to different samplers. For each cell, the values represent TR TPR / GS Bit
Acc.

DDIM UniPC PNDM DEIS DPMSolver
(Song et al.|[2021)  (Zhao et al.|[2023) (Liu et al.{2022) (Zhang & Chen||2022) (Lu et al.||2022a)
DDIM 0.966 / 0.9780 0.886/0.9550 0.967/0.9757 0.963/0.9744 0.884 /0.9549
FARI 0.997/0.9841 0.951/0.9637 0.997/0.9846 0.997/0.9826 0.951/0.9664

Inference Steps of Generation. To optimize the training speed, we used a fixed 20 steps for
image generation during our training process. While this may be a low number of inference steps
for the selected models, we present results with a greater number of generation steps in Table[d] The
results demonstrate that FARI, despite being trained under these efficient conditions, generalizes
well to higher-quality generation settings and consistently outperforms the baseline.

Table 4: Generalization to different NFEs of generation. For each cell, the values represent TR TPR
/ GS Bit Acc.

25 50 100

DDIM 0.965/0.9752 0.966/0.9780 0.964/0.9768
FARI  0.997/0.9826 0.997/0.9841 0.997/0.9843

Other Models. We evaluate FARI’s performance on SD v3.5M (Esser et al., [2024) and SDXL-
Turbo (Podell et al., [2023). Since SD v3.5M does not support DDIM sampler, we implement inver-
sion for this model via naive Euler Method. SDXL-Turbo inherently supports one-step generation,
so we compare the performance of one-step DDIM inversion against FARI.

Given that SD v3.5 has 16 latent channels, we set f;, = 2 and f;, = f,, = 8 for Gaussian Shading,
resulting in a capacity of 512 bits. For Tree-Ring Watermark, we use only the last four channels
for watermark embedding. The corresponding results are shown in Table [5] and Table [6] demon-
strating FARTI’s strong generalization capability. FARI exhibits substantial improvements on both
downstream watermarking approaches, especially for Tree-Ring. In the presence of distortions,
naive inversion fails to maintain the viability of Tree-Ring watermarking, demonstrating that FARI
significantly broadens the practical applicability of inversion-based watermarking techniques.

Table 5: Performance of naive inversion and FARI on SD v3.5M.
Methods NFE | Clean Adv. JPEG R.Crop R.Drop Resize G.Blur M.Blur G.Noise S&P  Bright

Bit Accuracy of Gaussian Shading Watermark

Naive 20 | 09994 09178 0.9440 0.9654 0.9403 0.9437 0.8728 0.9609 0.7778 0.8736 0.9818
FARI 1 0.9995 09515 09671 09713 0.9469 0.9756 0.9384 0.9852 0.8765 0.9191 0.9833

TPR@1e-3 of Tree-Ring Watermark

Naive 20 0.958  0.161 0.020  0.364 0.543 0.000  0.000  0.001 0.009 0.003  0.512
FARI 1 0998 0978 0994  0.998 0.995 0995 0952  0.996 0.917 0.968  0.985
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Table 6: Performance of naive inversion and FARI on SDXL-Turbo.
Methods NFE \ Clean Adv. JPEG R.Crop R.Drop Resize G.Blur M.Blur G.Noise S&P  Bright

Bit Accuracy of Gaussian Shading Watermark

0.9755 0.8576 09142 0.7449 0.7552 0.9370 0.8841 0.9346 0.8935 0.8229 0.8315
0.9998 09511 0.9903 09115 0.9161 0.9871 0.9370 0.9922 0.9801 0.9354 0.9102

TPR@1e-3 of Tree-Ring Watermark
DDIM 1 ‘ 0561 0201  0.672  0.000 0.000  0.065  0.001 0.221 0.412 0271 0.163

DDIM 1
FARI 1

FARI 1 0.998 0.855 0967 0.743 0.933 0.893  0.683 0.928 0.949 0.837  0.763
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Figure 10: Performance of DDIM inversion and FARI under different attacks.

More Datasets. To further validate generalization across datasets, we additionally select 1,000
prompts from a new dataset (DiffusionDBE[). Combined with the existing SDP and COCO datasets,
we conduct cross-dataset validation. The results are shown in Table[7] presented in the format of TR
TPR / GS Bit Acc., with 50-step DDIM as the baseline.

Table 7: Cross-dataset generalization results. Performance is reported as TR TPR / GS Bit Acc.

Training Dataset \ Test Dataset SDP COoCoO DiffusionDB
DDIM Baseline (50-step) 0.966/0.9780 0.964/0.9785 0.962/0.9763
SDP — 0.997/0.9852  0.995/0.9839
COCO 0.997/0.9841 — 0.997/0.9846
DiffusionDB 0.995/0.9832 0.997/0.9861 —

Removal Attacks. To evaluate FARI’s robustness against watermark removal attacks, we test
three regeneration attacks and one adversarial optimization attack. We evaluate three different regen-

eration attacks. For (2024)), we set the noise steps to 300. For|Cheng et al.| (2020) and

Ballé et al.[(2018)), we set the quality parameter to 3 (representing the highest attack strength). For
the adversarial optimization attack (Lukas et all, 2023, we use the following settings: € = 4/255,

Adam optimizer, learning rate of 0.01, and 5 optimization steps per image, all of which are con-
sistent with the default configuration. Note that the attack implementation does not involve Gaus-
sian Shading (GS). Since the GS verification process is non-differentiable and relies on sign-based
verification, we optimized by minimizing the MSE distance between the reconstructed noise after
optimization and the negative of the original noise. This can cause more elements in the recon-
structed noise to flip their signs and proved to be effective (otherwise, the bitwise accuracy will be
1.0000, which means the attack is useless). The corresponding results are shown in Figure[I0} FARI
provides improvements in robustness. However, the ability to resist attacks remains largely depen-
dent on the underlying design of the base watermarking method, as FARI serves as a plug-and-play
inversion approach to enhance their detection performance.

https://huggingface.co/datasets/poloclub/diffusiondb
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E.3 MORE ABLATION STUDIES

Trained Modules.  We experimented with training different modules of the denoiser. By default,
we only fine-tune the linear layers within the attention-related modules. In an Extended LoRA FT
setting, we fine-tune all linear and convolutional layers using LoRA. We also tested full fine-tuning
as an upper bound. The results are shown in Table |8} Although training more modules yields a
marginal improvement, the increase is not significant. We therefore opted for the more parameter-
efficient default setting.

Training Strategies. = We compared several training strategies, including a non-adversarial base-
line. We also tested regular distillation, where the model learns to mimic the output of a 50-step
DDIM inversion on real images, as well as a step-wise adversarial tuning similar to diffusion pre-
training (regular fine-tuning) (Ho et al., 2020). For regular distillation, the performance ceiling
effect is obvious if we were to directly learn from DDIM’s inversion of a distorted image. There-
fore, our actual learning objective is defined as the L2 distance between the noise produced by the
student model on an augmented image and the noise produced by the baseline DDIM on the corre-
sponding clean image. For regular fine-tuning, the evaluation is conducted using a 50-step inversion.
The results in Table[9]confirm our claims: adversarial training is vital for FARI’s robustness, the reg-
ular distillation approach is limited by its teacher’s performance ceiling, and the step-wise objective
of regular fine-tuning fails to learn global robustness.

Table 8: The Performance of FARI on different Table 9: The Performance of FARI on different

trained modules. training strategies.
TR TPR  GS Bit Acc. TR TPR  GS Bit Acc.
. FARI w/ adversarial training 0.997 0.9841
gttent]on EOEQ E$ 0.997 0'9821 FARI w/o adversarial training ~ 0.919 0.9788
xtended Lo 0.996 0.9849 Regular distillation 0.995 0.9823
Full FT 0.998 0.9860 Regular fine-tuning 0.963 0.9774

Choice of t.  Regarding the choice of ¢ value in Equation[9] we conducted an ablation study by
training with different ¢ values. The results are shown in Table [I0] The results demonstrate that
t =~ 0 serves as a better initialization for optimization than larger ¢ values.

Table 10: Ablation study on different ¢ values in Equation 0]
t=0 t=100 ¢t=500 t=999

GS Bit Acc.  0.9841 0.9835 0.9809  0.9772
TR TPR 0.997 0.996 0.995 0.988

E.4 GENERAL EVALUATION AND VISUAL RESULTS

To demonstrate FARI’s broader compatibility with inversion-based watermarking methods beyond
Gaussian Shading (Yang et al., [2024) and Tree-Ring (Wen et al., 2023)), we directly measure and
report the MSE of FART’s reconstructed latent noise in Table [[1] with visual results shown in Fig-
ure

F LLM USAGE STATEMENT

A large language model (LLM) was used as an assistive tool for the writing and editing of this
paper. Its primary function was to polish and rephrase sentences for improved clarity, readability,
and academic style. The authors have reviewed and take full responsibility for all content presented.
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Table 11: The MSE of inversion methods under various image distortions.
DM | Methods NFE | Clean Adv. | Jpeg R.Crop R.Drop Resize G.Blur M.Blur G.Noise S&P Bright

DDIM 50 0.2003 0.9285 | 0.8740 0.8734 0.8834 0.7671 0.9706 0.6920 1.1860 1.2963 0.8139

1 0.7108 0.9016 | 0.8981 0.9646 0.9621 0.8294 0.8987 0.8157 0.9067 0.9316 0.9074

v, | EDICT 50 02646 1.0477 | 1.0400 1.0407 1.0547 0.8569 1.0756 0.7654 1.2852 1.3735 0.9370
= | BELM 50 0.6593 1.1723 | 1.0230 1.4621  1.4384 09181 1.1744 0.8789 1.2193 1.2065 1.2305
a | AMEDf 2 0.3577 0.8375 | 0.8022 0.8756 0.8800 0.7116 0.8733 0.6439  0.9562 1.0033 0.7917
“ | LCM-LoRA 2 0.4488 0.8471 | 0.7773  0.8264 0.8331 0.7296 0.8614 0.7126  1.0413 1.0904 0.7517
DMD2 1 0.7934 0.9201 | 0.9478 0.9472 0.9392 0.8673 0.8999 0.8578 0.9367 0.9587 0.9266
FARI(Ours) 1 0.2033  0.6699 | 0.6138 0.7385 0.7396 0.5650 0.7037 0.5486 0.7146 0.7920 0.6135
DDIM 50 0.2051 0.9657 | 0.9070 0.9395 0.9614 0.8012 1.0167 0.7080 1.1861 1.2946 0.8769

1 0.6314 0.9573 | 0.8634 0.9934 1.0049 0.8861 1.0091 0.8471 1.0543 1.0456 0.9116

~ | EDICT 50 0.2659 1.0458 | 1.0419 1.0383 1.0476 0.8560 1.0745 0.7646 12700 1.3691 0.9503
> | BELM 50 0.6706 1.1705 | 1.0213  1.4556  1.4313 09263 1.1767 0.8872 1.2099 1.1954 1.2190
8 AMED 2 0.3538 0.8357 | 0.8025 0.8729 0.8791 0.7095 0.8726 0.6424  0.9522 0.9990 0.7915
ExactDPM > 150 | 0.2495 1.1306 | 1.0733 1.2565 1.2645 0.9105 1.1577 0.8165 12495 14110 1.0359
FARI(Ours) 1 0.2214 0.6862 | 0.6335 0.7461 0.7530 0.5905 0.7216 0.5638 0.7294 0.7962 0.6418

Image/ Noise Reconstruction Error x 0.6 / MSE (]) Image/ Noise Reconstruction Error x 0.6 / MSE (])

Distortion Type  ppiM (50-step)  DDIM (1-step) FARI Distortion Type  ppIM (50-step) ~ DDIM (1-step) FARI

174

Jpeg 1.0654 0.9619 0.7168 G.Noise 1.1816 1.0420 0.7427

Resize 0.8169 0.9277 0.5893 - S&P ] 1.4023 1.1074 0.8511
A
Va
\ -
1 AL T q | SAGERINE NS &7 R A
G.Blur 0.9302 1.0234 0.6012 Bright 1.3564 1.1670 0.9448

Figure 11: FARI reduces reconstruction error, especially under distortion. Naive DDIM single-step
inversion produces visible artifacts. Error scaled by 0.6 to avoid oversaturation.
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